[4665] | 1 | MODULE lmdz_lscp_tools |
---|
[3999] | 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 8 | SUBROUTINE FALLICE_VELOCITY(klon,iwc,temp,rho,pres,ptconv,velo) |
---|
| 9 | |
---|
| 10 | ! Ref: |
---|
| 11 | ! Stubenrauch, C. J., Bonazzola, M., |
---|
| 12 | ! Protopapadaki, S. E., & Musat, I. (2019). |
---|
| 13 | ! New cloud system metrics to assess bulk |
---|
| 14 | ! ice cloud schemes in a GCM. Journal of |
---|
| 15 | ! Advances in Modeling Earth Systems, 11, |
---|
| 16 | ! 3212–3234. https://doi.org/10.1029/2019MS001642 |
---|
| 17 | |
---|
[4665] | 18 | use lmdz_lscp_ini, only: iflag_vice, ffallv_con, ffallv_lsc |
---|
| 19 | use lmdz_lscp_ini, only: cice_velo, dice_velo |
---|
[4535] | 20 | |
---|
[3999] | 21 | IMPLICIT NONE |
---|
| 22 | |
---|
| 23 | INTEGER, INTENT(IN) :: klon |
---|
| 24 | REAL, INTENT(IN), DIMENSION(klon) :: iwc ! specific ice water content [kg/m3] |
---|
| 25 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature [K] |
---|
| 26 | REAL, INTENT(IN), DIMENSION(klon) :: rho ! dry air density [kg/m3] |
---|
| 27 | REAL, INTENT(IN), DIMENSION(klon) :: pres ! air pressure [Pa] |
---|
| 28 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv ! convective point [-] |
---|
| 29 | |
---|
| 30 | REAL, INTENT(OUT), DIMENSION(klon) :: velo ! fallspeed velocity of crystals [m/s] |
---|
| 31 | |
---|
| 32 | |
---|
| 33 | INTEGER i |
---|
[4559] | 34 | REAL logvm,iwcg,tempc,phpa,fallv_tun |
---|
[3999] | 35 | REAL m2ice, m2snow, vmice, vmsnow |
---|
| 36 | REAL aice, bice, asnow, bsnow |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | DO i=1,klon |
---|
| 40 | |
---|
| 41 | IF (ptconv(i)) THEN |
---|
| 42 | fallv_tun=ffallv_con |
---|
| 43 | ELSE |
---|
| 44 | fallv_tun=ffallv_lsc |
---|
| 45 | ENDIF |
---|
| 46 | |
---|
| 47 | tempc=temp(i)-273.15 ! celcius temp |
---|
[4072] | 48 | iwcg=MAX(iwc(i)*1000.,1E-3) ! iwc in g/m3. We set a minimum value to prevent from division by 0 |
---|
[3999] | 49 | phpa=pres(i)/100. ! pressure in hPa |
---|
| 50 | |
---|
| 51 | IF (iflag_vice .EQ. 1) THEN |
---|
| 52 | ! so-called 'empirical parameterization' in Stubenrauch et al. 2019 |
---|
| 53 | if (tempc .GE. -60.0) then |
---|
| 54 | |
---|
| 55 | logvm= -0.0000414122*tempc*tempc*log(iwcg)-0.00538922*tempc*log(iwcg) & |
---|
| 56 | -0.0516344*log(iwcg)+0.00216078*tempc + 1.9714 |
---|
| 57 | velo(i)=exp(logvm) |
---|
| 58 | else |
---|
| 59 | velo(i)=65.0*(iwcg**0.2)*(150./phpa)**0.15 |
---|
| 60 | endif |
---|
| 61 | |
---|
| 62 | velo(i)=fallv_tun*velo(i)/100.0 ! from cm/s to m/s |
---|
| 63 | |
---|
| 64 | ELSE IF (iflag_vice .EQ. 2) THEN |
---|
| 65 | ! so called PSDM empirical coherent bulk ice scheme in Stubenrauch et al. 2019 |
---|
| 66 | aice=0.587 |
---|
| 67 | bice=2.45 |
---|
| 68 | asnow=0.0444 |
---|
| 69 | bsnow=2.1 |
---|
| 70 | |
---|
| 71 | m2ice=((iwcg*0.001/aice)/(exp(13.6-bice*7.76+0.479*bice**2)* & |
---|
| 72 | exp((-0.0361+bice*0.0151+0.00149*bice**2)*tempc))) & |
---|
| 73 | **(1./(0.807+bice*0.00581+0.0457*bice**2)) |
---|
| 74 | |
---|
[4072] | 75 | vmice=100.*1042.4*exp(13.6-(bice+1)*7.76+0.479*(bice+1.)**2)*exp((-0.0361+ & |
---|
| 76 | (bice+1.)*0.0151+0.00149*(bice+1.)**2)*tempc) & |
---|
| 77 | *(m2ice**(0.807+(bice+1.)*0.00581+0.0457*(bice+1.)**2))/(iwcg*0.001/aice) |
---|
[3999] | 78 | |
---|
| 79 | |
---|
| 80 | vmice=vmice*((1000./phpa)**0.2) |
---|
| 81 | |
---|
| 82 | m2snow=((iwcg*0.001/asnow)/(exp(13.6-bsnow*7.76+0.479*bsnow**2)* & |
---|
| 83 | exp((-0.0361+bsnow*0.0151+0.00149*bsnow**2)*tempc))) & |
---|
| 84 | **(1./(0.807+bsnow*0.00581+0.0457*bsnow**2)) |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | vmsnow=100.*14.3*exp(13.6-(bsnow+.416)*7.76+0.479*(bsnow+.416)**2)& |
---|
| 88 | *exp((-0.0361+(bsnow+.416)*0.0151+0.00149*(bsnow+.416)**2)*tempc)& |
---|
| 89 | *(m2snow**(0.807+(bsnow+.416)*0.00581+0.0457*(bsnow+.416)**2))/(iwcg*0.001/asnow) |
---|
| 90 | |
---|
| 91 | vmsnow=vmsnow*((1000./phpa)**0.35) |
---|
| 92 | velo(i)=fallv_tun*min(vmsnow,vmice)/100. ! to m/s |
---|
| 93 | |
---|
| 94 | ELSE |
---|
| 95 | ! By default, fallspeed velocity of ice crystals according to Heymsfield & Donner 1990 |
---|
[4559] | 96 | velo(i) = fallv_tun*cice_velo*((iwcg/1000.)**dice_velo) |
---|
[3999] | 97 | ENDIF |
---|
| 98 | ENDDO |
---|
| 99 | |
---|
| 100 | END SUBROUTINE FALLICE_VELOCITY |
---|
| 101 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 102 | |
---|
| 103 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4639] | 104 | SUBROUTINE ICEFRAC_LSCP(klon, temp, iflag_ice_thermo, distcltop, temp_cltop, icefrac, dicefracdT) |
---|
[3999] | 105 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 106 | |
---|
| 107 | ! Compute the ice fraction 1-xliq (see e.g. |
---|
| 108 | ! Doutriaux-Boucher & Quaas 2004, section 2.2.) |
---|
| 109 | ! as a function of temperature |
---|
| 110 | ! see also Fig 3 of Madeleine et al. 2020, JAMES |
---|
| 111 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | USE print_control_mod, ONLY: lunout, prt_level |
---|
[4665] | 115 | USE lmdz_lscp_ini, ONLY: t_glace_min, t_glace_max, exposant_glace, iflag_t_glace |
---|
| 116 | USE lmdz_lscp_ini, ONLY : RTT, dist_liq, temp_nowater |
---|
[3999] | 117 | |
---|
[4059] | 118 | IMPLICIT NONE |
---|
[3999] | 119 | |
---|
| 120 | |
---|
[4639] | 121 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 122 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature |
---|
| 123 | REAL, INTENT(IN), DIMENSION(klon) :: distcltop ! distance to cloud top |
---|
| 124 | REAL, INTENT(IN), DIMENSION(klon) :: temp_cltop ! temperature of cloud top |
---|
[4535] | 125 | INTEGER, INTENT(IN) :: iflag_ice_thermo |
---|
[3999] | 126 | REAL, INTENT(OUT), DIMENSION(klon) :: icefrac |
---|
| 127 | REAL, INTENT(OUT), DIMENSION(klon) :: dicefracdT |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | INTEGER i |
---|
[4562] | 131 | REAL liqfrac_tmp, dicefrac_tmp |
---|
[3999] | 132 | REAL Dv, denomdep,beta,qsi,dqsidt |
---|
| 133 | LOGICAL ice_thermo |
---|
| 134 | |
---|
[4562] | 135 | CHARACTER (len = 20) :: modname = 'lscp_tools' |
---|
| 136 | CHARACTER (len = 80) :: abort_message |
---|
| 137 | |
---|
| 138 | IF ((iflag_t_glace.LT.2) .OR. (iflag_t_glace.GT.6)) THEN |
---|
| 139 | abort_message = 'lscp cannot be used if iflag_t_glace<2 or >6' |
---|
| 140 | CALL abort_physic(modname,abort_message,1) |
---|
[3999] | 141 | ENDIF |
---|
| 142 | |
---|
[4562] | 143 | IF (.NOT.((iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3))) THEN |
---|
| 144 | abort_message = 'lscp cannot be used without ice thermodynamics' |
---|
| 145 | CALL abort_physic(modname,abort_message,1) |
---|
| 146 | ENDIF |
---|
[3999] | 147 | |
---|
| 148 | |
---|
| 149 | DO i=1,klon |
---|
[4562] | 150 | |
---|
| 151 | ! old function with sole dependence upon temperature |
---|
| 152 | IF (iflag_t_glace .EQ. 2) THEN |
---|
| 153 | liqfrac_tmp = (temp(i)-t_glace_min) / (t_glace_max-t_glace_min) |
---|
| 154 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
[3999] | 155 | icefrac(i) = (1.0-liqfrac_tmp)**exposant_glace |
---|
| 156 | IF (icefrac(i) .GT.0.) THEN |
---|
| 157 | dicefracdT(i)= exposant_glace * (icefrac(i)**(exposant_glace-1.)) & |
---|
| 158 | / (t_glace_min - t_glace_max) |
---|
| 159 | ENDIF |
---|
| 160 | |
---|
| 161 | IF ((icefrac(i).EQ.0).OR.(icefrac(i).EQ.1)) THEN |
---|
| 162 | dicefracdT(i)=0. |
---|
| 163 | ENDIF |
---|
| 164 | |
---|
[4562] | 165 | ENDIF |
---|
[3999] | 166 | |
---|
[4562] | 167 | ! function of temperature used in CMIP6 physics |
---|
| 168 | IF (iflag_t_glace .EQ. 3) THEN |
---|
| 169 | liqfrac_tmp = (temp(i)-t_glace_min) / (t_glace_max-t_glace_min) |
---|
| 170 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
| 171 | icefrac(i) = 1.0-liqfrac_tmp**exposant_glace |
---|
| 172 | IF ((icefrac(i) .GT.0.) .AND. (liqfrac_tmp .GT. 0.)) THEN |
---|
| 173 | dicefracdT(i)= exposant_glace * ((liqfrac_tmp)**(exposant_glace-1.)) & |
---|
| 174 | / (t_glace_min - t_glace_max) |
---|
| 175 | ELSE |
---|
| 176 | dicefracdT(i)=0. |
---|
| 177 | ENDIF |
---|
| 178 | ENDIF |
---|
[4072] | 179 | |
---|
[4562] | 180 | ! for iflag_t_glace .GE. 4, the liquid fraction depends upon temperature at cloud top |
---|
| 181 | ! and then decreases with decreasing height |
---|
[3999] | 182 | |
---|
[4562] | 183 | !with linear function of temperature at cloud top |
---|
| 184 | IF (iflag_t_glace .EQ. 4) THEN |
---|
| 185 | liqfrac_tmp = (temp(i)-t_glace_min) / (t_glace_max-t_glace_min) |
---|
| 186 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
| 187 | icefrac(i) = MAX(MIN(1.,1.0 - liqfrac_tmp*exp(-distcltop(i)/dist_liq)),0.) |
---|
| 188 | dicefrac_tmp = - temp(i)/(t_glace_max-t_glace_min) |
---|
| 189 | dicefracdT(i) = dicefrac_tmp*exp(-distcltop(i)/dist_liq) |
---|
| 190 | IF ((liqfrac_tmp .LE.0) .OR. (liqfrac_tmp .GE. 1)) THEN |
---|
| 191 | dicefracdT(i) = 0. |
---|
| 192 | ENDIF |
---|
| 193 | ENDIF |
---|
| 194 | |
---|
| 195 | ! with CMIP6 function of temperature at cloud top |
---|
| 196 | IF (iflag_t_glace .EQ. 5) THEN |
---|
| 197 | liqfrac_tmp = (temp(i)-t_glace_min) / (t_glace_max-t_glace_min) |
---|
| 198 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
| 199 | liqfrac_tmp = liqfrac_tmp**exposant_glace |
---|
| 200 | icefrac(i) = MAX(MIN(1.,1.0 - liqfrac_tmp*exp(-distcltop(i)/dist_liq)),0.) |
---|
| 201 | IF ((liqfrac_tmp .LE.0) .OR. (liqfrac_tmp .GE. 1)) THEN |
---|
| 202 | dicefracdT(i) = 0. |
---|
| 203 | ELSE |
---|
| 204 | dicefracdT(i) = exposant_glace*((liqfrac_tmp)**(exposant_glace-1.))/(t_glace_min- t_glace_max) & |
---|
| 205 | *exp(-distcltop(i)/dist_liq) |
---|
| 206 | ENDIF |
---|
| 207 | ENDIF |
---|
| 208 | |
---|
| 209 | ! with modified function of temperature at cloud top |
---|
| 210 | ! to get largere values around 260 K, works well with t_glace_min = 241K |
---|
| 211 | IF (iflag_t_glace .EQ. 6) THEN |
---|
| 212 | IF (temp(i) .GT. t_glace_max) THEN |
---|
| 213 | liqfrac_tmp = 1. |
---|
| 214 | ELSE |
---|
| 215 | liqfrac_tmp = -((temp(i)-t_glace_max) / (t_glace_max-t_glace_min))**2+1. |
---|
| 216 | ENDIF |
---|
| 217 | liqfrac_tmp = MIN(MAX(liqfrac_tmp,0.0),1.0) |
---|
| 218 | icefrac(i) = MAX(MIN(1.,1.0 - liqfrac_tmp*exp(-distcltop(i)/dist_liq)),0.) |
---|
| 219 | IF ((liqfrac_tmp .LE.0) .OR. (liqfrac_tmp .GE. 1)) THEN |
---|
| 220 | dicefracdT(i) = 0. |
---|
| 221 | ELSE |
---|
| 222 | dicefracdT(i) = 2*((temp(i)-t_glace_max) / (t_glace_max-t_glace_min))/(t_glace_max-t_glace_min) & |
---|
| 223 | *exp(-distcltop(i)/dist_liq) |
---|
| 224 | ENDIF |
---|
| 225 | ENDIF |
---|
| 226 | |
---|
[4639] | 227 | ! if temperature of cloud top <-40°C, |
---|
| 228 | IF (iflag_t_glace .GE. 4) THEN |
---|
| 229 | IF ((temp_cltop(i) .LE. temp_nowater) .AND. (temp(i) .LE. t_glace_max)) THEN |
---|
| 230 | icefrac(i) = 1. |
---|
| 231 | dicefracdT(i) = 0. |
---|
| 232 | ENDIF |
---|
| 233 | ENDIF |
---|
[4562] | 234 | |
---|
| 235 | |
---|
| 236 | ENDDO ! klon |
---|
| 237 | |
---|
| 238 | RETURN |
---|
| 239 | |
---|
[3999] | 240 | END SUBROUTINE ICEFRAC_LSCP |
---|
| 241 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 242 | |
---|
| 243 | |
---|
| 244 | |
---|
[4072] | 245 | SUBROUTINE CALC_QSAT_ECMWF(klon,temp,qtot,pressure,tref,phase,flagth,qs,dqs) |
---|
[3999] | 246 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 247 | ! Calculate qsat following ECMWF method |
---|
| 248 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 249 | |
---|
[4072] | 250 | |
---|
[4059] | 251 | IMPLICIT NONE |
---|
[3999] | 252 | |
---|
| 253 | include "YOMCST.h" |
---|
| 254 | include "YOETHF.h" |
---|
| 255 | include "FCTTRE.h" |
---|
| 256 | |
---|
[4072] | 257 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 258 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature in K |
---|
| 259 | REAL, INTENT(IN), DIMENSION(klon) :: qtot ! total specific water in kg/kg |
---|
| 260 | REAL, INTENT(IN), DIMENSION(klon) :: pressure ! pressure in Pa |
---|
| 261 | REAL, INTENT(IN) :: tref ! reference temperature in K |
---|
[3999] | 262 | LOGICAL, INTENT(IN) :: flagth ! flag for qsat calculation for thermals |
---|
| 263 | INTEGER, INTENT(IN) :: phase |
---|
| 264 | ! phase: 0=depend on temperature sign (temp>tref -> liquid, temp<tref, solid) |
---|
| 265 | ! 1=liquid |
---|
| 266 | ! 2=solid |
---|
| 267 | |
---|
[4072] | 268 | REAL, INTENT(OUT), DIMENSION(klon) :: qs ! saturation specific humidity [kg/kg] |
---|
| 269 | REAL, INTENT(OUT), DIMENSION(klon) :: dqs ! derivation of saturation specific humidity wrt T |
---|
[3999] | 270 | |
---|
| 271 | REAL delta, cor, cvm5 |
---|
[4072] | 272 | INTEGER i |
---|
| 273 | |
---|
| 274 | DO i=1,klon |
---|
| 275 | |
---|
[3999] | 276 | IF (phase .EQ. 1) THEN |
---|
| 277 | delta=0. |
---|
| 278 | ELSEIF (phase .EQ. 2) THEN |
---|
| 279 | delta=1. |
---|
| 280 | ELSE |
---|
[4072] | 281 | delta=MAX(0.,SIGN(1.,tref-temp(i))) |
---|
[3999] | 282 | ENDIF |
---|
| 283 | |
---|
| 284 | IF (flagth) THEN |
---|
| 285 | cvm5=R5LES*(1.-delta) + R5IES*delta |
---|
| 286 | ELSE |
---|
| 287 | cvm5 = R5LES*RLVTT*(1.-delta) + R5IES*RLSTT*delta |
---|
[4072] | 288 | cvm5 = cvm5 /RCPD/(1.0+RVTMP2*(qtot(i))) |
---|
[3999] | 289 | ENDIF |
---|
| 290 | |
---|
[4072] | 291 | qs(i)= R2ES*FOEEW(temp(i),delta)/pressure(i) |
---|
| 292 | qs(i)=MIN(0.5,qs(i)) |
---|
| 293 | cor=1./(1.-RETV*qs(i)) |
---|
| 294 | qs(i)=qs(i)*cor |
---|
| 295 | dqs(i)= FOEDE(temp(i),delta,cvm5,qs(i),cor) |
---|
[3999] | 296 | |
---|
[4072] | 297 | END DO |
---|
| 298 | |
---|
[3999] | 299 | END SUBROUTINE CALC_QSAT_ECMWF |
---|
| 300 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 301 | |
---|
| 302 | |
---|
| 303 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4072] | 304 | SUBROUTINE CALC_GAMMASAT(klon,temp,qtot,pressure,gammasat,dgammasatdt) |
---|
[3999] | 305 | |
---|
| 306 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 307 | ! programme that calculates the gammasat parameter that determines the |
---|
| 308 | ! homogeneous condensation thresholds for cold (<0oC) clouds |
---|
| 309 | ! condensation at q>gammasat*qsat |
---|
| 310 | ! Etienne Vignon, March 2021 |
---|
| 311 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 312 | |
---|
[4665] | 313 | use lmdz_lscp_ini, only: iflag_gammasat, t_glace_min, RTT |
---|
[3999] | 314 | |
---|
[4059] | 315 | IMPLICIT NONE |
---|
[3999] | 316 | |
---|
| 317 | |
---|
[4072] | 318 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 319 | REAL, INTENT(IN), DIMENSION(klon) :: temp ! temperature in K |
---|
| 320 | REAL, INTENT(IN), DIMENSION(klon) :: qtot ! total specific water in kg/kg |
---|
[3999] | 321 | |
---|
[4072] | 322 | REAL, INTENT(IN), DIMENSION(klon) :: pressure ! pressure in Pa |
---|
[3999] | 323 | |
---|
[4072] | 324 | REAL, INTENT(OUT), DIMENSION(klon) :: gammasat ! coefficient to multiply qsat with to calculate saturation |
---|
| 325 | REAL, INTENT(OUT), DIMENSION(klon) :: dgammasatdt ! derivative of gammasat wrt temperature |
---|
[3999] | 326 | |
---|
[4072] | 327 | REAL, DIMENSION(klon) :: qsi,qsl,dqsl,dqsi |
---|
| 328 | REAL fcirrus, fac |
---|
[3999] | 329 | REAL, PARAMETER :: acirrus=2.349 |
---|
| 330 | REAL, PARAMETER :: bcirrus=259.0 |
---|
| 331 | |
---|
[4072] | 332 | INTEGER i |
---|
| 333 | |
---|
| 334 | CALL CALC_QSAT_ECMWF(klon,temp,qtot,pressure,RTT,1,.false.,qsl,dqsl) |
---|
| 335 | CALL CALC_QSAT_ECMWF(klon,temp,qtot,pressure,RTT,2,.false.,qsi,dqsi) |
---|
[3999] | 336 | |
---|
[4072] | 337 | DO i=1,klon |
---|
[3999] | 338 | |
---|
[4072] | 339 | IF (temp(i) .GE. RTT) THEN |
---|
[3999] | 340 | ! warm clouds: condensation at saturation wrt liquid |
---|
[4072] | 341 | gammasat(i)=1. |
---|
| 342 | dgammasatdt(i)=0. |
---|
[3999] | 343 | |
---|
[4072] | 344 | ELSEIF ((temp(i) .LT. RTT) .AND. (temp(i) .GT. t_glace_min)) THEN |
---|
[3999] | 345 | |
---|
| 346 | IF (iflag_gammasat .GE. 2) THEN |
---|
[4072] | 347 | gammasat(i)=qsl(i)/qsi(i) |
---|
| 348 | dgammasatdt(i)=(dqsl(i)*qsi(i)-dqsi(i)*qsl(i))/qsi(i)/qsi(i) |
---|
[3999] | 349 | ELSE |
---|
[4072] | 350 | gammasat(i)=1. |
---|
| 351 | dgammasatdt(i)=0. |
---|
[3999] | 352 | ENDIF |
---|
| 353 | |
---|
| 354 | ELSE |
---|
| 355 | |
---|
| 356 | IF (iflag_gammasat .GE.1) THEN |
---|
| 357 | ! homogeneous freezing of aerosols, according to |
---|
| 358 | ! Koop, 2000 and Karcher 2008, QJRMS |
---|
| 359 | ! 'Cirrus regime' |
---|
[4072] | 360 | fcirrus=acirrus-temp(i)/bcirrus |
---|
[4818] | 361 | IF (fcirrus .GT. qsl(i)/qsi(i)) THEN |
---|
[4072] | 362 | gammasat(i)=qsl(i)/qsi(i) |
---|
| 363 | dgammasatdt(i)=(dqsl(i)*qsi(i)-dqsi(i)*qsl(i))/qsi(i)/qsi(i) |
---|
[3999] | 364 | ELSE |
---|
[4072] | 365 | gammasat(i)=fcirrus |
---|
| 366 | dgammasatdt(i)=-1.0/bcirrus |
---|
[3999] | 367 | ENDIF |
---|
| 368 | |
---|
| 369 | ELSE |
---|
| 370 | |
---|
[4072] | 371 | gammasat(i)=1. |
---|
| 372 | dgammasatdt(i)=0. |
---|
[3999] | 373 | |
---|
| 374 | ENDIF |
---|
| 375 | |
---|
| 376 | ENDIF |
---|
| 377 | |
---|
[4072] | 378 | END DO |
---|
| 379 | |
---|
| 380 | |
---|
[3999] | 381 | END SUBROUTINE CALC_GAMMASAT |
---|
[4562] | 382 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[3999] | 383 | |
---|
| 384 | |
---|
[4562] | 385 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4639] | 386 | SUBROUTINE DISTANCE_TO_CLOUD_TOP(klon,klev,k,temp,pplay,paprs,rneb,distcltop1D,temp_cltop) |
---|
[4562] | 387 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 388 | |
---|
[4665] | 389 | USE lmdz_lscp_ini, ONLY : rd,rg,tresh_cl |
---|
[4562] | 390 | |
---|
| 391 | IMPLICIT NONE |
---|
| 392 | |
---|
| 393 | INTEGER, INTENT(IN) :: klon,klev !number of horizontal and vertical grid points |
---|
| 394 | INTEGER, INTENT(IN) :: k ! vertical index |
---|
| 395 | REAL, INTENT(IN), DIMENSION(klon,klev) :: temp ! temperature in K |
---|
| 396 | REAL, INTENT(IN), DIMENSION(klon,klev) :: pplay ! pressure middle layer in Pa |
---|
| 397 | REAL, INTENT(IN), DIMENSION(klon,klev+1) :: paprs ! pressure interfaces in Pa |
---|
| 398 | REAL, INTENT(IN), DIMENSION(klon,klev) :: rneb ! cloud fraction |
---|
| 399 | |
---|
| 400 | REAL, INTENT(OUT), DIMENSION(klon) :: distcltop1D ! distance from cloud top |
---|
[4639] | 401 | REAL, INTENT(OUT), DIMENSION(klon) :: temp_cltop ! temperature of cloud top |
---|
| 402 | |
---|
[4562] | 403 | REAL dzlay(klon,klev) |
---|
| 404 | REAL zlay(klon,klev) |
---|
| 405 | REAL dzinterf |
---|
| 406 | INTEGER i,k_top, kvert |
---|
| 407 | LOGICAL bool_cl |
---|
| 408 | |
---|
| 409 | |
---|
| 410 | DO i=1,klon |
---|
| 411 | ! Initialization height middle of first layer |
---|
| 412 | dzlay(i,1) = Rd * temp(i,1) / rg * log(paprs(i,1)/paprs(i,2)) |
---|
| 413 | zlay(i,1) = dzlay(i,1)/2 |
---|
| 414 | |
---|
| 415 | DO kvert=2,klev |
---|
| 416 | IF (kvert.EQ.klev) THEN |
---|
| 417 | dzlay(i,kvert) = 2*(rd * temp(i,kvert) / rg * log(paprs(i,kvert)/pplay(i,kvert))) |
---|
| 418 | ELSE |
---|
| 419 | dzlay(i,kvert) = rd * temp(i,kvert) / rg * log(paprs(i,kvert)/paprs(i,kvert+1)) |
---|
| 420 | ENDIF |
---|
| 421 | dzinterf = rd * temp(i,kvert) / rg * log(pplay(i,kvert-1)/pplay(i,kvert)) |
---|
| 422 | zlay(i,kvert) = zlay(i,kvert-1) + dzinterf |
---|
| 423 | ENDDO |
---|
| 424 | ENDDO |
---|
| 425 | |
---|
| 426 | DO i=1,klon |
---|
[4639] | 427 | k_top = k |
---|
[4562] | 428 | IF (rneb(i,k) .LE. tresh_cl) THEN |
---|
| 429 | bool_cl = .FALSE. |
---|
| 430 | ELSE |
---|
| 431 | bool_cl = .TRUE. |
---|
| 432 | ENDIF |
---|
| 433 | |
---|
| 434 | DO WHILE ((bool_cl) .AND. (k_top .LE. klev)) |
---|
| 435 | ! find cloud top |
---|
| 436 | IF (rneb(i,k_top) .GT. tresh_cl) THEN |
---|
| 437 | k_top = k_top + 1 |
---|
| 438 | ELSE |
---|
| 439 | bool_cl = .FALSE. |
---|
| 440 | k_top = k_top - 1 |
---|
| 441 | ENDIF |
---|
| 442 | ENDDO |
---|
| 443 | k_top=min(k_top,klev) |
---|
| 444 | |
---|
| 445 | !dist to top is dist between current layer and layer of cloud top (from middle to middle) + dist middle to |
---|
| 446 | !interf for layer of cloud top |
---|
| 447 | distcltop1D(i) = zlay(i,k_top) - zlay(i,k) + dzlay(i,k_top)/2 |
---|
[4639] | 448 | temp_cltop(i) = temp(i,k_top) |
---|
[4562] | 449 | ENDDO ! klon |
---|
| 450 | |
---|
| 451 | END SUBROUTINE DISTANCE_TO_CLOUD_TOP |
---|
[3999] | 452 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 453 | |
---|
[4665] | 454 | END MODULE lmdz_lscp_tools |
---|
[3999] | 455 | |
---|
| 456 | |
---|