1 | MODULE lmdz_lscp_precip |
---|
2 | !---------------------------------------------------------------- |
---|
3 | ! Module for the process-oriented treament of precipitation |
---|
4 | ! that are called in LSCP |
---|
5 | ! Authors: Atelier Nuage (G. Riviere, L. Raillard, M. Wimmer, |
---|
6 | ! N. Dutrievoz, E. Vignon, A. Borella, et al.) |
---|
7 | ! Jan. 2024 |
---|
8 | |
---|
9 | |
---|
10 | IMPLICIT NONE |
---|
11 | |
---|
12 | CONTAINS |
---|
13 | |
---|
14 | !---------------------------------------------------------------- |
---|
15 | ! historical (till CMIP6) version of the pre-cloud formation |
---|
16 | ! precipitation scheme containing precip evaporation and melting |
---|
17 | |
---|
18 | SUBROUTINE histprecip_precld( & |
---|
19 | klon, dtime, iftop, paprsdn, paprsup, pplay, zt, ztupnew, zq, & |
---|
20 | zmqc, zneb, znebprecip, znebprecipclr, & |
---|
21 | zrfl, zrflclr, zrflcld, zifl, ziflclr, ziflcld, dqreva, dqssub & |
---|
22 | ) |
---|
23 | |
---|
24 | USE lmdz_lscp_ini, ONLY : iflag_evap_prec |
---|
25 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub, ztfondue |
---|
26 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
27 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
28 | |
---|
29 | IMPLICIT NONE |
---|
30 | |
---|
31 | |
---|
32 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
33 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
34 | LOGICAL, INTENT(IN) :: iftop !--if top of the column |
---|
35 | |
---|
36 | |
---|
37 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
38 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
39 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
40 | |
---|
41 | REAL, INTENT(INOUT), DIMENSION(klon) :: zt !--current temperature [K] |
---|
42 | REAL, INTENT(IN), DIMENSION(klon) :: ztupnew !--updated temperature of the overlying layer [K] |
---|
43 | |
---|
44 | REAL, INTENT(INOUT), DIMENSION(klon) :: zq !--current water vapor specific humidity (includes evaporated qi and ql) [kg/kg] |
---|
45 | REAL, INTENT(INOUT), DIMENSION(klon) :: zmqc !--specific humidity in the precipitation falling from the upper layer [kg/kg] |
---|
46 | |
---|
47 | REAL, INTENT(IN), DIMENSION(klon) :: zneb !--cloud fraction IN THE LAYER ABOVE [-] |
---|
48 | REAL, INTENT(INOUT), DIMENSION(klon) :: znebprecip !--fraction of precipitation IN THE LAYER ABOVE [-] |
---|
49 | REAL, INTENT(INOUT), DIMENSION(klon) :: znebprecipclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
50 | |
---|
51 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrfl !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
52 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrflclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
53 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrflcld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
54 | REAL, INTENT(INOUT), DIMENSION(klon) :: zifl !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
55 | REAL, INTENT(INOUT), DIMENSION(klon) :: ziflclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
56 | REAL, INTENT(INOUT), DIMENSION(klon) :: ziflcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
57 | |
---|
58 | REAL, INTENT(OUT), DIMENSION(klon) :: dqreva !--rain tendency due to evaporation [kg/kg/s] |
---|
59 | REAL, INTENT(OUT), DIMENSION(klon) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
60 | |
---|
61 | |
---|
62 | REAL :: zmair |
---|
63 | REAL :: zcpair, zcpeau |
---|
64 | REAL, DIMENSION(klon) :: qzero |
---|
65 | REAL, DIMENSION(klon) :: zqs, zdqs |
---|
66 | REAL, DIMENSION(klon) :: qsl, qsi |
---|
67 | REAL, DIMENSION(klon) :: dqsl, dqsi |
---|
68 | |
---|
69 | REAL :: zqev0 |
---|
70 | REAL :: zqev, zqevt |
---|
71 | REAL :: zqevi, zqevti |
---|
72 | |
---|
73 | REAL, DIMENSION(klon) :: zrfln, zifln |
---|
74 | |
---|
75 | REAL :: zmelt |
---|
76 | INTEGER :: i |
---|
77 | |
---|
78 | qzero(:) = 0. |
---|
79 | |
---|
80 | |
---|
81 | ! -------------------------------------------------------------------- |
---|
82 | ! P1> Thermalization of precipitation falling from the overlying layer |
---|
83 | ! -------------------------------------------------------------------- |
---|
84 | ! Computes air temperature variation due to enthalpy transported by |
---|
85 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
86 | ! layer. |
---|
87 | ! The precipitation should remain thermalized throughout the different |
---|
88 | ! thermodynamical transformations. |
---|
89 | ! The corresponding water mass should |
---|
90 | ! be added when calculating the layer's enthalpy change with |
---|
91 | ! temperature |
---|
92 | ! --------------------------------------------------------------------- |
---|
93 | |
---|
94 | IF (iftop) THEN |
---|
95 | |
---|
96 | DO i = 1, klon |
---|
97 | zmqc(i) = 0. |
---|
98 | ENDDO |
---|
99 | |
---|
100 | ELSE |
---|
101 | |
---|
102 | DO i = 1, klon |
---|
103 | |
---|
104 | zmair=(paprsdn(i)-paprsup(i))/RG |
---|
105 | ! no condensed water so cp=cp(vapor+dry air) |
---|
106 | ! RVTMP2=rcpv/rcpd-1 |
---|
107 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
---|
108 | zcpeau=RCPD*RVTMP2 |
---|
109 | |
---|
110 | ! zmqc: precipitation mass that has to be thermalized with |
---|
111 | ! layer's air so that precipitation at the ground has the |
---|
112 | ! same temperature as the lowermost layer |
---|
113 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair |
---|
114 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
115 | zt(i) = ( ztupnew(i)*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
---|
116 | / (zcpair + zmqc(i)*zcpeau) |
---|
117 | |
---|
118 | ENDDO |
---|
119 | |
---|
120 | ENDIF |
---|
121 | |
---|
122 | ! -------------------------------------------------------------------- |
---|
123 | ! P2> Precipitation evaporation/sublimation/melting |
---|
124 | ! -------------------------------------------------------------------- |
---|
125 | ! A part of the precipitation coming from above is evaporated/sublimated/melted. |
---|
126 | ! -------------------------------------------------------------------- |
---|
127 | |
---|
128 | IF (iflag_evap_prec.GE.1) THEN |
---|
129 | |
---|
130 | ! Calculation of saturation specific humidity |
---|
131 | ! depending on temperature: |
---|
132 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:),RTT,0,.false.,zqs,zdqs) |
---|
133 | ! wrt liquid water |
---|
134 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:),RTT,1,.false.,qsl,dqsl) |
---|
135 | ! wrt ice |
---|
136 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:),RTT,2,.false.,qsi,dqsi) |
---|
137 | |
---|
138 | DO i = 1, klon |
---|
139 | |
---|
140 | ! if precipitation |
---|
141 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
142 | |
---|
143 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec>=4). |
---|
144 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
---|
145 | |
---|
146 | IF (iflag_evap_prec.GE.4) THEN |
---|
147 | zrfl(i) = zrflclr(i) |
---|
148 | zifl(i) = ziflclr(i) |
---|
149 | ENDIF |
---|
150 | |
---|
151 | IF (iflag_evap_prec.EQ.1) THEN |
---|
152 | znebprecip(i)=zneb(i) |
---|
153 | ELSE |
---|
154 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
---|
155 | ENDIF |
---|
156 | |
---|
157 | IF (iflag_evap_prec.GT.4) THEN |
---|
158 | ! Max evaporation not to saturate the clear sky precip fraction |
---|
159 | ! i.e. the fraction where evaporation occurs |
---|
160 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecipclr(i)) |
---|
161 | ELSEIF (iflag_evap_prec .EQ. 4) THEN |
---|
162 | ! Max evaporation not to saturate the whole mesh |
---|
163 | ! Pay attention -> lead to unrealistic and excessive evaporation |
---|
164 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
---|
165 | ELSE |
---|
166 | ! Max evap not to saturate the fraction below the cloud |
---|
167 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
---|
168 | ENDIF |
---|
169 | |
---|
170 | ! Evaporation of liquid precipitation coming from above |
---|
171 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
172 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
173 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec>=4) |
---|
174 | |
---|
175 | IF (iflag_evap_prec.EQ.3) THEN |
---|
176 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
177 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
---|
178 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
179 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
180 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
181 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
182 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
183 | ELSE |
---|
184 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl(i))*SQRT(zrfl(i)) & |
---|
185 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
186 | ENDIF |
---|
187 | |
---|
188 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) * RG*dtime/(paprsdn(i)-paprsup(i)) |
---|
189 | |
---|
190 | ! sublimation of the solid precipitation coming from above |
---|
191 | IF (iflag_evap_prec.EQ.3) THEN |
---|
192 | zqevti = znebprecip(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
193 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
---|
194 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
195 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
196 | zqevti = znebprecipclr(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
197 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
198 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
199 | ELSE |
---|
200 | zqevti = 1.*coef_sub*(1.0-zq(i)/qsi(i))*SQRT(zifl(i)) & |
---|
201 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
202 | ENDIF |
---|
203 | |
---|
204 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) * RG*dtime/(paprsdn(i)-paprsup(i)) |
---|
205 | |
---|
206 | ! A. JAM |
---|
207 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
208 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
209 | ! does not reach saturation. In this case, we |
---|
210 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
211 | |
---|
212 | IF (zqevt+zqevti.GT.zqev0) THEN |
---|
213 | zqev=zqev0*zqevt/(zqevt+zqevti) |
---|
214 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
---|
215 | ELSE |
---|
216 | zqev=zqevt |
---|
217 | zqevi=zqevti |
---|
218 | ENDIF |
---|
219 | |
---|
220 | !--Diagnostics |
---|
221 | dqreva(i) = - zqev / dtime |
---|
222 | dqssub(i) = - zqevti / dtime |
---|
223 | |
---|
224 | ! New solid and liquid precipitation fluxes after evap and sublimation |
---|
225 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprsdn(i)-paprsup(i))/RG/dtime) |
---|
226 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprsdn(i)-paprsup(i))/RG/dtime) |
---|
227 | |
---|
228 | |
---|
229 | ! vapor, temperature, precip fluxes update |
---|
230 | ! vapor is updated after evaporation/sublimation (it is increased) |
---|
231 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
232 | * (RG/(paprsdn(i)-paprsup(i)))*dtime |
---|
233 | ! zmqc is the total condensed water in the precip flux (it is decreased) |
---|
234 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
235 | * (RG/(paprsdn(i)-paprsup(i)))*dtime |
---|
236 | ! air and precip temperature (i.e., gridbox temperature) |
---|
237 | ! is updated due to latent heat cooling |
---|
238 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
239 | * (RG/(paprsdn(i)-paprsup(i)))*dtime & |
---|
240 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
---|
241 | + (zifln(i)-zifl(i)) & |
---|
242 | * (RG/(paprsdn(i)-paprsup(i)))*dtime & |
---|
243 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
244 | |
---|
245 | ! New values of liquid and solid precipitation |
---|
246 | zrfl(i) = zrfln(i) |
---|
247 | zifl(i) = zifln(i) |
---|
248 | |
---|
249 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
---|
250 | ! due to evap + sublim |
---|
251 | |
---|
252 | |
---|
253 | IF (iflag_evap_prec.GE.4) THEN |
---|
254 | zrflclr(i) = zrfl(i) |
---|
255 | ziflclr(i) = zifl(i) |
---|
256 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
---|
257 | znebprecipclr(i) = 0.0 |
---|
258 | ENDIF |
---|
259 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
260 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
261 | ENDIF |
---|
262 | |
---|
263 | ! c_iso duplicate for isotopes or loop on isotopes |
---|
264 | |
---|
265 | ! Melting: |
---|
266 | zmelt = ((zt(i)-RTT)/(ztfondue-RTT)) ! JYG |
---|
267 | ! precip fraction that is melted |
---|
268 | zmelt = MIN(MAX(zmelt,0.),1.) |
---|
269 | |
---|
270 | ! update of rainfall and snowfall due to melting |
---|
271 | IF (iflag_evap_prec.GE.4) THEN |
---|
272 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
---|
273 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
---|
274 | zrfl(i)=zrflclr(i)+zrflcld(i) |
---|
275 | ELSE |
---|
276 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
277 | ENDIF |
---|
278 | |
---|
279 | |
---|
280 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
---|
281 | |
---|
282 | ! Latent heat of melting because of precipitation melting |
---|
283 | ! NB: the air + precip temperature is simultaneously updated |
---|
284 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprsdn(i)-paprsup(i)) & |
---|
285 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
286 | |
---|
287 | IF (iflag_evap_prec.GE.4) THEN |
---|
288 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
---|
289 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
---|
290 | zifl(i)=ziflclr(i)+ziflcld(i) |
---|
291 | ELSE |
---|
292 | zifl(i)=zifl(i)*(1.-zmelt) |
---|
293 | ENDIF |
---|
294 | |
---|
295 | ELSE |
---|
296 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
297 | znebprecip(i)=0. |
---|
298 | |
---|
299 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
300 | |
---|
301 | ENDDO ! loop on klon |
---|
302 | |
---|
303 | ENDIF ! (iflag_evap_prec>=1) |
---|
304 | |
---|
305 | END SUBROUTINE histprecip_precld |
---|
306 | |
---|
307 | |
---|
308 | SUBROUTINE histprecip_postcld( & |
---|
309 | klon, dtime, iftop, paprsdn, paprsup, pplay, ctot_vol, ptconv, zdqsdT_raw, & |
---|
310 | zt, zq, zoliq, zoliql, zoliqi, zcond, zfice, zmqc, & |
---|
311 | rneb, znebprecipclr, znebprecipcld, zneb, tot_zneb, zrho_up, zvelo_up, & |
---|
312 | zrfl, zrflclr, zrflcld, zifl, ziflclr, ziflcld, & |
---|
313 | zradocond, zradoice, dqrauto, dqsauto & |
---|
314 | ) |
---|
315 | |
---|
316 | USE lmdz_lscp_ini, ONLY : RD, RG, RCPD, RVTMP2, RLSTT, RLMLT, RTT |
---|
317 | USE lmdz_lscp_ini, ONLY : cld_lc_con, cld_tau_con, cld_expo_con, ffallv_con, & |
---|
318 | cld_lc_lsc, cld_tau_lsc, cld_expo_lsc, ffallv_lsc, & |
---|
319 | seuil_neb, rain_int_min, cice_velo, dice_velo |
---|
320 | USE lmdz_lscp_ini, ONLY : iflag_evap_prec, iflag_cloudth_vert, iflag_rain_incloud_vol, & |
---|
321 | iflag_autoconversion, ok_radocond_snow, ok_bug_phase_lscp, & |
---|
322 | niter_lscp |
---|
323 | USE lmdz_lscp_tools, ONLY : fallice_velocity |
---|
324 | |
---|
325 | IMPLICIT NONE |
---|
326 | |
---|
327 | |
---|
328 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
329 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
330 | LOGICAL, INTENT(IN) :: iftop !--if top of the column |
---|
331 | |
---|
332 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
333 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
334 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
335 | REAL, INTENT(IN), DIMENSION(klon) :: ctot_vol !--volumic cloud fraction [-] |
---|
336 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv !--true if we are in a convective point |
---|
337 | REAL, INTENT(IN), DIMENSION(klon) :: zdqsdT_raw !--derivative of qsat w.r.t. temperature times L/Cp [SI] |
---|
338 | |
---|
339 | REAL, INTENT(INOUT), DIMENSION(klon) :: zt !--current temperature [K] |
---|
340 | REAL, INTENT(INOUT), DIMENSION(klon) :: zq !--current water vapor specific humidity [kg/kg] |
---|
341 | REAL, INTENT(INOUT), DIMENSION(klon) :: zoliq !--current liquid+ice water specific humidity [kg/kg] |
---|
342 | REAL, INTENT(INOUT), DIMENSION(klon) :: zoliql !--current liquid water specific humidity [kg/kg] |
---|
343 | REAL, INTENT(INOUT), DIMENSION(klon) :: zoliqi !--current ice water specific humidity [kg/kg] |
---|
344 | REAL, INTENT(INOUT), DIMENSION(klon) :: zcond !--liquid+ice water specific humidity AFTER CONDENSATION (no precip process) [kg/kg] |
---|
345 | REAL, INTENT(IN), DIMENSION(klon) :: zfice !--ice fraction AFTER CONDENSATION [-] |
---|
346 | REAL, INTENT(IN), DIMENSION(klon) :: zmqc !--specific humidity in the precipitation falling from the upper layer [kg/kg] |
---|
347 | |
---|
348 | REAL, INTENT(IN), DIMENSION(klon) :: rneb !--cloud fraction [-] |
---|
349 | REAL, INTENT(INOUT), DIMENSION(klon) :: znebprecipclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
350 | REAL, INTENT(INOUT), DIMENSION(klon) :: znebprecipcld !--fraction of precipitation in the cloud IN THE LAYER ABOVE [-] |
---|
351 | REAL, INTENT(INOUT), DIMENSION(klon) :: zneb !--cloud fraction IN THE LAYER ABOVE [-] |
---|
352 | REAL, INTENT(INOUT), DIMENSION(klon) :: tot_zneb !--total cloud cover above the current mesh [-] |
---|
353 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrho_up !--air density IN THE LAYER ABOVE [kg/m3] |
---|
354 | REAL, INTENT(INOUT), DIMENSION(klon) :: zvelo_up !--ice fallspeed velocity IN THE LAYER ABOVE [m/s] |
---|
355 | |
---|
356 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrfl !--flux of rain gridbox-mean [kg/s/m2] |
---|
357 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrflclr !--flux of rain gridbox-mean in clear sky [kg/s/m2] |
---|
358 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrflcld !--flux of rain gridbox-mean in cloudy air [kg/s/m2] |
---|
359 | REAL, INTENT(INOUT), DIMENSION(klon) :: zifl !--flux of snow gridbox-mean [kg/s/m2] |
---|
360 | REAL, INTENT(INOUT), DIMENSION(klon) :: ziflclr !--flux of snow gridbox-mean in clear sky [kg/s/m2] |
---|
361 | REAL, INTENT(INOUT), DIMENSION(klon) :: ziflcld !--flux of snow gridbox-mean in cloudy air [kg/s/m2] |
---|
362 | |
---|
363 | REAL, INTENT(OUT), DIMENSION(klon) :: zradocond !--condensed water used in the radiation scheme [kg/kg] |
---|
364 | REAL, INTENT(OUT), DIMENSION(klon) :: zradoice !--condensed ice water used in the radiation scheme [kg/kg] |
---|
365 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
366 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
367 | |
---|
368 | |
---|
369 | ! Local variables for precip fraction update |
---|
370 | REAL :: smallestreal |
---|
371 | REAL, DIMENSION(klon) :: tot_znebn, d_tot_zneb |
---|
372 | REAL, DIMENSION(klon) :: d_znebprecip_cld_clr, d_znebprecip_clr_cld |
---|
373 | REAL, DIMENSION(klon) :: d_zrfl_cld_clr, d_zifl_cld_clr |
---|
374 | REAL, DIMENSION(klon) :: d_zrfl_clr_cld, d_zifl_clr_cld |
---|
375 | |
---|
376 | ! Local variables for autoconversion |
---|
377 | REAL :: zct, zcl, zexpo, ffallv |
---|
378 | REAL :: zchau, zfroi |
---|
379 | REAL :: zrain, zsnow, zprecip |
---|
380 | REAL :: effective_zneb |
---|
381 | REAL, DIMENSION(klon) :: zrho, zvelo |
---|
382 | REAL, DIMENSION(klon) :: zdz, iwc |
---|
383 | |
---|
384 | ! Local variables for Bergeron process |
---|
385 | REAL :: zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
---|
386 | REAL, DIMENSION(klon) :: zqpreci, zqprecl |
---|
387 | |
---|
388 | ! Local variables for calculation of quantity of condensates seen by the radiative scheme |
---|
389 | REAL, DIMENSION(klon) :: zradoliq |
---|
390 | REAL, DIMENSION(klon) :: ziflprev |
---|
391 | |
---|
392 | ! Misc |
---|
393 | INTEGER :: i, n |
---|
394 | |
---|
395 | ! Initialisation |
---|
396 | smallestreal=1.e-9 |
---|
397 | zqprecl(:) = 0. |
---|
398 | zqpreci(:) = 0. |
---|
399 | ziflprev(:) = 0. |
---|
400 | |
---|
401 | |
---|
402 | IF (iflag_evap_prec .GE. 4) THEN |
---|
403 | |
---|
404 | !Partitionning between precipitation coming from clouds and that coming from CS |
---|
405 | |
---|
406 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
---|
407 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
---|
408 | |
---|
409 | DO i=1, klon |
---|
410 | tot_znebn(i) = 1. - (1.-tot_zneb(i))*(1 - max(rneb(i),zneb(i))) & |
---|
411 | /(1.-min(zneb(i),1.-smallestreal)) |
---|
412 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
---|
413 | tot_zneb(i) = tot_znebn(i) |
---|
414 | |
---|
415 | |
---|
416 | !1) Cloudy to clear air |
---|
417 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i),znebprecipcld(i)) |
---|
418 | IF (znebprecipcld(i) .GT. 0.) THEN |
---|
419 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*zrflcld(i) |
---|
420 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*ziflcld(i) |
---|
421 | ELSE |
---|
422 | d_zrfl_cld_clr(i) = 0. |
---|
423 | d_zifl_cld_clr(i) = 0. |
---|
424 | ENDIF |
---|
425 | |
---|
426 | !2) Clear to cloudy air |
---|
427 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i) - d_tot_zneb(i) - zneb(i))) |
---|
428 | IF (znebprecipclr(i) .GT. 0) THEN |
---|
429 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*zrflclr(i) |
---|
430 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*ziflclr(i) |
---|
431 | ELSE |
---|
432 | d_zrfl_clr_cld(i) = 0. |
---|
433 | d_zifl_clr_cld(i) = 0. |
---|
434 | ENDIF |
---|
435 | |
---|
436 | !Update variables |
---|
437 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
---|
438 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
---|
439 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
---|
440 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
---|
441 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
---|
442 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
---|
443 | |
---|
444 | ! c_iso do the same thing for isotopes precip |
---|
445 | ENDDO |
---|
446 | ENDIF |
---|
447 | |
---|
448 | |
---|
449 | ! Autoconversion |
---|
450 | ! ------------------------------------------------------------------------------- |
---|
451 | |
---|
452 | ! Initialisation |
---|
453 | DO i = 1, klon |
---|
454 | zrho(i) = pplay(i) / zt(i) / RD |
---|
455 | zdz(i) = (paprsdn(i)-paprsup(i)) / (zrho(i)*RG) |
---|
456 | iwc(i) = 0. |
---|
457 | zneb(i) = MAX(rneb(i),seuil_neb) |
---|
458 | |
---|
459 | ! variables for calculation of quantity of condensates seen by the radiative scheme |
---|
460 | ! NB. only zradocond and zradoice are outputed, but zradoliq is used if ok_radocond_snow |
---|
461 | ! is TRUE |
---|
462 | zradocond(i) = zoliq(i)/REAL(niter_lscp+1) |
---|
463 | zradoliq(i) = zoliq(i)*(1.-zfice(i))/REAL(niter_lscp+1) |
---|
464 | zradoice(i) = zoliq(i)*zfice(i)/REAL(niter_lscp+1) |
---|
465 | ENDDO |
---|
466 | |
---|
467 | |
---|
468 | DO n = 1, niter_lscp |
---|
469 | |
---|
470 | DO i=1,klon |
---|
471 | IF (rneb(i).GT.0.0) THEN |
---|
472 | iwc(i) = zrho(i) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content |
---|
473 | ENDIF |
---|
474 | ENDDO |
---|
475 | |
---|
476 | CALL fallice_velocity(klon, iwc, zt, zrho, pplay, ptconv, zvelo) |
---|
477 | |
---|
478 | DO i = 1, klon |
---|
479 | |
---|
480 | IF (rneb(i).GT.0.0) THEN |
---|
481 | |
---|
482 | ! Initialization of zrain, zsnow and zprecip: |
---|
483 | zrain=0. |
---|
484 | zsnow=0. |
---|
485 | zprecip=0. |
---|
486 | ! c_iso same init for isotopes. Externalisation? |
---|
487 | |
---|
488 | IF (zneb(i).EQ.seuil_neb) THEN |
---|
489 | zprecip = 0.0 |
---|
490 | zsnow = 0.0 |
---|
491 | zrain= 0.0 |
---|
492 | ELSE |
---|
493 | |
---|
494 | IF (ptconv(i)) THEN ! if convective point |
---|
495 | zcl=cld_lc_con |
---|
496 | zct=1./cld_tau_con |
---|
497 | zexpo=cld_expo_con |
---|
498 | ffallv=ffallv_con |
---|
499 | ELSE |
---|
500 | zcl=cld_lc_lsc |
---|
501 | zct=1./cld_tau_lsc |
---|
502 | zexpo=cld_expo_lsc |
---|
503 | ffallv=ffallv_lsc |
---|
504 | ENDIF |
---|
505 | |
---|
506 | |
---|
507 | ! if vertical heterogeneity is taken into account, we use |
---|
508 | ! the "true" volume fraction instead of a modified |
---|
509 | ! surface fraction (which is larger and artificially |
---|
510 | ! reduces the in-cloud water). |
---|
511 | IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN |
---|
512 | effective_zneb=ctot_vol(i) |
---|
513 | ELSE |
---|
514 | effective_zneb=zneb(i) |
---|
515 | ENDIF |
---|
516 | |
---|
517 | |
---|
518 | ! Liquid water quantity to remove: zchau (Sundqvist, 1978) |
---|
519 | ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
---|
520 | !......................................................... |
---|
521 | IF (iflag_autoconversion .EQ. 2) THEN |
---|
522 | ! two-steps resolution with niter_lscp=1 sufficient |
---|
523 | ! we first treat the second term (with exponential) in an explicit way |
---|
524 | ! and then treat the first term (-q/tau) in an exact way |
---|
525 | zchau=zoliql(i)*(1.-exp(-dtime/REAL(niter_lscp)*zct & |
---|
526 | *(1.-exp(-(zoliql(i)/effective_zneb/zcl)**zexpo)))) |
---|
527 | ELSE |
---|
528 | ! old explicit resolution with subtimesteps |
---|
529 | zchau = zct*dtime/REAL(niter_lscp)*zoliql(i) & |
---|
530 | *(1.0-EXP(-(zoliql(i)/effective_zneb/zcl)**zexpo)) |
---|
531 | ENDIF |
---|
532 | |
---|
533 | |
---|
534 | ! Ice water quantity to remove (Zender & Kiehl, 1997) |
---|
535 | ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
---|
536 | !.................................... |
---|
537 | IF (iflag_autoconversion .EQ. 2) THEN |
---|
538 | ! exact resolution, niter_lscp=1 is sufficient but works only |
---|
539 | ! with iflag_vice=0 |
---|
540 | IF (zoliqi(i) .GT. 0.) THEN |
---|
541 | zfroi=(zoliqi(i)-((zoliqi(i)**(-dice_velo)) & |
---|
542 | +dice_velo*dtime/REAL(niter_lscp)*cice_velo/zdz(i)*ffallv)**(-1./dice_velo)) |
---|
543 | ELSE |
---|
544 | zfroi=0. |
---|
545 | ENDIF |
---|
546 | ELSE |
---|
547 | ! old explicit resolution with subtimesteps |
---|
548 | zfroi = dtime/REAL(niter_lscp)/zdz(i)*zoliqi(i)*zvelo(i) |
---|
549 | ENDIF |
---|
550 | |
---|
551 | zrain = MIN(MAX(zchau,0.0),zoliql(i)) |
---|
552 | zsnow = MIN(MAX(zfroi,0.0),zoliqi(i)) |
---|
553 | zprecip = MAX(zrain + zsnow,0.0) |
---|
554 | |
---|
555 | ENDIF |
---|
556 | |
---|
557 | |
---|
558 | IF (iflag_autoconversion .GE. 1) THEN |
---|
559 | ! debugged version with phase conservation through the autoconversion process |
---|
560 | zoliql(i) = MAX(zoliql(i)-1.*zrain , 0.0) |
---|
561 | zoliqi(i) = MAX(zoliqi(i)-1.*zsnow , 0.0) |
---|
562 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
---|
563 | ELSE |
---|
564 | ! bugged version with phase resetting |
---|
565 | zoliql(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zrain , 0.0) |
---|
566 | zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zsnow , 0.0) |
---|
567 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
---|
568 | ENDIF |
---|
569 | |
---|
570 | ! c_iso: call isotope_conversion (for readibility) or duplicate |
---|
571 | |
---|
572 | ! variables for calculation of quantity of condensates seen by the radiative scheme |
---|
573 | zradocond(i) = zradocond(i) + zoliq(i)/REAL(niter_lscp+1) |
---|
574 | zradoliq(i) = zradoliq(i) + zoliql(i)/REAL(niter_lscp+1) |
---|
575 | zradoice(i) = zradoice(i) + zoliqi(i)/REAL(niter_lscp+1) |
---|
576 | |
---|
577 | !--Diagnostics |
---|
578 | dqrauto(i) = dqrauto(i) + zrain / dtime |
---|
579 | dqsauto(i) = dqsauto(i) + zsnow / dtime |
---|
580 | |
---|
581 | ENDIF ! rneb >0 |
---|
582 | |
---|
583 | ENDDO ! i = 1,klon |
---|
584 | |
---|
585 | ENDDO ! n = 1,niter |
---|
586 | |
---|
587 | ! Precipitation flux calculation |
---|
588 | |
---|
589 | DO i = 1, klon |
---|
590 | |
---|
591 | IF (iflag_evap_prec.GE.4) THEN |
---|
592 | ziflprev(i)=ziflcld(i) |
---|
593 | ELSE |
---|
594 | ziflprev(i)=zifl(i)*zneb(i) |
---|
595 | ENDIF |
---|
596 | |
---|
597 | IF (rneb(i) .GT. 0.0) THEN |
---|
598 | |
---|
599 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
---|
600 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
---|
601 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
---|
602 | ! taken into account through a linearization of the equations and by approximating |
---|
603 | ! the liquid precipitation process with a "threshold" process. We assume that |
---|
604 | ! condensates are not modified during this operation. Liquid precipitation is |
---|
605 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
---|
606 | ! Water vapor increases as well |
---|
607 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
---|
608 | |
---|
609 | IF (ok_bug_phase_lscp) THEN |
---|
610 | zqpreci(i)=(zcond(i)-zoliq(i))*zfice(i) |
---|
611 | zqprecl(i)=(zcond(i)-zoliq(i))*(1.-zfice(i)) |
---|
612 | ELSE |
---|
613 | zqpreci(i)=zcond(i)*zfice(i)-zoliqi(i) |
---|
614 | zqprecl(i)=zcond(i)*(1.-zfice(i))-zoliql(i) |
---|
615 | ENDIF |
---|
616 | zcp=RCPD*(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
617 | coef1 = rneb(i)*RLSTT/zcp*zdqsdT_raw(i) |
---|
618 | ! Computation of DT if all the liquid precip freezes |
---|
619 | DeltaT = RLMLT*zqprecl(i) / (zcp*(1.+coef1)) |
---|
620 | ! T should not exceed the freezing point |
---|
621 | ! that is Delta > RTT-zt(i) |
---|
622 | DeltaT = max( min( RTT-zt(i), DeltaT) , 0. ) |
---|
623 | zt(i) = zt(i) + DeltaT |
---|
624 | ! water vaporization due to temp. increase |
---|
625 | Deltaq = rneb(i)*zdqsdT_raw(i)*DeltaT |
---|
626 | ! we add this vaporized water to the total vapor and we remove it from the precip |
---|
627 | zq(i) = zq(i) + Deltaq |
---|
628 | ! The three "max" lines herebelow protect from rounding errors |
---|
629 | zcond(i) = max( zcond(i)- Deltaq, 0. ) |
---|
630 | ! liquid precipitation converted to ice precip |
---|
631 | Deltaqprecl = -zcp/RLMLT*(1.+coef1)*DeltaT |
---|
632 | zqprecl(i) = max( zqprecl(i) + Deltaqprecl, 0. ) |
---|
633 | ! iced water budget |
---|
634 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
---|
635 | |
---|
636 | ! c_iso : mv here condensation of isotopes + redispatchage en precip |
---|
637 | |
---|
638 | IF (iflag_evap_prec.GE.4) THEN |
---|
639 | zrflcld(i) = zrflcld(i)+zqprecl(i) & |
---|
640 | *(paprsdn(i)-paprsup(i))/(RG*dtime) |
---|
641 | ziflcld(i) = ziflcld(i)+ zqpreci(i) & |
---|
642 | *(paprsdn(i)-paprsup(i))/(RG*dtime) |
---|
643 | znebprecipcld(i) = rneb(i) |
---|
644 | zrfl(i) = zrflcld(i) + zrflclr(i) |
---|
645 | zifl(i) = ziflcld(i) + ziflclr(i) |
---|
646 | ELSE |
---|
647 | zrfl(i) = zrfl(i)+ zqprecl(i) & |
---|
648 | *(paprsdn(i)-paprsup(i))/(RG*dtime) |
---|
649 | zifl(i) = zifl(i)+ zqpreci(i) & |
---|
650 | *(paprsdn(i)-paprsup(i))/(RG*dtime) |
---|
651 | ENDIF |
---|
652 | ! c_iso : same for isotopes |
---|
653 | |
---|
654 | ENDIF ! rneb>0 |
---|
655 | |
---|
656 | ENDDO |
---|
657 | |
---|
658 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
---|
659 | ! if iflag_evap_prec>=4 |
---|
660 | IF (iflag_evap_prec.GE.4) THEN |
---|
661 | |
---|
662 | DO i=1,klon |
---|
663 | |
---|
664 | IF ((zrflclr(i) + ziflclr(i)) .GT. 0. ) THEN |
---|
665 | znebprecipclr(i) = min(znebprecipclr(i),max( & |
---|
666 | zrflclr(i)/ (MAX(znebprecipclr(i),seuil_neb)*rain_int_min), & |
---|
667 | ziflclr(i)/ (MAX(znebprecipclr(i),seuil_neb)*rain_int_min))) |
---|
668 | ELSE |
---|
669 | znebprecipclr(i)=0.0 |
---|
670 | ENDIF |
---|
671 | |
---|
672 | IF ((zrflcld(i) + ziflcld(i)) .GT. 0.) THEN |
---|
673 | znebprecipcld(i) = min(znebprecipcld(i), max( & |
---|
674 | zrflcld(i)/ (MAX(znebprecipcld(i),seuil_neb)*rain_int_min), & |
---|
675 | ziflcld(i)/ (MAX(znebprecipcld(i),seuil_neb)*rain_int_min))) |
---|
676 | ELSE |
---|
677 | znebprecipcld(i)=0.0 |
---|
678 | ENDIF |
---|
679 | ENDDO |
---|
680 | |
---|
681 | ENDIF |
---|
682 | |
---|
683 | ! we recalculate zradoice to account for contributions from the precipitation flux |
---|
684 | ! if ok_radocond_snow is true |
---|
685 | IF ( ok_radocond_snow ) THEN |
---|
686 | IF ( .NOT. iftop ) THEN |
---|
687 | ! for the solid phase (crystals + snowflakes) |
---|
688 | ! we recalculate zradoice by summing |
---|
689 | ! the ice content calculated in the mesh |
---|
690 | ! + the contribution of the non-evaporated snowfall |
---|
691 | ! from the overlying layer |
---|
692 | DO i=1,klon |
---|
693 | IF (ziflprev(i) .NE. 0.0) THEN |
---|
694 | zradoice(i)=zoliqi(i)+zqpreci(i)+ziflprev(i)/zrho_up(i)/zvelo_up(i) |
---|
695 | ELSE |
---|
696 | zradoice(i)=zoliqi(i)+zqpreci(i) |
---|
697 | ENDIF |
---|
698 | zradocond(i)=zradoliq(i)+zradoice(i) |
---|
699 | ENDDO |
---|
700 | ENDIF |
---|
701 | ! keep in memory air density and ice fallspeed velocity |
---|
702 | zrho_up(:) = zrho(:) |
---|
703 | zvelo_up(:) = zvelo(:) |
---|
704 | ENDIF |
---|
705 | |
---|
706 | END SUBROUTINE histprecip_postcld |
---|
707 | |
---|
708 | |
---|
709 | !---------------------------------------------------------------- |
---|
710 | ! Computes the processes-oriented precipitation formulations for |
---|
711 | ! evaporation and sublimation |
---|
712 | ! |
---|
713 | SUBROUTINE poprecip_precld( & |
---|
714 | klon, dtime, iftop, paprsdn, paprsup, pplay, temp, tempupnew, qvap, & |
---|
715 | qprecip, precipfracclr, precipfraccld, qvapclrup, qtotupnew, & |
---|
716 | rain, rainclr, raincld, snow, snowclr, snowcld, dqreva, dqssub & |
---|
717 | ) |
---|
718 | |
---|
719 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
720 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub, expo_eva, expo_sub, thresh_precip_frac |
---|
721 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
722 | USE lmdz_lscp_ini, ONLY : ok_corr_vap_evasub |
---|
723 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
724 | |
---|
725 | IMPLICIT NONE |
---|
726 | |
---|
727 | |
---|
728 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
729 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
730 | LOGICAL, INTENT(IN) :: iftop !--if top of the column |
---|
731 | |
---|
732 | |
---|
733 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
734 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
735 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
736 | |
---|
737 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
738 | REAL, INTENT(IN), DIMENSION(klon) :: tempupnew !--updated temperature of the overlying layer [K] |
---|
739 | |
---|
740 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity (includes evaporated qi and ql) [kg/kg] |
---|
741 | REAL, INTENT(INOUT), DIMENSION(klon) :: qprecip !--specific humidity in the precipitation falling from the upper layer [kg/kg] |
---|
742 | |
---|
743 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
744 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
745 | |
---|
746 | REAL, INTENT(IN), DIMENSION(klon) :: qvapclrup !--clear-sky specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
747 | REAL, INTENT(IN), DIMENSION(klon) :: qtotupnew !--total specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
748 | |
---|
749 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
750 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
751 | REAL, INTENT(IN), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
752 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
753 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
754 | REAL, INTENT(IN), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
755 | |
---|
756 | REAL, INTENT(OUT), DIMENSION(klon) :: dqreva !--rain tendency due to evaporation [kg/kg/s] |
---|
757 | REAL, INTENT(OUT), DIMENSION(klon) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
758 | |
---|
759 | |
---|
760 | !--Integer for interating over klon |
---|
761 | INTEGER :: i |
---|
762 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
763 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
764 | !-- |
---|
765 | REAL, DIMENSION(klon) :: rho, dz |
---|
766 | |
---|
767 | !--Saturation values |
---|
768 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat, qsatl, dqsatl, qsati, dqsati |
---|
769 | !--Vapor in the clear sky |
---|
770 | REAL :: qvapclr |
---|
771 | !--Fluxes tendencies because of evaporation and sublimation |
---|
772 | REAL :: dprecip_evasub_max, draineva, dsnowsub, dprecip_evasub_tot |
---|
773 | !--Specific humidity tendencies because of evaporation and sublimation |
---|
774 | REAL :: dqrevap, dqssubl |
---|
775 | !--Specific heat constant |
---|
776 | REAL :: cpair, cpw |
---|
777 | |
---|
778 | !--Initialisation |
---|
779 | qzero(:) = 0. |
---|
780 | dqreva(:) = 0. |
---|
781 | dqssub(:) = 0. |
---|
782 | dqrevap = 0. |
---|
783 | dqssubl = 0. |
---|
784 | |
---|
785 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
786 | dhum_to_dflux(:) = ( paprsdn(:) - paprsup(:) ) / RG / dtime |
---|
787 | rho(:) = pplay(:) / temp(:) / RD |
---|
788 | dz(:) = ( paprsdn(:) - paprsup(:) ) / RG / rho(:) |
---|
789 | |
---|
790 | !--Calculation of saturation specific humidity |
---|
791 | !--depending on temperature: |
---|
792 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,0,.false.,qsat(:),dqsat(:)) |
---|
793 | !--wrt liquid water |
---|
794 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,1,.false.,qsatl(:),dqsatl(:)) |
---|
795 | !--wrt ice |
---|
796 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,2,.false.,qsati(:),dqsati(:)) |
---|
797 | |
---|
798 | |
---|
799 | |
---|
800 | !--First step consists in "thermalizing" the layer: |
---|
801 | !--as the flux of precip from layer above "advects" some heat (as the precip is at the temperature |
---|
802 | !--of the overlying layer) we recalculate a mean temperature that both the air and the precip in the |
---|
803 | !--layer have. |
---|
804 | |
---|
805 | IF (iftop) THEN |
---|
806 | |
---|
807 | DO i = 1, klon |
---|
808 | qprecip(i) = 0. |
---|
809 | ENDDO |
---|
810 | |
---|
811 | ELSE |
---|
812 | |
---|
813 | DO i = 1, klon |
---|
814 | !--No condensed water so cp=cp(vapor+dry air) |
---|
815 | !-- RVTMP2=rcpv/rcpd-1 |
---|
816 | cpair = RCPD * ( 1. + RVTMP2 * qvap(i) ) |
---|
817 | cpw = RCPD * RVTMP2 |
---|
818 | !--qprecip has to be thermalized with |
---|
819 | !--layer's air so that precipitation at the ground has the |
---|
820 | !--same temperature as the lowermost layer |
---|
821 | !--we convert the flux into a specific quantity qprecip |
---|
822 | qprecip(i) = ( rain(i) + snow(i) ) / dhum_to_dflux(i) |
---|
823 | !-- t(i,k+1) + d_t(i,k+1): new temperature of the overlying layer |
---|
824 | temp(i) = ( tempupnew(i) * qprecip(i) * cpw + cpair * temp(i) ) & |
---|
825 | / ( cpair + qprecip(i) * cpw ) |
---|
826 | ENDDO |
---|
827 | |
---|
828 | ENDIF |
---|
829 | |
---|
830 | ! TODO Probleme : on utilise qvap total dans la maille pour l'evap / sub |
---|
831 | ! alors qu'on n'evap / sub que dans le ciel clair |
---|
832 | ! deux options pour cette routine : |
---|
833 | ! - soit on diagnostique le nuage AVANT l'evap / sub et on estime donc |
---|
834 | ! la fraction precipitante ciel clair dans la maille, ce qui permet de travailler |
---|
835 | ! avec des fractions, des fluxs et surtout un qvap dans le ciel clair |
---|
836 | ! - soit on pousse la param de Ludo au bout, et on prend un qvap de k+1 |
---|
837 | ! dans le ciel clair, avec un truc comme : |
---|
838 | ! qvapclr(k) = qvapclr(k+1)/qtot(k+1) * qtot(k) |
---|
839 | ! UPDATE : on code la seconde version. A voir si on veut mettre la premiere version. |
---|
840 | |
---|
841 | |
---|
842 | DO i = 1, klon |
---|
843 | |
---|
844 | !--If there is precipitation from the layer above |
---|
845 | ! NOTE TODO here we could replace the condition on precipfracclr(i) by a condition |
---|
846 | ! such as eps or thresh_precip_frac, to remove the senseless barrier in the formulas |
---|
847 | ! of evap / sublim |
---|
848 | IF ( ( ( rain(i) + snow(i) ) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
849 | |
---|
850 | IF ( ok_corr_vap_evasub ) THEN |
---|
851 | !--Corrected version - we use the same water ratio between |
---|
852 | !--the clear and the cloudy sky as in the layer above. This |
---|
853 | !--extends the assumption that the cloud fraction is the same |
---|
854 | !--as the layer above. This is assumed only for the evap / subl |
---|
855 | !--process |
---|
856 | !--Note that qvap(i) is the total water in the gridbox, and |
---|
857 | !--precipfraccld(i) is the cloud fraction in the layer above |
---|
858 | qvapclr = qvapclrup(i) / qtotupnew(i) * qvap(i) / ( 1. - precipfraccld(i) ) |
---|
859 | ELSE |
---|
860 | !--Legacy version from Ludo - we use the total specific humidity |
---|
861 | !--for the evap / subl process |
---|
862 | qvapclr = qvap(i) |
---|
863 | ENDIF |
---|
864 | |
---|
865 | !--Evaporation of liquid precipitation coming from above |
---|
866 | !--in the clear sky only |
---|
867 | !--dprecip/dz = -beta*(1-qvap/qsat)*(precip**expo_eva) |
---|
868 | !--formula from Sundqvist 1988, Klemp & Wilhemson 1978 |
---|
869 | !--Exact explicit formulation (rainclr is resolved exactly, qvap explicitly) |
---|
870 | !--which does not need a barrier on rainclr, because included in the formula |
---|
871 | draineva = precipfracclr(i) * ( MAX(0., & |
---|
872 | - coef_eva * ( 1. - expo_eva ) * (1. - qvapclr / qsatl(i)) * dz(i) & |
---|
873 | + ( rainclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_eva ) & |
---|
874 | ) )**( 1. / ( 1. - expo_eva ) ) - rainclr(i) |
---|
875 | |
---|
876 | !--Evaporation is limited by 0 |
---|
877 | draineva = MIN(0., draineva) |
---|
878 | |
---|
879 | |
---|
880 | !--Sublimation of the solid precipitation coming from above |
---|
881 | !--(same formula as for liquid precip) |
---|
882 | !--Exact explicit formulation (snowclr is resolved exactly, qvap explicitly) |
---|
883 | !--which does not need a barrier on snowclr, because included in the formula |
---|
884 | dsnowsub = precipfracclr(i) * ( MAX(0., & |
---|
885 | - coef_sub * ( 1. - expo_sub ) * (1. - qvapclr / qsati(i)) * dz(i) & |
---|
886 | + ( snowclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_sub ) & |
---|
887 | ) )**( 1. / ( 1. - expo_sub ) ) - snowclr(i) |
---|
888 | |
---|
889 | !--Sublimation is limited by 0 |
---|
890 | ! TODO: change max when we will allow for vapor deposition in supersaturated regions |
---|
891 | dsnowsub = MIN(0., dsnowsub) |
---|
892 | |
---|
893 | !--Evaporation limit: we ensure that the layer's fraction below |
---|
894 | !--the clear sky does not reach saturation. In this case, we |
---|
895 | !--redistribute the maximum flux dprecip_evasub_max conserving the ratio liquid/ice |
---|
896 | !--Max evaporation is computed not to saturate the clear sky precip fraction |
---|
897 | !--(i.e., the fraction where evaporation occurs) |
---|
898 | !--It is expressed as a max flux dprecip_evasub_max |
---|
899 | |
---|
900 | dprecip_evasub_max = MIN(0., ( qvapclr - qsat(i) ) * precipfracclr(i)) & |
---|
901 | * dhum_to_dflux(i) |
---|
902 | dprecip_evasub_tot = draineva + dsnowsub |
---|
903 | |
---|
904 | !--Barriers |
---|
905 | !--If activates if the total is LOWER than the max because |
---|
906 | !--everything is negative |
---|
907 | IF ( dprecip_evasub_tot .LT. dprecip_evasub_max ) THEN |
---|
908 | draineva = dprecip_evasub_max * draineva / dprecip_evasub_tot |
---|
909 | dsnowsub = dprecip_evasub_max * dsnowsub / dprecip_evasub_tot |
---|
910 | ENDIF |
---|
911 | |
---|
912 | |
---|
913 | !--New solid and liquid precipitation fluxes after evap and sublimation |
---|
914 | dqrevap = draineva / dhum_to_dflux(i) |
---|
915 | dqssubl = dsnowsub / dhum_to_dflux(i) |
---|
916 | |
---|
917 | |
---|
918 | !--Vapor is updated after evaporation/sublimation (it is increased) |
---|
919 | qvap(i) = qvap(i) - dqrevap - dqssubl |
---|
920 | !--qprecip is the total condensed water in the precip flux (it is decreased) |
---|
921 | qprecip(i) = qprecip(i) + dqrevap + dqssubl |
---|
922 | !--Air and precip temperature (i.e., gridbox temperature) |
---|
923 | !--is updated due to latent heat cooling |
---|
924 | temp(i) = temp(i) & |
---|
925 | + dqrevap * RLVTT / RCPD & |
---|
926 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) & |
---|
927 | + dqssubl * RLSTT / RCPD & |
---|
928 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) |
---|
929 | |
---|
930 | !--Add tendencies |
---|
931 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
932 | rainclr(i) = MAX(0., rainclr(i) + draineva) |
---|
933 | snowclr(i) = MAX(0., snowclr(i) + dsnowsub) |
---|
934 | |
---|
935 | !--If there is no more precip fluxes, the precipitation fraction in clear |
---|
936 | !--sky is set to 0 |
---|
937 | IF ( ( rainclr(i) + snowclr(i) ) .LE. 0. ) precipfracclr(i) = 0. |
---|
938 | |
---|
939 | !--Calculation of the total fluxes |
---|
940 | rain(i) = rainclr(i) + raincld(i) |
---|
941 | snow(i) = snowclr(i) + snowcld(i) |
---|
942 | |
---|
943 | ELSEIF ( ( rain(i) + snow(i) ) .LE. 0. ) THEN |
---|
944 | !--If no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
945 | precipfraccld(i) = 0. |
---|
946 | precipfracclr(i) = 0. |
---|
947 | |
---|
948 | ENDIF ! ( ( rain(i) + snow(i) ) .GT. 0. ) |
---|
949 | |
---|
950 | !--Diagnostic tendencies |
---|
951 | dqssub(i) = dqssubl / dtime |
---|
952 | dqreva(i) = dqrevap / dtime |
---|
953 | |
---|
954 | ENDDO ! loop on klon |
---|
955 | |
---|
956 | END SUBROUTINE poprecip_precld |
---|
957 | |
---|
958 | |
---|
959 | !---------------------------------------------------------------- |
---|
960 | ! Computes the processes-oriented precipitation formulations for |
---|
961 | ! - autoconversion (auto) via a deposition process |
---|
962 | ! - aggregation (agg) |
---|
963 | ! - riming (rim) |
---|
964 | ! - collection (col) |
---|
965 | ! - melting (melt) |
---|
966 | ! - freezing (freez) |
---|
967 | ! |
---|
968 | SUBROUTINE poprecip_postcld( & |
---|
969 | klon, dtime, paprsdn, paprsup, pplay, ctot_vol, ptconv, & |
---|
970 | temp, qvap, qliq, qice, icefrac, cldfra, & |
---|
971 | precipfracclr, precipfraccld, & |
---|
972 | rain, rainclr, raincld, snow, snowclr, snowcld, & |
---|
973 | qraindiag, qsnowdiag, dqrauto, dqrcol, dqrmelt, dqrfreez, & |
---|
974 | dqsauto, dqsagg, dqsrim, dqsmelt, dqsfreez) |
---|
975 | |
---|
976 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
977 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RPI |
---|
978 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
979 | |
---|
980 | USE lmdz_lscp_ini, ONLY : cld_lc_con, cld_tau_con, cld_expo_con, seuil_neb, & |
---|
981 | cld_lc_lsc, cld_tau_lsc, cld_expo_lsc, rain_int_min, & |
---|
982 | thresh_precip_frac, gamma_col, gamma_agg, gamma_rim, & |
---|
983 | rho_rain, r_rain, r_snow, rho_ice, & |
---|
984 | tau_auto_snow_min, tau_auto_snow_max, & |
---|
985 | thresh_precip_frac, eps, & |
---|
986 | gamma_melt, alpha_freez, beta_freez, temp_nowater, & |
---|
987 | iflag_cloudth_vert, iflag_rain_incloud_vol, & |
---|
988 | cld_lc_lsc_snow, cld_lc_con_snow, gamma_freez, & |
---|
989 | rain_fallspeed_clr, rain_fallspeed_cld, & |
---|
990 | snow_fallspeed_clr, snow_fallspeed_cld |
---|
991 | |
---|
992 | |
---|
993 | IMPLICIT NONE |
---|
994 | |
---|
995 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
996 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
997 | |
---|
998 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
999 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
1000 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
1001 | |
---|
1002 | REAL, INTENT(IN), DIMENSION(klon) :: ctot_vol !--volumic cloud fraction [-] |
---|
1003 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv !--true if we are in a convective point |
---|
1004 | |
---|
1005 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
1006 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity [kg/kg] |
---|
1007 | REAL, INTENT(INOUT), DIMENSION(klon) :: qliq !--current liquid water specific humidity [kg/kg] |
---|
1008 | REAL, INTENT(INOUT), DIMENSION(klon) :: qice !--current ice water specific humidity [kg/kg] |
---|
1009 | REAL, INTENT(IN), DIMENSION(klon) :: icefrac !--ice fraction [-] |
---|
1010 | REAL, INTENT(IN), DIMENSION(klon) :: cldfra !--cloud fraction [-] |
---|
1011 | |
---|
1012 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
1013 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
1014 | !--NB. at the end of the routine, becomes the fraction of precip |
---|
1015 | !--in the current layer |
---|
1016 | |
---|
1017 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
1018 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
1019 | REAL, INTENT(INOUT), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
1020 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
1021 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
1022 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
1023 | |
---|
1024 | REAL, INTENT(OUT), DIMENSION(klon) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
1025 | REAL, INTENT(OUT), DIMENSION(klon) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
1026 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
1027 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
1028 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
1029 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
1030 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
1031 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
1032 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
1033 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
1034 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
1035 | |
---|
1036 | |
---|
1037 | |
---|
1038 | !--Local variables |
---|
1039 | |
---|
1040 | INTEGER :: i |
---|
1041 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
1042 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
1043 | REAL, DIMENSION(klon) :: qtot !--includes vap, liq, ice and precip |
---|
1044 | |
---|
1045 | !--Partition of the fluxes |
---|
1046 | REAL :: dcldfra |
---|
1047 | REAL :: precipfractot |
---|
1048 | REAL :: dprecipfracclr, dprecipfraccld |
---|
1049 | REAL :: drainclr, dsnowclr |
---|
1050 | REAL :: draincld, dsnowcld |
---|
1051 | |
---|
1052 | !--Collection, aggregation and riming |
---|
1053 | REAL :: eff_cldfra |
---|
1054 | REAL :: coef_col, coef_agg, coef_rim, coef_tmp, qrain_tmp |
---|
1055 | REAL :: Eff_rain_liq, Eff_snow_ice, Eff_snow_liq |
---|
1056 | REAL :: rho_snow |
---|
1057 | REAL :: dqlcol !--loss of liquid cloud content due to collection by rain [kg/kg/s] |
---|
1058 | REAL :: dqiagg !--loss of ice cloud content due to collection by aggregation [kg/kg/s] |
---|
1059 | REAL :: dqlrim !--loss of liquid cloud content due to riming on snow [kg/kg/s] |
---|
1060 | |
---|
1061 | !--Autoconversion |
---|
1062 | REAL :: qthresh_auto_rain, tau_auto_rain, expo_auto_rain |
---|
1063 | REAL :: qthresh_auto_snow, tau_auto_snow, expo_auto_snow |
---|
1064 | REAL :: dqlauto !--loss of liquid cloud content due to autoconversion to rain [kg/kg/s] |
---|
1065 | REAL :: dqiauto !--loss of ice cloud content due to autoconversion to snow [kg/kg/s] |
---|
1066 | |
---|
1067 | !--Melting |
---|
1068 | REAL :: dqsmelt_max, air_thermal_conduct |
---|
1069 | REAL :: nb_snowflake_clr, nb_snowflake_cld |
---|
1070 | REAL :: capa_snowflake, temp_wetbulb |
---|
1071 | REAL :: rho, r_ice |
---|
1072 | REAL :: dqsclrmelt, dqscldmelt, dqstotmelt |
---|
1073 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat |
---|
1074 | |
---|
1075 | !--Freezing |
---|
1076 | REAL :: dqrfreez_max |
---|
1077 | REAL :: tau_freez |
---|
1078 | REAL :: dqrclrfreez, dqrcldfreez, dqrtotfreez, dqrtotfreez_step1, dqrtotfreez_step2 |
---|
1079 | REAL :: coef_freez |
---|
1080 | REAL :: dqifreez !--loss of ice cloud content due to collection of ice from rain [kg/kg/s] |
---|
1081 | REAL :: Eff_rain_ice |
---|
1082 | |
---|
1083 | |
---|
1084 | !--Initialisation of variables |
---|
1085 | |
---|
1086 | |
---|
1087 | qzero(:) = 0. |
---|
1088 | |
---|
1089 | dqrcol(:) = 0. |
---|
1090 | dqsagg(:) = 0. |
---|
1091 | dqsauto(:) = 0. |
---|
1092 | dqrauto(:) = 0. |
---|
1093 | dqsrim(:) = 0. |
---|
1094 | dqrmelt(:) = 0. |
---|
1095 | dqsmelt(:) = 0. |
---|
1096 | dqrfreez(:) = 0. |
---|
1097 | dqsfreez(:) = 0. |
---|
1098 | |
---|
1099 | |
---|
1100 | DO i = 1, klon |
---|
1101 | |
---|
1102 | !--Variables initialisation |
---|
1103 | dqlcol = 0. |
---|
1104 | dqiagg = 0. |
---|
1105 | dqiauto = 0. |
---|
1106 | dqlauto = 0. |
---|
1107 | dqlrim = 0. |
---|
1108 | |
---|
1109 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
1110 | dhum_to_dflux(i) = ( paprsdn(i) - paprsup(i) ) / RG / dtime |
---|
1111 | qtot(i) = qvap(i) + qliq(i) + qice(i) & |
---|
1112 | + ( raincld(i) + rainclr(i) + snowcld(i) + snowclr(i) ) / dhum_to_dflux(i) |
---|
1113 | |
---|
1114 | !------------------------------------------------------------ |
---|
1115 | !-- PRECIPITATION FRACTIONS UPDATE |
---|
1116 | !------------------------------------------------------------ |
---|
1117 | !--The goal of this routine is to reattribute precipitation fractions |
---|
1118 | !--and fluxes to clear or cloudy air, depending on the variation of |
---|
1119 | !--the cloud fraction on the vertical dimension. We assume a |
---|
1120 | !--maximum-random overlap of the cloud cover (see Jakob and Klein, 2000, |
---|
1121 | !--and LTP thesis, 2021) |
---|
1122 | !--NB. in fact, we assume a maximum-random overlap of the total precip. frac |
---|
1123 | |
---|
1124 | !--Initialisation |
---|
1125 | precipfractot = precipfracclr(i) + precipfraccld(i) |
---|
1126 | |
---|
1127 | !--Instead of using the cloud cover which was use in LTP thesis, we use the |
---|
1128 | !--total precip. fraction to compute the maximum-random overlap. This is |
---|
1129 | !--because all the information of the cloud cover is embedded into |
---|
1130 | !--precipfractot, and this allows for taking into account the potential |
---|
1131 | !--reduction of the precipitation fraction because either the flux is too |
---|
1132 | !--small (see barrier at the end of poprecip_postcld) or the flux is completely |
---|
1133 | !--evaporated (see barrier at the end of poprecip_precld) |
---|
1134 | !--NB. precipfraccld(i) is here the cloud fraction of the layer above |
---|
1135 | !precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
1136 | ! ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
1137 | ! / ( 1. - MIN( precipfraccld(i), 1. - eps ) ) |
---|
1138 | |
---|
1139 | |
---|
1140 | IF ( precipfraccld(i) .GT. ( 1. - eps ) ) THEN |
---|
1141 | precipfractot = 1. |
---|
1142 | ELSE |
---|
1143 | precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
1144 | ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
1145 | / ( 1. - precipfraccld(i) ) |
---|
1146 | ENDIF |
---|
1147 | |
---|
1148 | !--precipfraccld(i) is here the cloud fraction of the layer above |
---|
1149 | dcldfra = cldfra(i) - precipfraccld(i) |
---|
1150 | !--Tendency of the clear-sky precipitation fraction. We add a MAX on the |
---|
1151 | !--calculation of the current CS precip. frac. |
---|
1152 | !dprecipfracclr = MAX( 0., ( precipfractot - cldfra(i) ) ) - precipfracclr(i) |
---|
1153 | !--We remove it, because precipfractot is guaranteed to be > cldfra (the MAX is activated |
---|
1154 | !--if precipfractot < cldfra) |
---|
1155 | dprecipfracclr = ( precipfractot - cldfra(i) ) - precipfracclr(i) |
---|
1156 | !--Tendency of the cloudy precipitation fraction. We add a MAX on the |
---|
1157 | !--calculation of the current CS precip. frac. |
---|
1158 | !dprecipfraccld = MAX( dcldfra , - precipfraccld(i) ) |
---|
1159 | !--We remove it, because cldfra is guaranteed to be > 0 (the MAX is activated |
---|
1160 | !--if cldfra < 0) |
---|
1161 | dprecipfraccld = dcldfra |
---|
1162 | |
---|
1163 | |
---|
1164 | !--If the cloud extends |
---|
1165 | IF ( dprecipfraccld .GT. 0. ) THEN |
---|
1166 | !--If there is no CS precip, nothing happens. |
---|
1167 | !--If there is, we reattribute some of the CS precip flux |
---|
1168 | !--to the cloud precip flux, proportionnally to the |
---|
1169 | !--decrease of the CS precip fraction |
---|
1170 | IF ( precipfracclr(i) .LE. 0. ) THEN |
---|
1171 | drainclr = 0. |
---|
1172 | dsnowclr = 0. |
---|
1173 | ELSE |
---|
1174 | drainclr = dprecipfracclr / precipfracclr(i) * rainclr(i) |
---|
1175 | dsnowclr = dprecipfracclr / precipfracclr(i) * snowclr(i) |
---|
1176 | ENDIF |
---|
1177 | !--If the cloud narrows |
---|
1178 | ELSEIF ( dprecipfraccld .LT. 0. ) THEN |
---|
1179 | !--We reattribute some of the cloudy precip flux |
---|
1180 | !--to the CS precip flux, proportionnally to the |
---|
1181 | !--decrease of the cloud precip fraction |
---|
1182 | draincld = dprecipfraccld / precipfraccld(i) * raincld(i) |
---|
1183 | dsnowcld = dprecipfraccld / precipfraccld(i) * snowcld(i) |
---|
1184 | drainclr = - draincld |
---|
1185 | dsnowclr = - dsnowcld |
---|
1186 | !--If the cloud stays the same or if there is no cloud above and |
---|
1187 | !--in the current layer, nothing happens |
---|
1188 | ELSE |
---|
1189 | drainclr = 0. |
---|
1190 | dsnowclr = 0. |
---|
1191 | ENDIF |
---|
1192 | |
---|
1193 | !--We add the tendencies |
---|
1194 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
1195 | precipfraccld(i) = precipfraccld(i) + dprecipfraccld |
---|
1196 | precipfracclr(i) = precipfracclr(i) + dprecipfracclr |
---|
1197 | rainclr(i) = MAX(0., rainclr(i) + drainclr) |
---|
1198 | snowclr(i) = MAX(0., snowclr(i) + dsnowclr) |
---|
1199 | raincld(i) = MAX(0., raincld(i) - drainclr) |
---|
1200 | snowcld(i) = MAX(0., snowcld(i) - dsnowclr) |
---|
1201 | |
---|
1202 | !--If vertical heterogeneity is taken into account, we use |
---|
1203 | !--the "true" volume fraction instead of a modified |
---|
1204 | !--surface fraction (which is larger and artificially |
---|
1205 | !--reduces the in-cloud water). |
---|
1206 | IF ( ( iflag_cloudth_vert .GE. 3 ) .AND. ( iflag_rain_incloud_vol .EQ. 1 ) ) THEN |
---|
1207 | eff_cldfra = ctot_vol(i) |
---|
1208 | ELSE |
---|
1209 | eff_cldfra = cldfra(i) |
---|
1210 | ENDIF |
---|
1211 | |
---|
1212 | |
---|
1213 | !--Start precipitation growth processes |
---|
1214 | |
---|
1215 | !--If the cloud is big enough, the precipitation processes activate |
---|
1216 | ! TODO met on seuil_neb ici ? |
---|
1217 | IF ( cldfra(i) .GE. seuil_neb ) THEN |
---|
1218 | |
---|
1219 | !--------------------------------------------------------- |
---|
1220 | !-- COLLECTION AND AGGREGATION |
---|
1221 | !--------------------------------------------------------- |
---|
1222 | !--Collection: processus through which rain collects small liquid droplets |
---|
1223 | !--in suspension, and add it to the rain flux |
---|
1224 | !--Aggregation: same for snow (precip flux) and ice crystals (in suspension) |
---|
1225 | !--Those processes are treated before autoconversion because we do not |
---|
1226 | !--want to collect/aggregate the newly formed fluxes, which already |
---|
1227 | !--"saw" the cloud as they come from it |
---|
1228 | !--The formulas come from Muench and Lohmann 2020 |
---|
1229 | |
---|
1230 | !--gamma_col: tuning coefficient [-] |
---|
1231 | !--rho_rain: volumic mass of rain [kg/m3] |
---|
1232 | !--r_rain: size of the rain droplets [m] |
---|
1233 | !--Eff_rain_liq: efficiency of the collection process [-] (between 0 and 1) |
---|
1234 | !--dqlcol is a gridbox-mean quantity, as is qliq and raincld. They are |
---|
1235 | !--divided by respectively eff_cldfra, eff_cldfra and precipfraccld to |
---|
1236 | !--get in-cloud mean quantities. The two divisions by eff_cldfra are |
---|
1237 | !--then simplified. |
---|
1238 | |
---|
1239 | !--The collection efficiency is perfect. |
---|
1240 | Eff_rain_liq = 1. |
---|
1241 | coef_col = gamma_col * 3. / 4. / rho_rain / r_rain * Eff_rain_liq |
---|
1242 | IF ( raincld(i) .GT. 0. ) THEN |
---|
1243 | !--Exact explicit version, which does not need a barrier because of |
---|
1244 | !--the exponential decrease |
---|
1245 | dqlcol = qliq(i) * ( EXP( - dtime * coef_col * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
1246 | |
---|
1247 | !--Add tendencies |
---|
1248 | qliq(i) = qliq(i) + dqlcol |
---|
1249 | raincld(i) = raincld(i) - dqlcol * dhum_to_dflux(i) |
---|
1250 | |
---|
1251 | !--Diagnostic tendencies |
---|
1252 | dqrcol(i) = - dqlcol / dtime |
---|
1253 | ENDIF |
---|
1254 | |
---|
1255 | !--Same as for aggregation |
---|
1256 | !--Eff_snow_liq formula: |
---|
1257 | !--it s a product of a collection efficiency and a sticking efficiency |
---|
1258 | ! Milbrandt and Yau formula that gives very low values: |
---|
1259 | ! Eff_snow_ice = 0.05 * EXP( 0.1 * ( temp(i) - RTT ) ) |
---|
1260 | ! Lin 1983's formula |
---|
1261 | Eff_snow_ice = EXP( 0.025 * MIN( ( temp(i) - RTT ), 0.) ) |
---|
1262 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
1263 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
1264 | coef_agg = gamma_agg * 3. / 4. / rho_snow / r_snow * Eff_snow_ice |
---|
1265 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
1266 | !--Exact explicit version, which does not need a barrier because of |
---|
1267 | !--the exponential decrease |
---|
1268 | dqiagg = qice(i) * ( EXP( - dtime * coef_agg * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
1269 | |
---|
1270 | !--Add tendencies |
---|
1271 | qice(i) = qice(i) + dqiagg |
---|
1272 | snowcld(i) = snowcld(i) - dqiagg * dhum_to_dflux(i) |
---|
1273 | |
---|
1274 | !--Diagnostic tendencies |
---|
1275 | dqsagg(i) = - dqiagg / dtime |
---|
1276 | ENDIF |
---|
1277 | |
---|
1278 | |
---|
1279 | !--------------------------------------------------------- |
---|
1280 | !-- AUTOCONVERSION |
---|
1281 | !--------------------------------------------------------- |
---|
1282 | !--Autoconversion converts liquid droplets/ice crystals into |
---|
1283 | !--rain drops/snowflakes. It relies on the formulations by |
---|
1284 | !--Sundqvist 1978. |
---|
1285 | |
---|
1286 | !--If we are in a convective point, we have different parameters |
---|
1287 | !--for the autoconversion |
---|
1288 | IF ( ptconv(i) ) THEN |
---|
1289 | qthresh_auto_rain = cld_lc_con |
---|
1290 | qthresh_auto_snow = cld_lc_con_snow |
---|
1291 | |
---|
1292 | tau_auto_rain = cld_tau_con |
---|
1293 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
1294 | tau_auto_snow = tau_auto_snow_max & |
---|
1295 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
1296 | |
---|
1297 | expo_auto_rain = cld_expo_con |
---|
1298 | expo_auto_snow = cld_expo_con |
---|
1299 | ELSE |
---|
1300 | qthresh_auto_rain = cld_lc_lsc |
---|
1301 | qthresh_auto_snow = cld_lc_lsc_snow |
---|
1302 | |
---|
1303 | tau_auto_rain = cld_tau_lsc |
---|
1304 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
1305 | tau_auto_snow = tau_auto_snow_max & |
---|
1306 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
1307 | |
---|
1308 | expo_auto_rain = cld_expo_lsc |
---|
1309 | expo_auto_snow = cld_expo_lsc |
---|
1310 | ENDIF |
---|
1311 | |
---|
1312 | |
---|
1313 | ! Liquid water quantity to remove according to (Sundqvist, 1978) |
---|
1314 | ! dqliq/dt = -qliq/tau * ( 1-exp(-(qliqincld/qthresh)**2) ) |
---|
1315 | ! |
---|
1316 | !--And same formula for ice |
---|
1317 | ! |
---|
1318 | !--We first treat the second term (with exponential) in an explicit way |
---|
1319 | !--and then treat the first term (-q/tau) in an exact way |
---|
1320 | |
---|
1321 | dqlauto = - qliq(i) * ( 1. - exp( - dtime / tau_auto_rain * ( 1. - exp( & |
---|
1322 | - ( qliq(i) / eff_cldfra / qthresh_auto_rain ) ** expo_auto_rain ) ) ) ) |
---|
1323 | |
---|
1324 | dqiauto = - qice(i) * ( 1. - exp( - dtime / tau_auto_snow * ( 1. - exp( & |
---|
1325 | - ( qice(i) / eff_cldfra / qthresh_auto_snow ) ** expo_auto_snow ) ) ) ) |
---|
1326 | |
---|
1327 | |
---|
1328 | !--Barriers so that we don't create more rain/snow |
---|
1329 | !--than there is liquid/ice |
---|
1330 | dqlauto = MAX( - qliq(i), dqlauto ) |
---|
1331 | dqiauto = MAX( - qice(i), dqiauto ) |
---|
1332 | |
---|
1333 | !--Add tendencies |
---|
1334 | qliq(i) = qliq(i) + dqlauto |
---|
1335 | qice(i) = qice(i) + dqiauto |
---|
1336 | raincld(i) = raincld(i) - dqlauto * dhum_to_dflux(i) |
---|
1337 | snowcld(i) = snowcld(i) - dqiauto * dhum_to_dflux(i) |
---|
1338 | |
---|
1339 | !--Diagnostic tendencies |
---|
1340 | dqsauto(i) = - dqiauto / dtime |
---|
1341 | dqrauto(i) = - dqlauto / dtime |
---|
1342 | |
---|
1343 | |
---|
1344 | !--------------------------------------------------------- |
---|
1345 | !-- RIMING |
---|
1346 | !--------------------------------------------------------- |
---|
1347 | !--Process which converts liquid droplets in suspension into |
---|
1348 | !--snow because of the collision between |
---|
1349 | !--those and falling snowflakes. |
---|
1350 | !--The formula comes from Muench and Lohmann 2020 |
---|
1351 | !--NB.: this process needs a temperature adjustment |
---|
1352 | |
---|
1353 | !--Eff_snow_liq formula: following Ferrier 1994, |
---|
1354 | !--assuming 1 |
---|
1355 | Eff_snow_liq = 1.0 |
---|
1356 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
1357 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
1358 | coef_rim = gamma_rim * 3. / 4. / rho_snow / r_snow * Eff_snow_liq |
---|
1359 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
1360 | !--Exact version, which does not need a barrier because of |
---|
1361 | !--the exponential decrease |
---|
1362 | dqlrim = qliq(i) * ( EXP( - dtime * coef_rim * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
1363 | |
---|
1364 | !--Add tendencies |
---|
1365 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
1366 | qliq(i) = qliq(i) + dqlrim |
---|
1367 | snowcld(i) = snowcld(i) - dqlrim * dhum_to_dflux(i) |
---|
1368 | |
---|
1369 | !--Temperature adjustment with the release of latent |
---|
1370 | !--heat because of solid condensation |
---|
1371 | temp(i) = temp(i) - dqlrim * RLMLT / RCPD & |
---|
1372 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
1373 | |
---|
1374 | !--Diagnostic tendencies |
---|
1375 | dqsrim(i) = - dqlrim / dtime |
---|
1376 | ENDIF |
---|
1377 | |
---|
1378 | ENDIF ! cldfra .GE. seuil_neb |
---|
1379 | |
---|
1380 | ENDDO ! loop on klon |
---|
1381 | |
---|
1382 | |
---|
1383 | !--Re-calculation of saturation specific humidity |
---|
1384 | !--because riming changed temperature |
---|
1385 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 0, .FALSE., qsat, dqsat) |
---|
1386 | |
---|
1387 | DO i = 1, klon |
---|
1388 | |
---|
1389 | !--------------------------------------------------------- |
---|
1390 | !-- MELTING |
---|
1391 | !--------------------------------------------------------- |
---|
1392 | !--Process through which snow melts into rain. |
---|
1393 | !--The formula is homemade. |
---|
1394 | !--NB.: this process needs a temperature adjustment |
---|
1395 | |
---|
1396 | !--dqsmelt_max : maximum snow melting so that temperature |
---|
1397 | !-- stays higher than 273 K [kg/kg] |
---|
1398 | !--capa_snowflake : capacitance of a snowflake, equal to |
---|
1399 | !-- the radius if the snowflake is a sphere [m] |
---|
1400 | !--temp_wetbulb : wet-bulb temperature [K] |
---|
1401 | !--snow_fallspeed : snow fall velocity (in clear/cloudy sky) [m/s] |
---|
1402 | !--air_thermal_conduct : thermal conductivity of the air [J/m/K/s] |
---|
1403 | !--gamma_melt : tuning parameter for melting [-] |
---|
1404 | !--nb_snowflake : number of snowflakes (in clear/cloudy air) [-] |
---|
1405 | |
---|
1406 | IF ( ( snowclr(i) + snowcld(i) ) .GT. 0. ) THEN |
---|
1407 | !--Computed according to |
---|
1408 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
1409 | dqsmelt_max = MIN(0., ( RTT - temp(i) ) / RLMLT * RCPD & |
---|
1410 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
1411 | |
---|
1412 | !--Initialisation |
---|
1413 | dqsclrmelt = 0. |
---|
1414 | dqscldmelt = 0. |
---|
1415 | |
---|
1416 | !--We assume that the snowflakes are spherical |
---|
1417 | capa_snowflake = r_snow |
---|
1418 | !--Thermal conductivity of the air, empirical formula from Beard and Pruppacher (1971) |
---|
1419 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 |
---|
1420 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
1421 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
1422 | |
---|
1423 | !--In clear air |
---|
1424 | IF ( ( snowclr(i) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
1425 | !--Formula for the wet-bulb temperature from ECMWF (IFS) |
---|
1426 | !--The vapor used is the vapor in the clear sky |
---|
1427 | temp_wetbulb = temp(i) & |
---|
1428 | - ( qsat(i) - ( qvap(i) - cldfra(i) * qsat(i) ) / ( 1. - cldfra(i) ) ) & |
---|
1429 | * ( 1329.31 + 0.0074615 * ( pplay(i) - 0.85e5 ) & |
---|
1430 | - 40.637 * ( temp(i) - 275. ) ) |
---|
1431 | !--Calculated according to |
---|
1432 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
1433 | nb_snowflake_clr = snowclr(i) / precipfracclr(i) / snow_fallspeed_clr & |
---|
1434 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
1435 | dqsclrmelt = - nb_snowflake_clr * 4. * RPI * air_thermal_conduct & |
---|
1436 | * capa_snowflake / RLMLT * gamma_melt & |
---|
1437 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
1438 | |
---|
1439 | !--Barrier to limit the melting flux to the clr snow flux in the mesh |
---|
1440 | dqsclrmelt = MAX( dqsclrmelt , -snowclr(i) / dhum_to_dflux(i)) |
---|
1441 | ENDIF |
---|
1442 | |
---|
1443 | |
---|
1444 | !--In cloudy air |
---|
1445 | IF ( ( snowcld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
1446 | !--As the air is saturated, the wet-bulb temperature is equal to the |
---|
1447 | !--temperature |
---|
1448 | temp_wetbulb = temp(i) |
---|
1449 | !--Calculated according to |
---|
1450 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
1451 | nb_snowflake_cld = snowcld(i) / precipfraccld(i) / snow_fallspeed_cld & |
---|
1452 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
1453 | dqscldmelt = - nb_snowflake_cld * 4. * RPI * air_thermal_conduct & |
---|
1454 | * capa_snowflake / RLMLT * gamma_melt & |
---|
1455 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
1456 | |
---|
1457 | !--Barrier to limit the melting flux to the cld snow flux in the mesh |
---|
1458 | dqscldmelt = MAX(dqscldmelt , - snowcld(i) / dhum_to_dflux(i)) |
---|
1459 | ENDIF |
---|
1460 | |
---|
1461 | |
---|
1462 | !--Barrier on temperature. If the total melting flux leads to a |
---|
1463 | !--positive temperature, it is limited to keep temperature above 0 degC. |
---|
1464 | !--It is activated if the total is LOWER than the max |
---|
1465 | !--because everything is negative |
---|
1466 | dqstotmelt = dqsclrmelt + dqscldmelt |
---|
1467 | IF ( dqstotmelt .LT. dqsmelt_max ) THEN |
---|
1468 | !--We redistribute the max melted snow keeping |
---|
1469 | !--the clear/cloud partition of the melted snow |
---|
1470 | dqsclrmelt = dqsmelt_max * dqsclrmelt / dqstotmelt |
---|
1471 | dqscldmelt = dqsmelt_max * dqscldmelt / dqstotmelt |
---|
1472 | dqstotmelt = dqsmelt_max |
---|
1473 | |
---|
1474 | ENDIF |
---|
1475 | |
---|
1476 | !--Add tendencies |
---|
1477 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
1478 | rainclr(i) = MAX(0., rainclr(i) - dqsclrmelt * dhum_to_dflux(i)) |
---|
1479 | raincld(i) = MAX(0., raincld(i) - dqscldmelt * dhum_to_dflux(i)) |
---|
1480 | snowclr(i) = MAX(0., snowclr(i) + dqsclrmelt * dhum_to_dflux(i)) |
---|
1481 | snowcld(i) = MAX(0., snowcld(i) + dqscldmelt * dhum_to_dflux(i)) |
---|
1482 | |
---|
1483 | !--Temperature adjustment with the release of latent |
---|
1484 | !--heat because of melting |
---|
1485 | temp(i) = temp(i) + dqstotmelt * RLMLT / RCPD & |
---|
1486 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
1487 | |
---|
1488 | !--Diagnostic tendencies |
---|
1489 | dqrmelt(i) = - dqstotmelt / dtime |
---|
1490 | dqsmelt(i) = dqstotmelt / dtime |
---|
1491 | |
---|
1492 | ENDIF |
---|
1493 | |
---|
1494 | |
---|
1495 | !--------------------------------------------------------- |
---|
1496 | !-- FREEZING |
---|
1497 | !--------------------------------------------------------- |
---|
1498 | !--Process through which rain freezes into snow. |
---|
1499 | !-- We parameterize it as a 2 step process: |
---|
1500 | !--first: freezing following collision with ice crystals |
---|
1501 | !--second: immersion freezing following (inspired by Bigg 1953) |
---|
1502 | !--the latter is parameterized as an exponential decrease of the rain |
---|
1503 | !--water content with a homemade formulya |
---|
1504 | !--This is based on a caracteritic time of freezing, which |
---|
1505 | !--exponentially depends on temperature so that it is |
---|
1506 | !--equal to 1 for temp_nowater (see below) and is close to |
---|
1507 | !--0 for RTT (=273.15 K). |
---|
1508 | !--NB.: this process needs a temperature adjustment |
---|
1509 | !--dqrfreez_max : maximum rain freezing so that temperature |
---|
1510 | !-- stays lower than 273 K [kg/kg] |
---|
1511 | !--tau_freez : caracteristic time of freezing [s] |
---|
1512 | !--gamma_freez : tuning parameter [s-1] |
---|
1513 | !--alpha_freez : tuning parameter for the shape of the exponential curve [-] |
---|
1514 | !--temp_nowater : temperature below which no liquid water exists [K] (about -40 degC) |
---|
1515 | |
---|
1516 | IF ( ( rainclr(i) + raincld(i) ) .GT. 0. ) THEN |
---|
1517 | |
---|
1518 | |
---|
1519 | !--1st step: freezing following collision with ice crystals |
---|
1520 | !--Sub-process of freezing which quantifies the collision between |
---|
1521 | !--ice crystals in suspension and falling rain droplets. |
---|
1522 | !--The rain droplets freeze, becoming graupel, and carrying |
---|
1523 | !--the ice crystal (which acted as an ice nucleating particle). |
---|
1524 | !--The formula is adapted from the riming formula. |
---|
1525 | !--it works only in the cloudy part |
---|
1526 | |
---|
1527 | dqifreez = 0. |
---|
1528 | dqrtotfreez_step1 = 0. |
---|
1529 | |
---|
1530 | IF ( ( qice(i) .GT. 0. ) .AND. ( cldfra(i) .GT. 0. ) .AND. & |
---|
1531 | ( raincld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
1532 | dqrclrfreez = 0. |
---|
1533 | dqrcldfreez = 0. |
---|
1534 | |
---|
1535 | !--Computed according to |
---|
1536 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
1537 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
1538 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
1539 | |
---|
1540 | |
---|
1541 | !--The collision efficiency is assumed unity |
---|
1542 | Eff_rain_ice = 1. |
---|
1543 | coef_freez = gamma_freez * 3. / 4. / rho_rain / r_rain * Eff_rain_ice |
---|
1544 | !--Exact version, which does not need a barrier because of |
---|
1545 | !--the exponential decrease. |
---|
1546 | dqifreez = qice(i) * ( EXP( - dtime * coef_freez * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
1547 | |
---|
1548 | !--We add the part of rain water that freezes, limited by a temperature barrier |
---|
1549 | !--This quantity is calculated assuming that the number of drop that freeze correspond to the number |
---|
1550 | !--of crystals collected (and assuming uniform distributions of ice crystals and rain drops) |
---|
1551 | !--The ice specific humidity that collide with rain is dqi = dNi 4/3 PI rho_ice r_ice**3 |
---|
1552 | !--The rain that collide with ice is, similarly, dqr = dNr 4/3 PI rho_rain r_rain**3 |
---|
1553 | !--The assumption above corresponds to dNi = dNr, i.e., |
---|
1554 | !-- dqr = dqi * (4/3 PI rho_rain * r_rain**3) / (4/3 PI rho_ice * r_ice**3) |
---|
1555 | !--Dry density [kg/m3] |
---|
1556 | rho = pplay(i) / temp(i) / RD |
---|
1557 | !--r_ice formula from Sun and Rikus (1999) |
---|
1558 | r_ice = 1.e-6 * ( 45.8966 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2214 & |
---|
1559 | + 0.7957 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2535 * ( temp(i) - RTT + 190. ) ) / 2. |
---|
1560 | dqrcldfreez = dqifreez * rho_rain * r_rain**3. / ( rho_ice * r_ice**3. ) |
---|
1561 | dqrcldfreez = MAX(dqrcldfreez, - raincld(i) / dhum_to_dflux(i)) |
---|
1562 | dqrcldfreez = MAX(dqrcldfreez, dqrfreez_max) |
---|
1563 | dqrtotfreez_step1 = dqrcldfreez |
---|
1564 | |
---|
1565 | !--Add tendencies |
---|
1566 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
1567 | qice(i) = qice(i) + dqifreez |
---|
1568 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
1569 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i) - dqifreez * dhum_to_dflux(i)) |
---|
1570 | temp(i) = temp(i) - dqrtotfreez_step1 * RLMLT / RCPD & |
---|
1571 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
1572 | |
---|
1573 | ENDIF |
---|
1574 | |
---|
1575 | !-- Second step immersion freezing of rain drops |
---|
1576 | !-- with a homemade timeconstant depending on temperature |
---|
1577 | |
---|
1578 | dqrclrfreez = 0. |
---|
1579 | dqrcldfreez = 0. |
---|
1580 | dqrtotfreez_step2 = 0. |
---|
1581 | !--Computed according to |
---|
1582 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
1583 | |
---|
1584 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
1585 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
1586 | |
---|
1587 | |
---|
1588 | tau_freez = 1. / ( beta_freez & |
---|
1589 | * EXP( - alpha_freez * ( temp(i) - temp_nowater ) / ( RTT - temp_nowater ) ) ) |
---|
1590 | |
---|
1591 | |
---|
1592 | !--In clear air |
---|
1593 | IF ( rainclr(i) .GT. 0. ) THEN |
---|
1594 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
1595 | dqrclrfreez = rainclr(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
1596 | ENDIF |
---|
1597 | |
---|
1598 | !--In cloudy air |
---|
1599 | IF ( raincld(i) .GT. 0. ) THEN |
---|
1600 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
1601 | dqrcldfreez = raincld(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
1602 | ENDIF |
---|
1603 | |
---|
1604 | !--temperature barrier step 2 |
---|
1605 | !--It is activated if the total is LOWER than the max |
---|
1606 | !--because everything is negative |
---|
1607 | dqrtotfreez_step2 = dqrclrfreez + dqrcldfreez |
---|
1608 | |
---|
1609 | IF ( dqrtotfreez_step2 .LT. dqrfreez_max ) THEN |
---|
1610 | !--We redistribute the max freezed rain keeping |
---|
1611 | !--the clear/cloud partition of the freezing rain |
---|
1612 | dqrclrfreez = dqrfreez_max * dqrclrfreez / dqrtotfreez_step2 |
---|
1613 | dqrcldfreez = dqrfreez_max * dqrcldfreez / dqrtotfreez_step2 |
---|
1614 | dqrtotfreez_step2 = dqrfreez_max |
---|
1615 | ENDIF |
---|
1616 | |
---|
1617 | |
---|
1618 | !--Add tendencies |
---|
1619 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
1620 | rainclr(i) = MAX(0., rainclr(i) + dqrclrfreez * dhum_to_dflux(i)) |
---|
1621 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
1622 | snowclr(i) = MAX(0., snowclr(i) - dqrclrfreez * dhum_to_dflux(i)) |
---|
1623 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i)) |
---|
1624 | |
---|
1625 | |
---|
1626 | !--Temperature adjustment with the uptake of latent |
---|
1627 | !--heat because of freezing |
---|
1628 | temp(i) = temp(i) - dqrtotfreez_step2 * RLMLT / RCPD & |
---|
1629 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
1630 | |
---|
1631 | !--Diagnostic tendencies |
---|
1632 | dqrtotfreez = dqrtotfreez_step1 + dqrtotfreez_step2 |
---|
1633 | dqrfreez(i) = dqrtotfreez / dtime |
---|
1634 | dqsfreez(i) = -(dqrtotfreez + dqifreez) / dtime |
---|
1635 | |
---|
1636 | ENDIF |
---|
1637 | |
---|
1638 | |
---|
1639 | |
---|
1640 | !--If the local flux of rain+snow in clear/cloudy air is lower than rain_int_min, |
---|
1641 | !--we reduce the precipiration fraction in the clear/cloudy air so that the new |
---|
1642 | !--local flux of rain+snow is equal to rain_int_min. |
---|
1643 | !--Here, rain+snow is the gridbox-mean flux of precip. |
---|
1644 | !--Therefore, (rain+snow)/precipfrac is the local flux of precip. |
---|
1645 | !--If the local flux of precip is lower than rain_int_min, i.e., |
---|
1646 | !-- (rain+snow)/precipfrac < rain_int_min , i.e., |
---|
1647 | !-- (rain+snow)/rain_int_min < precipfrac , then we want to reduce |
---|
1648 | !--the precip fraction to the equality, i.e., precipfrac = (rain+snow)/rain_int_min. |
---|
1649 | !--Note that this is physically different than what is proposed in LTP thesis. |
---|
1650 | precipfracclr(i) = MIN( precipfracclr(i), ( rainclr(i) + snowclr(i) ) / rain_int_min ) |
---|
1651 | precipfraccld(i) = MIN( precipfraccld(i), ( raincld(i) + snowcld(i) ) / rain_int_min ) |
---|
1652 | |
---|
1653 | !--Calculate outputs |
---|
1654 | rain(i) = rainclr(i) + raincld(i) |
---|
1655 | snow(i) = snowclr(i) + snowcld(i) |
---|
1656 | |
---|
1657 | !--Diagnostics |
---|
1658 | !--BEWARE this is indeed a diagnostic: this is an estimation from |
---|
1659 | !--the value of the flux at the bottom interface of the mesh and |
---|
1660 | !--and assuming an upstream numerical calculation |
---|
1661 | !--If ok_radocond_snow is TRUE, then the diagnostic qsnowdiag is |
---|
1662 | !--used for computing the total ice water content in the mesh |
---|
1663 | !--for radiation only |
---|
1664 | qraindiag(i) = ( rainclr(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_clr & |
---|
1665 | + raincld(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_cld ) |
---|
1666 | qsnowdiag(i) = ( snowclr(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_clr & |
---|
1667 | + snowcld(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_cld ) |
---|
1668 | |
---|
1669 | |
---|
1670 | ENDDO ! loop on klon |
---|
1671 | |
---|
1672 | END SUBROUTINE poprecip_postcld |
---|
1673 | |
---|
1674 | END MODULE lmdz_lscp_precip |
---|