1 | MODULE lmdz_lscp_precip |
---|
2 | !---------------------------------------------------------------- |
---|
3 | ! Module for the process-oriented treament of precipitation |
---|
4 | ! that are called in LSCP |
---|
5 | ! Authors: Atelier Nuage (G. Riviere, L. Raillard, M. Wimmer, |
---|
6 | ! N. Dutrievoz, E. Vignon, A. Borella, et al.) |
---|
7 | ! Jan. 2024 |
---|
8 | |
---|
9 | |
---|
10 | IMPLICIT NONE |
---|
11 | |
---|
12 | CONTAINS |
---|
13 | |
---|
14 | !---------------------------------------------------------------- |
---|
15 | ! historical (till CMIP6) version of the pre-cloud formation |
---|
16 | ! precipitation scheme containing precip evaporation and melting |
---|
17 | |
---|
18 | SUBROUTINE histprecip_precld( & |
---|
19 | klon, dtime, iftop, paprsdn, paprsup, pplay, zt, ztupnew, zq, & |
---|
20 | zmqc, zneb, znebprecipclr, & |
---|
21 | zrfl, zrflclr, zrflcld, zifl, ziflclr, ziflcld, dqreva, dqssub & |
---|
22 | ) |
---|
23 | |
---|
24 | USE lmdz_lscp_ini, ONLY : iflag_evap_prec |
---|
25 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub, ztfondue |
---|
26 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
27 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
28 | |
---|
29 | IMPLICIT NONE |
---|
30 | |
---|
31 | |
---|
32 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
33 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
34 | LOGICAL, INTENT(IN) :: iftop !--if top of the column |
---|
35 | |
---|
36 | |
---|
37 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
38 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
39 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
40 | |
---|
41 | REAL, INTENT(INOUT), DIMENSION(klon) :: zt !--current temperature [K] |
---|
42 | REAL, INTENT(IN), DIMENSION(klon) :: ztupnew !--updated temperature of the overlying layer [K] |
---|
43 | |
---|
44 | REAL, INTENT(INOUT), DIMENSION(klon) :: zq !--current water vapor specific humidity (includes evaporated qi and ql) [kg/kg] |
---|
45 | REAL, INTENT(INOUT), DIMENSION(klon) :: zmqc !--specific humidity in the precipitation falling from the upper layer [kg/kg] |
---|
46 | |
---|
47 | REAL, INTENT(IN), DIMENSION(klon) :: zneb !--cloud fraction IN THE LAYER ABOVE [-] |
---|
48 | REAL, INTENT(INOUT), DIMENSION(klon) :: znebprecipclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
49 | |
---|
50 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrfl !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
51 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrflclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
52 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrflcld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
53 | REAL, INTENT(INOUT), DIMENSION(klon) :: zifl !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
54 | REAL, INTENT(INOUT), DIMENSION(klon) :: ziflclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
55 | REAL, INTENT(INOUT), DIMENSION(klon) :: ziflcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
56 | |
---|
57 | REAL, INTENT(OUT), DIMENSION(klon) :: dqreva !--rain tendency due to evaporation [kg/kg/s] |
---|
58 | REAL, INTENT(OUT), DIMENSION(klon) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
59 | |
---|
60 | |
---|
61 | REAL :: zmair |
---|
62 | REAL :: zcpair, zcpeau |
---|
63 | REAL, DIMENSION(klon) :: znebprecip |
---|
64 | REAL, DIMENSION(klon) :: qzero |
---|
65 | REAL, DIMENSION(klon) :: zqs, zdqs |
---|
66 | REAL, DIMENSION(klon) :: qsl, qsi |
---|
67 | REAL, DIMENSION(klon) :: dqsl, dqsi |
---|
68 | |
---|
69 | REAL :: zqev0 |
---|
70 | REAL :: zqev, zqevt |
---|
71 | REAL :: zqevi, zqevti |
---|
72 | |
---|
73 | REAL, DIMENSION(klon) :: zrfln, zifln |
---|
74 | |
---|
75 | REAL :: zmelt |
---|
76 | INTEGER :: i |
---|
77 | |
---|
78 | qzero(:) = 0. |
---|
79 | |
---|
80 | |
---|
81 | ! -------------------------------------------------------------------- |
---|
82 | ! P1> Thermalization of precipitation falling from the overlying layer |
---|
83 | ! -------------------------------------------------------------------- |
---|
84 | ! Computes air temperature variation due to enthalpy transported by |
---|
85 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
86 | ! layer. |
---|
87 | ! The precipitation should remain thermalized throughout the different |
---|
88 | ! thermodynamical transformations. |
---|
89 | ! The corresponding water mass should |
---|
90 | ! be added when calculating the layer's enthalpy change with |
---|
91 | ! temperature |
---|
92 | ! --------------------------------------------------------------------- |
---|
93 | |
---|
94 | IF (iftop) THEN |
---|
95 | |
---|
96 | DO i = 1, klon |
---|
97 | zmqc(i) = 0. |
---|
98 | ENDDO |
---|
99 | |
---|
100 | ELSE |
---|
101 | |
---|
102 | DO i = 1, klon |
---|
103 | |
---|
104 | zmair=(paprsdn(i)-paprsup(i))/RG |
---|
105 | ! no condensed water so cp=cp(vapor+dry air) |
---|
106 | ! RVTMP2=rcpv/rcpd-1 |
---|
107 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
---|
108 | zcpeau=RCPD*RVTMP2 |
---|
109 | |
---|
110 | ! zmqc: precipitation mass that has to be thermalized with |
---|
111 | ! layer's air so that precipitation at the ground has the |
---|
112 | ! same temperature as the lowermost layer |
---|
113 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair |
---|
114 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
115 | zt(i) = ( ztupnew(i)*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
---|
116 | / (zcpair + zmqc(i)*zcpeau) |
---|
117 | |
---|
118 | ENDDO |
---|
119 | |
---|
120 | ENDIF |
---|
121 | |
---|
122 | ! -------------------------------------------------------------------- |
---|
123 | ! P2> Precipitation evaporation/sublimation/melting |
---|
124 | ! -------------------------------------------------------------------- |
---|
125 | ! A part of the precipitation coming from above is evaporated/sublimated/melted. |
---|
126 | ! -------------------------------------------------------------------- |
---|
127 | |
---|
128 | IF (iflag_evap_prec.GE.1) THEN |
---|
129 | |
---|
130 | ! Calculation of saturation specific humidity |
---|
131 | ! depending on temperature: |
---|
132 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:),RTT,0,.false.,zqs,zdqs) |
---|
133 | ! wrt liquid water |
---|
134 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:),RTT,1,.false.,qsl,dqsl) |
---|
135 | ! wrt ice |
---|
136 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:),RTT,2,.false.,qsi,dqsi) |
---|
137 | |
---|
138 | DO i = 1, klon |
---|
139 | |
---|
140 | ! if precipitation |
---|
141 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
142 | |
---|
143 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec>=4). |
---|
144 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
---|
145 | |
---|
146 | IF (iflag_evap_prec.GE.4) THEN |
---|
147 | zrfl(i) = zrflclr(i) |
---|
148 | zifl(i) = ziflclr(i) |
---|
149 | ENDIF |
---|
150 | |
---|
151 | IF (iflag_evap_prec.EQ.1) THEN |
---|
152 | znebprecip(i)=zneb(i) |
---|
153 | ELSE |
---|
154 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
---|
155 | ENDIF |
---|
156 | |
---|
157 | IF (iflag_evap_prec.GT.4) THEN |
---|
158 | ! Max evaporation not to saturate the clear sky precip fraction |
---|
159 | ! i.e. the fraction where evaporation occurs |
---|
160 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecipclr(i)) |
---|
161 | ELSEIF (iflag_evap_prec .EQ. 4) THEN |
---|
162 | ! Max evaporation not to saturate the whole mesh |
---|
163 | ! Pay attention -> lead to unrealistic and excessive evaporation |
---|
164 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
---|
165 | ELSE |
---|
166 | ! Max evap not to saturate the fraction below the cloud |
---|
167 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
---|
168 | ENDIF |
---|
169 | |
---|
170 | ! Evaporation of liquid precipitation coming from above |
---|
171 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
172 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
173 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec>=4) |
---|
174 | |
---|
175 | IF (iflag_evap_prec.EQ.3) THEN |
---|
176 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
177 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
---|
178 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
179 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
180 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
181 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
182 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
183 | ELSE |
---|
184 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl(i))*SQRT(zrfl(i)) & |
---|
185 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
186 | ENDIF |
---|
187 | |
---|
188 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) * RG*dtime/(paprsdn(i)-paprsup(i)) |
---|
189 | |
---|
190 | ! sublimation of the solid precipitation coming from above |
---|
191 | IF (iflag_evap_prec.EQ.3) THEN |
---|
192 | zqevti = znebprecip(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
193 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
---|
194 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
195 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
196 | zqevti = znebprecipclr(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
197 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
198 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
199 | ELSE |
---|
200 | zqevti = 1.*coef_sub*(1.0-zq(i)/qsi(i))*SQRT(zifl(i)) & |
---|
201 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
202 | ENDIF |
---|
203 | |
---|
204 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) * RG*dtime/(paprsdn(i)-paprsup(i)) |
---|
205 | |
---|
206 | ! A. JAM |
---|
207 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
208 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
209 | ! does not reach saturation. In this case, we |
---|
210 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
211 | |
---|
212 | IF (zqevt+zqevti.GT.zqev0) THEN |
---|
213 | zqev=zqev0*zqevt/(zqevt+zqevti) |
---|
214 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
---|
215 | ELSE |
---|
216 | zqev=zqevt |
---|
217 | zqevi=zqevti |
---|
218 | ENDIF |
---|
219 | |
---|
220 | !--Diagnostics |
---|
221 | dqreva(i) = - zqev / dtime |
---|
222 | dqssub(i) = - zqevti / dtime |
---|
223 | |
---|
224 | ! New solid and liquid precipitation fluxes after evap and sublimation |
---|
225 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprsdn(i)-paprsup(i))/RG/dtime) |
---|
226 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprsdn(i)-paprsup(i))/RG/dtime) |
---|
227 | |
---|
228 | |
---|
229 | ! vapor, temperature, precip fluxes update |
---|
230 | ! vapor is updated after evaporation/sublimation (it is increased) |
---|
231 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
232 | * (RG/(paprsdn(i)-paprsup(i)))*dtime |
---|
233 | ! zmqc is the total condensed water in the precip flux (it is decreased) |
---|
234 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
235 | * (RG/(paprsdn(i)-paprsup(i)))*dtime |
---|
236 | ! air and precip temperature (i.e., gridbox temperature) |
---|
237 | ! is updated due to latent heat cooling |
---|
238 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
239 | * (RG/(paprsdn(i)-paprsup(i)))*dtime & |
---|
240 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
---|
241 | + (zifln(i)-zifl(i)) & |
---|
242 | * (RG/(paprsdn(i)-paprsup(i)))*dtime & |
---|
243 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
244 | |
---|
245 | ! New values of liquid and solid precipitation |
---|
246 | zrfl(i) = zrfln(i) |
---|
247 | zifl(i) = zifln(i) |
---|
248 | |
---|
249 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
---|
250 | ! due to evap + sublim |
---|
251 | |
---|
252 | |
---|
253 | IF (iflag_evap_prec.GE.4) THEN |
---|
254 | zrflclr(i) = zrfl(i) |
---|
255 | ziflclr(i) = zifl(i) |
---|
256 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
---|
257 | znebprecipclr(i) = 0.0 |
---|
258 | ENDIF |
---|
259 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
260 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
261 | ENDIF |
---|
262 | |
---|
263 | ! c_iso duplicate for isotopes or loop on isotopes |
---|
264 | |
---|
265 | ! Melting: |
---|
266 | zmelt = ((zt(i)-RTT)/(ztfondue-RTT)) ! JYG |
---|
267 | ! precip fraction that is melted |
---|
268 | zmelt = MIN(MAX(zmelt,0.),1.) |
---|
269 | |
---|
270 | ! update of rainfall and snowfall due to melting |
---|
271 | IF (iflag_evap_prec.GE.4) THEN |
---|
272 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
---|
273 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
---|
274 | zrfl(i)=zrflclr(i)+zrflcld(i) |
---|
275 | ELSE |
---|
276 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
277 | ENDIF |
---|
278 | |
---|
279 | |
---|
280 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
---|
281 | |
---|
282 | ! Latent heat of melting because of precipitation melting |
---|
283 | ! NB: the air + precip temperature is simultaneously updated |
---|
284 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprsdn(i)-paprsup(i)) & |
---|
285 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
286 | |
---|
287 | IF (iflag_evap_prec.GE.4) THEN |
---|
288 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
---|
289 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
---|
290 | zifl(i)=ziflclr(i)+ziflcld(i) |
---|
291 | ELSE |
---|
292 | zifl(i)=zifl(i)*(1.-zmelt) |
---|
293 | ENDIF |
---|
294 | |
---|
295 | ELSE |
---|
296 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
297 | ! AB note that this assignment is useless, as znebprecip is not re-used |
---|
298 | znebprecip(i)=0. |
---|
299 | |
---|
300 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
301 | |
---|
302 | ENDDO ! loop on klon |
---|
303 | |
---|
304 | ENDIF ! (iflag_evap_prec>=1) |
---|
305 | |
---|
306 | END SUBROUTINE histprecip_precld |
---|
307 | |
---|
308 | |
---|
309 | !---------------------------------------------------------------- |
---|
310 | ! Computes the processes-oriented precipitation formulations for |
---|
311 | ! evaporation and sublimation |
---|
312 | ! |
---|
313 | SUBROUTINE poprecip_precld( & |
---|
314 | klon, dtime, iftop, paprsdn, paprsup, pplay, temp, tempupnew, qvap, & |
---|
315 | qprecip, precipfracclr, precipfraccld, qvapclrup, qtotupnew, & |
---|
316 | rain, rainclr, raincld, snow, snowclr, snowcld, dqreva, dqssub & |
---|
317 | ) |
---|
318 | |
---|
319 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
320 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub, expo_eva, expo_sub, thresh_precip_frac |
---|
321 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
322 | USE lmdz_lscp_ini, ONLY : ok_corr_vap_evasub |
---|
323 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
324 | |
---|
325 | IMPLICIT NONE |
---|
326 | |
---|
327 | |
---|
328 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
329 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
330 | LOGICAL, INTENT(IN) :: iftop !--if top of the column |
---|
331 | |
---|
332 | |
---|
333 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
334 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
335 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
336 | |
---|
337 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
338 | REAL, INTENT(IN), DIMENSION(klon) :: tempupnew !--updated temperature of the overlying layer [K] |
---|
339 | |
---|
340 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity (includes evaporated qi and ql) [kg/kg] |
---|
341 | REAL, INTENT(INOUT), DIMENSION(klon) :: qprecip !--specific humidity in the precipitation falling from the upper layer [kg/kg] |
---|
342 | |
---|
343 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
344 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
345 | |
---|
346 | REAL, INTENT(IN), DIMENSION(klon) :: qvapclrup !--clear-sky specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
347 | REAL, INTENT(IN), DIMENSION(klon) :: qtotupnew !--total specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
348 | |
---|
349 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
350 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
351 | REAL, INTENT(IN), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
352 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
353 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
354 | REAL, INTENT(IN), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
355 | |
---|
356 | REAL, INTENT(OUT), DIMENSION(klon) :: dqreva !--rain tendency due to evaporation [kg/kg/s] |
---|
357 | REAL, INTENT(OUT), DIMENSION(klon) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
358 | |
---|
359 | |
---|
360 | !--Integer for interating over klon |
---|
361 | INTEGER :: i |
---|
362 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
363 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
364 | !-- |
---|
365 | REAL, DIMENSION(klon) :: rho, dz |
---|
366 | |
---|
367 | !--Saturation values |
---|
368 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat, qsatl, dqsatl, qsati, dqsati |
---|
369 | !--Vapor in the clear sky |
---|
370 | REAL :: qvapclr |
---|
371 | !--Fluxes tendencies because of evaporation and sublimation |
---|
372 | REAL :: dprecip_evasub_max, draineva, dsnowsub, dprecip_evasub_tot |
---|
373 | !--Specific humidity tendencies because of evaporation and sublimation |
---|
374 | REAL :: dqrevap, dqssubl |
---|
375 | !--Specific heat constant |
---|
376 | REAL :: cpair, cpw |
---|
377 | |
---|
378 | !--Initialisation |
---|
379 | qzero(:) = 0. |
---|
380 | dqreva(:) = 0. |
---|
381 | dqssub(:) = 0. |
---|
382 | dqrevap = 0. |
---|
383 | dqssubl = 0. |
---|
384 | |
---|
385 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
386 | dhum_to_dflux(:) = ( paprsdn(:) - paprsup(:) ) / RG / dtime |
---|
387 | rho(:) = pplay(:) / temp(:) / RD |
---|
388 | dz(:) = ( paprsdn(:) - paprsup(:) ) / RG / rho(:) |
---|
389 | |
---|
390 | !--Calculation of saturation specific humidity |
---|
391 | !--depending on temperature: |
---|
392 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,0,.false.,qsat(:),dqsat(:)) |
---|
393 | !--wrt liquid water |
---|
394 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,1,.false.,qsatl(:),dqsatl(:)) |
---|
395 | !--wrt ice |
---|
396 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,2,.false.,qsati(:),dqsati(:)) |
---|
397 | |
---|
398 | |
---|
399 | |
---|
400 | !--First step consists in "thermalizing" the layer: |
---|
401 | !--as the flux of precip from layer above "advects" some heat (as the precip is at the temperature |
---|
402 | !--of the overlying layer) we recalculate a mean temperature that both the air and the precip in the |
---|
403 | !--layer have. |
---|
404 | |
---|
405 | IF (iftop) THEN |
---|
406 | |
---|
407 | DO i = 1, klon |
---|
408 | qprecip(i) = 0. |
---|
409 | ENDDO |
---|
410 | |
---|
411 | ELSE |
---|
412 | |
---|
413 | DO i = 1, klon |
---|
414 | !--No condensed water so cp=cp(vapor+dry air) |
---|
415 | !-- RVTMP2=rcpv/rcpd-1 |
---|
416 | cpair = RCPD * ( 1. + RVTMP2 * qvap(i) ) |
---|
417 | cpw = RCPD * RVTMP2 |
---|
418 | !--qprecip has to be thermalized with |
---|
419 | !--layer's air so that precipitation at the ground has the |
---|
420 | !--same temperature as the lowermost layer |
---|
421 | !--we convert the flux into a specific quantity qprecip |
---|
422 | qprecip(i) = ( rain(i) + snow(i) ) / dhum_to_dflux(i) |
---|
423 | !-- t(i,k+1) + d_t(i,k+1): new temperature of the overlying layer |
---|
424 | temp(i) = ( tempupnew(i) * qprecip(i) * cpw + cpair * temp(i) ) & |
---|
425 | / ( cpair + qprecip(i) * cpw ) |
---|
426 | ENDDO |
---|
427 | |
---|
428 | ENDIF |
---|
429 | |
---|
430 | ! TODO Probleme : on utilise qvap total dans la maille pour l'evap / sub |
---|
431 | ! alors qu'on n'evap / sub que dans le ciel clair |
---|
432 | ! deux options pour cette routine : |
---|
433 | ! - soit on diagnostique le nuage AVANT l'evap / sub et on estime donc |
---|
434 | ! la fraction precipitante ciel clair dans la maille, ce qui permet de travailler |
---|
435 | ! avec des fractions, des fluxs et surtout un qvap dans le ciel clair |
---|
436 | ! - soit on pousse la param de Ludo au bout, et on prend un qvap de k+1 |
---|
437 | ! dans le ciel clair, avec un truc comme : |
---|
438 | ! qvapclr(k) = qvapclr(k+1)/qtot(k+1) * qtot(k) |
---|
439 | ! UPDATE : on code la seconde version. A voir si on veut mettre la premiere version. |
---|
440 | |
---|
441 | |
---|
442 | DO i = 1, klon |
---|
443 | |
---|
444 | !--If there is precipitation from the layer above |
---|
445 | ! NOTE TODO here we could replace the condition on precipfracclr(i) by a condition |
---|
446 | ! such as eps or thresh_precip_frac, to remove the senseless barrier in the formulas |
---|
447 | ! of evap / sublim |
---|
448 | IF ( ( ( rain(i) + snow(i) ) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
449 | |
---|
450 | IF ( ok_corr_vap_evasub ) THEN |
---|
451 | !--Corrected version - we use the same water ratio between |
---|
452 | !--the clear and the cloudy sky as in the layer above. This |
---|
453 | !--extends the assumption that the cloud fraction is the same |
---|
454 | !--as the layer above. This is assumed only for the evap / subl |
---|
455 | !--process |
---|
456 | !--Note that qvap(i) is the total water in the gridbox, and |
---|
457 | !--precipfraccld(i) is the cloud fraction in the layer above |
---|
458 | qvapclr = qvapclrup(i) / qtotupnew(i) * qvap(i) / ( 1. - precipfraccld(i) ) |
---|
459 | ELSE |
---|
460 | !--Legacy version from Ludo - we use the total specific humidity |
---|
461 | !--for the evap / subl process |
---|
462 | qvapclr = qvap(i) |
---|
463 | ENDIF |
---|
464 | |
---|
465 | !--Evaporation of liquid precipitation coming from above |
---|
466 | !--in the clear sky only |
---|
467 | !--dprecip/dz = -beta*(1-qvap/qsat)*(precip**expo_eva) |
---|
468 | !--formula from Sundqvist 1988, Klemp & Wilhemson 1978 |
---|
469 | !--Exact explicit formulation (rainclr is resolved exactly, qvap explicitly) |
---|
470 | !--which does not need a barrier on rainclr, because included in the formula |
---|
471 | draineva = precipfracclr(i) * ( MAX(0., & |
---|
472 | - coef_eva * ( 1. - expo_eva ) * (1. - qvapclr / qsatl(i)) * dz(i) & |
---|
473 | + ( rainclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_eva ) & |
---|
474 | ) )**( 1. / ( 1. - expo_eva ) ) - rainclr(i) |
---|
475 | |
---|
476 | !--Evaporation is limited by 0 |
---|
477 | draineva = MIN(0., draineva) |
---|
478 | |
---|
479 | |
---|
480 | !--Sublimation of the solid precipitation coming from above |
---|
481 | !--(same formula as for liquid precip) |
---|
482 | !--Exact explicit formulation (snowclr is resolved exactly, qvap explicitly) |
---|
483 | !--which does not need a barrier on snowclr, because included in the formula |
---|
484 | dsnowsub = precipfracclr(i) * ( MAX(0., & |
---|
485 | - coef_sub * ( 1. - expo_sub ) * (1. - qvapclr / qsati(i)) * dz(i) & |
---|
486 | + ( snowclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_sub ) & |
---|
487 | ) )**( 1. / ( 1. - expo_sub ) ) - snowclr(i) |
---|
488 | |
---|
489 | !--Sublimation is limited by 0 |
---|
490 | ! TODO: change max when we will allow for vapor deposition in supersaturated regions |
---|
491 | dsnowsub = MIN(0., dsnowsub) |
---|
492 | |
---|
493 | !--Evaporation limit: we ensure that the layer's fraction below |
---|
494 | !--the clear sky does not reach saturation. In this case, we |
---|
495 | !--redistribute the maximum flux dprecip_evasub_max conserving the ratio liquid/ice |
---|
496 | !--Max evaporation is computed not to saturate the clear sky precip fraction |
---|
497 | !--(i.e., the fraction where evaporation occurs) |
---|
498 | !--It is expressed as a max flux dprecip_evasub_max |
---|
499 | |
---|
500 | dprecip_evasub_max = MIN(0., ( qvapclr - qsat(i) ) * precipfracclr(i)) & |
---|
501 | * dhum_to_dflux(i) |
---|
502 | dprecip_evasub_tot = draineva + dsnowsub |
---|
503 | |
---|
504 | !--Barriers |
---|
505 | !--If activates if the total is LOWER than the max because |
---|
506 | !--everything is negative |
---|
507 | IF ( dprecip_evasub_tot .LT. dprecip_evasub_max ) THEN |
---|
508 | draineva = dprecip_evasub_max * draineva / dprecip_evasub_tot |
---|
509 | dsnowsub = dprecip_evasub_max * dsnowsub / dprecip_evasub_tot |
---|
510 | ENDIF |
---|
511 | |
---|
512 | |
---|
513 | !--New solid and liquid precipitation fluxes after evap and sublimation |
---|
514 | dqrevap = draineva / dhum_to_dflux(i) |
---|
515 | dqssubl = dsnowsub / dhum_to_dflux(i) |
---|
516 | |
---|
517 | |
---|
518 | !--Vapor is updated after evaporation/sublimation (it is increased) |
---|
519 | qvap(i) = qvap(i) - dqrevap - dqssubl |
---|
520 | !--qprecip is the total condensed water in the precip flux (it is decreased) |
---|
521 | qprecip(i) = qprecip(i) + dqrevap + dqssubl |
---|
522 | !--Air and precip temperature (i.e., gridbox temperature) |
---|
523 | !--is updated due to latent heat cooling |
---|
524 | temp(i) = temp(i) & |
---|
525 | + dqrevap * RLVTT / RCPD & |
---|
526 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) & |
---|
527 | + dqssubl * RLSTT / RCPD & |
---|
528 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) |
---|
529 | |
---|
530 | !--Add tendencies |
---|
531 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
532 | rainclr(i) = MAX(0., rainclr(i) + draineva) |
---|
533 | snowclr(i) = MAX(0., snowclr(i) + dsnowsub) |
---|
534 | |
---|
535 | !--If there is no more precip fluxes, the precipitation fraction in clear |
---|
536 | !--sky is set to 0 |
---|
537 | IF ( ( rainclr(i) + snowclr(i) ) .LE. 0. ) precipfracclr(i) = 0. |
---|
538 | |
---|
539 | !--Calculation of the total fluxes |
---|
540 | rain(i) = rainclr(i) + raincld(i) |
---|
541 | snow(i) = snowclr(i) + snowcld(i) |
---|
542 | |
---|
543 | ELSEIF ( ( rain(i) + snow(i) ) .LE. 0. ) THEN |
---|
544 | !--If no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
545 | precipfraccld(i) = 0. |
---|
546 | precipfracclr(i) = 0. |
---|
547 | |
---|
548 | ENDIF ! ( ( rain(i) + snow(i) ) .GT. 0. ) |
---|
549 | |
---|
550 | !--Diagnostic tendencies |
---|
551 | dqssub(i) = dqssubl / dtime |
---|
552 | dqreva(i) = dqrevap / dtime |
---|
553 | |
---|
554 | ENDDO ! loop on klon |
---|
555 | |
---|
556 | END SUBROUTINE poprecip_precld |
---|
557 | |
---|
558 | |
---|
559 | !---------------------------------------------------------------- |
---|
560 | ! Computes the processes-oriented precipitation formulations for |
---|
561 | ! - autoconversion (auto) via a deposition process |
---|
562 | ! - aggregation (agg) |
---|
563 | ! - riming (rim) |
---|
564 | ! - collection (col) |
---|
565 | ! - melting (melt) |
---|
566 | ! - freezing (freez) |
---|
567 | ! |
---|
568 | SUBROUTINE poprecip_postcld( & |
---|
569 | klon, dtime, paprsdn, paprsup, pplay, ctot_vol, ptconv, & |
---|
570 | temp, qvap, qliq, qice, icefrac, cldfra, & |
---|
571 | precipfracclr, precipfraccld, & |
---|
572 | rain, rainclr, raincld, snow, snowclr, snowcld, & |
---|
573 | qraindiag, qsnowdiag, dqrauto, dqrcol, dqrmelt, dqrfreez, & |
---|
574 | dqsauto, dqsagg, dqsrim, dqsmelt, dqsfreez) |
---|
575 | |
---|
576 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
577 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RPI |
---|
578 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
579 | |
---|
580 | USE lmdz_lscp_ini, ONLY : cld_lc_con, cld_tau_con, cld_expo_con, seuil_neb, & |
---|
581 | cld_lc_lsc, cld_tau_lsc, cld_expo_lsc, rain_int_min, & |
---|
582 | thresh_precip_frac, gamma_col, gamma_agg, gamma_rim, & |
---|
583 | rho_rain, r_rain, r_snow, rho_ice, & |
---|
584 | tau_auto_snow_min, tau_auto_snow_max, & |
---|
585 | thresh_precip_frac, eps, & |
---|
586 | gamma_melt, alpha_freez, beta_freez, temp_nowater, & |
---|
587 | iflag_cloudth_vert, iflag_rain_incloud_vol, & |
---|
588 | cld_lc_lsc_snow, cld_lc_con_snow, gamma_freez, & |
---|
589 | rain_fallspeed_clr, rain_fallspeed_cld, & |
---|
590 | snow_fallspeed_clr, snow_fallspeed_cld |
---|
591 | |
---|
592 | |
---|
593 | IMPLICIT NONE |
---|
594 | |
---|
595 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
596 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
597 | |
---|
598 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
599 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
600 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
601 | |
---|
602 | REAL, INTENT(IN), DIMENSION(klon) :: ctot_vol !--volumic cloud fraction [-] |
---|
603 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv !--true if we are in a convective point |
---|
604 | |
---|
605 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
606 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity [kg/kg] |
---|
607 | REAL, INTENT(INOUT), DIMENSION(klon) :: qliq !--current liquid water specific humidity [kg/kg] |
---|
608 | REAL, INTENT(INOUT), DIMENSION(klon) :: qice !--current ice water specific humidity [kg/kg] |
---|
609 | REAL, INTENT(IN), DIMENSION(klon) :: icefrac !--ice fraction [-] |
---|
610 | REAL, INTENT(IN), DIMENSION(klon) :: cldfra !--cloud fraction [-] |
---|
611 | |
---|
612 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
613 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
614 | !--NB. at the end of the routine, becomes the fraction of precip |
---|
615 | !--in the current layer |
---|
616 | |
---|
617 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
618 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
619 | REAL, INTENT(INOUT), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
620 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
621 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
622 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
623 | |
---|
624 | REAL, INTENT(OUT), DIMENSION(klon) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
625 | REAL, INTENT(OUT), DIMENSION(klon) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
626 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
627 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
628 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
629 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
630 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
631 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
632 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
633 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
634 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
635 | |
---|
636 | |
---|
637 | |
---|
638 | !--Local variables |
---|
639 | |
---|
640 | INTEGER :: i |
---|
641 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
642 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
643 | REAL, DIMENSION(klon) :: qtot !--includes vap, liq, ice and precip |
---|
644 | |
---|
645 | !--Partition of the fluxes |
---|
646 | REAL :: dcldfra |
---|
647 | REAL :: precipfractot |
---|
648 | REAL :: dprecipfracclr, dprecipfraccld |
---|
649 | REAL :: drainclr, dsnowclr |
---|
650 | REAL :: draincld, dsnowcld |
---|
651 | |
---|
652 | !--Collection, aggregation and riming |
---|
653 | REAL :: eff_cldfra |
---|
654 | REAL :: coef_col, coef_agg, coef_rim, coef_tmp, qrain_tmp |
---|
655 | REAL :: Eff_rain_liq, Eff_snow_ice, Eff_snow_liq |
---|
656 | REAL :: rho_snow |
---|
657 | REAL :: dqlcol !--loss of liquid cloud content due to collection by rain [kg/kg/s] |
---|
658 | REAL :: dqiagg !--loss of ice cloud content due to collection by aggregation [kg/kg/s] |
---|
659 | REAL :: dqlrim !--loss of liquid cloud content due to riming on snow [kg/kg/s] |
---|
660 | |
---|
661 | !--Autoconversion |
---|
662 | REAL :: qthresh_auto_rain, tau_auto_rain, expo_auto_rain |
---|
663 | REAL :: qthresh_auto_snow, tau_auto_snow, expo_auto_snow |
---|
664 | REAL :: dqlauto !--loss of liquid cloud content due to autoconversion to rain [kg/kg/s] |
---|
665 | REAL :: dqiauto !--loss of ice cloud content due to autoconversion to snow [kg/kg/s] |
---|
666 | |
---|
667 | !--Melting |
---|
668 | REAL :: dqsmelt_max, air_thermal_conduct |
---|
669 | REAL :: nb_snowflake_clr, nb_snowflake_cld |
---|
670 | REAL :: capa_snowflake, temp_wetbulb |
---|
671 | REAL :: rho, r_ice |
---|
672 | REAL :: dqsclrmelt, dqscldmelt, dqstotmelt |
---|
673 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat |
---|
674 | |
---|
675 | !--Freezing |
---|
676 | REAL :: dqrfreez_max |
---|
677 | REAL :: tau_freez |
---|
678 | REAL :: dqrclrfreez, dqrcldfreez, dqrtotfreez, dqrtotfreez_step1, dqrtotfreez_step2 |
---|
679 | REAL :: coef_freez |
---|
680 | REAL :: dqifreez !--loss of ice cloud content due to collection of ice from rain [kg/kg/s] |
---|
681 | REAL :: Eff_rain_ice |
---|
682 | |
---|
683 | |
---|
684 | !--Initialisation of variables |
---|
685 | |
---|
686 | |
---|
687 | qzero(:) = 0. |
---|
688 | |
---|
689 | dqrcol(:) = 0. |
---|
690 | dqsagg(:) = 0. |
---|
691 | dqsauto(:) = 0. |
---|
692 | dqrauto(:) = 0. |
---|
693 | dqsrim(:) = 0. |
---|
694 | dqrmelt(:) = 0. |
---|
695 | dqsmelt(:) = 0. |
---|
696 | dqrfreez(:) = 0. |
---|
697 | dqsfreez(:) = 0. |
---|
698 | |
---|
699 | |
---|
700 | DO i = 1, klon |
---|
701 | |
---|
702 | !--Variables initialisation |
---|
703 | dqlcol = 0. |
---|
704 | dqiagg = 0. |
---|
705 | dqiauto = 0. |
---|
706 | dqlauto = 0. |
---|
707 | dqlrim = 0. |
---|
708 | |
---|
709 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
710 | dhum_to_dflux(i) = ( paprsdn(i) - paprsup(i) ) / RG / dtime |
---|
711 | qtot(i) = qvap(i) + qliq(i) + qice(i) & |
---|
712 | + ( raincld(i) + rainclr(i) + snowcld(i) + snowclr(i) ) / dhum_to_dflux(i) |
---|
713 | |
---|
714 | !------------------------------------------------------------ |
---|
715 | !-- PRECIPITATION FRACTIONS UPDATE |
---|
716 | !------------------------------------------------------------ |
---|
717 | !--The goal of this routine is to reattribute precipitation fractions |
---|
718 | !--and fluxes to clear or cloudy air, depending on the variation of |
---|
719 | !--the cloud fraction on the vertical dimension. We assume a |
---|
720 | !--maximum-random overlap of the cloud cover (see Jakob and Klein, 2000, |
---|
721 | !--and LTP thesis, 2021) |
---|
722 | !--NB. in fact, we assume a maximum-random overlap of the total precip. frac |
---|
723 | |
---|
724 | !--Initialisation |
---|
725 | precipfractot = precipfracclr(i) + precipfraccld(i) |
---|
726 | |
---|
727 | !--Instead of using the cloud cover which was use in LTP thesis, we use the |
---|
728 | !--total precip. fraction to compute the maximum-random overlap. This is |
---|
729 | !--because all the information of the cloud cover is embedded into |
---|
730 | !--precipfractot, and this allows for taking into account the potential |
---|
731 | !--reduction of the precipitation fraction because either the flux is too |
---|
732 | !--small (see barrier at the end of poprecip_postcld) or the flux is completely |
---|
733 | !--evaporated (see barrier at the end of poprecip_precld) |
---|
734 | !--NB. precipfraccld(i) is here the cloud fraction of the layer above |
---|
735 | !precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
736 | ! ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
737 | ! / ( 1. - MIN( precipfraccld(i), 1. - eps ) ) |
---|
738 | |
---|
739 | |
---|
740 | IF ( precipfraccld(i) .GT. ( 1. - eps ) ) THEN |
---|
741 | precipfractot = 1. |
---|
742 | ELSE |
---|
743 | precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
744 | ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
745 | / ( 1. - precipfraccld(i) ) |
---|
746 | ENDIF |
---|
747 | |
---|
748 | !--precipfraccld(i) is here the cloud fraction of the layer above |
---|
749 | dcldfra = cldfra(i) - precipfraccld(i) |
---|
750 | !--Tendency of the clear-sky precipitation fraction. We add a MAX on the |
---|
751 | !--calculation of the current CS precip. frac. |
---|
752 | !dprecipfracclr = MAX( 0., ( precipfractot - cldfra(i) ) ) - precipfracclr(i) |
---|
753 | !--We remove it, because precipfractot is guaranteed to be > cldfra (the MAX is activated |
---|
754 | !--if precipfractot < cldfra) |
---|
755 | dprecipfracclr = ( precipfractot - cldfra(i) ) - precipfracclr(i) |
---|
756 | !--Tendency of the cloudy precipitation fraction. We add a MAX on the |
---|
757 | !--calculation of the current CS precip. frac. |
---|
758 | !dprecipfraccld = MAX( dcldfra , - precipfraccld(i) ) |
---|
759 | !--We remove it, because cldfra is guaranteed to be > 0 (the MAX is activated |
---|
760 | !--if cldfra < 0) |
---|
761 | dprecipfraccld = dcldfra |
---|
762 | |
---|
763 | |
---|
764 | !--If the cloud extends |
---|
765 | IF ( dprecipfraccld .GT. 0. ) THEN |
---|
766 | !--If there is no CS precip, nothing happens. |
---|
767 | !--If there is, we reattribute some of the CS precip flux |
---|
768 | !--to the cloud precip flux, proportionnally to the |
---|
769 | !--decrease of the CS precip fraction |
---|
770 | IF ( precipfracclr(i) .LE. 0. ) THEN |
---|
771 | drainclr = 0. |
---|
772 | dsnowclr = 0. |
---|
773 | ELSE |
---|
774 | drainclr = dprecipfracclr / precipfracclr(i) * rainclr(i) |
---|
775 | dsnowclr = dprecipfracclr / precipfracclr(i) * snowclr(i) |
---|
776 | ENDIF |
---|
777 | !--If the cloud narrows |
---|
778 | ELSEIF ( dprecipfraccld .LT. 0. ) THEN |
---|
779 | !--We reattribute some of the cloudy precip flux |
---|
780 | !--to the CS precip flux, proportionnally to the |
---|
781 | !--decrease of the cloud precip fraction |
---|
782 | draincld = dprecipfraccld / precipfraccld(i) * raincld(i) |
---|
783 | dsnowcld = dprecipfraccld / precipfraccld(i) * snowcld(i) |
---|
784 | drainclr = - draincld |
---|
785 | dsnowclr = - dsnowcld |
---|
786 | !--If the cloud stays the same or if there is no cloud above and |
---|
787 | !--in the current layer, nothing happens |
---|
788 | ELSE |
---|
789 | drainclr = 0. |
---|
790 | dsnowclr = 0. |
---|
791 | ENDIF |
---|
792 | |
---|
793 | !--We add the tendencies |
---|
794 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
795 | precipfraccld(i) = precipfraccld(i) + dprecipfraccld |
---|
796 | precipfracclr(i) = precipfracclr(i) + dprecipfracclr |
---|
797 | rainclr(i) = MAX(0., rainclr(i) + drainclr) |
---|
798 | snowclr(i) = MAX(0., snowclr(i) + dsnowclr) |
---|
799 | raincld(i) = MAX(0., raincld(i) - drainclr) |
---|
800 | snowcld(i) = MAX(0., snowcld(i) - dsnowclr) |
---|
801 | |
---|
802 | !--If vertical heterogeneity is taken into account, we use |
---|
803 | !--the "true" volume fraction instead of a modified |
---|
804 | !--surface fraction (which is larger and artificially |
---|
805 | !--reduces the in-cloud water). |
---|
806 | IF ( ( iflag_cloudth_vert .GE. 3 ) .AND. ( iflag_rain_incloud_vol .EQ. 1 ) ) THEN |
---|
807 | eff_cldfra = ctot_vol(i) |
---|
808 | ELSE |
---|
809 | eff_cldfra = cldfra(i) |
---|
810 | ENDIF |
---|
811 | |
---|
812 | |
---|
813 | !--Start precipitation growth processes |
---|
814 | |
---|
815 | !--If the cloud is big enough, the precipitation processes activate |
---|
816 | ! TODO met on seuil_neb ici ? |
---|
817 | IF ( cldfra(i) .GE. seuil_neb ) THEN |
---|
818 | |
---|
819 | !--------------------------------------------------------- |
---|
820 | !-- COLLECTION AND AGGREGATION |
---|
821 | !--------------------------------------------------------- |
---|
822 | !--Collection: processus through which rain collects small liquid droplets |
---|
823 | !--in suspension, and add it to the rain flux |
---|
824 | !--Aggregation: same for snow (precip flux) and ice crystals (in suspension) |
---|
825 | !--Those processes are treated before autoconversion because we do not |
---|
826 | !--want to collect/aggregate the newly formed fluxes, which already |
---|
827 | !--"saw" the cloud as they come from it |
---|
828 | !--The formulas come from Muench and Lohmann 2020 |
---|
829 | |
---|
830 | !--gamma_col: tuning coefficient [-] |
---|
831 | !--rho_rain: volumic mass of rain [kg/m3] |
---|
832 | !--r_rain: size of the rain droplets [m] |
---|
833 | !--Eff_rain_liq: efficiency of the collection process [-] (between 0 and 1) |
---|
834 | !--dqlcol is a gridbox-mean quantity, as is qliq and raincld. They are |
---|
835 | !--divided by respectively eff_cldfra, eff_cldfra and precipfraccld to |
---|
836 | !--get in-cloud mean quantities. The two divisions by eff_cldfra are |
---|
837 | !--then simplified. |
---|
838 | |
---|
839 | !--The collection efficiency is perfect. |
---|
840 | Eff_rain_liq = 1. |
---|
841 | coef_col = gamma_col * 3. / 4. / rho_rain / r_rain * Eff_rain_liq |
---|
842 | IF ( raincld(i) .GT. 0. ) THEN |
---|
843 | !--Exact explicit version, which does not need a barrier because of |
---|
844 | !--the exponential decrease |
---|
845 | dqlcol = qliq(i) * ( EXP( - dtime * coef_col * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
846 | |
---|
847 | !--Add tendencies |
---|
848 | qliq(i) = qliq(i) + dqlcol |
---|
849 | raincld(i) = raincld(i) - dqlcol * dhum_to_dflux(i) |
---|
850 | |
---|
851 | !--Diagnostic tendencies |
---|
852 | dqrcol(i) = - dqlcol / dtime |
---|
853 | ENDIF |
---|
854 | |
---|
855 | !--Same as for aggregation |
---|
856 | !--Eff_snow_liq formula: |
---|
857 | !--it s a product of a collection efficiency and a sticking efficiency |
---|
858 | ! Milbrandt and Yau formula that gives very low values: |
---|
859 | ! Eff_snow_ice = 0.05 * EXP( 0.1 * ( temp(i) - RTT ) ) |
---|
860 | ! Lin 1983's formula |
---|
861 | Eff_snow_ice = EXP( 0.025 * MIN( ( temp(i) - RTT ), 0.) ) |
---|
862 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
863 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
864 | coef_agg = gamma_agg * 3. / 4. / rho_snow / r_snow * Eff_snow_ice |
---|
865 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
866 | !--Exact explicit version, which does not need a barrier because of |
---|
867 | !--the exponential decrease |
---|
868 | dqiagg = qice(i) * ( EXP( - dtime * coef_agg * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
869 | |
---|
870 | !--Add tendencies |
---|
871 | qice(i) = qice(i) + dqiagg |
---|
872 | snowcld(i) = snowcld(i) - dqiagg * dhum_to_dflux(i) |
---|
873 | |
---|
874 | !--Diagnostic tendencies |
---|
875 | dqsagg(i) = - dqiagg / dtime |
---|
876 | ENDIF |
---|
877 | |
---|
878 | |
---|
879 | !--------------------------------------------------------- |
---|
880 | !-- AUTOCONVERSION |
---|
881 | !--------------------------------------------------------- |
---|
882 | !--Autoconversion converts liquid droplets/ice crystals into |
---|
883 | !--rain drops/snowflakes. It relies on the formulations by |
---|
884 | !--Sundqvist 1978. |
---|
885 | |
---|
886 | !--If we are in a convective point, we have different parameters |
---|
887 | !--for the autoconversion |
---|
888 | IF ( ptconv(i) ) THEN |
---|
889 | qthresh_auto_rain = cld_lc_con |
---|
890 | qthresh_auto_snow = cld_lc_con_snow |
---|
891 | |
---|
892 | tau_auto_rain = cld_tau_con |
---|
893 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
894 | tau_auto_snow = tau_auto_snow_max & |
---|
895 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
896 | |
---|
897 | expo_auto_rain = cld_expo_con |
---|
898 | expo_auto_snow = cld_expo_con |
---|
899 | ELSE |
---|
900 | qthresh_auto_rain = cld_lc_lsc |
---|
901 | qthresh_auto_snow = cld_lc_lsc_snow |
---|
902 | |
---|
903 | tau_auto_rain = cld_tau_lsc |
---|
904 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
905 | tau_auto_snow = tau_auto_snow_max & |
---|
906 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
907 | |
---|
908 | expo_auto_rain = cld_expo_lsc |
---|
909 | expo_auto_snow = cld_expo_lsc |
---|
910 | ENDIF |
---|
911 | |
---|
912 | |
---|
913 | ! Liquid water quantity to remove according to (Sundqvist, 1978) |
---|
914 | ! dqliq/dt = -qliq/tau * ( 1-exp(-(qliqincld/qthresh)**2) ) |
---|
915 | ! |
---|
916 | !--And same formula for ice |
---|
917 | ! |
---|
918 | !--We first treat the second term (with exponential) in an explicit way |
---|
919 | !--and then treat the first term (-q/tau) in an exact way |
---|
920 | |
---|
921 | dqlauto = - qliq(i) * ( 1. - exp( - dtime / tau_auto_rain * ( 1. - exp( & |
---|
922 | - ( qliq(i) / eff_cldfra / qthresh_auto_rain ) ** expo_auto_rain ) ) ) ) |
---|
923 | |
---|
924 | dqiauto = - qice(i) * ( 1. - exp( - dtime / tau_auto_snow * ( 1. - exp( & |
---|
925 | - ( qice(i) / eff_cldfra / qthresh_auto_snow ) ** expo_auto_snow ) ) ) ) |
---|
926 | |
---|
927 | |
---|
928 | !--Barriers so that we don't create more rain/snow |
---|
929 | !--than there is liquid/ice |
---|
930 | dqlauto = MAX( - qliq(i), dqlauto ) |
---|
931 | dqiauto = MAX( - qice(i), dqiauto ) |
---|
932 | |
---|
933 | !--Add tendencies |
---|
934 | qliq(i) = qliq(i) + dqlauto |
---|
935 | qice(i) = qice(i) + dqiauto |
---|
936 | raincld(i) = raincld(i) - dqlauto * dhum_to_dflux(i) |
---|
937 | snowcld(i) = snowcld(i) - dqiauto * dhum_to_dflux(i) |
---|
938 | |
---|
939 | !--Diagnostic tendencies |
---|
940 | dqsauto(i) = - dqiauto / dtime |
---|
941 | dqrauto(i) = - dqlauto / dtime |
---|
942 | |
---|
943 | |
---|
944 | !--------------------------------------------------------- |
---|
945 | !-- RIMING |
---|
946 | !--------------------------------------------------------- |
---|
947 | !--Process which converts liquid droplets in suspension into |
---|
948 | !--snow because of the collision between |
---|
949 | !--those and falling snowflakes. |
---|
950 | !--The formula comes from Muench and Lohmann 2020 |
---|
951 | !--NB.: this process needs a temperature adjustment |
---|
952 | |
---|
953 | !--Eff_snow_liq formula: following Ferrier 1994, |
---|
954 | !--assuming 1 |
---|
955 | Eff_snow_liq = 1.0 |
---|
956 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
957 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
958 | coef_rim = gamma_rim * 3. / 4. / rho_snow / r_snow * Eff_snow_liq |
---|
959 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
960 | !--Exact version, which does not need a barrier because of |
---|
961 | !--the exponential decrease |
---|
962 | dqlrim = qliq(i) * ( EXP( - dtime * coef_rim * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
963 | |
---|
964 | !--Add tendencies |
---|
965 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
966 | qliq(i) = qliq(i) + dqlrim |
---|
967 | snowcld(i) = snowcld(i) - dqlrim * dhum_to_dflux(i) |
---|
968 | |
---|
969 | !--Temperature adjustment with the release of latent |
---|
970 | !--heat because of solid condensation |
---|
971 | temp(i) = temp(i) - dqlrim * RLMLT / RCPD & |
---|
972 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
973 | |
---|
974 | !--Diagnostic tendencies |
---|
975 | dqsrim(i) = - dqlrim / dtime |
---|
976 | ENDIF |
---|
977 | |
---|
978 | ENDIF ! cldfra .GE. seuil_neb |
---|
979 | |
---|
980 | ENDDO ! loop on klon |
---|
981 | |
---|
982 | |
---|
983 | !--Re-calculation of saturation specific humidity |
---|
984 | !--because riming changed temperature |
---|
985 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 0, .FALSE., qsat, dqsat) |
---|
986 | |
---|
987 | DO i = 1, klon |
---|
988 | |
---|
989 | !--------------------------------------------------------- |
---|
990 | !-- MELTING |
---|
991 | !--------------------------------------------------------- |
---|
992 | !--Process through which snow melts into rain. |
---|
993 | !--The formula is homemade. |
---|
994 | !--NB.: this process needs a temperature adjustment |
---|
995 | |
---|
996 | !--dqsmelt_max : maximum snow melting so that temperature |
---|
997 | !-- stays higher than 273 K [kg/kg] |
---|
998 | !--capa_snowflake : capacitance of a snowflake, equal to |
---|
999 | !-- the radius if the snowflake is a sphere [m] |
---|
1000 | !--temp_wetbulb : wet-bulb temperature [K] |
---|
1001 | !--snow_fallspeed : snow fall velocity (in clear/cloudy sky) [m/s] |
---|
1002 | !--air_thermal_conduct : thermal conductivity of the air [J/m/K/s] |
---|
1003 | !--gamma_melt : tuning parameter for melting [-] |
---|
1004 | !--nb_snowflake : number of snowflakes (in clear/cloudy air) [-] |
---|
1005 | |
---|
1006 | IF ( ( snowclr(i) + snowcld(i) ) .GT. 0. ) THEN |
---|
1007 | !--Computed according to |
---|
1008 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
1009 | dqsmelt_max = MIN(0., ( RTT - temp(i) ) / RLMLT * RCPD & |
---|
1010 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
1011 | |
---|
1012 | !--Initialisation |
---|
1013 | dqsclrmelt = 0. |
---|
1014 | dqscldmelt = 0. |
---|
1015 | |
---|
1016 | !--We assume that the snowflakes are spherical |
---|
1017 | capa_snowflake = r_snow |
---|
1018 | !--Thermal conductivity of the air, empirical formula from Beard and Pruppacher (1971) |
---|
1019 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 |
---|
1020 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
1021 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
1022 | |
---|
1023 | !--In clear air |
---|
1024 | IF ( ( snowclr(i) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
1025 | !--Formula for the wet-bulb temperature from ECMWF (IFS) |
---|
1026 | !--The vapor used is the vapor in the clear sky |
---|
1027 | temp_wetbulb = temp(i) & |
---|
1028 | - ( qsat(i) - ( qvap(i) - cldfra(i) * qsat(i) ) / ( 1. - cldfra(i) ) ) & |
---|
1029 | * ( 1329.31 + 0.0074615 * ( pplay(i) - 0.85e5 ) & |
---|
1030 | - 40.637 * ( temp(i) - 275. ) ) |
---|
1031 | !--Calculated according to |
---|
1032 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
1033 | nb_snowflake_clr = snowclr(i) / precipfracclr(i) / snow_fallspeed_clr & |
---|
1034 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
1035 | dqsclrmelt = - nb_snowflake_clr * 4. * RPI * air_thermal_conduct & |
---|
1036 | * capa_snowflake / RLMLT * gamma_melt & |
---|
1037 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
1038 | |
---|
1039 | !--Barrier to limit the melting flux to the clr snow flux in the mesh |
---|
1040 | dqsclrmelt = MAX( dqsclrmelt , -snowclr(i) / dhum_to_dflux(i)) |
---|
1041 | ENDIF |
---|
1042 | |
---|
1043 | |
---|
1044 | !--In cloudy air |
---|
1045 | IF ( ( snowcld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
1046 | !--As the air is saturated, the wet-bulb temperature is equal to the |
---|
1047 | !--temperature |
---|
1048 | temp_wetbulb = temp(i) |
---|
1049 | !--Calculated according to |
---|
1050 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
1051 | nb_snowflake_cld = snowcld(i) / precipfraccld(i) / snow_fallspeed_cld & |
---|
1052 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
1053 | dqscldmelt = - nb_snowflake_cld * 4. * RPI * air_thermal_conduct & |
---|
1054 | * capa_snowflake / RLMLT * gamma_melt & |
---|
1055 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
1056 | |
---|
1057 | !--Barrier to limit the melting flux to the cld snow flux in the mesh |
---|
1058 | dqscldmelt = MAX(dqscldmelt , - snowcld(i) / dhum_to_dflux(i)) |
---|
1059 | ENDIF |
---|
1060 | |
---|
1061 | |
---|
1062 | !--Barrier on temperature. If the total melting flux leads to a |
---|
1063 | !--positive temperature, it is limited to keep temperature above 0 degC. |
---|
1064 | !--It is activated if the total is LOWER than the max |
---|
1065 | !--because everything is negative |
---|
1066 | dqstotmelt = dqsclrmelt + dqscldmelt |
---|
1067 | IF ( dqstotmelt .LT. dqsmelt_max ) THEN |
---|
1068 | !--We redistribute the max melted snow keeping |
---|
1069 | !--the clear/cloud partition of the melted snow |
---|
1070 | dqsclrmelt = dqsmelt_max * dqsclrmelt / dqstotmelt |
---|
1071 | dqscldmelt = dqsmelt_max * dqscldmelt / dqstotmelt |
---|
1072 | dqstotmelt = dqsmelt_max |
---|
1073 | |
---|
1074 | ENDIF |
---|
1075 | |
---|
1076 | !--Add tendencies |
---|
1077 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
1078 | rainclr(i) = MAX(0., rainclr(i) - dqsclrmelt * dhum_to_dflux(i)) |
---|
1079 | raincld(i) = MAX(0., raincld(i) - dqscldmelt * dhum_to_dflux(i)) |
---|
1080 | snowclr(i) = MAX(0., snowclr(i) + dqsclrmelt * dhum_to_dflux(i)) |
---|
1081 | snowcld(i) = MAX(0., snowcld(i) + dqscldmelt * dhum_to_dflux(i)) |
---|
1082 | |
---|
1083 | !--Temperature adjustment with the release of latent |
---|
1084 | !--heat because of melting |
---|
1085 | temp(i) = temp(i) + dqstotmelt * RLMLT / RCPD & |
---|
1086 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
1087 | |
---|
1088 | !--Diagnostic tendencies |
---|
1089 | dqrmelt(i) = - dqstotmelt / dtime |
---|
1090 | dqsmelt(i) = dqstotmelt / dtime |
---|
1091 | |
---|
1092 | ENDIF |
---|
1093 | |
---|
1094 | |
---|
1095 | !--------------------------------------------------------- |
---|
1096 | !-- FREEZING |
---|
1097 | !--------------------------------------------------------- |
---|
1098 | !--Process through which rain freezes into snow. |
---|
1099 | !-- We parameterize it as a 2 step process: |
---|
1100 | !--first: freezing following collision with ice crystals |
---|
1101 | !--second: immersion freezing following (inspired by Bigg 1953) |
---|
1102 | !--the latter is parameterized as an exponential decrease of the rain |
---|
1103 | !--water content with a homemade formulya |
---|
1104 | !--This is based on a caracteritic time of freezing, which |
---|
1105 | !--exponentially depends on temperature so that it is |
---|
1106 | !--equal to 1 for temp_nowater (see below) and is close to |
---|
1107 | !--0 for RTT (=273.15 K). |
---|
1108 | !--NB.: this process needs a temperature adjustment |
---|
1109 | !--dqrfreez_max : maximum rain freezing so that temperature |
---|
1110 | !-- stays lower than 273 K [kg/kg] |
---|
1111 | !--tau_freez : caracteristic time of freezing [s] |
---|
1112 | !--gamma_freez : tuning parameter [s-1] |
---|
1113 | !--alpha_freez : tuning parameter for the shape of the exponential curve [-] |
---|
1114 | !--temp_nowater : temperature below which no liquid water exists [K] (about -40 degC) |
---|
1115 | |
---|
1116 | IF ( ( rainclr(i) + raincld(i) ) .GT. 0. ) THEN |
---|
1117 | |
---|
1118 | |
---|
1119 | !--1st step: freezing following collision with ice crystals |
---|
1120 | !--Sub-process of freezing which quantifies the collision between |
---|
1121 | !--ice crystals in suspension and falling rain droplets. |
---|
1122 | !--The rain droplets freeze, becoming graupel, and carrying |
---|
1123 | !--the ice crystal (which acted as an ice nucleating particle). |
---|
1124 | !--The formula is adapted from the riming formula. |
---|
1125 | !--it works only in the cloudy part |
---|
1126 | |
---|
1127 | dqifreez = 0. |
---|
1128 | dqrtotfreez_step1 = 0. |
---|
1129 | |
---|
1130 | IF ( ( qice(i) .GT. 0. ) .AND. ( cldfra(i) .GT. 0. ) .AND. & |
---|
1131 | ( raincld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
1132 | dqrclrfreez = 0. |
---|
1133 | dqrcldfreez = 0. |
---|
1134 | |
---|
1135 | !--Computed according to |
---|
1136 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
1137 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
1138 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
1139 | |
---|
1140 | |
---|
1141 | !--The collision efficiency is assumed unity |
---|
1142 | Eff_rain_ice = 1. |
---|
1143 | coef_freez = gamma_freez * 3. / 4. / rho_rain / r_rain * Eff_rain_ice |
---|
1144 | !--Exact version, which does not need a barrier because of |
---|
1145 | !--the exponential decrease. |
---|
1146 | dqifreez = qice(i) * ( EXP( - dtime * coef_freez * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
1147 | |
---|
1148 | !--We add the part of rain water that freezes, limited by a temperature barrier |
---|
1149 | !--This quantity is calculated assuming that the number of drop that freeze correspond to the number |
---|
1150 | !--of crystals collected (and assuming uniform distributions of ice crystals and rain drops) |
---|
1151 | !--The ice specific humidity that collide with rain is dqi = dNi 4/3 PI rho_ice r_ice**3 |
---|
1152 | !--The rain that collide with ice is, similarly, dqr = dNr 4/3 PI rho_rain r_rain**3 |
---|
1153 | !--The assumption above corresponds to dNi = dNr, i.e., |
---|
1154 | !-- dqr = dqi * (4/3 PI rho_rain * r_rain**3) / (4/3 PI rho_ice * r_ice**3) |
---|
1155 | !--Dry density [kg/m3] |
---|
1156 | rho = pplay(i) / temp(i) / RD |
---|
1157 | !--r_ice formula from Sun and Rikus (1999) |
---|
1158 | r_ice = 1.e-6 * ( 45.8966 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2214 & |
---|
1159 | + 0.7957 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2535 * ( temp(i) - RTT + 190. ) ) / 2. |
---|
1160 | dqrcldfreez = dqifreez * rho_rain * r_rain**3. / ( rho_ice * r_ice**3. ) |
---|
1161 | dqrcldfreez = MAX(dqrcldfreez, - raincld(i) / dhum_to_dflux(i)) |
---|
1162 | dqrcldfreez = MAX(dqrcldfreez, dqrfreez_max) |
---|
1163 | dqrtotfreez_step1 = dqrcldfreez |
---|
1164 | |
---|
1165 | !--Add tendencies |
---|
1166 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
1167 | qice(i) = qice(i) + dqifreez |
---|
1168 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
1169 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i) - dqifreez * dhum_to_dflux(i)) |
---|
1170 | temp(i) = temp(i) - dqrtotfreez_step1 * RLMLT / RCPD & |
---|
1171 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
1172 | |
---|
1173 | ENDIF |
---|
1174 | |
---|
1175 | !-- Second step immersion freezing of rain drops |
---|
1176 | !-- with a homemade timeconstant depending on temperature |
---|
1177 | |
---|
1178 | dqrclrfreez = 0. |
---|
1179 | dqrcldfreez = 0. |
---|
1180 | dqrtotfreez_step2 = 0. |
---|
1181 | !--Computed according to |
---|
1182 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
1183 | |
---|
1184 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
1185 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
1186 | |
---|
1187 | |
---|
1188 | tau_freez = 1. / ( beta_freez & |
---|
1189 | * EXP( - alpha_freez * ( temp(i) - temp_nowater ) / ( RTT - temp_nowater ) ) ) |
---|
1190 | |
---|
1191 | |
---|
1192 | !--In clear air |
---|
1193 | IF ( rainclr(i) .GT. 0. ) THEN |
---|
1194 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
1195 | dqrclrfreez = rainclr(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
1196 | ENDIF |
---|
1197 | |
---|
1198 | !--In cloudy air |
---|
1199 | IF ( raincld(i) .GT. 0. ) THEN |
---|
1200 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
1201 | dqrcldfreez = raincld(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
1202 | ENDIF |
---|
1203 | |
---|
1204 | !--temperature barrier step 2 |
---|
1205 | !--It is activated if the total is LOWER than the max |
---|
1206 | !--because everything is negative |
---|
1207 | dqrtotfreez_step2 = dqrclrfreez + dqrcldfreez |
---|
1208 | |
---|
1209 | IF ( dqrtotfreez_step2 .LT. dqrfreez_max ) THEN |
---|
1210 | !--We redistribute the max freezed rain keeping |
---|
1211 | !--the clear/cloud partition of the freezing rain |
---|
1212 | dqrclrfreez = dqrfreez_max * dqrclrfreez / dqrtotfreez_step2 |
---|
1213 | dqrcldfreez = dqrfreez_max * dqrcldfreez / dqrtotfreez_step2 |
---|
1214 | dqrtotfreez_step2 = dqrfreez_max |
---|
1215 | ENDIF |
---|
1216 | |
---|
1217 | |
---|
1218 | !--Add tendencies |
---|
1219 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
1220 | rainclr(i) = MAX(0., rainclr(i) + dqrclrfreez * dhum_to_dflux(i)) |
---|
1221 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
1222 | snowclr(i) = MAX(0., snowclr(i) - dqrclrfreez * dhum_to_dflux(i)) |
---|
1223 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i)) |
---|
1224 | |
---|
1225 | |
---|
1226 | !--Temperature adjustment with the uptake of latent |
---|
1227 | !--heat because of freezing |
---|
1228 | temp(i) = temp(i) - dqrtotfreez_step2 * RLMLT / RCPD & |
---|
1229 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
1230 | |
---|
1231 | !--Diagnostic tendencies |
---|
1232 | dqrtotfreez = dqrtotfreez_step1 + dqrtotfreez_step2 |
---|
1233 | dqrfreez(i) = dqrtotfreez / dtime |
---|
1234 | dqsfreez(i) = -(dqrtotfreez + dqifreez) / dtime |
---|
1235 | |
---|
1236 | ENDIF |
---|
1237 | |
---|
1238 | |
---|
1239 | |
---|
1240 | !--If the local flux of rain+snow in clear/cloudy air is lower than rain_int_min, |
---|
1241 | !--we reduce the precipiration fraction in the clear/cloudy air so that the new |
---|
1242 | !--local flux of rain+snow is equal to rain_int_min. |
---|
1243 | !--Here, rain+snow is the gridbox-mean flux of precip. |
---|
1244 | !--Therefore, (rain+snow)/precipfrac is the local flux of precip. |
---|
1245 | !--If the local flux of precip is lower than rain_int_min, i.e., |
---|
1246 | !-- (rain+snow)/precipfrac < rain_int_min , i.e., |
---|
1247 | !-- (rain+snow)/rain_int_min < precipfrac , then we want to reduce |
---|
1248 | !--the precip fraction to the equality, i.e., precipfrac = (rain+snow)/rain_int_min. |
---|
1249 | !--Note that this is physically different than what is proposed in LTP thesis. |
---|
1250 | precipfracclr(i) = MIN( precipfracclr(i), ( rainclr(i) + snowclr(i) ) / rain_int_min ) |
---|
1251 | precipfraccld(i) = MIN( precipfraccld(i), ( raincld(i) + snowcld(i) ) / rain_int_min ) |
---|
1252 | |
---|
1253 | !--Calculate outputs |
---|
1254 | rain(i) = rainclr(i) + raincld(i) |
---|
1255 | snow(i) = snowclr(i) + snowcld(i) |
---|
1256 | |
---|
1257 | !--Diagnostics |
---|
1258 | !--BEWARE this is indeed a diagnostic: this is an estimation from |
---|
1259 | !--the value of the flux at the bottom interface of the mesh and |
---|
1260 | !--and assuming an upstream numerical calculation |
---|
1261 | !--If ok_radocond_snow is TRUE, then the diagnostic qsnowdiag is |
---|
1262 | !--used for computing the total ice water content in the mesh |
---|
1263 | !--for radiation only |
---|
1264 | qraindiag(i) = ( rainclr(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_clr & |
---|
1265 | + raincld(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_cld ) |
---|
1266 | qsnowdiag(i) = ( snowclr(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_clr & |
---|
1267 | + snowcld(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_cld ) |
---|
1268 | |
---|
1269 | |
---|
1270 | ENDDO ! loop on klon |
---|
1271 | |
---|
1272 | END SUBROUTINE poprecip_postcld |
---|
1273 | |
---|
1274 | END MODULE lmdz_lscp_precip |
---|