[4613] | 1 | MODULE lmdz_ratqs_multi |
---|
[4009] | 2 | |
---|
| 3 | !============================================= |
---|
[4613] | 4 | ! A FAIRE : |
---|
[4664] | 5 | ! Traiter le probleme de USE lmdz_lscp_tools, ONLY: CALC_QSAT_ECMWF |
---|
[4613] | 6 | !============================================= |
---|
| 7 | |
---|
| 8 | !============================================= |
---|
[4009] | 9 | ! module containing subroutines that take |
---|
| 10 | ! into account the effect of convection, orography, |
---|
| 11 | ! surface heterogeneities and subgrid-scale |
---|
| 12 | ! turbulence on ratqs, i.e. on the width of the |
---|
| 13 | ! total water subgrid distribution. |
---|
| 14 | !============================================= |
---|
| 15 | |
---|
[5284] | 16 | USE yoethf_mod_h |
---|
| 17 | IMPLICIT NONE |
---|
[4009] | 18 | |
---|
| 19 | ! Include |
---|
| 20 | !============================================= |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | CONTAINS |
---|
| 24 | |
---|
| 25 | |
---|
| 26 | !======================================================================== |
---|
[4613] | 27 | SUBROUTINE ratqs_inter(klon,klev,iflag_ratqs,pdtphys,paprs, & |
---|
[4009] | 28 | ratqsbas, wake_deltaq, wake_s, q_seri,qtc_cv, sigt_cv, & |
---|
[4613] | 29 | fm_therm,entr_therm,detr_therm,detrain_cv,fm_cv,fqd,fqcomp,sigd, & |
---|
[5208] | 30 | ratqs_inter_,sigma_qtherm) |
---|
[4613] | 31 | |
---|
| 32 | USE lmdz_ratqs_ini, ONLY : a_ratqs_cv,tau_var,fac_tau,tau_cumul,a_ratqs_wake, dqimpl |
---|
| 33 | USE lmdz_ratqs_ini, ONLY : RG |
---|
| 34 | USE lmdz_ratqs_ini, ONLY : povariance, var_conv |
---|
| 35 | USE lmdz_thermcell_dq, ONLY : thermcell_dq |
---|
| 36 | |
---|
[4009] | 37 | implicit none |
---|
| 38 | |
---|
| 39 | !======================================================================== |
---|
[4812] | 40 | ! L. d'Alen??on, 25/02/2021 |
---|
[4613] | 41 | ! Cette subroutine calcule une valeur de ratqsbas interactive |
---|
[4812] | 42 | ! Elle est appel??e par la subroutine ratqs lorsque iflag_ratqs = 11. |
---|
[4009] | 43 | !======================================================================== |
---|
| 44 | |
---|
| 45 | ! Declarations |
---|
| 46 | ! Input |
---|
| 47 | integer,intent(in) :: klon,klev,iflag_ratqs |
---|
| 48 | real,intent(in) :: pdtphys,ratqsbas |
---|
[4613] | 49 | real, dimension(klon,klev+1),intent(in) :: paprs |
---|
[4009] | 50 | real, dimension(klon,klev),intent(in) :: wake_deltaq, q_seri,qtc_cv, sigt_cv |
---|
| 51 | real, dimension(klon),intent(in) :: wake_s |
---|
[4613] | 52 | real, dimension(klon,klev+1),intent(in) :: fm_therm |
---|
| 53 | real, dimension(klon,klev),intent(in) :: entr_therm,detr_therm,detrain_cv,fm_cv,fqd,fqcomp |
---|
| 54 | real, dimension(klon),intent(in) :: sigd |
---|
[4009] | 55 | |
---|
| 56 | ! Output |
---|
[4613] | 57 | real, dimension(klon,klev),intent(inout) :: ratqs_inter_ |
---|
[4009] | 58 | |
---|
| 59 | ! local |
---|
[4613] | 60 | LOGICAL :: klein = .false. |
---|
| 61 | LOGICAL :: klein_conv = .true. |
---|
| 62 | REAL :: taup0 = 70000 |
---|
| 63 | REAL :: taudp = 500 |
---|
| 64 | integer :: lev_out=10 |
---|
| 65 | REAL, DIMENSION (klon,klev) :: zmasse,entr0,detr0,detraincv,dqp,detrain_p,q0,qd0,tau_diss |
---|
| 66 | REAL, DIMENSION (klon,klev+1) :: fm0 |
---|
[4009] | 67 | integer i,k |
---|
| 68 | real, dimension(klon,klev) :: wake_dq |
---|
[4613] | 69 | |
---|
| 70 | real, dimension(klon) :: max_sigd, max_dqconv,max_sigt |
---|
| 71 | real, dimension(klon,klev) :: zoa,zocarrea,pdocarreadj,pocarre,po,pdoadj,varq_therm |
---|
[5208] | 72 | real, dimension(klon,klev) :: var_moy, var_var, var_desc_th,var_det_conv,var_desc_prec,var_desc_conv,sigma_qtherm |
---|
[4613] | 73 | |
---|
| 74 | lev_out=0. |
---|
| 75 | |
---|
| 76 | print*,'ratqs_inter' |
---|
| 77 | |
---|
| 78 | !----------------------------------------------------------------------- |
---|
| 79 | ! Calcul des masses |
---|
| 80 | !----------------------------------------------------------------------- |
---|
| 81 | |
---|
| 82 | do k=1,klev |
---|
| 83 | zmasse(:,k)=(paprs(:,k)-paprs(:,k+1))/RG |
---|
| 84 | enddo |
---|
[4009] | 85 | !------------------------------------------------------------------------- |
---|
[4812] | 86 | ! Caclul du terme de d??trainement de la variance pour les thermiques |
---|
[4009] | 87 | !------------------------------------------------------------------------- |
---|
| 88 | |
---|
[4613] | 89 | ! initialisations |
---|
| 90 | |
---|
| 91 | |
---|
| 92 | do k=1,klev |
---|
| 93 | do i=1,klon |
---|
| 94 | tau_diss(i,k)=tau_var +0.5*fac_tau*tau_var*(tanh((taup0-paprs(i,k))/taudp) + 1.) |
---|
| 95 | enddo |
---|
| 96 | enddo |
---|
| 97 | |
---|
| 98 | |
---|
[4009] | 99 | |
---|
[4613] | 100 | entr0(:,:) = entr_therm(:,:) |
---|
| 101 | fm0(:,:) = fm_therm(:,:) |
---|
| 102 | detr0(:,:) = detr_therm(:,:) |
---|
| 103 | |
---|
[4812] | 104 | ! calcul du carr?? de l'humidit?? sp??cifique et circulation dans les thermiques |
---|
[4613] | 105 | po(:,:) = q_seri(:,:) |
---|
| 106 | call thermcell_dq(klon,klev,dqimpl,pdtphys,fm0,entr0,zmasse, & |
---|
| 107 | & po,pdoadj,zoa,lev_out) |
---|
| 108 | do k=1,klev |
---|
| 109 | do i=1,klon |
---|
| 110 | pocarre(i,k)=po(i,k)*po(i,k) + povariance(i,k) |
---|
| 111 | enddo |
---|
| 112 | enddo |
---|
| 113 | call thermcell_dq(klon,klev,dqimpl,pdtphys,fm0,entr0,zmasse, & |
---|
| 114 | & pocarre,pdocarreadj,zocarrea,lev_out) |
---|
| 115 | |
---|
[4812] | 116 | |
---|
| 117 | ! variance de l'humidit?? sp??cifique totale dans les thermiques |
---|
[4613] | 118 | do k=1,klev |
---|
| 119 | do i=1,klon |
---|
| 120 | varq_therm(i,k)=zocarrea(i,k)-zoa(i,k)*zoa(i,k) |
---|
| 121 | enddo |
---|
| 122 | enddo |
---|
| 123 | |
---|
[4812] | 124 | ! calcul des termes sources de la variance avec thermiques et convection profonde (voir Klein 2005 par exemple) |
---|
| 125 | do k=1,klev |
---|
| 126 | do i=1,klon |
---|
| 127 | var_moy(i,k) = detr0(i,k)*((zoa(i,k)-po(i,k))**2)/zmasse(i,k) |
---|
| 128 | var_var(i,k) = detr0(i,k)*(varq_therm(i,k)-povariance(i,k))/zmasse(i,k) |
---|
| 129 | var_det_conv(i,k) = a_ratqs_cv*(detrain_cv(i,k)/zmasse(i,k)) |
---|
| 130 | if (sigd(i).ne.0) then |
---|
| 131 | var_desc_prec(i,k) = sigd(i)*(1-sigd(i))*(fqd(i,k)*tau_cumul/sigd(i))**2/tau_cumul |
---|
| 132 | else |
---|
| 133 | var_desc_prec(i,k) = 0 |
---|
| 134 | endif |
---|
| 135 | enddo |
---|
| 136 | enddo |
---|
| 137 | |
---|
| 138 | do k=1,klev-1 |
---|
| 139 | do i=1,klon |
---|
| 140 | var_desc_th(i,k) = fm0(i,k+1)*povariance(i,k+1)/zmasse(i,k) - & |
---|
| 141 | fm0(i,k)*povariance(i,k)/zmasse(i,k) |
---|
| 142 | var_desc_conv(i,k) = ((povariance(i,k+1)-povariance(i,k))*(fm_cv(i,k)/zmasse(i,k))) |
---|
| 143 | enddo |
---|
| 144 | enddo |
---|
| 145 | var_desc_th(:,klev) = var_desc_th(:,klev-1) |
---|
| 146 | var_desc_conv(:,klev) = var_desc_conv(:,klev-1) |
---|
[4613] | 147 | |
---|
| 148 | if (klein) then |
---|
| 149 | do k=1,klev-1 |
---|
| 150 | do i=1,klon |
---|
| 151 | qd0(:,:) = 0.0 |
---|
| 152 | if (sigd(i).ne.0) then |
---|
| 153 | qd0(i,k) = fqd(i,k)*tau_cumul/sigd(i) |
---|
| 154 | endif |
---|
| 155 | enddo |
---|
| 156 | enddo |
---|
| 157 | do k=1,klev-1 |
---|
| 158 | do i=1,klon |
---|
[4812] | 159 | povariance(i,k)= (var_moy(i,k) + var_var(i,k) + var_desc_th(i,k) + & |
---|
| 160 | var_det_conv(i,k) + var_desc_prec(i,k) & |
---|
| 161 | + var_desc_conv(i,k))*pdtphys + povariance(i,k) |
---|
[4613] | 162 | povariance(i,k)= povariance(i,k)*exp(-pdtphys/tau_diss(i,k)) |
---|
| 163 | enddo |
---|
| 164 | enddo |
---|
| 165 | povariance(:,klev) = povariance(:,klev-1) |
---|
| 166 | |
---|
| 167 | else ! calcul direct |
---|
| 168 | qd0(:,:) = 0.0 |
---|
| 169 | q0(:,:) = 0.0 |
---|
| 170 | do k=1,klev-1 |
---|
| 171 | do i=1,klon |
---|
[4812] | 172 | if (sigd(i).ne.0) then ! termes de variance par accumulation |
---|
[4613] | 173 | qd0(i,k) = fqd(i,k)*tau_cumul/sigd(i) |
---|
| 174 | endif |
---|
| 175 | if (sigt_cv(i,k).ne.0) then |
---|
| 176 | q0(i,k) = fqcomp(i,k)*tau_cumul/sigt_cv(i,k) |
---|
| 177 | endif |
---|
| 178 | enddo |
---|
| 179 | enddo |
---|
| 180 | do k=1,klev-1 |
---|
| 181 | do i=1,klon |
---|
| 182 | povariance(i,k)= (pdocarreadj(i,k)-2.*po(i,k)*pdoadj(i,k) + & |
---|
[4812] | 183 | a_ratqs_cv*(sigt_cv(i,k)*(1-sigt_cv(i,k))*q0(i,k)**2/tau_cumul + var_desc_prec(i,k) + & |
---|
| 184 | var_desc_conv(i,k)))*pdtphys + povariance(i,k) |
---|
[4613] | 185 | povariance(i,k)=povariance(i,k)*exp(-pdtphys/tau_diss(i,k)) |
---|
| 186 | enddo |
---|
| 187 | enddo |
---|
| 188 | povariance(:,klev) = povariance(:,klev-1) |
---|
| 189 | ! fqd(:,:)=sigt_cv(:,:)*(1-sigt_cv(:,:))*q0(:,:)**2/tau_cumul |
---|
[4009] | 190 | endif |
---|
| 191 | |
---|
[4613] | 192 | !------------------------------------------------------------------------- |
---|
| 193 | ! Caclul du ratqs_inter_ |
---|
| 194 | !------------------------------------------------------------------------- |
---|
| 195 | |
---|
| 196 | do k=1,klev |
---|
| 197 | do i=1,klon |
---|
| 198 | if(q_seri(i,k).ge.1E-7) then |
---|
[4812] | 199 | ratqs_inter_(i,k) = abs(povariance(i,k))**0.5/q_seri(i,k) |
---|
[5208] | 200 | sigma_qtherm(i,k) = abs(varq_therm(i,k))**0.5 ! sigma dans les thermiques |
---|
[4613] | 201 | else |
---|
| 202 | ratqs_inter_(i,k) = 0. |
---|
[5208] | 203 | sigma_qtherm(i,k) = 0. |
---|
[4613] | 204 | endif |
---|
[4009] | 205 | enddo |
---|
[4613] | 206 | enddo |
---|
[4009] | 207 | |
---|
| 208 | return |
---|
[5390] | 209 | END SUBROUTINE ratqs_inter |
---|
[4009] | 210 | |
---|
| 211 | !------------------------------------------------------------------ |
---|
[4613] | 212 | SUBROUTINE ratqs_oro(klon,klev,pctsrf,zstd,qsat,temp,pplay,paprs,ratqs_oro_) |
---|
[4009] | 213 | |
---|
| 214 | ! Etienne Vignon, November 2021: effect of subgrid orography on ratqs |
---|
| 215 | |
---|
[4613] | 216 | USE lmdz_ratqs_ini, ONLY : RG,RV,RD,RLSTT,RLVTT,RTT,nbsrf,is_lic,is_ter |
---|
[4009] | 217 | |
---|
| 218 | IMPLICIT NONE |
---|
| 219 | |
---|
| 220 | ! Declarations |
---|
| 221 | !-------------- |
---|
| 222 | |
---|
| 223 | ! INPUTS |
---|
| 224 | |
---|
| 225 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 226 | INTEGER, INTENT(IN) :: klev ! number of vertical layers |
---|
[4613] | 227 | REAL, DIMENSION(klon,nbsrf) :: pctsrf |
---|
[4009] | 228 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qsat ! saturation specific humidity [kg/kg] |
---|
[4613] | 229 | REAL, DIMENSION(klon), INTENT(IN) :: zstd ! sub grid orography standard deviation |
---|
[4009] | 230 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! air temperature [K] |
---|
| 231 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! air pressure, layer's center [Pa] |
---|
| 232 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! air pressure, lower inteface [Pa] |
---|
| 233 | |
---|
| 234 | ! OUTPUTS |
---|
| 235 | |
---|
[4613] | 236 | REAL, DIMENSION(klon,klev), INTENT(out) :: ratqs_oro_ ! ratqs profile due to subgrid orography |
---|
[4009] | 237 | |
---|
| 238 | |
---|
| 239 | ! LOCAL |
---|
| 240 | |
---|
| 241 | INTEGER :: i,k |
---|
| 242 | REAL, DIMENSION(klon) :: orogradT,xsi0 |
---|
| 243 | REAL, DIMENSION (klon,klev) :: zlay |
---|
| 244 | REAL :: Lvs, temp0 |
---|
| 245 | |
---|
| 246 | |
---|
| 247 | ! Calculation of the near-surface temperature gradient along the topography |
---|
| 248 | !-------------------------------------------------------------------------- |
---|
| 249 | |
---|
| 250 | ! at the moment, we fix it at a constant value (moist adiab. lapse rate) |
---|
| 251 | |
---|
| 252 | orogradT(:)=-6.5/1000. ! K/m |
---|
| 253 | |
---|
| 254 | ! Calculation of near-surface surface ratqs |
---|
| 255 | !------------------------------------------- |
---|
| 256 | |
---|
| 257 | DO i=1,klon |
---|
| 258 | temp0=temp(i,1) |
---|
| 259 | IF (temp0 .LT. RTT) THEN |
---|
| 260 | Lvs=RLSTT |
---|
| 261 | ELSE |
---|
| 262 | Lvs=RLVTT |
---|
| 263 | ENDIF |
---|
| 264 | xsi0(i)=zstd(i)*ABS(orogradT(i))*Lvs/temp0/temp0/RV |
---|
[4613] | 265 | ratqs_oro_(i,1)=xsi0(i) |
---|
[4009] | 266 | END DO |
---|
| 267 | |
---|
| 268 | ! Vertical profile of ratqs assuming an exponential decrease with height |
---|
| 269 | !------------------------------------------------------------------------ |
---|
| 270 | |
---|
| 271 | ! calculation of geop. height AGL |
---|
| 272 | zlay(:,1)= RD*temp(:,1)/(0.5*(paprs(:,1)+pplay(:,1))) & |
---|
| 273 | *(paprs(:,1)-pplay(:,1))/RG |
---|
| 274 | |
---|
| 275 | DO k=2,klev |
---|
| 276 | DO i = 1, klon |
---|
| 277 | zlay(i,k)= zlay(i,k-1)+RD*0.5*(temp(i,k-1)+temp(i,k)) & |
---|
| 278 | /paprs(i,k)*(pplay(i,k-1)-pplay(i,k))/RG |
---|
| 279 | |
---|
[4613] | 280 | ratqs_oro_(i,k)=MAX(0.0,pctsrf(i,is_ter)*xsi0(i)*exp(-zlay(i,k)/MAX(zstd(i),1.))) |
---|
[4009] | 281 | END DO |
---|
| 282 | END DO |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | |
---|
| 286 | |
---|
[4613] | 287 | END SUBROUTINE ratqs_oro |
---|
[4009] | 288 | |
---|
| 289 | !============================================= |
---|
| 290 | |
---|
[4613] | 291 | SUBROUTINE ratqs_hetero(klon,klev,pctsrf,s_pblh,t2m,q2m,temp,q,pplay,paprs,ratqs_hetero_) |
---|
[4009] | 292 | |
---|
| 293 | ! Etienne Vignon, November 2021 |
---|
| 294 | ! Effect of subgrid surface heterogeneities on ratqs |
---|
| 295 | |
---|
[4664] | 296 | USE lmdz_lscp_tools, ONLY: CALC_QSAT_ECMWF |
---|
[4009] | 297 | |
---|
[4613] | 298 | USE lmdz_ratqs_ini, ONLY : RG,RD,RTT,nbsrf |
---|
| 299 | |
---|
[4009] | 300 | IMPLICIT NONE |
---|
| 301 | |
---|
| 302 | ! INPUTS |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 306 | INTEGER, INTENT(IN) :: klev ! number of vertical layers |
---|
[4613] | 307 | REAL, DIMENSION(klon) :: s_pblh ! height of the planetary boundary layer(HPBL) |
---|
| 308 | REAL, DIMENSION(klon,nbsrf) :: pctsrf ! Fractional cover of subsurfaces |
---|
[4009] | 309 | REAL, DIMENSION(klon,nbsrf), INTENT(IN) :: t2m ! 2m temperature for each tile [K] |
---|
| 310 | REAL, DIMENSION(klon,nbsrf), INTENT(IN) :: q2m ! 2m specific humidity for each tile [kg/kg] |
---|
| 311 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! air temperature [K] |
---|
| 312 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q ! specific humidity [kg/kg] |
---|
| 313 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! air pressure, layer's center [Pa] |
---|
| 314 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! air pressure, lower inteface [Pa] |
---|
| 315 | |
---|
| 316 | ! OUTPUTS |
---|
| 317 | |
---|
[4613] | 318 | REAL, DIMENSION(klon,klev), INTENT(out) :: ratqs_hetero_ ! ratsq profile due to surface heterogeneities |
---|
[4009] | 319 | |
---|
| 320 | |
---|
| 321 | INTEGER :: i,k,nsrf |
---|
[4072] | 322 | REAL, DIMENSION(klon) :: xsi0, ratiom, qsat2m, dqsatdT |
---|
[4009] | 323 | REAL, DIMENSION (klon,klev) :: zlay |
---|
| 324 | |
---|
| 325 | |
---|
| 326 | |
---|
| 327 | ! Calculation of near-surface surface ratqs |
---|
| 328 | !------------------------------------------- |
---|
| 329 | |
---|
| 330 | |
---|
[4072] | 331 | ratiom(:)=0. |
---|
| 332 | xsi0(:)=0. |
---|
[4009] | 333 | |
---|
| 334 | DO nsrf=1,nbsrf |
---|
[4072] | 335 | CALL CALC_QSAT_ECMWF(klon,t2m(:,nsrf),q2m(:,nsrf),paprs(:,1),RTT,0,.false.,qsat2m,dqsatdT) |
---|
| 336 | ratiom(:)=ratiom(:)+pctsrf(:,nsrf)*(q2m(:,nsrf)/qsat2m(:)) |
---|
| 337 | xsi0(:)=xsi0(:)+pctsrf(:,nsrf)*((q2m(:,nsrf)/qsat2m(:)-ratiom(:))**2) |
---|
[4009] | 338 | END DO |
---|
| 339 | |
---|
[4072] | 340 | xsi0(:)=sqrt(xsi0(:))/(ratiom(:)+1E-6) |
---|
[4009] | 341 | |
---|
| 342 | |
---|
| 343 | |
---|
| 344 | ! Vertical profile of ratqs assuming an exponential decrease with height |
---|
| 345 | !------------------------------------------------------------------------ |
---|
| 346 | |
---|
| 347 | ! calculation of geop. height AGL |
---|
| 348 | |
---|
| 349 | zlay(:,1)= RD*temp(:,1)/(0.5*(paprs(:,1)+pplay(:,1))) & |
---|
| 350 | *(paprs(:,1)-pplay(:,1))/RG |
---|
[4613] | 351 | ratqs_hetero_(:,1)=xsi0(:) |
---|
[4009] | 352 | |
---|
| 353 | DO k=2,klev |
---|
| 354 | DO i = 1, klon |
---|
| 355 | zlay(i,k)= zlay(i,k-1)+RD*0.5*(temp(i,k-1)+temp(i,k)) & |
---|
| 356 | /paprs(i,k)*(pplay(i,k-1)-pplay(i,k))/RG |
---|
| 357 | |
---|
[4613] | 358 | ratqs_hetero_(i,k)=MAX(xsi0(i)*exp(-zlay(i,k)/(s_pblh(i)+1.0)),0.0) |
---|
[4009] | 359 | END DO |
---|
| 360 | END DO |
---|
| 361 | |
---|
[4613] | 362 | END SUBROUTINE ratqs_hetero |
---|
[4009] | 363 | |
---|
| 364 | !============================================= |
---|
| 365 | |
---|
[4613] | 366 | SUBROUTINE ratqs_tke(klon,klev,pdtphys,temp,q,qsat,pplay,paprs,omega,tke,tke_dissip,lmix,wprime,ratqs_tke_) |
---|
[4009] | 367 | |
---|
| 368 | ! References: |
---|
| 369 | ! |
---|
| 370 | ! Etienne Vignon: effect of subgrid turbulence on ratqs |
---|
| 371 | ! |
---|
| 372 | ! Field, P.R., Hill, A., Furtado, K., Korolev, A., 2014b. Mixed-phase clouds in a turbulent environment. Part |
---|
[4812] | 373 | ! 2: analytic treatment. Q. J. R. Meteorol. Soc. 21, 2651???2663. https://doi.org/10.1002/qj.2175. |
---|
[4009] | 374 | ! |
---|
| 375 | ! Furtado, K., Field, P.R., Boutle, I.A., Morcrette, C.R., Wilkinson, J., 2016. A physically-based, subgrid |
---|
| 376 | ! parametrization for the production and maintenance of mixed-phase clouds in a general circulation |
---|
[4812] | 377 | ! model. J. Atmos. Sci. 73, 279???291. https://doi.org/10.1175/JAS-D-15-0021. |
---|
[4009] | 378 | |
---|
[4613] | 379 | USE lmdz_ratqs_ini, ONLY : RG,RV,RD,RCPD,RLSTT,RLVTT,RTT |
---|
[4009] | 380 | |
---|
| 381 | IMPLICIT NONE |
---|
| 382 | |
---|
| 383 | ! INPUTS |
---|
| 384 | |
---|
| 385 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 386 | INTEGER, INTENT(IN) :: klev ! number of vertical layers |
---|
| 387 | REAL, INTENT(IN) :: pdtphys ! physics time step [s] |
---|
| 388 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! air temperature [K] |
---|
| 389 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q ! specific humidity [kg/kg] |
---|
| 390 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qsat ! saturation specific humidity [kg/kg] |
---|
| 391 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! air pressure, layer's center [Pa] |
---|
| 392 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! air pressure, lower inteface [Pa] |
---|
[4613] | 393 | REAL, DIMENSION(klon,klev), INTENT(IN) :: omega ! air pressure, lower inteface [Pa] |
---|
[4009] | 394 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke ! Turbulent Kinetic Energy [m2/s2] |
---|
| 395 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip ! Turbulent Kinetic Energy Dissipation rate [m2/s3] |
---|
| 396 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: lmix ! Turbulent mixing length |
---|
| 397 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: wprime ! Turbulent vertical velocity scale [m/s] |
---|
| 398 | |
---|
| 399 | ! OUTPUTS |
---|
| 400 | |
---|
[4613] | 401 | REAL, DIMENSION(klon,klev), INTENT(out) :: ratqs_tke_ ! ratsq profile due to subgrid TKE |
---|
[4009] | 402 | |
---|
| 403 | ! LOCAL |
---|
| 404 | INTEGER :: i, k |
---|
| 405 | REAL :: AA, DD, NW, AAprime, VARLOG,rho,Lvs,taue,lhomo,dissmin,maxvarlog |
---|
| 406 | REAL, DIMENSION(klon,klev) :: sigmaw,w |
---|
| 407 | REAL, PARAMETER :: C0=10.0 |
---|
| 408 | REAL, PARAMETER :: lmin=0.001 |
---|
| 409 | REAL, PARAMETER :: ratqsmin=1E-6 |
---|
| 410 | REAL, PARAMETER :: ratqsmax=0.5 |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | ! Calculation of large scale and turbulent vertical velocities |
---|
| 414 | !--------------------------------------------------------------- |
---|
| 415 | |
---|
| 416 | DO k=1,klev |
---|
| 417 | DO i=1,klon |
---|
| 418 | rho=pplay(i,k)/temp(i,k)/RD |
---|
| 419 | w(i,k)=-rho*RG*omega(i,k) |
---|
| 420 | sigmaw(i,k)=0.5*(wprime(i,k+1)+wprime(i,k)) ! turbulent vertical velocity at the middle of model layers. |
---|
| 421 | END DO |
---|
| 422 | END DO |
---|
| 423 | |
---|
| 424 | ! Calculation of ratqs |
---|
| 425 | !--------------------------------------------------------------- |
---|
[4613] | 426 | ratqs_tke_(:,1)=ratqsmin ! set to a very low value to avoid division by 0 in order parts |
---|
[4009] | 427 | ! of the code |
---|
| 428 | DO k=2,klev ! we start from second model level since TKE is not defined at k=1 |
---|
| 429 | DO i=1,klon |
---|
| 430 | |
---|
| 431 | IF (temp(i,k) .LT. RTT) THEN |
---|
| 432 | Lvs=RLSTT |
---|
| 433 | ELSE |
---|
| 434 | Lvs=RLVTT |
---|
| 435 | ENDIF |
---|
| 436 | dissmin=0.01*(0.5*(tke(i,k)+tke(i,k+1))/pdtphys) |
---|
| 437 | maxvarlog=LOG(1.0+ratqsmax**2)! to prevent ratqs from exceeding an arbitrary threshold value |
---|
| 438 | AA=RG*(Lvs/(RCPD*temp(i,k)*temp(i,k)*RV) - 1./(RD*temp(i,k))) |
---|
| 439 | lhomo=MAX(0.5*(lmix(i,k)+lmix(i,k+1)),lmin) |
---|
| 440 | taue=(lhomo*lhomo/MAX(0.5*(tke_dissip(i,k)+tke_dissip(i,k+1)),dissmin))**(1./3) ! Fields et al. 2014 |
---|
| 441 | DD=1.0/taue |
---|
| 442 | NW=(sigmaw(i,k)**2)*SQRT(2./(C0*MAX(0.5*(tke_dissip(i,k)+tke_dissip(i,k+1)),dissmin))) |
---|
| 443 | AAprime=AA*NW |
---|
| 444 | VARLOG=AAprime/2./DD |
---|
| 445 | VARLOG=MIN(VARLOG,maxvarlog) |
---|
[4613] | 446 | ratqs_tke_(i,k)=SQRT(MAX(EXP(VARLOG)-1.0,ratqsmin)) |
---|
[4009] | 447 | END DO |
---|
| 448 | END DO |
---|
[4613] | 449 | END SUBROUTINE ratqs_tke |
---|
[4009] | 450 | |
---|
[4613] | 451 | END MODULE lmdz_ratqs_multi |
---|