[4590] | 1 | MODULE lmdz_thermcell_dry |
---|
[1403] | 2 | ! |
---|
| 3 | ! $Id: lmdz_thermcell_dry.f90 5390 2024-12-05 16:09:25Z aborella $ |
---|
| 4 | ! |
---|
[4590] | 5 | CONTAINS |
---|
| 6 | |
---|
[878] | 7 | SUBROUTINE thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
[4094] | 8 | & lalim,lmin,zmax,wmax) |
---|
[878] | 9 | |
---|
| 10 | !-------------------------------------------------------------------------- |
---|
| 11 | !thermcell_dry: calcul de zmax et wmax du thermique sec |
---|
[1403] | 12 | ! Calcul de la vitesse maximum et de la hauteur maximum pour un panache |
---|
| 13 | ! ascendant avec une fonction d'alimentation alim_star et sans changement |
---|
| 14 | ! de phase. |
---|
| 15 | ! Le calcul pourrait etre sans doute simplifier. |
---|
| 16 | ! La temperature potentielle virtuelle dans la panache ascendant est |
---|
[5390] | 17 | ! la temperature potentielle virtuelle ponderee par alim_star. |
---|
[878] | 18 | !-------------------------------------------------------------------------- |
---|
[4590] | 19 | USE lmdz_thermcell_ini, ONLY: prt_level, RG |
---|
[878] | 20 | IMPLICIT NONE |
---|
| 21 | |
---|
[4094] | 22 | integer, intent(in) :: ngrid,nlay |
---|
| 23 | real, intent(in), dimension(ngrid,nlay+1) :: zlev,pphi,ztv,alim_star |
---|
| 24 | integer, intent(in), dimension(ngrid) :: lalim |
---|
| 25 | real, intent(out), dimension(ngrid) :: zmax,wmax |
---|
[878] | 26 | |
---|
| 27 | !variables locales |
---|
| 28 | REAL zw2(ngrid,nlay+1) |
---|
| 29 | REAL f_star(ngrid,nlay+1) |
---|
| 30 | REAL ztva(ngrid,nlay+1) |
---|
| 31 | REAL wmaxa(ngrid) |
---|
| 32 | REAL wa_moy(ngrid,nlay+1) |
---|
| 33 | REAL linter(ngrid),zlevinter(ngrid) |
---|
| 34 | INTEGER lmix(ngrid),lmax(ngrid),lmin(ngrid) |
---|
[1403] | 35 | CHARACTER (LEN=20) :: modname='thermcell_dry' |
---|
| 36 | CHARACTER (LEN=80) :: abort_message |
---|
[4094] | 37 | INTEGER l,ig |
---|
[878] | 38 | |
---|
| 39 | !initialisations |
---|
| 40 | do ig=1,ngrid |
---|
| 41 | do l=1,nlay+1 |
---|
| 42 | zw2(ig,l)=0. |
---|
| 43 | wa_moy(ig,l)=0. |
---|
| 44 | enddo |
---|
| 45 | enddo |
---|
| 46 | do ig=1,ngrid |
---|
| 47 | do l=1,nlay |
---|
| 48 | ztva(ig,l)=ztv(ig,l) |
---|
| 49 | enddo |
---|
| 50 | enddo |
---|
| 51 | do ig=1,ngrid |
---|
| 52 | wmax(ig)=0. |
---|
| 53 | wmaxa(ig)=0. |
---|
| 54 | enddo |
---|
| 55 | !calcul de la vitesse a partir de la CAPE en melangeant thetav |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | ! Calcul des F^*, integrale verticale de E^* |
---|
| 59 | f_star(:,1)=0. |
---|
| 60 | do l=1,nlay |
---|
| 61 | f_star(:,l+1)=f_star(:,l)+alim_star(:,l) |
---|
| 62 | enddo |
---|
| 63 | |
---|
| 64 | ! niveau (reel) auquel zw2 s'annule FH :n'etait pas initialise |
---|
| 65 | linter(:)=0. |
---|
| 66 | |
---|
| 67 | ! couche la plus haute concernee par le thermique. |
---|
| 68 | lmax(:)=1 |
---|
| 69 | |
---|
| 70 | ! Le niveau linter est une variable continue qui se trouve dans la couche |
---|
| 71 | ! lmax |
---|
| 72 | |
---|
| 73 | do l=1,nlay-2 |
---|
| 74 | do ig=1,ngrid |
---|
| 75 | if (l.eq.lmin(ig).and.lalim(ig).gt.1) then |
---|
| 76 | |
---|
| 77 | !------------------------------------------------------------------------ |
---|
| 78 | ! Calcul de la vitesse en haut de la premiere couche instable. |
---|
| 79 | ! Premiere couche du panache thermique |
---|
| 80 | !------------------------------------------------------------------------ |
---|
[1403] | 81 | |
---|
[878] | 82 | zw2(ig,l+1)=2.*RG*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig,l+1) & |
---|
| 83 | & *(zlev(ig,l+1)-zlev(ig,l)) & |
---|
| 84 | & *0.4*pphi(ig,l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 85 | |
---|
| 86 | !------------------------------------------------------------------------ |
---|
| 87 | ! Tant que la vitesse en bas de la couche et la somme du flux de masse |
---|
| 88 | ! et de l'entrainement (c'est a dire le flux de masse en haut) sont |
---|
| 89 | ! positifs, on calcul |
---|
| 90 | ! 1. le flux de masse en haut f_star(ig,l+1) |
---|
| 91 | ! 2. la temperature potentielle virtuelle dans la couche ztva(ig,l) |
---|
[5390] | 92 | ! 3. la vitesse au carre en haut zw2(ig,l+1) |
---|
[878] | 93 | !------------------------------------------------------------------------ |
---|
| 94 | |
---|
| 95 | else if (zw2(ig,l).ge.1e-10) then |
---|
| 96 | |
---|
| 97 | ztva(ig,l)=(f_star(ig,l)*ztva(ig,l-1)+alim_star(ig,l) & |
---|
| 98 | & *ztv(ig,l))/f_star(ig,l+1) |
---|
| 99 | zw2(ig,l+1)=zw2(ig,l)*(f_star(ig,l)/f_star(ig,l+1))**2+ & |
---|
| 100 | & 2.*RG*(ztva(ig,l)-ztv(ig,l))/ztv(ig,l) & |
---|
| 101 | & *(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 102 | endif |
---|
| 103 | ! determination de zmax continu par interpolation lineaire |
---|
| 104 | !------------------------------------------------------------------------ |
---|
| 105 | |
---|
| 106 | if (zw2(ig,l+1)>0. .and. zw2(ig,l+1).lt.1.e-10) then |
---|
| 107 | ! stop'On tombe sur le cas particulier de thermcell_dry' |
---|
[938] | 108 | ! print*,'On tombe sur le cas particulier de thermcell_dry' |
---|
[878] | 109 | zw2(ig,l+1)=0. |
---|
| 110 | linter(ig)=l+1 |
---|
| 111 | lmax(ig)=l |
---|
| 112 | endif |
---|
| 113 | |
---|
| 114 | if (zw2(ig,l+1).lt.0.) then |
---|
| 115 | linter(ig)=(l*(zw2(ig,l+1)-zw2(ig,l)) & |
---|
| 116 | & -zw2(ig,l))/(zw2(ig,l+1)-zw2(ig,l)) |
---|
| 117 | zw2(ig,l+1)=0. |
---|
| 118 | lmax(ig)=l |
---|
[1998] | 119 | ! endif |
---|
| 120 | !CR:zmax continu 06/05/12: calcul de linter quand le thermique est stoppe par le detrainement |
---|
| 121 | elseif (f_star(ig,l+1).lt.0.) then |
---|
| 122 | linter(ig)=(l*(f_star(ig,l+1)-f_star(ig,l)) & |
---|
| 123 | & -f_star(ig,l))/(f_star(ig,l+1)-f_star(ig,l)) |
---|
| 124 | zw2(ig,l+1)=0. |
---|
| 125 | lmax(ig)=l |
---|
[878] | 126 | endif |
---|
[1998] | 127 | !CRfin |
---|
[878] | 128 | wa_moy(ig,l+1)=sqrt(zw2(ig,l+1)) |
---|
| 129 | |
---|
| 130 | if (wa_moy(ig,l+1).gt.wmaxa(ig)) then |
---|
| 131 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 132 | lmix(ig)=l+1 |
---|
| 133 | wmaxa(ig)=wa_moy(ig,l+1) |
---|
| 134 | endif |
---|
| 135 | enddo |
---|
| 136 | enddo |
---|
[938] | 137 | if (prt_level.ge.1) print*,'fin calcul zw2' |
---|
[878] | 138 | ! |
---|
| 139 | ! Determination de zw2 max |
---|
| 140 | do ig=1,ngrid |
---|
| 141 | wmax(ig)=0. |
---|
| 142 | enddo |
---|
| 143 | |
---|
| 144 | do l=1,nlay |
---|
| 145 | do ig=1,ngrid |
---|
| 146 | if (l.le.lmax(ig)) then |
---|
| 147 | zw2(ig,l)=sqrt(zw2(ig,l)) |
---|
| 148 | wmax(ig)=max(wmax(ig),zw2(ig,l)) |
---|
| 149 | else |
---|
| 150 | zw2(ig,l)=0. |
---|
| 151 | endif |
---|
| 152 | enddo |
---|
| 153 | enddo |
---|
| 154 | |
---|
| 155 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 156 | do ig=1,ngrid |
---|
| 157 | zmax(ig)=0. |
---|
| 158 | zlevinter(ig)=zlev(ig,1) |
---|
| 159 | enddo |
---|
| 160 | do ig=1,ngrid |
---|
| 161 | ! calcul de zlevinter |
---|
| 162 | zlevinter(ig)=zlev(ig,lmax(ig)) + & |
---|
| 163 | & (linter(ig)-lmax(ig))*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 164 | zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 165 | enddo |
---|
| 166 | |
---|
[4094] | 167 | RETURN |
---|
[5390] | 168 | END SUBROUTINE thermcell_dry |
---|
[4590] | 169 | END MODULE lmdz_thermcell_dry |
---|