[4803] | 1 | MODULE lmdz_lscp_poprecip |
---|
| 2 | !---------------------------------------------------------------- |
---|
| 3 | ! Module for the process-oriented treament of precipitation |
---|
| 4 | ! that are called in LSCP |
---|
| 5 | ! Authors: Atelier Nuage (G. Riviere, L. Raillard, M. Wimmer, |
---|
| 6 | ! N. Dutrievoz, E. Vignon, A. Borella, et al.) |
---|
| 7 | ! Jan. 2024 |
---|
| 8 | |
---|
| 9 | |
---|
| 10 | IMPLICIT NONE |
---|
| 11 | |
---|
| 12 | CONTAINS |
---|
| 13 | |
---|
| 14 | !---------------------------------------------------------------- |
---|
| 15 | ! Computes the processes-oriented precipitation formulations for |
---|
| 16 | ! evaporation and sublimation |
---|
| 17 | ! |
---|
[4879] | 18 | SUBROUTINE poprecip_precld( & |
---|
[4803] | 19 | klon, dtime, iftop, paprsdn, paprsup, pplay, temp, tempupnew, qvap, & |
---|
[4913] | 20 | qprecip, precipfracclr, precipfraccld, qvapclrup, qtotupnew, & |
---|
[4803] | 21 | rain, rainclr, raincld, snow, snowclr, snowcld, dqreva, dqssub & |
---|
| 22 | ) |
---|
| 23 | |
---|
| 24 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
[4830] | 25 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub, expo_eva, expo_sub, thresh_precip_frac |
---|
[4803] | 26 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
[4913] | 27 | USE lmdz_lscp_ini, ONLY : ok_corr_vap_evasub |
---|
[4803] | 28 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
| 29 | |
---|
| 30 | IMPLICIT NONE |
---|
| 31 | |
---|
| 32 | |
---|
| 33 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
| 34 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
| 35 | LOGICAL, INTENT(IN) :: iftop !--if top of the column |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
| 39 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
| 40 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
| 41 | |
---|
| 42 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
| 43 | REAL, INTENT(INOUT), DIMENSION(klon) :: tempupnew !--updated temperature of the overlying layer [K] |
---|
| 44 | |
---|
| 45 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity (includes evaporated qi and ql) [kg/kg] |
---|
| 46 | REAL, INTENT(INOUT), DIMENSION(klon) :: qprecip !--specific humidity in the precipitation falling from the upper layer [kg/kg] |
---|
| 47 | |
---|
| 48 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
| 49 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
| 50 | |
---|
[4913] | 51 | REAL, INTENT(IN), DIMENSION(klon) :: qvapclrup !--clear-sky specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
| 52 | REAL, INTENT(IN), DIMENSION(klon) :: qtotupnew !--total specific humidity IN THE LAYER ABOVE [kg/kg] |
---|
| 53 | |
---|
[4809] | 54 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 55 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 56 | REAL, INTENT(IN), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
| 57 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 58 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 59 | REAL, INTENT(IN), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
[4803] | 60 | |
---|
| 61 | REAL, INTENT(OUT), DIMENSION(klon) :: dqreva !--rain tendency due to evaporation [kg/kg/s] |
---|
| 62 | REAL, INTENT(OUT), DIMENSION(klon) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
| 63 | |
---|
| 64 | |
---|
[4819] | 65 | !--Integer for interating over klon |
---|
[4803] | 66 | INTEGER :: i |
---|
[4898] | 67 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
[4833] | 68 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
| 69 | !-- |
---|
| 70 | REAL, DIMENSION(klon) :: rho, dz |
---|
[4803] | 71 | |
---|
[4819] | 72 | !--Saturation values |
---|
[4803] | 73 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat, qsatl, dqsatl, qsati, dqsati |
---|
[4913] | 74 | !--Vapor in the clear sky |
---|
| 75 | REAL :: qvapclr |
---|
[4819] | 76 | !--Fluxes tendencies because of evaporation and sublimation |
---|
| 77 | REAL :: dprecip_evasub_max, draineva, dsnowsub, dprecip_evasub_tot |
---|
| 78 | !--Specific humidity tendencies because of evaporation and sublimation |
---|
| 79 | REAL :: dqrevap, dqssubl |
---|
| 80 | !--Specific heat constant |
---|
[4803] | 81 | REAL :: cpair, cpw |
---|
| 82 | |
---|
[4819] | 83 | !--Initialisation |
---|
| 84 | qzero(:) = 0. |
---|
| 85 | dqreva(:) = 0. |
---|
| 86 | dqssub(:) = 0. |
---|
| 87 | dqrevap = 0. |
---|
| 88 | dqssubl = 0. |
---|
[4803] | 89 | |
---|
[4833] | 90 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
| 91 | dhum_to_dflux(:) = ( paprsdn(:) - paprsup(:) ) / RG / dtime |
---|
| 92 | rho(:) = pplay(:) / temp(:) / RD |
---|
| 93 | dz(:) = ( paprsdn(:) - paprsup(:) ) / RG / rho(:) |
---|
[4819] | 94 | |
---|
| 95 | !--Calculation of saturation specific humidity |
---|
| 96 | !--depending on temperature: |
---|
[4803] | 97 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,0,.false.,qsat(:),dqsat(:)) |
---|
[4819] | 98 | !--wrt liquid water |
---|
[4803] | 99 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,1,.false.,qsatl(:),dqsatl(:)) |
---|
[4819] | 100 | !--wrt ice |
---|
[4803] | 101 | CALL calc_qsat_ecmwf(klon,temp(:),qzero(:),pplay(:),RTT,2,.false.,qsati(:),dqsati(:)) |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | |
---|
[4819] | 105 | !--First step consists in "thermalizing" the layer: |
---|
| 106 | !--as the flux of precip from layer above "advects" some heat (as the precip is at the temperature |
---|
| 107 | !--of the overlying layer) we recalculate a mean temperature that both the air and the precip in the |
---|
| 108 | !--layer have. |
---|
[4803] | 109 | |
---|
| 110 | IF (iftop) THEN |
---|
| 111 | |
---|
[4819] | 112 | DO i = 1, klon |
---|
| 113 | qprecip(i) = 0. |
---|
| 114 | ENDDO |
---|
[4803] | 115 | |
---|
| 116 | ELSE |
---|
| 117 | |
---|
[4819] | 118 | DO i = 1, klon |
---|
| 119 | !--No condensed water so cp=cp(vapor+dry air) |
---|
| 120 | !-- RVTMP2=rcpv/rcpd-1 |
---|
| 121 | cpair = RCPD * ( 1. + RVTMP2 * qvap(i) ) |
---|
| 122 | cpw = RCPD * RVTMP2 |
---|
| 123 | !--qprecip has to be thermalized with |
---|
| 124 | !--layer's air so that precipitation at the ground has the |
---|
| 125 | !--same temperature as the lowermost layer |
---|
| 126 | !--we convert the flux into a specific quantity qprecip |
---|
[4833] | 127 | qprecip(i) = ( rain(i) + snow(i) ) / dhum_to_dflux(i) |
---|
[4819] | 128 | !-- t(i,k+1) + d_t(i,k+1): new temperature of the overlying layer |
---|
| 129 | temp(i) = ( tempupnew(i) * qprecip(i) * cpw + cpair * temp(i) ) & |
---|
| 130 | / ( cpair + qprecip(i) * cpw ) |
---|
| 131 | ENDDO |
---|
[4803] | 132 | |
---|
| 133 | ENDIF |
---|
| 134 | |
---|
[4913] | 135 | ! TODO Probleme : on utilise qvap total dans la maille pour l'evap / sub |
---|
| 136 | ! alors qu'on n'evap / sub que dans le ciel clair |
---|
| 137 | ! deux options pour cette routine : |
---|
| 138 | ! - soit on diagnostique le nuage AVANT l'evap / sub et on estime donc |
---|
| 139 | ! la fraction precipitante ciel clair dans la maille, ce qui permet de travailler |
---|
| 140 | ! avec des fractions, des fluxs et surtout un qvap dans le ciel clair |
---|
| 141 | ! - soit on pousse la param de Ludo au bout, et on prend un qvap de k+1 |
---|
| 142 | ! dans le ciel clair, avec un truc comme : |
---|
| 143 | ! qvapclr(k) = qvapclr(k+1)/qtot(k+1) * qtot(k) |
---|
| 144 | ! UPDATE : on code la seconde version. A voir si on veut mettre la premiere version. |
---|
[4803] | 145 | |
---|
[4913] | 146 | |
---|
[4803] | 147 | DO i = 1, klon |
---|
| 148 | |
---|
[4819] | 149 | !--If there is precipitation from the layer above |
---|
[4913] | 150 | ! NOTE TODO here we could replace the condition on precipfracclr(i) by a condition |
---|
| 151 | ! such as eps or thresh_precip_frac, to remove the senseless barrier in the formulas |
---|
| 152 | ! of evap / sublim |
---|
| 153 | IF ( ( ( rain(i) + snow(i) ) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
[4803] | 154 | |
---|
[4913] | 155 | IF ( ok_corr_vap_evasub ) THEN |
---|
| 156 | !--Corrected version - we use the same water ratio between |
---|
| 157 | !--the clear and the cloudy sky as in the layer above. This |
---|
| 158 | !--extends the assumption that the cloud fraction is the same |
---|
| 159 | !--as the layer above. This is assumed only for the evap / subl |
---|
| 160 | !--process |
---|
| 161 | !--Note that qvap(i) is the total water in the gridbox, and |
---|
| 162 | !--precipfraccld(i) is the cloud fraction in the layer above |
---|
| 163 | qvapclr = qvapclrup(i) / qtotupnew(i) * qvap(i) / ( 1. - precipfraccld(i) ) |
---|
| 164 | ELSE |
---|
| 165 | !--Legacy version from Ludo - we use the total specific humidity |
---|
| 166 | !--for the evap / subl process |
---|
| 167 | qvapclr = qvap(i) |
---|
| 168 | ENDIF |
---|
| 169 | |
---|
[4819] | 170 | !--Evaporation of liquid precipitation coming from above |
---|
| 171 | !--in the clear sky only |
---|
[4833] | 172 | !--dprecip/dz = -beta*(1-qvap/qsat)*(precip**expo_eva) |
---|
[4819] | 173 | !--formula from Sundqvist 1988, Klemp & Wilhemson 1978 |
---|
[4833] | 174 | !--Exact explicit formulation (rainclr is resolved exactly, qvap explicitly) |
---|
| 175 | !--which does not need a barrier on rainclr, because included in the formula |
---|
| 176 | draineva = precipfracclr(i) * ( MAX(0., & |
---|
[4913] | 177 | - coef_eva * ( 1. - expo_eva ) * (1. - qvapclr / qsatl(i)) * dz(i) & |
---|
[4833] | 178 | + ( rainclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_eva ) & |
---|
| 179 | ) )**( 1. / ( 1. - expo_eva ) ) - rainclr(i) |
---|
| 180 | |
---|
| 181 | !--Evaporation is limited by 0 |
---|
| 182 | draineva = MIN(0., draineva) |
---|
[4803] | 183 | |
---|
| 184 | |
---|
[4819] | 185 | !--Sublimation of the solid precipitation coming from above |
---|
| 186 | !--(same formula as for liquid precip) |
---|
[4833] | 187 | !--Exact explicit formulation (snowclr is resolved exactly, qvap explicitly) |
---|
| 188 | !--which does not need a barrier on snowclr, because included in the formula |
---|
| 189 | dsnowsub = precipfracclr(i) * ( MAX(0., & |
---|
[4913] | 190 | - coef_sub * ( 1. - expo_sub ) * (1. - qvapclr / qsati(i)) * dz(i) & |
---|
[4833] | 191 | + ( snowclr(i) / MAX(thresh_precip_frac, precipfracclr(i)) )**( 1. - expo_sub ) & |
---|
| 192 | ) )**( 1. / ( 1. - expo_sub ) ) - snowclr(i) |
---|
[4803] | 193 | |
---|
[4833] | 194 | !--Sublimation is limited by 0 |
---|
[4803] | 195 | ! TODO: change max when we will allow for vapor deposition in supersaturated regions |
---|
[4833] | 196 | dsnowsub = MIN(0., dsnowsub) |
---|
[4803] | 197 | |
---|
[4819] | 198 | !--Evaporation limit: we ensure that the layer's fraction below |
---|
| 199 | !--the clear sky does not reach saturation. In this case, we |
---|
| 200 | !--redistribute the maximum flux dprecip_evasub_max conserving the ratio liquid/ice |
---|
| 201 | !--Max evaporation is computed not to saturate the clear sky precip fraction |
---|
| 202 | !--(i.e., the fraction where evaporation occurs) |
---|
| 203 | !--It is expressed as a max flux dprecip_evasub_max |
---|
| 204 | |
---|
[4913] | 205 | dprecip_evasub_max = MIN(0., ( qvapclr - qsat(i) ) * precipfracclr(i)) & |
---|
[4833] | 206 | * dhum_to_dflux(i) |
---|
[4819] | 207 | dprecip_evasub_tot = draineva + dsnowsub |
---|
[4803] | 208 | |
---|
[4819] | 209 | !--Barriers |
---|
| 210 | !--If activates if the total is LOWER than the max because |
---|
| 211 | !--everything is negative |
---|
| 212 | IF ( dprecip_evasub_tot .LT. dprecip_evasub_max ) THEN |
---|
| 213 | draineva = dprecip_evasub_max * draineva / dprecip_evasub_tot |
---|
| 214 | dsnowsub = dprecip_evasub_max * dsnowsub / dprecip_evasub_tot |
---|
[4803] | 215 | ENDIF |
---|
| 216 | |
---|
| 217 | |
---|
[4819] | 218 | !--New solid and liquid precipitation fluxes after evap and sublimation |
---|
[4833] | 219 | dqrevap = draineva / dhum_to_dflux(i) |
---|
| 220 | dqssubl = dsnowsub / dhum_to_dflux(i) |
---|
[4803] | 221 | |
---|
| 222 | |
---|
[4819] | 223 | !--Vapor is updated after evaporation/sublimation (it is increased) |
---|
| 224 | qvap(i) = qvap(i) - dqrevap - dqssubl |
---|
| 225 | !--qprecip is the total condensed water in the precip flux (it is decreased) |
---|
| 226 | qprecip(i) = qprecip(i) + dqrevap + dqssubl |
---|
| 227 | !--Air and precip temperature (i.e., gridbox temperature) |
---|
| 228 | !--is updated due to latent heat cooling |
---|
[4803] | 229 | temp(i) = temp(i) & |
---|
[4819] | 230 | + dqrevap * RLVTT / RCPD & |
---|
| 231 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) & |
---|
| 232 | + dqssubl * RLSTT / RCPD & |
---|
| 233 | / ( 1. + RVTMP2 * ( qvap(i) + qprecip(i) ) ) |
---|
[4803] | 234 | |
---|
[4819] | 235 | !--Add tendencies |
---|
[4833] | 236 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
[4832] | 237 | rainclr(i) = MAX(0., rainclr(i) + draineva) |
---|
| 238 | snowclr(i) = MAX(0., snowclr(i) + dsnowsub) |
---|
| 239 | |
---|
[4819] | 240 | !--If there is no more precip fluxes, the precipitation fraction in clear |
---|
| 241 | !--sky is set to 0 |
---|
[4803] | 242 | IF ( ( rainclr(i) + snowclr(i) ) .LE. 0. ) precipfracclr(i) = 0. |
---|
| 243 | |
---|
[4819] | 244 | !--Calculation of the total fluxes |
---|
[4803] | 245 | rain(i) = rainclr(i) + raincld(i) |
---|
| 246 | snow(i) = snowclr(i) + snowcld(i) |
---|
| 247 | |
---|
[4960] | 248 | ELSEIF ( ( rain(i) + snow(i) ) .LE. 0. ) THEN |
---|
| 249 | |
---|
[4819] | 250 | !--If no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
[4803] | 251 | precipfraccld(i) = 0. |
---|
| 252 | precipfracclr(i) = 0. |
---|
| 253 | |
---|
| 254 | ENDIF ! ( ( rain(i) + snow(i) ) .GT. 0. ) |
---|
| 255 | |
---|
[4819] | 256 | !--Diagnostic tendencies |
---|
| 257 | dqssub(i) = dqssubl / dtime |
---|
| 258 | dqreva(i) = dqrevap / dtime |
---|
[4803] | 259 | |
---|
| 260 | ENDDO ! loop on klon |
---|
| 261 | |
---|
| 262 | |
---|
[4880] | 263 | END SUBROUTINE poprecip_precld |
---|
[4803] | 264 | |
---|
| 265 | !---------------------------------------------------------------- |
---|
| 266 | ! Computes the processes-oriented precipitation formulations for |
---|
| 267 | ! - autoconversion (auto) via a deposition process |
---|
| 268 | ! - aggregation (agg) |
---|
| 269 | ! - riming (rim) |
---|
[4830] | 270 | ! - collection (col) |
---|
[4803] | 271 | ! - melting (melt) |
---|
[4830] | 272 | ! - freezing (freez) |
---|
[4803] | 273 | ! |
---|
| 274 | SUBROUTINE poprecip_postcld( & |
---|
| 275 | klon, dtime, paprsdn, paprsup, pplay, ctot_vol, ptconv, & |
---|
| 276 | temp, qvap, qliq, qice, icefrac, cldfra, & |
---|
| 277 | precipfracclr, precipfraccld, & |
---|
| 278 | rain, rainclr, raincld, snow, snowclr, snowcld, & |
---|
[4830] | 279 | qraindiag, qsnowdiag, dqrauto, dqrcol, dqrmelt, dqrfreez, & |
---|
[4819] | 280 | dqsauto, dqsagg, dqsrim, dqsmelt, dqsfreez) |
---|
[4803] | 281 | |
---|
| 282 | USE lmdz_lscp_ini, ONLY : prt_level, lunout |
---|
[4818] | 283 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RPI |
---|
[4803] | 284 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf |
---|
| 285 | |
---|
| 286 | USE lmdz_lscp_ini, ONLY : cld_lc_con, cld_tau_con, cld_expo_con, seuil_neb, & |
---|
| 287 | cld_lc_lsc, cld_tau_lsc, cld_expo_lsc, rain_int_min, & |
---|
| 288 | thresh_precip_frac, gamma_col, gamma_agg, gamma_rim, & |
---|
[4913] | 289 | rho_rain, r_rain, r_snow, rho_ice, & |
---|
[4818] | 290 | tau_auto_snow_min, tau_auto_snow_max, & |
---|
[4882] | 291 | thresh_precip_frac, eps, & |
---|
[4895] | 292 | gamma_melt, alpha_freez, beta_freez, temp_nowater, & |
---|
[4830] | 293 | iflag_cloudth_vert, iflag_rain_incloud_vol, & |
---|
| 294 | cld_lc_lsc_snow, cld_lc_con_snow, gamma_freez, & |
---|
| 295 | rain_fallspeed_clr, rain_fallspeed_cld, & |
---|
| 296 | snow_fallspeed_clr, snow_fallspeed_cld |
---|
[4803] | 297 | |
---|
[4818] | 298 | |
---|
[4803] | 299 | IMPLICIT NONE |
---|
| 300 | |
---|
| 301 | INTEGER, INTENT(IN) :: klon !--number of horizontal grid points [-] |
---|
| 302 | REAL, INTENT(IN) :: dtime !--time step [s] |
---|
| 303 | |
---|
| 304 | REAL, INTENT(IN), DIMENSION(klon) :: paprsdn !--pressure at the bottom interface of the layer [Pa] |
---|
| 305 | REAL, INTENT(IN), DIMENSION(klon) :: paprsup !--pressure at the top interface of the layer [Pa] |
---|
| 306 | REAL, INTENT(IN), DIMENSION(klon) :: pplay !--pressure in the middle of the layer [Pa] |
---|
| 307 | |
---|
[4819] | 308 | REAL, INTENT(IN), DIMENSION(klon) :: ctot_vol !--volumic cloud fraction [-] |
---|
| 309 | LOGICAL, INTENT(IN), DIMENSION(klon) :: ptconv !--true if we are in a convective point |
---|
[4803] | 310 | |
---|
| 311 | REAL, INTENT(INOUT), DIMENSION(klon) :: temp !--current temperature [K] |
---|
| 312 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvap !--current water vapor specific humidity [kg/kg] |
---|
| 313 | REAL, INTENT(INOUT), DIMENSION(klon) :: qliq !--current liquid water specific humidity [kg/kg] |
---|
| 314 | REAL, INTENT(INOUT), DIMENSION(klon) :: qice !--current ice water specific humidity [kg/kg] |
---|
[4819] | 315 | REAL, INTENT(IN), DIMENSION(klon) :: icefrac !--ice fraction [-] |
---|
| 316 | REAL, INTENT(IN), DIMENSION(klon) :: cldfra !--cloud fraction [-] |
---|
[4803] | 317 | |
---|
| 318 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfracclr !--fraction of precipitation in the clear sky IN THE LAYER ABOVE [-] |
---|
| 319 | REAL, INTENT(INOUT), DIMENSION(klon) :: precipfraccld !--fraction of precipitation in the cloudy air IN THE LAYER ABOVE [-] |
---|
| 320 | !--NB. at the end of the routine, becomes the fraction of precip |
---|
| 321 | !--in the current layer |
---|
| 322 | |
---|
[4809] | 323 | REAL, INTENT(INOUT), DIMENSION(klon) :: rain !--flux of rain gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 324 | REAL, INTENT(INOUT), DIMENSION(klon) :: rainclr !--flux of rain gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 325 | REAL, INTENT(INOUT), DIMENSION(klon) :: raincld !--flux of rain gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
| 326 | REAL, INTENT(INOUT), DIMENSION(klon) :: snow !--flux of snow gridbox-mean coming from the layer above [kg/s/m2] |
---|
| 327 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowclr !--flux of snow gridbox-mean in clear sky coming from the layer above [kg/s/m2] |
---|
| 328 | REAL, INTENT(INOUT), DIMENSION(klon) :: snowcld !--flux of snow gridbox-mean in cloudy air coming from the layer above [kg/s/m2] |
---|
[4803] | 329 | |
---|
[4830] | 330 | REAL, INTENT(OUT), DIMENSION(klon) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
| 331 | REAL, INTENT(OUT), DIMENSION(klon) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
[4819] | 332 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
| 333 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
| 334 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
| 335 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
| 336 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
| 337 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
| 338 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
| 339 | REAL, INTENT(OUT), DIMENSION(klon) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
| 340 | REAL, INTENT(OUT), DIMENSION(klon) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
[4803] | 341 | |
---|
| 342 | |
---|
| 343 | |
---|
| 344 | !--Local variables |
---|
| 345 | |
---|
| 346 | INTEGER :: i |
---|
[4898] | 347 | !--dhum_to_dflux: coef to convert a specific quantity variation to a flux variation |
---|
[4833] | 348 | REAL, DIMENSION(klon) :: dhum_to_dflux |
---|
[4898] | 349 | REAL, DIMENSION(klon) :: qtot !--includes vap, liq, ice and precip |
---|
[4803] | 350 | |
---|
[4830] | 351 | !--Partition of the fluxes |
---|
[4803] | 352 | REAL :: dcldfra |
---|
| 353 | REAL :: precipfractot |
---|
| 354 | REAL :: dprecipfracclr, dprecipfraccld |
---|
| 355 | REAL :: drainclr, dsnowclr |
---|
| 356 | REAL :: draincld, dsnowcld |
---|
[4818] | 357 | |
---|
[4830] | 358 | !--Collection, aggregation and riming |
---|
[4803] | 359 | REAL :: eff_cldfra |
---|
[4819] | 360 | REAL :: coef_col, coef_agg, coef_rim, coef_tmp, qrain_tmp |
---|
[4818] | 361 | REAL :: Eff_rain_liq, Eff_snow_ice, Eff_snow_liq |
---|
[4898] | 362 | REAL :: rho_snow |
---|
[4830] | 363 | REAL :: dqlcol !--loss of liquid cloud content due to collection by rain [kg/kg/s] |
---|
| 364 | REAL :: dqiagg !--loss of ice cloud content due to collection by aggregation [kg/kg/s] |
---|
| 365 | REAL :: dqlrim !--loss of liquid cloud content due to riming on snow [kg/kg/s] |
---|
[4818] | 366 | |
---|
[4830] | 367 | !--Autoconversion |
---|
[4803] | 368 | REAL :: qthresh_auto_rain, tau_auto_rain, expo_auto_rain |
---|
| 369 | REAL :: qthresh_auto_snow, tau_auto_snow, expo_auto_snow |
---|
[4830] | 370 | REAL :: dqlauto !--loss of liquid cloud content due to autoconversion to rain [kg/kg/s] |
---|
| 371 | REAL :: dqiauto !--loss of ice cloud content due to autoconversion to snow [kg/kg/s] |
---|
[4803] | 372 | |
---|
[4830] | 373 | !--Melting |
---|
[4882] | 374 | REAL :: dqsmelt_max, air_thermal_conduct |
---|
[4818] | 375 | REAL :: nb_snowflake_clr, nb_snowflake_cld |
---|
| 376 | REAL :: capa_snowflake, temp_wetbulb |
---|
[4913] | 377 | REAL :: rho, r_ice |
---|
[4818] | 378 | REAL :: dqsclrmelt, dqscldmelt, dqstotmelt |
---|
| 379 | REAL, DIMENSION(klon) :: qzero, qsat, dqsat |
---|
[4803] | 380 | |
---|
[4830] | 381 | !--Freezing |
---|
[4818] | 382 | REAL :: dqrfreez_max |
---|
| 383 | REAL :: tau_freez |
---|
[4832] | 384 | REAL :: dqrclrfreez, dqrcldfreez, dqrtotfreez, dqrtotfreez_step1, dqrtotfreez_step2 |
---|
[4830] | 385 | REAL :: coef_freez |
---|
| 386 | REAL :: dqifreez !--loss of ice cloud content due to collection of ice from rain [kg/kg/s] |
---|
| 387 | REAL :: Eff_rain_ice |
---|
[4818] | 388 | |
---|
| 389 | |
---|
[4803] | 390 | !--Initialisation of variables |
---|
| 391 | |
---|
[4888] | 392 | |
---|
[4818] | 393 | qzero(:) = 0. |
---|
| 394 | |
---|
| 395 | dqrcol(:) = 0. |
---|
| 396 | dqsagg(:) = 0. |
---|
| 397 | dqsauto(:) = 0. |
---|
| 398 | dqrauto(:) = 0. |
---|
| 399 | dqsrim(:) = 0. |
---|
| 400 | dqrmelt(:) = 0. |
---|
| 401 | dqsmelt(:) = 0. |
---|
[4803] | 402 | dqrfreez(:) = 0. |
---|
| 403 | dqsfreez(:) = 0. |
---|
| 404 | |
---|
| 405 | |
---|
[4809] | 406 | DO i = 1, klon |
---|
[4803] | 407 | |
---|
[4830] | 408 | !--Variables initialisation |
---|
[4818] | 409 | dqlcol = 0. |
---|
| 410 | dqiagg = 0. |
---|
| 411 | dqiauto = 0. |
---|
| 412 | dqlauto = 0. |
---|
[4830] | 413 | dqlrim = 0. |
---|
[4803] | 414 | |
---|
[4833] | 415 | !-- dhum_to_dflux = rho * dz/dt = 1 / g * dP/dt |
---|
| 416 | dhum_to_dflux(i) = ( paprsdn(i) - paprsup(i) ) / RG / dtime |
---|
[4818] | 417 | qtot(i) = qvap(i) + qliq(i) + qice(i) & |
---|
[4833] | 418 | + ( raincld(i) + rainclr(i) + snowcld(i) + snowclr(i) ) / dhum_to_dflux(i) |
---|
[4818] | 419 | |
---|
[4809] | 420 | !------------------------------------------------------------ |
---|
| 421 | !-- PRECIPITATION FRACTIONS UPDATE |
---|
| 422 | !------------------------------------------------------------ |
---|
| 423 | !--The goal of this routine is to reattribute precipitation fractions |
---|
| 424 | !--and fluxes to clear or cloudy air, depending on the variation of |
---|
| 425 | !--the cloud fraction on the vertical dimension. We assume a |
---|
| 426 | !--maximum-random overlap of the cloud cover (see Jakob and Klein, 2000, |
---|
| 427 | !--and LTP thesis, 2021) |
---|
| 428 | !--NB. in fact, we assume a maximum-random overlap of the total precip. frac |
---|
[4803] | 429 | |
---|
| 430 | !--Initialisation |
---|
| 431 | precipfractot = precipfracclr(i) + precipfraccld(i) |
---|
| 432 | |
---|
[4809] | 433 | !--Instead of using the cloud cover which was use in LTP thesis, we use the |
---|
| 434 | !--total precip. fraction to compute the maximum-random overlap. This is |
---|
| 435 | !--because all the information of the cloud cover is embedded into |
---|
| 436 | !--precipfractot, and this allows for taking into account the potential |
---|
| 437 | !--reduction of the precipitation fraction because either the flux is too |
---|
| 438 | !--small (see barrier at the end of poprecip_postcld) or the flux is completely |
---|
| 439 | !--evaporated (see barrier at the end of poprecip_precld) |
---|
| 440 | !--NB. precipfraccld(i) is here the cloud fraction of the layer above |
---|
[4832] | 441 | !precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
| 442 | ! ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
| 443 | ! / ( 1. - MIN( precipfraccld(i), 1. - eps ) ) |
---|
| 444 | |
---|
| 445 | |
---|
| 446 | IF ( precipfraccld(i) .GT. ( 1. - eps ) ) THEN |
---|
| 447 | precipfractot = 1. |
---|
| 448 | ELSE |
---|
| 449 | precipfractot = 1. - ( 1. - precipfractot ) * & |
---|
[4803] | 450 | ( 1. - MAX( cldfra(i), precipfraccld(i) ) ) & |
---|
[4832] | 451 | / ( 1. - precipfraccld(i) ) |
---|
| 452 | ENDIF |
---|
[4803] | 453 | |
---|
[4809] | 454 | !--precipfraccld(i) is here the cloud fraction of the layer above |
---|
[4803] | 455 | dcldfra = cldfra(i) - precipfraccld(i) |
---|
[4809] | 456 | !--Tendency of the clear-sky precipitation fraction. We add a MAX on the |
---|
| 457 | !--calculation of the current CS precip. frac. |
---|
[4830] | 458 | !dprecipfracclr = MAX( 0., ( precipfractot - cldfra(i) ) ) - precipfracclr(i) |
---|
| 459 | !--We remove it, because precipfractot is guaranteed to be > cldfra (the MAX is activated |
---|
| 460 | !--if precipfractot < cldfra) |
---|
| 461 | dprecipfracclr = ( precipfractot - cldfra(i) ) - precipfracclr(i) |
---|
[4809] | 462 | !--Tendency of the cloudy precipitation fraction. We add a MAX on the |
---|
| 463 | !--calculation of the current CS precip. frac. |
---|
| 464 | !dprecipfraccld = MAX( dcldfra , - precipfraccld(i) ) |
---|
[4830] | 465 | !--We remove it, because cldfra is guaranteed to be > 0 (the MAX is activated |
---|
[4809] | 466 | !--if cldfra < 0) |
---|
| 467 | dprecipfraccld = dcldfra |
---|
[4803] | 468 | |
---|
| 469 | |
---|
[4809] | 470 | !--If the cloud extends |
---|
[4803] | 471 | IF ( dprecipfraccld .GT. 0. ) THEN |
---|
[4809] | 472 | !--If there is no CS precip, nothing happens. |
---|
| 473 | !--If there is, we reattribute some of the CS precip flux |
---|
| 474 | !--to the cloud precip flux, proportionnally to the |
---|
| 475 | !--decrease of the CS precip fraction |
---|
| 476 | IF ( precipfracclr(i) .LE. 0. ) THEN |
---|
| 477 | drainclr = 0. |
---|
| 478 | dsnowclr = 0. |
---|
| 479 | ELSE |
---|
[4803] | 480 | drainclr = dprecipfracclr / precipfracclr(i) * rainclr(i) |
---|
| 481 | dsnowclr = dprecipfracclr / precipfracclr(i) * snowclr(i) |
---|
| 482 | ENDIF |
---|
[4809] | 483 | !--If the cloud narrows |
---|
| 484 | ELSEIF ( dprecipfraccld .LT. 0. ) THEN |
---|
| 485 | !--We reattribute some of the cloudy precip flux |
---|
| 486 | !--to the CS precip flux, proportionnally to the |
---|
| 487 | !--decrease of the cloud precip fraction |
---|
| 488 | draincld = dprecipfraccld / precipfraccld(i) * raincld(i) |
---|
| 489 | dsnowcld = dprecipfraccld / precipfraccld(i) * snowcld(i) |
---|
| 490 | drainclr = - draincld |
---|
| 491 | dsnowclr = - dsnowcld |
---|
| 492 | !--If the cloud stays the same or if there is no cloud above and |
---|
| 493 | !--in the current layer, nothing happens |
---|
[4803] | 494 | ELSE |
---|
[4809] | 495 | drainclr = 0. |
---|
| 496 | dsnowclr = 0. |
---|
[4803] | 497 | ENDIF |
---|
| 498 | |
---|
[4809] | 499 | !--We add the tendencies |
---|
[4833] | 500 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
[4803] | 501 | precipfraccld(i) = precipfraccld(i) + dprecipfraccld |
---|
| 502 | precipfracclr(i) = precipfracclr(i) + dprecipfracclr |
---|
[4833] | 503 | rainclr(i) = MAX(0., rainclr(i) + drainclr) |
---|
| 504 | snowclr(i) = MAX(0., snowclr(i) + dsnowclr) |
---|
| 505 | raincld(i) = MAX(0., raincld(i) - drainclr) |
---|
| 506 | snowcld(i) = MAX(0., snowcld(i) - dsnowclr) |
---|
[4803] | 507 | |
---|
[4830] | 508 | !--If vertical heterogeneity is taken into account, we use |
---|
| 509 | !--the "true" volume fraction instead of a modified |
---|
| 510 | !--surface fraction (which is larger and artificially |
---|
| 511 | !--reduces the in-cloud water). |
---|
[4803] | 512 | IF ( ( iflag_cloudth_vert .GE. 3 ) .AND. ( iflag_rain_incloud_vol .EQ. 1 ) ) THEN |
---|
| 513 | eff_cldfra = ctot_vol(i) |
---|
| 514 | ELSE |
---|
| 515 | eff_cldfra = cldfra(i) |
---|
| 516 | ENDIF |
---|
| 517 | |
---|
[4809] | 518 | |
---|
[4830] | 519 | !--Start precipitation growth processes |
---|
[4809] | 520 | |
---|
| 521 | !--If the cloud is big enough, the precipitation processes activate |
---|
[4898] | 522 | ! TODO met on seuil_neb ici ? |
---|
[4803] | 523 | IF ( cldfra(i) .GE. seuil_neb ) THEN |
---|
| 524 | |
---|
| 525 | !--------------------------------------------------------- |
---|
| 526 | !-- COLLECTION AND AGGREGATION |
---|
| 527 | !--------------------------------------------------------- |
---|
[4809] | 528 | !--Collection: processus through which rain collects small liquid droplets |
---|
| 529 | !--in suspension, and add it to the rain flux |
---|
| 530 | !--Aggregation: same for snow (precip flux) and ice crystals (in suspension) |
---|
| 531 | !--Those processes are treated before autoconversion because we do not |
---|
| 532 | !--want to collect/aggregate the newly formed fluxes, which already |
---|
| 533 | !--"saw" the cloud as they come from it |
---|
[4819] | 534 | !--The formulas come from Muench and Lohmann 2020 |
---|
| 535 | |
---|
[4809] | 536 | !--gamma_col: tuning coefficient [-] |
---|
| 537 | !--rho_rain: volumic mass of rain [kg/m3] |
---|
| 538 | !--r_rain: size of the rain droplets [m] |
---|
| 539 | !--Eff_rain_liq: efficiency of the collection process [-] (between 0 and 1) |
---|
| 540 | !--dqlcol is a gridbox-mean quantity, as is qliq and raincld. They are |
---|
| 541 | !--divided by respectively eff_cldfra, eff_cldfra and precipfraccld to |
---|
| 542 | !--get in-cloud mean quantities. The two divisions by eff_cldfra are |
---|
| 543 | !--then simplified. |
---|
[4830] | 544 | |
---|
[4833] | 545 | !--The collection efficiency is perfect. |
---|
[4818] | 546 | Eff_rain_liq = 1. |
---|
[4809] | 547 | coef_col = gamma_col * 3. / 4. / rho_rain / r_rain * Eff_rain_liq |
---|
[4833] | 548 | IF ( raincld(i) .GT. 0. ) THEN |
---|
[4830] | 549 | !--Exact explicit version, which does not need a barrier because of |
---|
[4819] | 550 | !--the exponential decrease |
---|
[4818] | 551 | dqlcol = qliq(i) * ( EXP( - dtime * coef_col * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
| 552 | |
---|
| 553 | !--Add tendencies |
---|
| 554 | qliq(i) = qliq(i) + dqlcol |
---|
[4833] | 555 | raincld(i) = raincld(i) - dqlcol * dhum_to_dflux(i) |
---|
[4818] | 556 | |
---|
[4819] | 557 | !--Diagnostic tendencies |
---|
[4818] | 558 | dqrcol(i) = - dqlcol / dtime |
---|
[4809] | 559 | ENDIF |
---|
[4803] | 560 | |
---|
[4809] | 561 | !--Same as for aggregation |
---|
[5045] | 562 | !--Eff_snow_liq formula: |
---|
[4819] | 563 | !--it s a product of a collection efficiency and a sticking efficiency |
---|
[5045] | 564 | ! Milbrandt and Yau formula that gives very low values: |
---|
| 565 | ! Eff_snow_ice = 0.05 * EXP( 0.1 * ( temp(i) - RTT ) ) |
---|
| 566 | ! Lin 1983's formula |
---|
| 567 | Eff_snow_ice = EXP( 0.025 * MIN( ( temp(i) - RTT ), 0.) ) |
---|
[4898] | 568 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
| 569 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
[4818] | 570 | coef_agg = gamma_agg * 3. / 4. / rho_snow / r_snow * Eff_snow_ice |
---|
[4833] | 571 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
[4830] | 572 | !--Exact explicit version, which does not need a barrier because of |
---|
[4819] | 573 | !--the exponential decrease |
---|
[4818] | 574 | dqiagg = qice(i) * ( EXP( - dtime * coef_agg * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
| 575 | |
---|
| 576 | !--Add tendencies |
---|
| 577 | qice(i) = qice(i) + dqiagg |
---|
[4833] | 578 | snowcld(i) = snowcld(i) - dqiagg * dhum_to_dflux(i) |
---|
[4818] | 579 | |
---|
[4819] | 580 | !--Diagnostic tendencies |
---|
[4818] | 581 | dqsagg(i) = - dqiagg / dtime |
---|
[4809] | 582 | ENDIF |
---|
[4803] | 583 | |
---|
| 584 | |
---|
| 585 | !--------------------------------------------------------- |
---|
| 586 | !-- AUTOCONVERSION |
---|
| 587 | !--------------------------------------------------------- |
---|
[4819] | 588 | !--Autoconversion converts liquid droplets/ice crystals into |
---|
| 589 | !--rain drops/snowflakes. It relies on the formulations by |
---|
| 590 | !--Sundqvist 1978. |
---|
[4803] | 591 | |
---|
[4819] | 592 | !--If we are in a convective point, we have different parameters |
---|
| 593 | !--for the autoconversion |
---|
| 594 | IF ( ptconv(i) ) THEN |
---|
[4803] | 595 | qthresh_auto_rain = cld_lc_con |
---|
[4830] | 596 | qthresh_auto_snow = cld_lc_con_snow |
---|
[4803] | 597 | |
---|
| 598 | tau_auto_rain = cld_tau_con |
---|
[4819] | 599 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
[4803] | 600 | tau_auto_snow = tau_auto_snow_max & |
---|
| 601 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
| 602 | |
---|
| 603 | expo_auto_rain = cld_expo_con |
---|
| 604 | expo_auto_snow = cld_expo_con |
---|
| 605 | ELSE |
---|
| 606 | qthresh_auto_rain = cld_lc_lsc |
---|
[4830] | 607 | qthresh_auto_snow = cld_lc_lsc_snow |
---|
[4803] | 608 | |
---|
| 609 | tau_auto_rain = cld_tau_lsc |
---|
[4819] | 610 | !--tau for snow depends on the ice fraction in mixed-phase clouds |
---|
[4803] | 611 | tau_auto_snow = tau_auto_snow_max & |
---|
| 612 | + ( tau_auto_snow_min - tau_auto_snow_max ) * ( 1. - icefrac(i) ) |
---|
| 613 | |
---|
| 614 | expo_auto_rain = cld_expo_lsc |
---|
| 615 | expo_auto_snow = cld_expo_lsc |
---|
| 616 | ENDIF |
---|
| 617 | |
---|
| 618 | |
---|
[4809] | 619 | ! Liquid water quantity to remove according to (Sundqvist, 1978) |
---|
[4830] | 620 | ! dqliq/dt = -qliq/tau * ( 1-exp(-(qliqincld/qthresh)**2) ) |
---|
| 621 | ! |
---|
| 622 | !--And same formula for ice |
---|
| 623 | ! |
---|
| 624 | !--We first treat the second term (with exponential) in an explicit way |
---|
| 625 | !--and then treat the first term (-q/tau) in an exact way |
---|
[4803] | 626 | |
---|
| 627 | dqlauto = - qliq(i) * ( 1. - exp( - dtime / tau_auto_rain * ( 1. - exp( & |
---|
| 628 | - ( qliq(i) / eff_cldfra / qthresh_auto_rain ) ** expo_auto_rain ) ) ) ) |
---|
| 629 | |
---|
| 630 | dqiauto = - qice(i) * ( 1. - exp( - dtime / tau_auto_snow * ( 1. - exp( & |
---|
| 631 | - ( qice(i) / eff_cldfra / qthresh_auto_snow ) ** expo_auto_snow ) ) ) ) |
---|
| 632 | |
---|
| 633 | |
---|
[4898] | 634 | !--Barriers so that we don't create more rain/snow |
---|
[4819] | 635 | !--than there is liquid/ice |
---|
[4803] | 636 | dqlauto = MAX( - qliq(i), dqlauto ) |
---|
| 637 | dqiauto = MAX( - qice(i), dqiauto ) |
---|
| 638 | |
---|
[4819] | 639 | !--Add tendencies |
---|
[4803] | 640 | qliq(i) = qliq(i) + dqlauto |
---|
| 641 | qice(i) = qice(i) + dqiauto |
---|
[4833] | 642 | raincld(i) = raincld(i) - dqlauto * dhum_to_dflux(i) |
---|
| 643 | snowcld(i) = snowcld(i) - dqiauto * dhum_to_dflux(i) |
---|
[4803] | 644 | |
---|
[4819] | 645 | !--Diagnostic tendencies |
---|
[4818] | 646 | dqsauto(i) = - dqiauto / dtime |
---|
| 647 | dqrauto(i) = - dqlauto / dtime |
---|
[4803] | 648 | |
---|
[4818] | 649 | |
---|
[4803] | 650 | !--------------------------------------------------------- |
---|
| 651 | !-- RIMING |
---|
| 652 | !--------------------------------------------------------- |
---|
[4819] | 653 | !--Process which converts liquid droplets in suspension into |
---|
[4898] | 654 | !--snow because of the collision between |
---|
[4819] | 655 | !--those and falling snowflakes. |
---|
[4830] | 656 | !--The formula comes from Muench and Lohmann 2020 |
---|
[4819] | 657 | !--NB.: this process needs a temperature adjustment |
---|
[4803] | 658 | |
---|
[5047] | 659 | !--Eff_snow_liq formula: following Ferrier 1994, |
---|
| 660 | !--assuming 1 |
---|
| 661 | Eff_snow_liq = 1.0 |
---|
[4898] | 662 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
| 663 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
[4818] | 664 | coef_rim = gamma_rim * 3. / 4. / rho_snow / r_snow * Eff_snow_liq |
---|
[4833] | 665 | IF ( snowcld(i) .GT. 0. ) THEN |
---|
[4819] | 666 | !--Exact version, which does not need a barrier because of |
---|
| 667 | !--the exponential decrease |
---|
[4879] | 668 | dqlrim = qliq(i) * ( EXP( - dtime * coef_rim * snowcld(i) / precipfraccld(i) ) - 1. ) |
---|
[4809] | 669 | |
---|
[4819] | 670 | !--Add tendencies |
---|
[4833] | 671 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
[4818] | 672 | qliq(i) = qliq(i) + dqlrim |
---|
[4833] | 673 | snowcld(i) = snowcld(i) - dqlrim * dhum_to_dflux(i) |
---|
[4818] | 674 | |
---|
[4819] | 675 | !--Temperature adjustment with the release of latent |
---|
| 676 | !--heat because of solid condensation |
---|
[4818] | 677 | temp(i) = temp(i) - dqlrim * RLMLT / RCPD & |
---|
| 678 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
| 679 | |
---|
[4819] | 680 | !--Diagnostic tendencies |
---|
[4818] | 681 | dqsrim(i) = - dqlrim / dtime |
---|
[4809] | 682 | ENDIF |
---|
[4803] | 683 | |
---|
[4819] | 684 | ENDIF ! cldfra .GE. seuil_neb |
---|
[4803] | 685 | |
---|
[4819] | 686 | ENDDO ! loop on klon |
---|
[4803] | 687 | |
---|
[4819] | 688 | |
---|
| 689 | !--Re-calculation of saturation specific humidity |
---|
| 690 | !--because riming changed temperature |
---|
[4818] | 691 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 0, .FALSE., qsat, dqsat) |
---|
[4803] | 692 | |
---|
[4818] | 693 | DO i = 1, klon |
---|
[4803] | 694 | |
---|
| 695 | !--------------------------------------------------------- |
---|
[4818] | 696 | !-- MELTING |
---|
[4803] | 697 | !--------------------------------------------------------- |
---|
[4819] | 698 | !--Process through which snow melts into rain. |
---|
| 699 | !--The formula is homemade. |
---|
| 700 | !--NB.: this process needs a temperature adjustment |
---|
[4803] | 701 | |
---|
[4898] | 702 | !--dqsmelt_max : maximum snow melting so that temperature |
---|
| 703 | !-- stays higher than 273 K [kg/kg] |
---|
| 704 | !--capa_snowflake : capacitance of a snowflake, equal to |
---|
| 705 | !-- the radius if the snowflake is a sphere [m] |
---|
| 706 | !--temp_wetbulb : wet-bulb temperature [K] |
---|
| 707 | !--snow_fallspeed : snow fall velocity (in clear/cloudy sky) [m/s] |
---|
| 708 | !--air_thermal_conduct : thermal conductivity of the air [J/m/K/s] |
---|
| 709 | !--gamma_melt : tuning parameter for melting [-] |
---|
| 710 | !--nb_snowflake : number of snowflakes (in clear/cloudy air) [-] |
---|
[4819] | 711 | |
---|
[4818] | 712 | IF ( ( snowclr(i) + snowcld(i) ) .GT. 0. ) THEN |
---|
[4819] | 713 | !--Computed according to |
---|
| 714 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
[4818] | 715 | dqsmelt_max = MIN(0., ( RTT - temp(i) ) / RLMLT * RCPD & |
---|
| 716 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
[4819] | 717 | |
---|
| 718 | !--Initialisation |
---|
[4818] | 719 | dqsclrmelt = 0. |
---|
| 720 | dqscldmelt = 0. |
---|
[4803] | 721 | |
---|
[4913] | 722 | !--We assume that the snowflakes are spherical |
---|
[4818] | 723 | capa_snowflake = r_snow |
---|
[4898] | 724 | !--Thermal conductivity of the air, empirical formula from Beard and Pruppacher (1971) |
---|
| 725 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 |
---|
| 726 | !--rho_snow formula follows Brandes et al. 2007 (JAMC) |
---|
| 727 | rho_snow = 1.e3 * 0.178 * ( r_snow * 2. * 1000. )**(-0.922) |
---|
[4888] | 728 | |
---|
[4819] | 729 | !--In clear air |
---|
[4888] | 730 | IF ( ( snowclr(i) .GT. 0. ) .AND. ( precipfracclr(i) .GT. 0. ) ) THEN |
---|
[4913] | 731 | !--Formula for the wet-bulb temperature from ECMWF (IFS) |
---|
| 732 | !--The vapor used is the vapor in the clear sky |
---|
| 733 | temp_wetbulb = temp(i) & |
---|
| 734 | - ( qsat(i) - ( qvap(i) - cldfra(i) * qsat(i) ) / ( 1. - cldfra(i) ) ) & |
---|
| 735 | * ( 1329.31 + 0.0074615 * ( pplay(i) - 0.85e5 ) & |
---|
| 736 | - 40.637 * ( temp(i) - 275. ) ) |
---|
[4819] | 737 | !--Calculated according to |
---|
| 738 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
[4830] | 739 | nb_snowflake_clr = snowclr(i) / precipfracclr(i) / snow_fallspeed_clr & |
---|
[4818] | 740 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
| 741 | dqsclrmelt = - nb_snowflake_clr * 4. * RPI * air_thermal_conduct & |
---|
[4895] | 742 | * capa_snowflake / RLMLT * gamma_melt & |
---|
[4818] | 743 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
[4888] | 744 | |
---|
[4830] | 745 | !--Barrier to limit the melting flux to the clr snow flux in the mesh |
---|
[4833] | 746 | dqsclrmelt = MAX( dqsclrmelt , -snowclr(i) / dhum_to_dflux(i)) |
---|
[4832] | 747 | ENDIF |
---|
[4818] | 748 | |
---|
[4888] | 749 | |
---|
[4819] | 750 | !--In cloudy air |
---|
[4888] | 751 | IF ( ( snowcld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
[4913] | 752 | !--As the air is saturated, the wet-bulb temperature is equal to the |
---|
| 753 | !--temperature |
---|
| 754 | temp_wetbulb = temp(i) |
---|
[4819] | 755 | !--Calculated according to |
---|
| 756 | !-- flux = velocity_snowflakes * nb_snowflakes * volume_snowflakes * rho_snow |
---|
[4830] | 757 | nb_snowflake_cld = snowcld(i) / precipfraccld(i) / snow_fallspeed_cld & |
---|
[4818] | 758 | / ( 4. / 3. * RPI * r_snow**3. * rho_snow ) |
---|
| 759 | dqscldmelt = - nb_snowflake_cld * 4. * RPI * air_thermal_conduct & |
---|
[4895] | 760 | * capa_snowflake / RLMLT * gamma_melt & |
---|
[4818] | 761 | * MAX(0., temp_wetbulb - RTT) * dtime |
---|
[4830] | 762 | |
---|
| 763 | !--Barrier to limit the melting flux to the cld snow flux in the mesh |
---|
[4833] | 764 | dqscldmelt = MAX(dqscldmelt , - snowcld(i) / dhum_to_dflux(i)) |
---|
[4888] | 765 | ENDIF |
---|
[4818] | 766 | |
---|
[4888] | 767 | |
---|
[4830] | 768 | !--Barrier on temperature. If the total melting flux leads to a |
---|
| 769 | !--positive temperature, it is limited to keep temperature above 0 degC. |
---|
[4819] | 770 | !--It is activated if the total is LOWER than the max |
---|
| 771 | !--because everything is negative |
---|
[4818] | 772 | dqstotmelt = dqsclrmelt + dqscldmelt |
---|
| 773 | IF ( dqstotmelt .LT. dqsmelt_max ) THEN |
---|
[4819] | 774 | !--We redistribute the max melted snow keeping |
---|
| 775 | !--the clear/cloud partition of the melted snow |
---|
[4818] | 776 | dqsclrmelt = dqsmelt_max * dqsclrmelt / dqstotmelt |
---|
| 777 | dqscldmelt = dqsmelt_max * dqscldmelt / dqstotmelt |
---|
| 778 | dqstotmelt = dqsmelt_max |
---|
[4832] | 779 | |
---|
[4818] | 780 | ENDIF |
---|
| 781 | |
---|
[4819] | 782 | !--Add tendencies |
---|
[4833] | 783 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
| 784 | rainclr(i) = MAX(0., rainclr(i) - dqsclrmelt * dhum_to_dflux(i)) |
---|
| 785 | raincld(i) = MAX(0., raincld(i) - dqscldmelt * dhum_to_dflux(i)) |
---|
| 786 | snowclr(i) = MAX(0., snowclr(i) + dqsclrmelt * dhum_to_dflux(i)) |
---|
| 787 | snowcld(i) = MAX(0., snowcld(i) + dqscldmelt * dhum_to_dflux(i)) |
---|
[4818] | 788 | |
---|
[4819] | 789 | !--Temperature adjustment with the release of latent |
---|
| 790 | !--heat because of melting |
---|
[4818] | 791 | temp(i) = temp(i) + dqstotmelt * RLMLT / RCPD & |
---|
| 792 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
| 793 | |
---|
[4819] | 794 | !--Diagnostic tendencies |
---|
[4818] | 795 | dqrmelt(i) = - dqstotmelt / dtime |
---|
| 796 | dqsmelt(i) = dqstotmelt / dtime |
---|
| 797 | |
---|
| 798 | ENDIF |
---|
| 799 | |
---|
| 800 | |
---|
[4803] | 801 | !--------------------------------------------------------- |
---|
[4818] | 802 | !-- FREEZING |
---|
[4803] | 803 | !--------------------------------------------------------- |
---|
[4832] | 804 | !--Process through which rain freezes into snow. |
---|
| 805 | !-- We parameterize it as a 2 step process: |
---|
[4898] | 806 | !--first: freezing following collision with ice crystals |
---|
| 807 | !--second: immersion freezing following (inspired by Bigg 1953) |
---|
| 808 | !--the latter is parameterized as an exponential decrease of the rain |
---|
| 809 | !--water content with a homemade formulya |
---|
[4819] | 810 | !--This is based on a caracteritic time of freezing, which |
---|
| 811 | !--exponentially depends on temperature so that it is |
---|
| 812 | !--equal to 1 for temp_nowater (see below) and is close to |
---|
| 813 | !--0 for RTT (=273.15 K). |
---|
| 814 | !--NB.: this process needs a temperature adjustment |
---|
[4898] | 815 | !--dqrfreez_max : maximum rain freezing so that temperature |
---|
[4819] | 816 | !-- stays lower than 273 K [kg/kg] |
---|
[4898] | 817 | !--tau_freez : caracteristic time of freezing [s] |
---|
| 818 | !--gamma_freez : tuning parameter [s-1] |
---|
| 819 | !--alpha_freez : tuning parameter for the shape of the exponential curve [-] |
---|
| 820 | !--temp_nowater : temperature below which no liquid water exists [K] (about -40 degC) |
---|
[4819] | 821 | |
---|
[4818] | 822 | IF ( ( rainclr(i) + raincld(i) ) .GT. 0. ) THEN |
---|
[4803] | 823 | |
---|
[4898] | 824 | |
---|
[4832] | 825 | !--1st step: freezing following collision with ice crystals |
---|
| 826 | !--Sub-process of freezing which quantifies the collision between |
---|
| 827 | !--ice crystals in suspension and falling rain droplets. |
---|
| 828 | !--The rain droplets freeze, becoming graupel, and carrying |
---|
| 829 | !--the ice crystal (which acted as an ice nucleating particle). |
---|
| 830 | !--The formula is adapted from the riming formula. |
---|
[4898] | 831 | !--it works only in the cloudy part |
---|
[4832] | 832 | |
---|
| 833 | dqifreez = 0. |
---|
| 834 | dqrtotfreez_step1 = 0. |
---|
| 835 | |
---|
[4913] | 836 | IF ( ( qice(i) .GT. 0. ) .AND. ( cldfra(i) .GT. 0. ) .AND. & |
---|
| 837 | ( raincld(i) .GT. 0. ) .AND. ( precipfraccld(i) .GT. 0. ) ) THEN |
---|
[4832] | 838 | dqrclrfreez = 0. |
---|
| 839 | dqrcldfreez = 0. |
---|
| 840 | |
---|
| 841 | !--Computed according to |
---|
| 842 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
| 843 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
| 844 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
| 845 | |
---|
| 846 | |
---|
| 847 | !--The collision efficiency is assumed unity |
---|
| 848 | Eff_rain_ice = 1. |
---|
| 849 | coef_freez = gamma_freez * 3. / 4. / rho_rain / r_rain * Eff_rain_ice |
---|
| 850 | !--Exact version, which does not need a barrier because of |
---|
| 851 | !--the exponential decrease. |
---|
| 852 | dqifreez = qice(i) * ( EXP( - dtime * coef_freez * raincld(i) / precipfraccld(i) ) - 1. ) |
---|
| 853 | |
---|
| 854 | !--We add the part of rain water that freezes, limited by a temperature barrier |
---|
[4898] | 855 | !--This quantity is calculated assuming that the number of drop that freeze correspond to the number |
---|
[4833] | 856 | !--of crystals collected (and assuming uniform distributions of ice crystals and rain drops) |
---|
| 857 | !--The ice specific humidity that collide with rain is dqi = dNi 4/3 PI rho_ice r_ice**3 |
---|
| 858 | !--The rain that collide with ice is, similarly, dqr = dNr 4/3 PI rho_rain r_rain**3 |
---|
| 859 | !--The assumption above corresponds to dNi = dNr, i.e., |
---|
| 860 | !-- dqr = dqi * (4/3 PI rho_rain * r_rain**3) / (4/3 PI rho_ice * r_ice**3) |
---|
[4913] | 861 | !--Dry density [kg/m3] |
---|
| 862 | rho = pplay(i) / temp(i) / RD |
---|
| 863 | !--r_ice formula from Sun and Rikus (1999) |
---|
| 864 | r_ice = 1.e-6 * ( 45.8966 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2214 & |
---|
| 865 | + 0.7957 * ( qice(i) / cldfra(i) * rho * 1e3 )**0.2535 * ( temp(i) - RTT + 190. ) ) / 2. |
---|
[4833] | 866 | dqrcldfreez = dqifreez * rho_rain * r_rain**3. / ( rho_ice * r_ice**3. ) |
---|
| 867 | dqrcldfreez = MAX(dqrcldfreez, - raincld(i) / dhum_to_dflux(i)) |
---|
[4832] | 868 | dqrcldfreez = MAX(dqrcldfreez, dqrfreez_max) |
---|
| 869 | dqrtotfreez_step1 = dqrcldfreez |
---|
| 870 | |
---|
| 871 | !--Add tendencies |
---|
[4833] | 872 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
[4832] | 873 | qice(i) = qice(i) + dqifreez |
---|
[4833] | 874 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
| 875 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i) - dqifreez * dhum_to_dflux(i)) |
---|
[4832] | 876 | temp(i) = temp(i) - dqrtotfreez_step1 * RLMLT / RCPD & |
---|
[4833] | 877 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
[4832] | 878 | |
---|
| 879 | ENDIF |
---|
| 880 | |
---|
| 881 | !-- Second step immersion freezing of rain drops |
---|
| 882 | !-- with a homemade timeconstant depending on temperature |
---|
| 883 | |
---|
| 884 | dqrclrfreez = 0. |
---|
| 885 | dqrcldfreez = 0. |
---|
| 886 | dqrtotfreez_step2 = 0. |
---|
[4819] | 887 | !--Computed according to |
---|
| 888 | !--Cpdry * Delta T * (1 + (Cpvap/Cpdry - 1) * qtot) = Lfusion * Delta q |
---|
[4832] | 889 | |
---|
[4818] | 890 | dqrfreez_max = MIN(0., ( temp(i) - RTT ) / RLMLT * RCPD & |
---|
| 891 | * ( 1. + RVTMP2 * qtot(i) )) |
---|
[4832] | 892 | |
---|
| 893 | |
---|
[4830] | 894 | tau_freez = 1. / ( beta_freez & |
---|
[4818] | 895 | * EXP( - alpha_freez * ( temp(i) - temp_nowater ) / ( RTT - temp_nowater ) ) ) |
---|
[4803] | 896 | |
---|
[4830] | 897 | |
---|
[4823] | 898 | !--In clear air |
---|
| 899 | IF ( rainclr(i) .GT. 0. ) THEN |
---|
[4830] | 900 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
[4833] | 901 | dqrclrfreez = rainclr(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
[4823] | 902 | ENDIF |
---|
[4803] | 903 | |
---|
[4823] | 904 | !--In cloudy air |
---|
| 905 | IF ( raincld(i) .GT. 0. ) THEN |
---|
[4830] | 906 | !--Exact solution of dqrain/dt = -qrain/tau_freez |
---|
[4833] | 907 | dqrcldfreez = raincld(i) / dhum_to_dflux(i) * ( EXP( - dtime / tau_freez ) - 1. ) |
---|
[4823] | 908 | ENDIF |
---|
[4803] | 909 | |
---|
[4898] | 910 | !--temperature barrier step 2 |
---|
[4823] | 911 | !--It is activated if the total is LOWER than the max |
---|
| 912 | !--because everything is negative |
---|
[4832] | 913 | dqrtotfreez_step2 = dqrclrfreez + dqrcldfreez |
---|
| 914 | |
---|
| 915 | IF ( dqrtotfreez_step2 .LT. dqrfreez_max ) THEN |
---|
[4823] | 916 | !--We redistribute the max freezed rain keeping |
---|
| 917 | !--the clear/cloud partition of the freezing rain |
---|
[4832] | 918 | dqrclrfreez = dqrfreez_max * dqrclrfreez / dqrtotfreez_step2 |
---|
| 919 | dqrcldfreez = dqrfreez_max * dqrcldfreez / dqrtotfreez_step2 |
---|
| 920 | dqrtotfreez_step2 = dqrfreez_max |
---|
[4823] | 921 | ENDIF |
---|
| 922 | |
---|
| 923 | |
---|
[4819] | 924 | !--Add tendencies |
---|
[4833] | 925 | !--The MAX is needed because in some cases, the flux can be slightly negative (numerical precision) |
---|
| 926 | rainclr(i) = MAX(0., rainclr(i) + dqrclrfreez * dhum_to_dflux(i)) |
---|
| 927 | raincld(i) = MAX(0., raincld(i) + dqrcldfreez * dhum_to_dflux(i)) |
---|
| 928 | snowclr(i) = MAX(0., snowclr(i) - dqrclrfreez * dhum_to_dflux(i)) |
---|
| 929 | snowcld(i) = MAX(0., snowcld(i) - dqrcldfreez * dhum_to_dflux(i)) |
---|
[4803] | 930 | |
---|
[4832] | 931 | |
---|
[4819] | 932 | !--Temperature adjustment with the uptake of latent |
---|
| 933 | !--heat because of freezing |
---|
[4832] | 934 | temp(i) = temp(i) - dqrtotfreez_step2 * RLMLT / RCPD & |
---|
[4818] | 935 | / ( 1. + RVTMP2 * qtot(i) ) |
---|
| 936 | |
---|
[4819] | 937 | !--Diagnostic tendencies |
---|
[4833] | 938 | dqrtotfreez = dqrtotfreez_step1 + dqrtotfreez_step2 |
---|
[4818] | 939 | dqrfreez(i) = dqrtotfreez / dtime |
---|
[4832] | 940 | dqsfreez(i) = -(dqrtotfreez + dqifreez) / dtime |
---|
[4818] | 941 | |
---|
| 942 | ENDIF |
---|
| 943 | |
---|
[4888] | 944 | |
---|
| 945 | |
---|
[4819] | 946 | !--If the local flux of rain+snow in clear/cloudy air is lower than rain_int_min, |
---|
| 947 | !--we reduce the precipiration fraction in the clear/cloudy air so that the new |
---|
| 948 | !--local flux of rain+snow is equal to rain_int_min. |
---|
| 949 | !--Here, rain+snow is the gridbox-mean flux of precip. |
---|
| 950 | !--Therefore, (rain+snow)/precipfrac is the local flux of precip. |
---|
| 951 | !--If the local flux of precip is lower than rain_int_min, i.e., |
---|
| 952 | !-- (rain+snow)/precipfrac < rain_int_min , i.e., |
---|
| 953 | !-- (rain+snow)/rain_int_min < precipfrac , then we want to reduce |
---|
| 954 | !--the precip fraction to the equality, i.e., precipfrac = (rain+snow)/rain_int_min. |
---|
| 955 | !--Note that this is physically different than what is proposed in LTP thesis. |
---|
[4803] | 956 | precipfracclr(i) = MIN( precipfracclr(i), ( rainclr(i) + snowclr(i) ) / rain_int_min ) |
---|
| 957 | precipfraccld(i) = MIN( precipfraccld(i), ( raincld(i) + snowcld(i) ) / rain_int_min ) |
---|
| 958 | |
---|
[4819] | 959 | !--Calculate outputs |
---|
[4803] | 960 | rain(i) = rainclr(i) + raincld(i) |
---|
| 961 | snow(i) = snowclr(i) + snowcld(i) |
---|
| 962 | |
---|
[4819] | 963 | !--Diagnostics |
---|
[4830] | 964 | !--BEWARE this is indeed a diagnostic: this is an estimation from |
---|
| 965 | !--the value of the flux at the bottom interface of the mesh and |
---|
| 966 | !--and assuming an upstream numerical calculation |
---|
| 967 | !--If ok_radocond_snow is TRUE, then the diagnostic qsnowdiag is |
---|
| 968 | !--used for computing the total ice water content in the mesh |
---|
| 969 | !--for radiation only |
---|
| 970 | qraindiag(i) = ( rainclr(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_clr & |
---|
| 971 | + raincld(i) / ( pplay(i) / RD / temp(i) ) / rain_fallspeed_cld ) |
---|
| 972 | qsnowdiag(i) = ( snowclr(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_clr & |
---|
| 973 | + snowcld(i) / ( pplay(i) / RD / temp(i) ) / snow_fallspeed_cld ) |
---|
[4803] | 974 | |
---|
[4888] | 975 | |
---|
[4819] | 976 | ENDDO ! loop on klon |
---|
[4803] | 977 | |
---|
[4888] | 978 | |
---|
[4803] | 979 | END SUBROUTINE poprecip_postcld |
---|
| 980 | |
---|
| 981 | END MODULE lmdz_lscp_poprecip |
---|