[5408] | 1 | MODULE lmdz_lscp_precip |
---|
| 2 | !---------------------------------------------------------------- |
---|
| 3 | ! Module for the process-oriented treament of precipitation |
---|
| 4 | ! that are called in LSCP |
---|
| 5 | ! Authors: Atelier Nuage (G. Riviere, L. Raillard, M. Wimmer, |
---|
| 6 | ! N. Dutrievoz, E. Vignon, A. Borella, et al.) |
---|
| 7 | ! Jan. 2024 |
---|
| 8 | |
---|
| 9 | |
---|
| 10 | IMPLICIT NONE |
---|
| 11 | |
---|
| 12 | CONTAINS |
---|
| 13 | |
---|
| 14 | !---------------------------------------------------------------- |
---|
| 15 | ! historical (till CMIP6) version of the pre-cloud formation |
---|
| 16 | ! precipitation scheme containing precip evaporation and melting |
---|
| 17 | |
---|
| 18 | SUBROUTINE histprecip_precld( & |
---|
| 19 | klon, dtime, iftop, paprsdn, paprsup, pplay, zt, ztupnew, zq, & |
---|
| 20 | zmqc, zneb, znebprecipclr, & |
---|
| 21 | zrfl, zrflclr, zrflcld, zifl, ziflclr, ziflcld, dqreva, dqssub & |
---|
| 22 | ) |
---|
| 23 | |
---|
| 24 | USE lmdz_lscp_ini, ONLY : iflag_evap_prec |
---|
| 25 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub, ztfondue |
---|
| 26 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
| 27 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
| 28 | |
---|
| 29 | IMPLICIT NONE |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
| 33 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
| 34 | LOGICAL, INTENT(IN) :: iftop !--if top of the column |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
| 38 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
| 39 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
| 40 | |
---|
| 41 | REAL, INTENT(INOUT), DIMENSION(klon) :: zt !--current temperature [K] |
---|
| 42 | REAL, INTENT(IN), DIMENSION(klon) :: ztupnew !--updated temperature of the overlying layer [K] |
---|
| 43 | |
---|
| 44 | REAL, INTENT(INOUT), DIMENSION(klon) :: zq !--current water vapor specific humidity (includes evaporated qi and ql) [kg/kg] |
---|
| 45 | REAL, INTENT(INOUT), DIMENSION(klon) :: zmqc !--specific humidity in the precipitation falling from the upper layer [kg/kg] |
---|
| 46 | |
---|
| 47 | REAL, INTENT(IN), DIMENSION(klon) :: zneb !--cloud fraction IN THE LAYER ABOVE [-] |
---|
| 48 | REAL, INTENT(INOUT), DIMENSION(klon) :: znebprecipclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
| 49 | |
---|
| 50 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrfl !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 51 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrflclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 52 | REAL, INTENT(INOUT), DIMENSION(klon) :: zrflcld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
| 53 | REAL, INTENT(INOUT), DIMENSION(klon) :: zifl !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 54 | REAL, INTENT(INOUT), DIMENSION(klon) :: ziflclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 55 | REAL, INTENT(INOUT), DIMENSION(klon) :: ziflcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
| 56 | |
---|
| 57 | REAL, INTENT(OUT), DIMENSION(klon) :: dqreva !--rain tendency due to evaporation [kg/kg/s] |
---|
| 58 | REAL, INTENT(OUT), DIMENSION(klon) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
| 59 | |
---|
| 60 | |
---|
| 61 | REAL :: zmair |
---|
| 62 | REAL :: zcpair, zcpeau |
---|
| 63 | REAL, DIMENSION(klon) :: znebprecip |
---|
| 64 | REAL, DIMENSION(klon) :: qzero |
---|
| 65 | REAL, DIMENSION(klon) :: zqs, zdqs |
---|
| 66 | REAL, DIMENSION(klon) :: qsl, qsi |
---|
| 67 | REAL, DIMENSION(klon) :: dqsl, dqsi |
---|
| 68 | |
---|
| 69 | REAL :: zqev0 |
---|
| 70 | REAL :: zqev, zqevt |
---|
| 71 | REAL :: zqevi, zqevti |
---|
| 72 | |
---|
| 73 | REAL, DIMENSION(klon) :: zrfln, zifln |
---|
| 74 | |
---|
| 75 | REAL :: zmelt |
---|
| 76 | INTEGER :: i |
---|
| 77 | |
---|
| 78 | qzero(:) = 0. |
---|
| 79 | |
---|
| 80 | |
---|
| 81 | ! -------------------------------------------------------------------- |
---|
| 82 | ! P1> Thermalization of precipitation falling from the overlying layer |
---|
| 83 | ! -------------------------------------------------------------------- |
---|
| 84 | ! Computes air temperature variation due to enthalpy transported by |
---|
| 85 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
| 86 | ! layer. |
---|
| 87 | ! The precipitation should remain thermalized throughout the different |
---|
| 88 | ! thermodynamical transformations. |
---|
| 89 | ! The corresponding water mass should |
---|
| 90 | ! be added when calculating the layer's enthalpy change with |
---|
| 91 | ! temperature |
---|
| 92 | ! --------------------------------------------------------------------- |
---|
| 93 | |
---|
| 94 | IF (iftop) THEN |
---|
| 95 | |
---|
| 96 | DO i = 1, klon |
---|
| 97 | zmqc(i) = 0. |
---|
| 98 | ENDDO |
---|
| 99 | |
---|
| 100 | ELSE |
---|
| 101 | |
---|
| 102 | DO i = 1, klon |
---|
| 103 | |
---|
| 104 | zmair=(paprsdn(i)-paprsup(i))/RG |
---|
| 105 | ! no condensed water so cp=cp(vapor+dry air) |
---|
| 106 | ! RVTMP2=rcpv/rcpd-1 |
---|
| 107 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
---|
| 108 | zcpeau=RCPD*RVTMP2 |
---|
| 109 | |
---|
| 110 | ! zmqc: precipitation mass that has to be thermalized with |
---|
| 111 | ! layer's air so that precipitation at the ground has the |
---|
| 112 | ! same temperature as the lowermost layer |
---|
| 113 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair |
---|
| 114 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
| 115 | zt(i) = ( ztupnew(i)*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
---|
| 116 | / (zcpair + zmqc(i)*zcpeau) |
---|
| 117 | |
---|
| 118 | ENDDO |
---|
| 119 | |
---|
| 120 | ENDIF |
---|
| 121 | |
---|
| 122 | ! -------------------------------------------------------------------- |
---|
| 123 | ! P2> Precipitation evaporation/sublimation/melting |
---|
| 124 | ! -------------------------------------------------------------------- |
---|
| 125 | ! A part of the precipitation coming from above is evaporated/sublimated/melted. |
---|
| 126 | ! -------------------------------------------------------------------- |
---|
| 127 | |
---|
| 128 | IF (iflag_evap_prec.GE.1) THEN |
---|
| 129 | |
---|
| 130 | ! Calculation of saturation specific humidity |
---|
| 131 | ! depending on temperature: |
---|
| 132 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:),RTT,0,.false.,zqs,zdqs) |
---|
| 133 | ! wrt liquid water |
---|
| 134 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:),RTT,1,.false.,qsl,dqsl) |
---|
| 135 | ! wrt ice |
---|
| 136 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:),RTT,2,.false.,qsi,dqsi) |
---|
| 137 | |
---|
| 138 | DO i = 1, klon |
---|
| 139 | |
---|
| 140 | ! if precipitation |
---|
| 141 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
| 142 | |
---|
| 143 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec>=4). |
---|
| 144 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
---|
| 145 | |
---|
| 146 | IF (iflag_evap_prec.GE.4) THEN |
---|
| 147 | zrfl(i) = zrflclr(i) |
---|
| 148 | zifl(i) = ziflclr(i) |
---|
| 149 | ENDIF |
---|
| 150 | |
---|
| 151 | IF (iflag_evap_prec.EQ.1) THEN |
---|
| 152 | znebprecip(i)=zneb(i) |
---|
| 153 | ELSE |
---|
| 154 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
---|
| 155 | ENDIF |
---|
| 156 | |
---|
| 157 | IF (iflag_evap_prec.GT.4) THEN |
---|
| 158 | ! Max evaporation not to saturate the clear sky precip fraction |
---|
| 159 | ! i.e. the fraction where evaporation occurs |
---|
| 160 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecipclr(i)) |
---|
| 161 | ELSEIF (iflag_evap_prec .EQ. 4) THEN |
---|
| 162 | ! Max evaporation not to saturate the whole mesh |
---|
| 163 | ! Pay attention -> lead to unrealistic and excessive evaporation |
---|
| 164 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
---|
| 165 | ELSE |
---|
| 166 | ! Max evap not to saturate the fraction below the cloud |
---|
| 167 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
---|
| 168 | ENDIF |
---|
| 169 | |
---|
| 170 | ! Evaporation of liquid precipitation coming from above |
---|
| 171 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
| 172 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
| 173 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec>=4) |
---|
| 174 | |
---|
| 175 | IF (iflag_evap_prec.EQ.3) THEN |
---|
| 176 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
| 177 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
---|
| 178 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
| 179 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
| 180 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
| 181 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
| 182 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
| 183 | ELSE |
---|
| 184 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl(i))*SQRT(zrfl(i)) & |
---|
| 185 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
| 186 | ENDIF |
---|
| 187 | |
---|
| 188 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) * RG*dtime/(paprsdn(i)-paprsup(i)) |
---|
| 189 | |
---|
| 190 | ! sublimation of the solid precipitation coming from above |
---|
| 191 | IF (iflag_evap_prec.EQ.3) THEN |
---|
| 192 | zqevti = znebprecip(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
| 193 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
---|
| 194 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
| 195 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
| 196 | zqevti = znebprecipclr(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
| 197 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
| 198 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
| 199 | ELSE |
---|
| 200 | zqevti = 1.*coef_sub*(1.0-zq(i)/qsi(i))*SQRT(zifl(i)) & |
---|
| 201 | *(paprsdn(i)-paprsup(i))/pplay(i)*zt(i)*RD/RG |
---|
| 202 | ENDIF |
---|
| 203 | |
---|
| 204 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) * RG*dtime/(paprsdn(i)-paprsup(i)) |
---|
| 205 | |
---|
| 206 | ! A. JAM |
---|
| 207 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
| 208 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
| 209 | ! does not reach saturation. In this case, we |
---|
| 210 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
| 211 | |
---|
| 212 | IF (zqevt+zqevti.GT.zqev0) THEN |
---|
| 213 | zqev=zqev0*zqevt/(zqevt+zqevti) |
---|
| 214 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
---|
| 215 | ELSE |
---|
| 216 | zqev=zqevt |
---|
| 217 | zqevi=zqevti |
---|
| 218 | ENDIF |
---|
| 219 | |
---|
| 220 | !--Diagnostics |
---|
| 221 | dqreva(i) = - zqev / dtime |
---|
| 222 | dqssub(i) = - zqevti / dtime |
---|
| 223 | |
---|
| 224 | ! New solid and liquid precipitation fluxes after evap and sublimation |
---|
| 225 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprsdn(i)-paprsup(i))/RG/dtime) |
---|
| 226 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprsdn(i)-paprsup(i))/RG/dtime) |
---|
| 227 | |
---|
| 228 | |
---|
| 229 | ! vapor, temperature, precip fluxes update |
---|
| 230 | ! vapor is updated after evaporation/sublimation (it is increased) |
---|
| 231 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
| 232 | * (RG/(paprsdn(i)-paprsup(i)))*dtime |
---|
| 233 | ! zmqc is the total condensed water in the precip flux (it is decreased) |
---|
| 234 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
| 235 | * (RG/(paprsdn(i)-paprsup(i)))*dtime |
---|
| 236 | ! air and precip temperature (i.e., gridbox temperature) |
---|
| 237 | ! is updated due to latent heat cooling |
---|
| 238 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
| 239 | * (RG/(paprsdn(i)-paprsup(i)))*dtime & |
---|
| 240 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
---|
| 241 | + (zifln(i)-zifl(i)) & |
---|
| 242 | * (RG/(paprsdn(i)-paprsup(i)))*dtime & |
---|
| 243 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
| 244 | |
---|
| 245 | ! New values of liquid and solid precipitation |
---|
| 246 | zrfl(i) = zrfln(i) |
---|
| 247 | zifl(i) = zifln(i) |
---|
| 248 | |
---|
| 249 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
---|
| 250 | ! due to evap + sublim |
---|
| 251 | |
---|
| 252 | |
---|
| 253 | IF (iflag_evap_prec.GE.4) THEN |
---|
| 254 | zrflclr(i) = zrfl(i) |
---|
| 255 | ziflclr(i) = zifl(i) |
---|
| 256 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
---|
| 257 | znebprecipclr(i) = 0.0 |
---|
| 258 | ENDIF |
---|
| 259 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
| 260 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
| 261 | ENDIF |
---|
| 262 | |
---|
| 263 | ! c_iso duplicate for isotopes or loop on isotopes |
---|
| 264 | |
---|
| 265 | ! Melting: |
---|
| 266 | zmelt = ((zt(i)-RTT)/(ztfondue-RTT)) ! JYG |
---|
| 267 | ! precip fraction that is melted |
---|
| 268 | zmelt = MIN(MAX(zmelt,0.),1.) |
---|
| 269 | |
---|
| 270 | ! update of rainfall and snowfall due to melting |
---|
| 271 | IF (iflag_evap_prec.GE.4) THEN |
---|
| 272 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
---|
| 273 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
---|
| 274 | zrfl(i)=zrflclr(i)+zrflcld(i) |
---|
| 275 | ELSE |
---|
| 276 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
| 277 | ENDIF |
---|
| 278 | |
---|
| 279 | |
---|
| 280 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
---|
| 281 | |
---|
| 282 | ! Latent heat of melting because of precipitation melting |
---|
| 283 | ! NB: the air + precip temperature is simultaneously updated |
---|
| 284 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprsdn(i)-paprsup(i)) & |
---|
| 285 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
| 286 | |
---|
| 287 | IF (iflag_evap_prec.GE.4) THEN |
---|
| 288 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
---|
| 289 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
---|
| 290 | zifl(i)=ziflclr(i)+ziflcld(i) |
---|
| 291 | ELSE |
---|
| 292 | zifl(i)=zifl(i)*(1.-zmelt) |
---|
| 293 | ENDIF |
---|
| 294 | |
---|
| 295 | ELSE |
---|
| 296 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
| 297 | ! AB note that this assignment is useless, as znebprecip is not re-used |
---|
| 298 | znebprecip(i)=0. |
---|
| 299 | |
---|
| 300 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
| 301 | |
---|
| 302 | ENDDO ! loop on klon |
---|
| 303 | |
---|
| 304 | ENDIF ! (iflag_evap_prec>=1) |
---|
| 305 | |
---|
| 306 | END SUBROUTINE histprecip_precld |
---|
| 307 | |
---|
| 308 | |
---|
| 309 | !---------------------------------------------------------------- |
---|
| 310 | ! Computes the processes-oriented precipitation formulations for |
---|
| 311 | ! evaporation and sublimation |
---|
| 312 | ! |
---|
| 313 | SUBROUTINE poprecip_precld( & |
---|
| 314 | klon, dtime, iftop, paprsdn, paprsup, pplay, temp, tempupnew, qvap, & |
---|
| 315 | qprecip, precipfracclr, precipfraccld, qvapclrup, qtotupnew, & |
---|
| 316 | rain, rainclr, raincld, snow, snowclr, snowcld, dqreva, dqssub & |
---|
| 317 | ) |
---|
| 318 | |
---|
| 319 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
| 320 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub, expo_eva, expo_sub, thresh_precip_frac |
---|
| 321 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
| 322 | USE lmdz_lscp_ini, ONLY : ok_corr_vap_evasub |
---|
| 323 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
| 324 | |
---|
| 325 | IMPLICIT NONE |
---|
| 326 | |
---|
| 327 | |
---|
| 328 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
| 329 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
| 330 | LOGICAL, INTENT(IN) :: iftop !--if top of the column |
---|
| 331 | |
---|
| 332 | |
---|
| 333 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
| 334 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
| 335 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
| 336 | |
---|
| 337 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
| 338 | REAL, INTENT(IN), DIMENSION(klon) :: tempupnew !--updated temperature of the overlying layer [K] |
---|
| 339 | |
---|
| 340 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity (includes evaporated qi and ql) [kg/kg] |
---|
| 341 | REAL, INTENT(INOUT), DIMENSION(klon) :: qprecip !--specific humidity in the precipitation falling from the upper layer [kg/kg] |
---|
| 342 | |
---|
| 343 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
| 344 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
| 345 | |
---|
| 346 | REAL, INTENT(IN), DIMENSION(klon) :: qvapclrup !--clear-sky specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
| 347 | REAL, INTENT(IN), DIMENSION(klon) :: qtotupnew !--total specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
| 348 | |
---|
| 349 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 350 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 351 | REAL, INTENT(IN), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
| 352 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 353 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 354 | REAL, INTENT(IN), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
| 355 | |
---|
| 356 | REAL, INTENT(OUT), DIMENSION(klon) :: dqreva !--rain tendency due to evaporation [kg/kg/s] |
---|
| 357 | REAL, INTENT(OUT), DIMENSION(klon) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
| 358 | |
---|
| 359 | |
---|
| 360 | !--Integer for interating over klon |
---|
| 361 | INTEGER :: i |
---|
| 362 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
| 363 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
| 364 | !-- |
---|
| 365 | REAL, DIMENSION(klon) :: rho, dz |
---|
| 366 | |
---|
| 367 | !--Saturation values |
---|
| 368 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat, qsatl, dqsatl, qsati, dqsati |
---|
| 369 | !--Vapor in the clear sky |
---|
| 370 | REAL :: qvapclr |
---|
| 371 | !--Fluxes tendencies because of evaporation and sublimation |
---|
| 372 | REAL :: dprecip_evasub_max, draineva, dsnowsub, dprecip_evasub_tot |
---|
| 373 | !--Specific humidity tendencies because of evaporation and sublimation |
---|
| 374 | REAL :: dqrevap, dqssubl |
---|
| 375 | !--Specific heat constant |
---|
| 376 | REAL :: cpair, cpw |
---|
| 377 | |
---|
| 378 | !--Initialisation |
---|
| 379 | qzero(:) = 0. |
---|
| 380 | dqreva(:) = 0. |
---|
| 381 | dqssub(:) = 0. |
---|
| 382 | dqrevap = 0. |
---|
| 383 | dqssubl = 0. |
---|
| 384 | |
---|
| 385 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
| 386 | dhum_to_dflux(:) = ( paprsdn(:) - paprsup(:) ) / RG / dtime |
---|
| 387 | rho(:) = pplay(:) / temp(:) / RD |
---|
| 388 | dz(:) = ( paprsdn(:) - paprsup(:) ) / RG / rho(:) |
---|
| 389 | |
---|
| 390 | !--Calculation of saturation specific humidity |
---|
| 391 | !--depending on temperature: |
---|
| 392 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,0,.false.,qsat(:),dqsat(:)) |
---|
| 393 | !--wrt liquid water |
---|
| 394 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,1,.false.,qsatl(:),dqsatl(:)) |
---|
| 395 | !--wrt ice |
---|
| 396 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,2,.false.,qsati(:),dqsati(:)) |
---|
| 397 | |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | !--First step consists in "thermalizing" the layer: |
---|
| 401 | !--as the flux of precip from layer above "advects" some heat (as the precip is at the temperature |
---|
| 402 | !--of the overlying layer) we recalculate a mean temperature that both the air and the precip in the |
---|
| 403 | !--layer have. |
---|
| 404 | |
---|
| 405 | IF (iftop) THEN |
---|
| 406 | |
---|
| 407 | DO i = 1, klon |
---|
| 408 | qprecip(i) = 0. |
---|
| 409 | ENDDO |
---|
| 410 | |
---|
| 411 | ELSE |
---|
| 412 | |
---|
| 413 | DO i = 1, klon |
---|
| 414 | !--No condensed water so cp=cp(vapor+dry air) |
---|
| 415 | !-- RVTMP2=rcpv/rcpd-1 |
---|
| 416 | cpair = RCPD * ( 1. + RVTMP2 * qvap(i) ) |
---|
| 417 | cpw = RCPD * RVTMP2 |
---|
| 418 | !--qprecip has to be thermalized with |
---|
| 419 | !--layer's air so that precipitation at the ground has the |
---|
| 420 | !--same temperature as the lowermost layer |
---|
| 421 | !--we convert the flux into a specific quantity qprecip |
---|
| 422 | qprecip(i) = ( rain(i) + snow(i) ) / dhum_to_dflux(i) |
---|
| 423 | !-- t(i,k+1) + d_t(i,k+1): new temperature of the overlying layer |
---|
| 424 | temp(i) = ( tempupnew(i) * qprecip(i) * cpw + cpair * temp(i) ) & |
---|
| 425 | / ( cpair + qprecip(i) * cpw ) |
---|
| 426 | ENDDO |
---|
| 427 | |
---|
| 428 | ENDIF |
---|
| 429 | |
---|
| 430 | ! TODO Probleme : on utilise qvap total dans la maille pour l'evap / sub |
---|
| 431 | ! alors qu'on n'evap / sub que dans le ciel clair |
---|
| 432 | ! deux options pour cette routine : |
---|
| 433 | ! - soit on diagnostique le nuage AVANT l'evap / sub et on estime donc |
---|
| 434 | ! la fraction precipitante ciel clair dans la maille, ce qui permet de travailler |
---|
| 435 | ! avec des fractions, des fluxs et surtout un qvap dans le ciel clair |
---|
| 436 | ! - soit on pousse la param de Ludo au bout, et on prend un qvap de k+1 |
---|
| 437 | ! dans le ciel clair, avec un truc comme : |
---|
| 438 | ! qvapclr(k) = qvapclr(k+1)/qtot(k+1) * qtot(k) |
---|
| 439 | ! UPDATE : on code la seconde version. A voir si on veut mettre la premiere version. |
---|
| 440 | |
---|
| 441 | |
---|
| 442 | DO i = 1, klon |
---|
| 443 | |
---|
| 444 | !--If there is precipitation from the layer above |
---|
| 445 | ! NOTE TODO here we could replace the condition on precipfracclr(i) by a condition |
---|
| 446 | ! such as eps or thresh_precip_frac, to remove the senseless barrier in the formulas |
---|
| 447 | ! of evap / sublim |
---|
| 448 | IF ( ( ( rain(i) + snow(i) ) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
| 449 | |
---|
| 450 | IF ( ok_corr_vap_evasub ) THEN |
---|
| 451 | !--Corrected version - we use the same water ratio between |
---|
| 452 | !--the clear and the cloudy sky as in the layer above. This |
---|
| 453 | !--extends the assumption that the cloud fraction is the same |
---|
| 454 | !--as the layer above. This is assumed only for the evap / subl |
---|
| 455 | !--process |
---|
| 456 | !--Note that qvap(i) is the total water in the gridbox, and |
---|
| 457 | !--precipfraccld(i) is the cloud fraction in the layer above |
---|
| 458 | qvapclr = qvapclrup(i) / qtotupnew(i) * qvap(i) / ( 1. - precipfraccld(i) ) |
---|
| 459 | ELSE |
---|
| 460 | !--Legacy version from Ludo - we use the total specific humidity |
---|
| 461 | !--for the evap / subl process |
---|
| 462 | qvapclr = qvap(i) |
---|
| 463 | ENDIF |
---|
| 464 | |
---|
| 465 | !--Evaporation of liquid precipitation coming from above |
---|
| 466 | !--in the clear sky only |
---|
| 467 | !--dprecip/dz = -beta*(1-qvap/qsat)*(precip**expo_eva) |
---|
| 468 | !--formula from Sundqvist 1988, Klemp & Wilhemson 1978 |
---|
| 469 | !--Exact explicit formulation (rainclr is resolved exactly, qvap explicitly) |
---|
| 470 | !--which does not need a barrier on rainclr, because included in the formula |
---|
| 471 | draineva = precipfracclr(i) * ( MAX(0., & |
---|
| 472 | - coef_eva * ( 1. - expo_eva ) * (1. - qvapclr / qsatl(i)) * dz(i) & |
---|
| 473 | + ( rainclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_eva ) & |
---|
| 474 | ) )**( 1. / ( 1. - expo_eva ) ) - rainclr(i) |
---|
| 475 | |
---|
| 476 | !--Evaporation is limited by 0 |
---|
| 477 | draineva = MIN(0., draineva) |
---|
| 478 | |
---|
| 479 | |
---|
| 480 | !--Sublimation of the solid precipitation coming from above |
---|
| 481 | !--(same formula as for liquid precip) |
---|
| 482 | !--Exact explicit formulation (snowclr is resolved exactly, qvap explicitly) |
---|
| 483 | !--which does not need a barrier on snowclr, because included in the formula |
---|
| 484 | dsnowsub = precipfracclr(i) * ( MAX(0., & |
---|
| 485 | - coef_sub * ( 1. - expo_sub ) * (1. - qvapclr / qsati(i)) * dz(i) & |
---|
| 486 | + ( snowclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_sub ) & |
---|
| 487 | ) )**( 1. / ( 1. - expo_sub ) ) - snowclr(i) |
---|
| 488 | |
---|
| 489 | !--Sublimation is limited by 0 |
---|
| 490 | ! TODO: change max when we will allow for vapor deposition in supersaturated regions |
---|
| 491 | dsnowsub = MIN(0., dsnowsub) |
---|
| 492 | |
---|
| 493 | !--Evaporation limit: we ensure that the layer's fraction below |
---|
| 494 | !--the clear sky does not reach saturation. In this case, we |
---|
| 495 | !--redistribute the maximum flux dprecip_evasub_max conserving the ratio liquid/ice |
---|
| 496 | !--Max evaporation is computed not to saturate the clear sky precip fraction |
---|
| 497 | !--(i.e., the fraction where evaporation occurs) |
---|
| 498 | !--It is expressed as a max flux dprecip_evasub_max |
---|
| 499 | |
---|
| 500 | dprecip_evasub_max = MIN(0., ( qvapclr - qsat(i) ) * precipfracclr(i)) & |
---|
| 501 | * dhum_to_dflux(i) |
---|
| 502 | dprecip_evasub_tot = draineva + dsnowsub |
---|
| 503 | |
---|
| 504 | !--Barriers |
---|
| 505 | !--If activates if the total is LOWER than the max because |
---|
| 506 | !--everything is negative |
---|
| 507 | IF ( dprecip_evasub_tot .LT. dprecip_evasub_max ) THEN |
---|
| 508 | draineva = dprecip_evasub_max * draineva / dprecip_evasub_tot |
---|
| 509 | dsnowsub = dprecip_evasub_max * dsnowsub / dprecip_evasub_tot |
---|
| 510 | ENDIF |
---|
| 511 | |
---|
| 512 | |
---|
| 513 | !--New solid and liquid precipitation fluxes after evap and sublimation |
---|
| 514 | dqrevap = draineva / dhum_to_dflux(i) |
---|
| 515 | dqssubl = dsnowsub / dhum_to_dflux(i) |
---|
| 516 | |
---|
| 517 | |
---|
| 518 | !--Vapor is updated after evaporation/sublimation (it is increased) |
---|
| 519 | qvap(i) = qvap(i) - dqrevap - dqssubl |
---|
| 520 | !--qprecip is the total condensed water in the precip flux (it is decreased) |
---|
| 521 | qprecip(i) = qprecip(i) + dqrevap + dqssubl |
---|
| 522 | !--Air and precip temperature (i.e., gridbox temperature) |
---|
| 523 | !--is updated due to latent heat cooling |
---|
| 524 | temp(i) = temp(i) & |
---|
| 525 | + dqrevap * RLVTT / RCPD & |
---|
| 526 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) & |
---|
| 527 | + dqssubl * RLSTT / RCPD & |
---|
| 528 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) |
---|
| 529 | |
---|
| 530 | !--Add tendencies |
---|
| 531 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
| 532 | rainclr(i) = MAX(0., rainclr(i) + draineva) |
---|
| 533 | snowclr(i) = MAX(0., snowclr(i) + dsnowsub) |
---|
| 534 | |
---|
| 535 | !--If there is no more precip fluxes, the precipitation fraction in clear |
---|
| 536 | !--sky is set to 0 |
---|
| 537 | IF ( ( rainclr(i) + snowclr(i) ) .LE. 0. ) precipfracclr(i) = 0. |
---|
| 538 | |
---|
| 539 | !--Calculation of the total fluxes |
---|
| 540 | rain(i) = rainclr(i) + raincld(i) |
---|
| 541 | snow(i) = snowclr(i) + snowcld(i) |
---|
| 542 | |
---|
| 543 | ELSEIF ( ( rain(i) + snow(i) ) .LE. 0. ) THEN |
---|
| 544 | !--If no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
| 545 | precipfraccld(i) = 0. |
---|
| 546 | precipfracclr(i) = 0. |
---|
| 547 | |
---|
| 548 | ENDIF ! ( ( rain(i) + snow(i) ) .GT. 0. ) |
---|
| 549 | |
---|
| 550 | !--Diagnostic tendencies |
---|
| 551 | dqssub(i) = dqssubl / dtime |
---|
| 552 | dqreva(i) = dqrevap / dtime |
---|
| 553 | |
---|
| 554 | ENDDO ! loop on klon |
---|
| 555 | |
---|
| 556 | END SUBROUTINE poprecip_precld |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | !---------------------------------------------------------------- |
---|
| 560 | ! Computes the processes-oriented precipitation formulations for |
---|
| 561 | ! - autoconversion (auto) via a deposition process |
---|
| 562 | ! - aggregation (agg) |
---|
| 563 | ! - riming (rim) |
---|
| 564 | ! - collection (col) |
---|
| 565 | ! - melting (melt) |
---|
| 566 | ! - freezing (freez) |
---|
| 567 | ! |
---|
| 568 | SUBROUTINE poprecip_postcld( & |
---|
| 569 | klon, dtime, paprsdn, paprsup, pplay, ctot_vol, ptconv, & |
---|
| 570 | temp, qvap, qliq, qice, icefrac, cldfra, & |
---|
| 571 | precipfracclr, precipfraccld, & |
---|
| 572 | rain, rainclr, raincld, snow, snowclr, snowcld, & |
---|
| 573 | qraindiag, qsnowdiag, dqrauto, dqrcol, dqrmelt, dqrfreez, & |
---|
| 574 | dqsauto, dqsagg, dqsrim, dqsmelt, dqsfreez) |
---|
| 575 | |
---|
| 576 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
| 577 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RPI |
---|
| 578 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
| 579 | |
---|
| 580 | USE lmdz_lscp_ini, ONLY : cld_lc_con, cld_tau_con, cld_expo_con, seuil_neb, & |
---|
| 581 | cld_lc_lsc, cld_tau_lsc, cld_expo_lsc, rain_int_min, & |
---|
| 582 | thresh_precip_frac, gamma_col, gamma_agg, gamma_rim, & |
---|
| 583 | rho_rain, r_rain, r_snow, rho_ice, & |
---|
| 584 | tau_auto_snow_min, tau_auto_snow_max, & |
---|
| 585 | thresh_precip_frac, eps, & |
---|
| 586 | gamma_melt, alpha_freez, beta_freez, temp_nowater, & |
---|
| 587 | iflag_cloudth_vert, iflag_rain_incloud_vol, & |
---|
| 588 | cld_lc_lsc_snow, cld_lc_con_snow, gamma_freez, & |
---|
| 589 | rain_fallspeed_clr, rain_fallspeed_cld, & |
---|
| 590 | snow_fallspeed_clr, snow_fallspeed_cld |
---|
| 591 | |
---|
| 592 | |
---|
| 593 | IMPLICIT NONE |
---|
| 594 | |
---|
| 595 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
| 596 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
| 597 | |
---|
| 598 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
| 599 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
| 600 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
| 601 | |
---|
| 602 | REAL, INTENT(IN), DIMENSION(klon) :: ctot_vol !--volumic cloud fraction [-] |
---|
| 603 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv !--true if we are in a convective point |
---|
| 604 | |
---|
| 605 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
| 606 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity [kg/kg] |
---|
| 607 | REAL, INTENT(INOUT), DIMENSION(klon) :: qliq !--current liquid water specific humidity [kg/kg] |
---|
| 608 | REAL, INTENT(INOUT), DIMENSION(klon) :: qice !--current ice water specific humidity [kg/kg] |
---|
| 609 | REAL, INTENT(IN), DIMENSION(klon) :: icefrac !--ice fraction [-] |
---|
| 610 | REAL, INTENT(IN), DIMENSION(klon) :: cldfra !--cloud fraction [-] |
---|
| 611 | |
---|
| 612 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
| 613 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
| 614 | !--NB. at the end of the routine, becomes the fraction of precip |
---|
| 615 | !--in the current layer |
---|
| 616 | |
---|
| 617 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 618 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 619 | REAL, INTENT(INOUT), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
| 620 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 621 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 622 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
| 623 | |
---|
| 624 | REAL, INTENT(OUT), DIMENSION(klon) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
| 625 | REAL, INTENT(OUT), DIMENSION(klon) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
| 626 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
| 627 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
| 628 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
| 629 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
| 630 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
| 631 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
| 632 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
| 633 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
| 634 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
| 635 | |
---|
| 636 | |
---|
| 637 | |
---|
| 638 | !--Local variables |
---|
| 639 | |
---|
| 640 | INTEGER :: i |
---|
| 641 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
| 642 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
| 643 | REAL, DIMENSION(klon) :: qtot !--includes vap, liq, ice and precip |
---|
| 644 | |
---|
| 645 | !--Partition of the fluxes |
---|
| 646 | REAL :: dcldfra |
---|
| 647 | REAL :: precipfractot |
---|
| 648 | REAL :: dprecipfracclr, dprecipfraccld |
---|
| 649 | REAL :: drainclr, dsnowclr |
---|
| 650 | REAL :: draincld, dsnowcld |
---|
| 651 | |
---|
| 652 | !--Collection, aggregation and riming |
---|
| 653 | REAL :: eff_cldfra |
---|
| 654 | REAL :: coef_col, coef_agg, coef_rim, coef_tmp, qrain_tmp |
---|
| 655 | REAL :: Eff_rain_liq, Eff_snow_ice, Eff_snow_liq |
---|
| 656 | REAL :: rho_snow |
---|
| 657 | REAL :: dqlcol !--loss of liquid cloud content due to collection by rain [kg/kg/s] |
---|
| 658 | REAL :: dqiagg !--loss of ice cloud content due to collection by aggregation [kg/kg/s] |
---|
| 659 | REAL :: dqlrim !--loss of liquid cloud content due to riming on snow [kg/kg/s] |
---|
| 660 | |
---|
| 661 | !--Autoconversion |
---|
| 662 | REAL :: qthresh_auto_rain, tau_auto_rain, expo_auto_rain |
---|
| 663 | REAL :: qthresh_auto_snow, tau_auto_snow, expo_auto_snow |
---|
| 664 | REAL :: dqlauto !--loss of liquid cloud content due to autoconversion to rain [kg/kg/s] |
---|
| 665 | REAL :: dqiauto !--loss of ice cloud content due to autoconversion to snow [kg/kg/s] |
---|
| 666 | |
---|
| 667 | !--Melting |
---|
| 668 | REAL :: dqsmelt_max, air_thermal_conduct |
---|
| 669 | REAL :: nb_snowflake_clr, nb_snowflake_cld |
---|
| 670 | REAL :: capa_snowflake, temp_wetbulb |
---|
| 671 | REAL :: rho, r_ice |
---|
| 672 | REAL :: dqsclrmelt, dqscldmelt, dqstotmelt |
---|
| 673 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat |
---|
| 674 | |
---|
| 675 | !--Freezing |
---|
| 676 | REAL :: dqrfreez_max |
---|
| 677 | REAL :: tau_freez |
---|
| 678 | REAL :: dqrclrfreez, dqrcldfreez, dqrtotfreez, dqrtotfreez_step1, dqrtotfreez_step2 |
---|
| 679 | REAL :: coef_freez |
---|
| 680 | REAL :: dqifreez !--loss of ice cloud content due to collection of ice from rain [kg/kg/s] |
---|
| 681 | REAL :: Eff_rain_ice |
---|
| 682 | |
---|
| 683 | |
---|
| 684 | !--Initialisation of variables |
---|
| 685 | |
---|
| 686 | |
---|
| 687 | qzero(:) = 0. |
---|
| 688 | |
---|
| 689 | dqrcol(:) = 0. |
---|
| 690 | dqsagg(:) = 0. |
---|
| 691 | dqsauto(:) = 0. |
---|
| 692 | dqrauto(:) = 0. |
---|
| 693 | dqsrim(:) = 0. |
---|
| 694 | dqrmelt(:) = 0. |
---|
| 695 | dqsmelt(:) = 0. |
---|
| 696 | dqrfreez(:) = 0. |
---|
| 697 | dqsfreez(:) = 0. |
---|
| 698 | |
---|
| 699 | |
---|
| 700 | DO i = 1, klon |
---|
| 701 | |
---|
| 702 | !--Variables initialisation |
---|
| 703 | dqlcol = 0. |
---|
| 704 | dqiagg = 0. |
---|
| 705 | dqiauto = 0. |
---|
| 706 | dqlauto = 0. |
---|
| 707 | dqlrim = 0. |
---|
| 708 | |
---|
| 709 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
| 710 | dhum_to_dflux(i) = ( paprsdn(i) - paprsup(i) ) / RG / dtime |
---|
| 711 | qtot(i) = qvap(i) + qliq(i) + qice(i) & |
---|
| 712 | + ( raincld(i) + rainclr(i) + snowcld(i) + snowclr(i) ) / dhum_to_dflux(i) |
---|
| 713 | |
---|
| 714 | !------------------------------------------------------------ |
---|
| 715 | !-- PRECIPITATION FRACTIONS UPDATE |
---|
| 716 | !------------------------------------------------------------ |
---|
| 717 | !--The goal of this routine is to reattribute precipitation fractions |
---|
| 718 | !--and fluxes to clear or cloudy air, depending on the variation of |
---|
| 719 | !--the cloud fraction on the vertical dimension. We assume a |
---|
| 720 | !--maximum-random overlap of the cloud cover (see Jakob and Klein, 2000, |
---|
| 721 | !--and LTP thesis, 2021) |
---|
| 722 | !--NB. in fact, we assume a maximum-random overlap of the total precip. frac |
---|
| 723 | |
---|
| 724 | !--Initialisation |
---|
| 725 | precipfractot = precipfracclr(i) + precipfraccld(i) |
---|
| 726 | |
---|
| 727 | !--Instead of using the cloud cover which was use in LTP thesis, we use the |
---|
| 728 | !--total precip. fraction to compute the maximum-random overlap. This is |
---|
| 729 | !--because all the information of the cloud cover is embedded into |
---|
| 730 | !--precipfractot, and this allows for taking into account the potential |
---|
| 731 | !--reduction of the precipitation fraction because either the flux is too |
---|
| 732 | !--small (see barrier at the end of poprecip_postcld) or the flux is completely |
---|
| 733 | !--evaporated (see barrier at the end of poprecip_precld) |
---|
| 734 | !--NB. precipfraccld(i) is here the cloud fraction of the layer above |
---|
| 735 | !precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
| 736 | ! ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
| 737 | ! / ( 1. - MIN( precipfraccld(i), 1. - eps ) ) |
---|
| 738 | |
---|
| 739 | |
---|
| 740 | IF ( precipfraccld(i) .GT. ( 1. - eps ) ) THEN |
---|
| 741 | precipfractot = 1. |
---|
| 742 | ELSE |
---|
| 743 | precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
| 744 | ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
| 745 | / ( 1. - precipfraccld(i) ) |
---|
| 746 | ENDIF |
---|
| 747 | |
---|
| 748 | !--precipfraccld(i) is here the cloud fraction of the layer above |
---|
| 749 | dcldfra = cldfra(i) - precipfraccld(i) |
---|
| 750 | !--Tendency of the clear-sky precipitation fraction. We add a MAX on the |
---|
| 751 | !--calculation of the current CS precip. frac. |
---|
| 752 | !dprecipfracclr = MAX( 0., ( precipfractot - cldfra(i) ) ) - precipfracclr(i) |
---|
| 753 | !--We remove it, because precipfractot is guaranteed to be > cldfra (the MAX is activated |
---|
| 754 | !--if precipfractot < cldfra) |
---|
| 755 | dprecipfracclr = ( precipfractot - cldfra(i) ) - precipfracclr(i) |
---|
| 756 | !--Tendency of the cloudy precipitation fraction. We add a MAX on the |
---|
| 757 | !--calculation of the current CS precip. frac. |
---|
| 758 | !dprecipfraccld = MAX( dcldfra , - precipfraccld(i) ) |
---|
| 759 | !--We remove it, because cldfra is guaranteed to be > 0 (the MAX is activated |
---|
| 760 | !--if cldfra < 0) |
---|
| 761 | dprecipfraccld = dcldfra |
---|
| 762 | |
---|
| 763 | |
---|
| 764 | !--If the cloud extends |
---|
| 765 | IF ( dprecipfraccld .GT. 0. ) THEN |
---|
| 766 | !--If there is no CS precip, nothing happens. |
---|
| 767 | !--If there is, we reattribute some of the CS precip flux |
---|
| 768 | !--to the cloud precip flux, proportionnally to the |
---|
| 769 | !--decrease of the CS precip fraction |
---|
| 770 | IF ( precipfracclr(i) .LE. 0. ) THEN |
---|
| 771 | drainclr = 0. |
---|
| 772 | dsnowclr = 0. |
---|
| 773 | ELSE |
---|
| 774 | drainclr = dprecipfracclr / precipfracclr(i) * rainclr(i) |
---|
| 775 | dsnowclr = dprecipfracclr / precipfracclr(i) * snowclr(i) |
---|
| 776 | ENDIF |
---|
| 777 | !--If the cloud narrows |
---|
| 778 | ELSEIF ( dprecipfraccld .LT. 0. ) THEN |
---|
| 779 | !--We reattribute some of the cloudy precip flux |
---|
| 780 | !--to the CS precip flux, proportionnally to the |
---|
| 781 | !--decrease of the cloud precip fraction |
---|
| 782 | draincld = dprecipfraccld / precipfraccld(i) * raincld(i) |
---|
| 783 | dsnowcld = dprecipfraccld / precipfraccld(i) * snowcld(i) |
---|
| 784 | drainclr = - draincld |
---|
| 785 | dsnowclr = - dsnowcld |
---|
| 786 | !--If the cloud stays the same or if there is no cloud above and |
---|
| 787 | !--in the current layer, nothing happens |
---|
| 788 | ELSE |
---|
| 789 | drainclr = 0. |
---|
| 790 | dsnowclr = 0. |
---|
| 791 | ENDIF |
---|
| 792 | |
---|
| 793 | !--We add the tendencies |
---|
| 794 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
| 795 | precipfraccld(i) = precipfraccld(i) + dprecipfraccld |
---|
| 796 | precipfracclr(i) = precipfracclr(i) + dprecipfracclr |
---|
| 797 | rainclr(i) = MAX(0., rainclr(i) + drainclr) |
---|
| 798 | snowclr(i) = MAX(0., snowclr(i) + dsnowclr) |
---|
| 799 | raincld(i) = MAX(0., raincld(i) - drainclr) |
---|
| 800 | snowcld(i) = MAX(0., snowcld(i) - dsnowclr) |
---|
| 801 | |
---|
| 802 | !--If vertical heterogeneity is taken into account, we use |
---|
| 803 | !--the "true" volume fraction instead of a modified |
---|
| 804 | !--surface fraction (which is larger and artificially |
---|
| 805 | !--reduces the in-cloud water). |
---|
| 806 | IF ( ( iflag_cloudth_vert .GE. 3 ) .AND. ( iflag_rain_incloud_vol .EQ. 1 ) ) THEN |
---|
| 807 | eff_cldfra = ctot_vol(i) |
---|
| 808 | ELSE |
---|
| 809 | eff_cldfra = cldfra(i) |
---|
| 810 | ENDIF |
---|
| 811 | |
---|
| 812 | |
---|
| 813 | !--Start precipitation growth processes |
---|
| 814 | |
---|
| 815 | !--If the cloud is big enough, the precipitation processes activate |
---|
| 816 | ! TODO met on seuil_neb ici ? |
---|
| 817 | IF ( cldfra(i) .GE. seuil_neb ) THEN |
---|
| 818 | |
---|
| 819 | !--------------------------------------------------------- |
---|
| 820 | !-- COLLECTION AND AGGREGATION |
---|
| 821 | !--------------------------------------------------------- |
---|
| 822 | !--Collection: processus through which rain collects small liquid droplets |
---|
| 823 | !--in suspension, and add it to the rain flux |
---|
| 824 | !--Aggregation: same for snow (precip flux) and ice crystals (in suspension) |
---|
| 825 | !--Those processes are treated before autoconversion because we do not |
---|
| 826 | !--want to collect/aggregate the newly formed fluxes, which already |
---|
| 827 | !--"saw" the cloud as they come from it |
---|
| 828 | !--The formulas come from Muench and Lohmann 2020 |
---|
| 829 | |
---|
| 830 | !--gamma_col: tuning coefficient [-] |
---|
| 831 | !--rho_rain: volumic mass of rain [kg/m3] |
---|
| 832 | !--r_rain: size of the rain droplets [m] |
---|
| 833 | !--Eff_rain_liq: efficiency of the collection process [-] (between 0 and 1) |
---|
| 834 | !--dqlcol is a gridbox-mean quantity, as is qliq and raincld. They are |
---|
| 835 | !--divided by respectively eff_cldfra, eff_cldfra and precipfraccld to |
---|
| 836 | !--get in-cloud mean quantities. The two divisions by eff_cldfra are |
---|
| 837 | !--then simplified. |
---|
| 838 | |
---|
| 839 | !--The collection efficiency is perfect. |
---|
| 840 | Eff_rain_liq = 1. |
---|
| 841 | coef_col = gamma_col * 3. / 4. / rho_rain / r_rain * Eff_rain_liq |
---|
| 842 | IF ( raincld(i) .GT. 0. ) THEN |
---|
| 843 | !--Exact explicit version, which does not need a barrier because of |
---|
| 844 | !--the exponential decrease |
---|
| 845 | dqlcol = qliq(i) * ( EXP( - dtime * coef_col * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
| 846 | |
---|
| 847 | !--Add tendencies |
---|
| 848 | qliq(i) = qliq(i) + dqlcol |
---|
| 849 | raincld(i) = raincld(i) - dqlcol * dhum_to_dflux(i) |
---|
| 850 | |
---|
| 851 | !--Diagnostic tendencies |
---|
| 852 | dqrcol(i) = - dqlcol / dtime |
---|
| 853 | ENDIF |
---|
| 854 | |
---|
| 855 | !--Same as for aggregation |
---|
| 856 | !--Eff_snow_liq formula: |
---|
| 857 | !--it s a product of a collection efficiency and a sticking efficiency |
---|
| 858 | ! Milbrandt and Yau formula that gives very low values: |
---|
| 859 | ! Eff_snow_ice = 0.05 * EXP( 0.1 * ( temp(i) - RTT ) ) |
---|
| 860 | ! Lin 1983's formula |
---|
| 861 | Eff_snow_ice = EXP( 0.025 * MIN( ( temp(i) - RTT ), 0.) ) |
---|
| 862 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
| 863 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
| 864 | coef_agg = gamma_agg * 3. / 4. / rho_snow / r_snow * Eff_snow_ice |
---|
| 865 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
| 866 | !--Exact explicit version, which does not need a barrier because of |
---|
| 867 | !--the exponential decrease |
---|
| 868 | dqiagg = qice(i) * ( EXP( - dtime * coef_agg * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
| 869 | |
---|
| 870 | !--Add tendencies |
---|
| 871 | qice(i) = qice(i) + dqiagg |
---|
| 872 | snowcld(i) = snowcld(i) - dqiagg * dhum_to_dflux(i) |
---|
| 873 | |
---|
| 874 | !--Diagnostic tendencies |
---|
| 875 | dqsagg(i) = - dqiagg / dtime |
---|
| 876 | ENDIF |
---|
| 877 | |
---|
| 878 | |
---|
| 879 | !--------------------------------------------------------- |
---|
| 880 | !-- AUTOCONVERSION |
---|
| 881 | !--------------------------------------------------------- |
---|
| 882 | !--Autoconversion converts liquid droplets/ice crystals into |
---|
| 883 | !--rain drops/snowflakes. It relies on the formulations by |
---|
| 884 | !--Sundqvist 1978. |
---|
| 885 | |
---|
| 886 | !--If we are in a convective point, we have different parameters |
---|
| 887 | !--for the autoconversion |
---|
| 888 | IF ( ptconv(i) ) THEN |
---|
| 889 | qthresh_auto_rain = cld_lc_con |
---|
| 890 | qthresh_auto_snow = cld_lc_con_snow |
---|
| 891 | |
---|
| 892 | tau_auto_rain = cld_tau_con |
---|
| 893 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
| 894 | tau_auto_snow = tau_auto_snow_max & |
---|
| 895 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
| 896 | |
---|
| 897 | expo_auto_rain = cld_expo_con |
---|
| 898 | expo_auto_snow = cld_expo_con |
---|
| 899 | ELSE |
---|
| 900 | qthresh_auto_rain = cld_lc_lsc |
---|
| 901 | qthresh_auto_snow = cld_lc_lsc_snow |
---|
| 902 | |
---|
| 903 | tau_auto_rain = cld_tau_lsc |
---|
| 904 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
| 905 | tau_auto_snow = tau_auto_snow_max & |
---|
| 906 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
| 907 | |
---|
| 908 | expo_auto_rain = cld_expo_lsc |
---|
| 909 | expo_auto_snow = cld_expo_lsc |
---|
| 910 | ENDIF |
---|
| 911 | |
---|
| 912 | |
---|
| 913 | ! Liquid water quantity to remove according to (Sundqvist, 1978) |
---|
| 914 | ! dqliq/dt = -qliq/tau * ( 1-exp(-(qliqincld/qthresh)**2) ) |
---|
| 915 | ! |
---|
| 916 | !--And same formula for ice |
---|
| 917 | ! |
---|
| 918 | !--We first treat the second term (with exponential) in an explicit way |
---|
| 919 | !--and then treat the first term (-q/tau) in an exact way |
---|
| 920 | |
---|
| 921 | dqlauto = - qliq(i) * ( 1. - exp( - dtime / tau_auto_rain * ( 1. - exp( & |
---|
| 922 | - ( qliq(i) / eff_cldfra / qthresh_auto_rain ) ** expo_auto_rain ) ) ) ) |
---|
| 923 | |
---|
| 924 | dqiauto = - qice(i) * ( 1. - exp( - dtime / tau_auto_snow * ( 1. - exp( & |
---|
| 925 | - ( qice(i) / eff_cldfra / qthresh_auto_snow ) ** expo_auto_snow ) ) ) ) |
---|
| 926 | |
---|
| 927 | |
---|
| 928 | !--Barriers so that we don't create more rain/snow |
---|
| 929 | !--than there is liquid/ice |
---|
| 930 | dqlauto = MAX( - qliq(i), dqlauto ) |
---|
| 931 | dqiauto = MAX( - qice(i), dqiauto ) |
---|
| 932 | |
---|
| 933 | !--Add tendencies |
---|
| 934 | qliq(i) = qliq(i) + dqlauto |
---|
| 935 | qice(i) = qice(i) + dqiauto |
---|
| 936 | raincld(i) = raincld(i) - dqlauto * dhum_to_dflux(i) |
---|
| 937 | snowcld(i) = snowcld(i) - dqiauto * dhum_to_dflux(i) |
---|
| 938 | |
---|
| 939 | !--Diagnostic tendencies |
---|
| 940 | dqsauto(i) = - dqiauto / dtime |
---|
| 941 | dqrauto(i) = - dqlauto / dtime |
---|
| 942 | |
---|
| 943 | |
---|
| 944 | !--------------------------------------------------------- |
---|
| 945 | !-- RIMING |
---|
| 946 | !--------------------------------------------------------- |
---|
| 947 | !--Process which converts liquid droplets in suspension into |
---|
| 948 | !--snow because of the collision between |
---|
| 949 | !--those and falling snowflakes. |
---|
| 950 | !--The formula comes from Muench and Lohmann 2020 |
---|
| 951 | !--NB.: this process needs a temperature adjustment |
---|
| 952 | |
---|
| 953 | !--Eff_snow_liq formula: following Ferrier 1994, |
---|
| 954 | !--assuming 1 |
---|
| 955 | Eff_snow_liq = 1.0 |
---|
| 956 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
| 957 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
| 958 | coef_rim = gamma_rim * 3. / 4. / rho_snow / r_snow * Eff_snow_liq |
---|
| 959 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
| 960 | !--Exact version, which does not need a barrier because of |
---|
| 961 | !--the exponential decrease |
---|
| 962 | dqlrim = qliq(i) * ( EXP( - dtime * coef_rim * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
| 963 | |
---|
| 964 | !--Add tendencies |
---|
| 965 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
| 966 | qliq(i) = qliq(i) + dqlrim |
---|
| 967 | snowcld(i) = snowcld(i) - dqlrim * dhum_to_dflux(i) |
---|
| 968 | |
---|
| 969 | !--Temperature adjustment with the release of latent |
---|
| 970 | !--heat because of solid condensation |
---|
| 971 | temp(i) = temp(i) - dqlrim * RLMLT / RCPD & |
---|
| 972 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
| 973 | |
---|
| 974 | !--Diagnostic tendencies |
---|
| 975 | dqsrim(i) = - dqlrim / dtime |
---|
| 976 | ENDIF |
---|
| 977 | |
---|
| 978 | ENDIF ! cldfra .GE. seuil_neb |
---|
| 979 | |
---|
| 980 | ENDDO ! loop on klon |
---|
| 981 | |
---|
| 982 | |
---|
| 983 | !--Re-calculation of saturation specific humidity |
---|
| 984 | !--because riming changed temperature |
---|
| 985 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 0, .FALSE., qsat, dqsat) |
---|
| 986 | |
---|
| 987 | DO i = 1, klon |
---|
| 988 | |
---|
| 989 | !--------------------------------------------------------- |
---|
| 990 | !-- MELTING |
---|
| 991 | !--------------------------------------------------------- |
---|
| 992 | !--Process through which snow melts into rain. |
---|
| 993 | !--The formula is homemade. |
---|
| 994 | !--NB.: this process needs a temperature adjustment |
---|
| 995 | |
---|
| 996 | !--dqsmelt_max : maximum snow melting so that temperature |
---|
| 997 | !-- stays higher than 273 K [kg/kg] |
---|
| 998 | !--capa_snowflake : capacitance of a snowflake, equal to |
---|
| 999 | !-- the radius if the snowflake is a sphere [m] |
---|
| 1000 | !--temp_wetbulb : wet-bulb temperature [K] |
---|
| 1001 | !--snow_fallspeed : snow fall velocity (in clear/cloudy sky) [m/s] |
---|
| 1002 | !--air_thermal_conduct : thermal conductivity of the air [J/m/K/s] |
---|
| 1003 | !--gamma_melt : tuning parameter for melting [-] |
---|
| 1004 | !--nb_snowflake : number of snowflakes (in clear/cloudy air) [-] |
---|
| 1005 | |
---|
| 1006 | IF ( ( snowclr(i) + snowcld(i) ) .GT. 0. ) THEN |
---|
| 1007 | !--Computed according to |
---|
| 1008 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
| 1009 | dqsmelt_max = MIN(0., ( RTT - temp(i) ) / RLMLT * RCPD & |
---|
| 1010 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
| 1011 | |
---|
| 1012 | !--Initialisation |
---|
| 1013 | dqsclrmelt = 0. |
---|
| 1014 | dqscldmelt = 0. |
---|
| 1015 | |
---|
| 1016 | !--We assume that the snowflakes are spherical |
---|
| 1017 | capa_snowflake = r_snow |
---|
| 1018 | !--Thermal conductivity of the air, empirical formula from Beard and Pruppacher (1971) |
---|
| 1019 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 |
---|
| 1020 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
| 1021 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
| 1022 | |
---|
| 1023 | !--In clear air |
---|
| 1024 | IF ( ( snowclr(i) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
| 1025 | !--Formula for the wet-bulb temperature from ECMWF (IFS) |
---|
| 1026 | !--The vapor used is the vapor in the clear sky |
---|
| 1027 | temp_wetbulb = temp(i) & |
---|
| 1028 | - ( qsat(i) - ( qvap(i) - cldfra(i) * qsat(i) ) / ( 1. - cldfra(i) ) ) & |
---|
| 1029 | * ( 1329.31 + 0.0074615 * ( pplay(i) - 0.85e5 ) & |
---|
| 1030 | - 40.637 * ( temp(i) - 275. ) ) |
---|
| 1031 | !--Calculated according to |
---|
| 1032 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
| 1033 | nb_snowflake_clr = snowclr(i) / precipfracclr(i) / snow_fallspeed_clr & |
---|
| 1034 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
| 1035 | dqsclrmelt = - nb_snowflake_clr * 4. * RPI * air_thermal_conduct & |
---|
| 1036 | * capa_snowflake / RLMLT * gamma_melt & |
---|
| 1037 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
| 1038 | |
---|
| 1039 | !--Barrier to limit the melting flux to the clr snow flux in the mesh |
---|
| 1040 | dqsclrmelt = MAX( dqsclrmelt , -snowclr(i) / dhum_to_dflux(i)) |
---|
| 1041 | ENDIF |
---|
| 1042 | |
---|
| 1043 | |
---|
| 1044 | !--In cloudy air |
---|
| 1045 | IF ( ( snowcld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
| 1046 | !--As the air is saturated, the wet-bulb temperature is equal to the |
---|
| 1047 | !--temperature |
---|
| 1048 | temp_wetbulb = temp(i) |
---|
| 1049 | !--Calculated according to |
---|
| 1050 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
| 1051 | nb_snowflake_cld = snowcld(i) / precipfraccld(i) / snow_fallspeed_cld & |
---|
| 1052 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
| 1053 | dqscldmelt = - nb_snowflake_cld * 4. * RPI * air_thermal_conduct & |
---|
| 1054 | * capa_snowflake / RLMLT * gamma_melt & |
---|
| 1055 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
| 1056 | |
---|
| 1057 | !--Barrier to limit the melting flux to the cld snow flux in the mesh |
---|
| 1058 | dqscldmelt = MAX(dqscldmelt , - snowcld(i) / dhum_to_dflux(i)) |
---|
| 1059 | ENDIF |
---|
| 1060 | |
---|
| 1061 | |
---|
| 1062 | !--Barrier on temperature. If the total melting flux leads to a |
---|
| 1063 | !--positive temperature, it is limited to keep temperature above 0 degC. |
---|
| 1064 | !--It is activated if the total is LOWER than the max |
---|
| 1065 | !--because everything is negative |
---|
| 1066 | dqstotmelt = dqsclrmelt + dqscldmelt |
---|
| 1067 | IF ( dqstotmelt .LT. dqsmelt_max ) THEN |
---|
| 1068 | !--We redistribute the max melted snow keeping |
---|
| 1069 | !--the clear/cloud partition of the melted snow |
---|
| 1070 | dqsclrmelt = dqsmelt_max * dqsclrmelt / dqstotmelt |
---|
| 1071 | dqscldmelt = dqsmelt_max * dqscldmelt / dqstotmelt |
---|
| 1072 | dqstotmelt = dqsmelt_max |
---|
| 1073 | |
---|
| 1074 | ENDIF |
---|
| 1075 | |
---|
| 1076 | !--Add tendencies |
---|
| 1077 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
| 1078 | rainclr(i) = MAX(0., rainclr(i) - dqsclrmelt * dhum_to_dflux(i)) |
---|
| 1079 | raincld(i) = MAX(0., raincld(i) - dqscldmelt * dhum_to_dflux(i)) |
---|
| 1080 | snowclr(i) = MAX(0., snowclr(i) + dqsclrmelt * dhum_to_dflux(i)) |
---|
| 1081 | snowcld(i) = MAX(0., snowcld(i) + dqscldmelt * dhum_to_dflux(i)) |
---|
| 1082 | |
---|
| 1083 | !--Temperature adjustment with the release of latent |
---|
| 1084 | !--heat because of melting |
---|
| 1085 | temp(i) = temp(i) + dqstotmelt * RLMLT / RCPD & |
---|
| 1086 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
| 1087 | |
---|
| 1088 | !--Diagnostic tendencies |
---|
| 1089 | dqrmelt(i) = - dqstotmelt / dtime |
---|
| 1090 | dqsmelt(i) = dqstotmelt / dtime |
---|
| 1091 | |
---|
| 1092 | ENDIF |
---|
| 1093 | |
---|
| 1094 | |
---|
| 1095 | !--------------------------------------------------------- |
---|
| 1096 | !-- FREEZING |
---|
| 1097 | !--------------------------------------------------------- |
---|
| 1098 | !--Process through which rain freezes into snow. |
---|
| 1099 | !-- We parameterize it as a 2 step process: |
---|
| 1100 | !--first: freezing following collision with ice crystals |
---|
| 1101 | !--second: immersion freezing following (inspired by Bigg 1953) |
---|
| 1102 | !--the latter is parameterized as an exponential decrease of the rain |
---|
| 1103 | !--water content with a homemade formulya |
---|
| 1104 | !--This is based on a caracteritic time of freezing, which |
---|
| 1105 | !--exponentially depends on temperature so that it is |
---|
| 1106 | !--equal to 1 for temp_nowater (see below) and is close to |
---|
| 1107 | !--0 for RTT (=273.15 K). |
---|
| 1108 | !--NB.: this process needs a temperature adjustment |
---|
| 1109 | !--dqrfreez_max : maximum rain freezing so that temperature |
---|
| 1110 | !-- stays lower than 273 K [kg/kg] |
---|
| 1111 | !--tau_freez : caracteristic time of freezing [s] |
---|
| 1112 | !--gamma_freez : tuning parameter [s-1] |
---|
| 1113 | !--alpha_freez : tuning parameter for the shape of the exponential curve [-] |
---|
| 1114 | !--temp_nowater : temperature below which no liquid water exists [K] (about -40 degC) |
---|
| 1115 | |
---|
| 1116 | IF ( ( rainclr(i) + raincld(i) ) .GT. 0. ) THEN |
---|
| 1117 | |
---|
| 1118 | |
---|
| 1119 | !--1st step: freezing following collision with ice crystals |
---|
| 1120 | !--Sub-process of freezing which quantifies the collision between |
---|
| 1121 | !--ice crystals in suspension and falling rain droplets. |
---|
| 1122 | !--The rain droplets freeze, becoming graupel, and carrying |
---|
| 1123 | !--the ice crystal (which acted as an ice nucleating particle). |
---|
| 1124 | !--The formula is adapted from the riming formula. |
---|
| 1125 | !--it works only in the cloudy part |
---|
| 1126 | |
---|
| 1127 | dqifreez = 0. |
---|
| 1128 | dqrtotfreez_step1 = 0. |
---|
| 1129 | |
---|
| 1130 | IF ( ( qice(i) .GT. 0. ) .AND. ( cldfra(i) .GT. 0. ) .AND. & |
---|
| 1131 | ( raincld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
| 1132 | dqrclrfreez = 0. |
---|
| 1133 | dqrcldfreez = 0. |
---|
| 1134 | |
---|
| 1135 | !--Computed according to |
---|
| 1136 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
| 1137 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
| 1138 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
| 1139 | |
---|
| 1140 | |
---|
| 1141 | !--The collision efficiency is assumed unity |
---|
| 1142 | Eff_rain_ice = 1. |
---|
| 1143 | coef_freez = gamma_freez * 3. / 4. / rho_rain / r_rain * Eff_rain_ice |
---|
| 1144 | !--Exact version, which does not need a barrier because of |
---|
| 1145 | !--the exponential decrease. |
---|
| 1146 | dqifreez = qice(i) * ( EXP( - dtime * coef_freez * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
| 1147 | |
---|
| 1148 | !--We add the part of rain water that freezes, limited by a temperature barrier |
---|
| 1149 | !--This quantity is calculated assuming that the number of drop that freeze correspond to the number |
---|
| 1150 | !--of crystals collected (and assuming uniform distributions of ice crystals and rain drops) |
---|
| 1151 | !--The ice specific humidity that collide with rain is dqi = dNi 4/3 PI rho_ice r_ice**3 |
---|
| 1152 | !--The rain that collide with ice is, similarly, dqr = dNr 4/3 PI rho_rain r_rain**3 |
---|
| 1153 | !--The assumption above corresponds to dNi = dNr, i.e., |
---|
| 1154 | !-- dqr = dqi * (4/3 PI rho_rain * r_rain**3) / (4/3 PI rho_ice * r_ice**3) |
---|
| 1155 | !--Dry density [kg/m3] |
---|
| 1156 | rho = pplay(i) / temp(i) / RD |
---|
| 1157 | !--r_ice formula from Sun and Rikus (1999) |
---|
| 1158 | r_ice = 1.e-6 * ( 45.8966 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2214 & |
---|
| 1159 | + 0.7957 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2535 * ( temp(i) - RTT + 190. ) ) / 2. |
---|
| 1160 | dqrcldfreez = dqifreez * rho_rain * r_rain**3. / ( rho_ice * r_ice**3. ) |
---|
| 1161 | dqrcldfreez = MAX(dqrcldfreez, - raincld(i) / dhum_to_dflux(i)) |
---|
| 1162 | dqrcldfreez = MAX(dqrcldfreez, dqrfreez_max) |
---|
| 1163 | dqrtotfreez_step1 = dqrcldfreez |
---|
| 1164 | |
---|
| 1165 | !--Add tendencies |
---|
| 1166 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
| 1167 | qice(i) = qice(i) + dqifreez |
---|
| 1168 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
| 1169 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i) - dqifreez * dhum_to_dflux(i)) |
---|
| 1170 | temp(i) = temp(i) - dqrtotfreez_step1 * RLMLT / RCPD & |
---|
| 1171 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
| 1172 | |
---|
| 1173 | ENDIF |
---|
| 1174 | |
---|
| 1175 | !-- Second step immersion freezing of rain drops |
---|
| 1176 | !-- with a homemade timeconstant depending on temperature |
---|
| 1177 | |
---|
| 1178 | dqrclrfreez = 0. |
---|
| 1179 | dqrcldfreez = 0. |
---|
| 1180 | dqrtotfreez_step2 = 0. |
---|
| 1181 | !--Computed according to |
---|
| 1182 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
| 1183 | |
---|
| 1184 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
| 1185 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
| 1186 | |
---|
| 1187 | |
---|
| 1188 | tau_freez = 1. / ( beta_freez & |
---|
| 1189 | * EXP( - alpha_freez * ( temp(i) - temp_nowater ) / ( RTT - temp_nowater ) ) ) |
---|
| 1190 | |
---|
| 1191 | |
---|
| 1192 | !--In clear air |
---|
| 1193 | IF ( rainclr(i) .GT. 0. ) THEN |
---|
| 1194 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
| 1195 | dqrclrfreez = rainclr(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
| 1196 | ENDIF |
---|
| 1197 | |
---|
| 1198 | !--In cloudy air |
---|
| 1199 | IF ( raincld(i) .GT. 0. ) THEN |
---|
| 1200 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
| 1201 | dqrcldfreez = raincld(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
| 1202 | ENDIF |
---|
| 1203 | |
---|
| 1204 | !--temperature barrier step 2 |
---|
| 1205 | !--It is activated if the total is LOWER than the max |
---|
| 1206 | !--because everything is negative |
---|
| 1207 | dqrtotfreez_step2 = dqrclrfreez + dqrcldfreez |
---|
| 1208 | |
---|
| 1209 | IF ( dqrtotfreez_step2 .LT. dqrfreez_max ) THEN |
---|
| 1210 | !--We redistribute the max freezed rain keeping |
---|
| 1211 | !--the clear/cloud partition of the freezing rain |
---|
| 1212 | dqrclrfreez = dqrfreez_max * dqrclrfreez / dqrtotfreez_step2 |
---|
| 1213 | dqrcldfreez = dqrfreez_max * dqrcldfreez / dqrtotfreez_step2 |
---|
| 1214 | dqrtotfreez_step2 = dqrfreez_max |
---|
| 1215 | ENDIF |
---|
| 1216 | |
---|
| 1217 | |
---|
| 1218 | !--Add tendencies |
---|
| 1219 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
| 1220 | rainclr(i) = MAX(0., rainclr(i) + dqrclrfreez * dhum_to_dflux(i)) |
---|
| 1221 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
| 1222 | snowclr(i) = MAX(0., snowclr(i) - dqrclrfreez * dhum_to_dflux(i)) |
---|
| 1223 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i)) |
---|
| 1224 | |
---|
| 1225 | |
---|
| 1226 | !--Temperature adjustment with the uptake of latent |
---|
| 1227 | !--heat because of freezing |
---|
| 1228 | temp(i) = temp(i) - dqrtotfreez_step2 * RLMLT / RCPD & |
---|
| 1229 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
| 1230 | |
---|
| 1231 | !--Diagnostic tendencies |
---|
| 1232 | dqrtotfreez = dqrtotfreez_step1 + dqrtotfreez_step2 |
---|
| 1233 | dqrfreez(i) = dqrtotfreez / dtime |
---|
| 1234 | dqsfreez(i) = -(dqrtotfreez + dqifreez) / dtime |
---|
| 1235 | |
---|
| 1236 | ENDIF |
---|
| 1237 | |
---|
| 1238 | |
---|
| 1239 | |
---|
| 1240 | !--If the local flux of rain+snow in clear/cloudy air is lower than rain_int_min, |
---|
| 1241 | !--we reduce the precipiration fraction in the clear/cloudy air so that the new |
---|
| 1242 | !--local flux of rain+snow is equal to rain_int_min. |
---|
| 1243 | !--Here, rain+snow is the gridbox-mean flux of precip. |
---|
| 1244 | !--Therefore, (rain+snow)/precipfrac is the local flux of precip. |
---|
| 1245 | !--If the local flux of precip is lower than rain_int_min, i.e., |
---|
| 1246 | !-- (rain+snow)/precipfrac < rain_int_min , i.e., |
---|
| 1247 | !-- (rain+snow)/rain_int_min < precipfrac , then we want to reduce |
---|
| 1248 | !--the precip fraction to the equality, i.e., precipfrac = (rain+snow)/rain_int_min. |
---|
| 1249 | !--Note that this is physically different than what is proposed in LTP thesis. |
---|
| 1250 | precipfracclr(i) = MIN( precipfracclr(i), ( rainclr(i) + snowclr(i) ) / rain_int_min ) |
---|
| 1251 | precipfraccld(i) = MIN( precipfraccld(i), ( raincld(i) + snowcld(i) ) / rain_int_min ) |
---|
| 1252 | |
---|
| 1253 | !--Calculate outputs |
---|
| 1254 | rain(i) = rainclr(i) + raincld(i) |
---|
| 1255 | snow(i) = snowclr(i) + snowcld(i) |
---|
| 1256 | |
---|
| 1257 | !--Diagnostics |
---|
| 1258 | !--BEWARE this is indeed a diagnostic: this is an estimation from |
---|
| 1259 | !--the value of the flux at the bottom interface of the mesh and |
---|
| 1260 | !--and assuming an upstream numerical calculation |
---|
| 1261 | !--If ok_radocond_snow is TRUE, then the diagnostic qsnowdiag is |
---|
| 1262 | !--used for computing the total ice water content in the mesh |
---|
| 1263 | !--for radiation only |
---|
| 1264 | qraindiag(i) = ( rainclr(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_clr & |
---|
| 1265 | + raincld(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_cld ) |
---|
| 1266 | qsnowdiag(i) = ( snowclr(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_clr & |
---|
| 1267 | + snowcld(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_cld ) |
---|
| 1268 | |
---|
| 1269 | |
---|
| 1270 | ENDDO ! loop on klon |
---|
| 1271 | |
---|
| 1272 | END SUBROUTINE poprecip_postcld |
---|
| 1273 | |
---|
| 1274 | END MODULE lmdz_lscp_precip |
---|