| 1 | MODULE lmdz_lscp_condensation |
|---|
| 2 | !---------------------------------------------------------------- |
|---|
| 3 | ! Module for condensation of clouds routines |
|---|
| 4 | ! that are called in LSCP |
|---|
| 5 | |
|---|
| 6 | |
|---|
| 7 | IMPLICIT NONE |
|---|
| 8 | |
|---|
| 9 | CONTAINS |
|---|
| 10 | |
|---|
| 11 | !********************************************************************************** |
|---|
| 12 | SUBROUTINE condensation_lognormal( & |
|---|
| 13 | klon, temp, qtot, qsat, gamma_cond, ratqs, & |
|---|
| 14 | keepgoing, cldfra, qincld, qvc) |
|---|
| 15 | |
|---|
| 16 | !---------------------------------------------------------------------- |
|---|
| 17 | ! This subroutine calculates the formation of clouds, using a |
|---|
| 18 | ! statistical cloud scheme. It uses a generalised lognormal distribution |
|---|
| 19 | ! of total water in the gridbox |
|---|
| 20 | ! See Bony and Emanuel, 2001 |
|---|
| 21 | !---------------------------------------------------------------------- |
|---|
| 22 | |
|---|
| 23 | USE lmdz_lscp_ini, ONLY: eps |
|---|
| 24 | |
|---|
| 25 | IMPLICIT NONE |
|---|
| 26 | |
|---|
| 27 | ! |
|---|
| 28 | ! Input |
|---|
| 29 | ! |
|---|
| 30 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
|---|
| 31 | ! |
|---|
| 32 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
|---|
| 33 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
|---|
| 34 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
|---|
| 35 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
|---|
| 36 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
|---|
| 37 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
|---|
| 38 | ! |
|---|
| 39 | ! Output |
|---|
| 40 | ! NB. those are in INOUT because of the convergence loop on temperature |
|---|
| 41 | ! (in some cases, the values are not re-computed) but the values |
|---|
| 42 | ! are never used explicitely |
|---|
| 43 | ! |
|---|
| 44 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
|---|
| 45 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
|---|
| 46 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
|---|
| 47 | ! |
|---|
| 48 | ! Local |
|---|
| 49 | ! |
|---|
| 50 | INTEGER :: i |
|---|
| 51 | REAL :: pdf_std, pdf_k, pdf_delta |
|---|
| 52 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
|---|
| 53 | ! |
|---|
| 54 | !--Loop on klon |
|---|
| 55 | ! |
|---|
| 56 | DO i = 1, klon |
|---|
| 57 | |
|---|
| 58 | !--If a new calculation of the condensation is needed, |
|---|
| 59 | !--i.e., temperature has not yet converged (or the cloud is |
|---|
| 60 | !--formed elsewhere) |
|---|
| 61 | IF (keepgoing(i)) THEN |
|---|
| 62 | |
|---|
| 63 | pdf_std = ratqs(i) * qtot(i) |
|---|
| 64 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2 ) ) |
|---|
| 65 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
|---|
| 66 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
|---|
| 67 | pdf_b = pdf_k / (2. * SQRT(2.)) |
|---|
| 68 | pdf_e1 = pdf_a - pdf_b |
|---|
| 69 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
|---|
| 70 | pdf_e1 = 1. - ERF(pdf_e1) |
|---|
| 71 | pdf_e2 = pdf_a + pdf_b |
|---|
| 72 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
|---|
| 73 | pdf_e2 = 1. - ERF(pdf_e2) |
|---|
| 74 | |
|---|
| 75 | |
|---|
| 76 | IF ( pdf_e1 .LT. eps ) THEN |
|---|
| 77 | cldfra(i) = 0. |
|---|
| 78 | qincld(i) = qsat(i) |
|---|
| 79 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
|---|
| 80 | qvc(i) = 0. |
|---|
| 81 | ELSE |
|---|
| 82 | cldfra(i) = 0.5 * pdf_e1 |
|---|
| 83 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
|---|
| 84 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
|---|
| 85 | qvc(i) = qsat(i) * cldfra(i) |
|---|
| 86 | ENDIF |
|---|
| 87 | |
|---|
| 88 | ENDIF ! end keepgoing |
|---|
| 89 | |
|---|
| 90 | ENDDO ! end loop on i |
|---|
| 91 | END SUBROUTINE condensation_lognormal |
|---|
| 92 | !********************************************************************************** |
|---|
| 93 | |
|---|
| 94 | !********************************************************************************** |
|---|
| 95 | SUBROUTINE condensation_ice_supersat( & |
|---|
| 96 | klon, dtime, missing_val, pplay, paprsdn, paprsup, & |
|---|
| 97 | cf_seri, rvc_seri, ql_seri, qi_seri, shear, pbl_eps, cell_area, & |
|---|
| 98 | temp, qtot, qsat, gamma_cond, ratqs, keepgoing, & |
|---|
| 99 | cldfra, qincld, qvc, issrfra, qissr, dcf_sub, dcf_con, dcf_mix, & |
|---|
| 100 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, dqvc_sub, dqvc_con, dqvc_mix, & |
|---|
| 101 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, flight_dist, flight_h2o, & |
|---|
| 102 | dcf_avi, dqi_avi, dqvc_avi) |
|---|
| 103 | |
|---|
| 104 | !---------------------------------------------------------------------- |
|---|
| 105 | ! This subroutine calculates the formation, evolution and dissipation |
|---|
| 106 | ! of clouds, using a process-oriented treatment of the cloud properties |
|---|
| 107 | ! (cloud fraction, vapor in the cloud, condensed water in the cloud). |
|---|
| 108 | ! It allows for ice supersaturation in cold regions, in clear sky. |
|---|
| 109 | ! If ok_unadjusted_clouds, it also allows for sub- and supersaturated |
|---|
| 110 | ! cloud water vapors. |
|---|
| 111 | ! It also allows for the formation and evolution of condensation trails |
|---|
| 112 | ! (contrails) from aviation. |
|---|
| 113 | ! Authors: Audran Borella, Etienne Vignon, Olivier Boucher |
|---|
| 114 | ! April 2024 |
|---|
| 115 | !---------------------------------------------------------------------- |
|---|
| 116 | |
|---|
| 117 | USE lmdz_lscp_tools, ONLY: calc_qsat_ecmwf, calc_gammasat, GAMMAINC |
|---|
| 118 | USE lmdz_lscp_ini, ONLY: RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RV, RPI, EPS_W |
|---|
| 119 | USE lmdz_lscp_ini, ONLY: eps, temp_nowater, ok_weibull_warm_clouds |
|---|
| 120 | USE lmdz_lscp_ini, ONLY: ok_unadjusted_clouds, iflag_cloud_sublim_pdf |
|---|
| 121 | USE lmdz_lscp_ini, ONLY: lunout |
|---|
| 122 | |
|---|
| 123 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, std_subl_pdf_lscp, & |
|---|
| 124 | mu_subl_pdf_lscp, beta_pdf_lscp, temp_thresh_pdf_lscp, & |
|---|
| 125 | std100_pdf_lscp, k0_pdf_lscp, kappa_pdf_lscp, & |
|---|
| 126 | coef_mixing_lscp, coef_shear_lscp, & |
|---|
| 127 | chi_mixing_lscp, rho_ice |
|---|
| 128 | |
|---|
| 129 | IMPLICIT NONE |
|---|
| 130 | |
|---|
| 131 | ! |
|---|
| 132 | ! Input |
|---|
| 133 | ! |
|---|
| 134 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
|---|
| 135 | REAL, INTENT(IN) :: dtime ! time step [s] |
|---|
| 136 | REAL, INTENT(IN) :: missing_val ! missing value for output |
|---|
| 137 | ! |
|---|
| 138 | REAL, INTENT(IN) , DIMENSION(klon) :: pplay ! layer pressure [Pa] |
|---|
| 139 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsdn ! pressure at the lower interface [Pa] |
|---|
| 140 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsup ! pressure at the upper interface [Pa] |
|---|
| 141 | REAL, INTENT(IN) , DIMENSION(klon) :: cf_seri ! cloud fraction [-] |
|---|
| 142 | REAL, INTENT(IN) , DIMENSION(klon) :: rvc_seri ! gridbox-mean water vapor in cloud [kg/kg] |
|---|
| 143 | REAL, INTENT(IN) , DIMENSION(klon) :: ql_seri ! specific liquid water content [kg/kg] |
|---|
| 144 | REAL, INTENT(IN) , DIMENSION(klon) :: qi_seri ! specific ice water content [kg/kg] |
|---|
| 145 | REAL, INTENT(IN) , DIMENSION(klon) :: shear ! vertical shear [s-1] |
|---|
| 146 | REAL, INTENT(IN) , DIMENSION(klon) :: pbl_eps ! |
|---|
| 147 | REAL, INTENT(IN) , DIMENSION(klon) :: cell_area ! |
|---|
| 148 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
|---|
| 149 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
|---|
| 150 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
|---|
| 151 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
|---|
| 152 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
|---|
| 153 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
|---|
| 154 | ! |
|---|
| 155 | ! Input for aviation |
|---|
| 156 | ! |
|---|
| 157 | REAL, INTENT(IN), DIMENSION(klon) :: flight_dist ! |
|---|
| 158 | REAL, INTENT(IN), DIMENSION(klon) :: flight_h2o ! |
|---|
| 159 | ! |
|---|
| 160 | ! Output |
|---|
| 161 | ! NB. cldfra and qincld should be outputed as cf_seri and qi_seri, |
|---|
| 162 | ! or as tendencies (maybe in the future) |
|---|
| 163 | ! NB. those are in INOUT because of the convergence loop on temperature |
|---|
| 164 | ! (in some cases, the values are not re-computed) but the values |
|---|
| 165 | ! are never used explicitely |
|---|
| 166 | ! |
|---|
| 167 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
|---|
| 168 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
|---|
| 169 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
|---|
| 170 | REAL, INTENT(INOUT), DIMENSION(klon) :: issrfra ! ISSR fraction [-] |
|---|
| 171 | REAL, INTENT(INOUT), DIMENSION(klon) :: qissr ! gridbox-mean ISSR specific water [kg/kg] |
|---|
| 172 | ! |
|---|
| 173 | ! Diagnostics for condensation and ice supersaturation |
|---|
| 174 | ! NB. idem for the INOUT |
|---|
| 175 | ! |
|---|
| 176 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_sub ! cloud fraction tendency because of sublimation [s-1] |
|---|
| 177 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_con ! cloud fraction tendency because of condensation [s-1] |
|---|
| 178 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_mix ! cloud fraction tendency because of cloud mixing [s-1] |
|---|
| 179 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_adj ! specific ice content tendency because of temperature adjustment [kg/kg/s] |
|---|
| 180 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_sub ! specific ice content tendency because of sublimation [kg/kg/s] |
|---|
| 181 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_con ! specific ice content tendency because of condensation [kg/kg/s] |
|---|
| 182 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_mix ! specific ice content tendency because of cloud mixing [kg/kg/s] |
|---|
| 183 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_adj ! specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
|---|
| 184 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_sub ! specific cloud water vapor tendency because of sublimation [kg/kg/s] |
|---|
| 185 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_con ! specific cloud water vapor tendency because of condensation [kg/kg/s] |
|---|
| 186 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_mix ! specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
|---|
| 187 | ! |
|---|
| 188 | ! Diagnostics for aviation |
|---|
| 189 | ! NB. idem for the INOUT |
|---|
| 190 | ! |
|---|
| 191 | REAL, INTENT(INOUT), DIMENSION(klon) :: Tcontr ! critical temperature for contrail formation (T_LM in Schumann 1996, Eq 31 in appendix 2) [K] |
|---|
| 192 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcontr ! |
|---|
| 193 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcontr2 ! |
|---|
| 194 | REAL, INTENT(INOUT), DIMENSION(klon) :: fcontrN ! |
|---|
| 195 | REAL, INTENT(INOUT), DIMENSION(klon) :: fcontrP ! |
|---|
| 196 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_avi ! cloud fraction tendency because of aviation [s-1] |
|---|
| 197 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_avi ! specific ice content tendency because of aviation [kg/kg/s] |
|---|
| 198 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_avi ! specific cloud water vapor tendency because of aviation [kg/kg/s] |
|---|
| 199 | ! |
|---|
| 200 | ! Local |
|---|
| 201 | ! |
|---|
| 202 | INTEGER :: i |
|---|
| 203 | LOGICAL :: ok_warm_cloud |
|---|
| 204 | REAL, DIMENSION(klon) :: qcld, qzero |
|---|
| 205 | ! |
|---|
| 206 | ! for lognormal |
|---|
| 207 | REAL :: pdf_std, pdf_k, pdf_delta |
|---|
| 208 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
|---|
| 209 | ! |
|---|
| 210 | ! for unadjusted clouds |
|---|
| 211 | REAL :: qvapincld, qvapincld_new |
|---|
| 212 | REAL :: qiceincld |
|---|
| 213 | ! |
|---|
| 214 | ! for sublimation |
|---|
| 215 | REAL :: pdf_alpha |
|---|
| 216 | REAL :: dqt_sub |
|---|
| 217 | ! |
|---|
| 218 | ! for condensation |
|---|
| 219 | REAL, DIMENSION(klon) :: qsatl, dqsatl |
|---|
| 220 | REAL :: clrfra, qclr, sl_clr, rhl_clr |
|---|
| 221 | REAL :: pdf_ratqs, pdf_skew, pdf_scale, pdf_loc |
|---|
| 222 | REAL :: pdf_x, pdf_y, pdf_T |
|---|
| 223 | REAL :: pdf_e3, pdf_e4 |
|---|
| 224 | REAL :: cf_cond, qt_cond, dqt_con |
|---|
| 225 | ! |
|---|
| 226 | ! for mixing |
|---|
| 227 | REAL, DIMENSION(klon) :: subfra, qsub |
|---|
| 228 | REAL :: dqt_mix_sub, dqt_mix_issr |
|---|
| 229 | REAL :: dcf_mix_sub, dcf_mix_issr |
|---|
| 230 | REAL :: dqvc_mix_sub, dqvc_mix_issr |
|---|
| 231 | REAL :: dqt_mix |
|---|
| 232 | REAL :: a_mix, bovera, Povera, N_cld_mix, L_mix |
|---|
| 233 | REAL :: envfra_mix, cldfra_mix |
|---|
| 234 | REAL :: L_shear, shear_fra |
|---|
| 235 | REAL :: sigma_mix, issrfra_mix, subfra_mix, qvapinmix |
|---|
| 236 | ! |
|---|
| 237 | ! for cell properties |
|---|
| 238 | REAL :: rho, rhodz, dz |
|---|
| 239 | !REAL :: V_cell, M_cell |
|---|
| 240 | ! |
|---|
| 241 | ! for aviation and cell properties |
|---|
| 242 | !REAL :: dqt_avi |
|---|
| 243 | !REAL :: contrail_fra |
|---|
| 244 | ! |
|---|
| 245 | ! |
|---|
| 246 | !--more local variables for diagnostics |
|---|
| 247 | !--imported from YOMCST.h |
|---|
| 248 | !--eps_w = 0.622 = ratio of molecular masses of water and dry air (kg H2O kg air -1) |
|---|
| 249 | !--RCPD = 1004 J kg air−1 K−1 = the isobaric heat capacity of air |
|---|
| 250 | !--values from Schumann, Meteorol Zeitschrift, 1996 |
|---|
| 251 | !--EiH2O = 1.25 / 2.24 / 8.94 kg H2O / kg fuel for kerosene / methane / dihydrogen |
|---|
| 252 | !--Qheat = 43. / 50. / 120. MJ / kg fuel for kerosene / methane / dihydrogen |
|---|
| 253 | !REAL, PARAMETER :: EiH2O=1.25 !--emission index of water vapour for kerosene (kg kg-1) |
|---|
| 254 | !REAL, PARAMETER :: Qheat=43.E6 !--specific combustion heat for kerosene (J kg-1) |
|---|
| 255 | !REAL, PARAMETER :: eta=0.3 !--average propulsion efficiency of the aircraft |
|---|
| 256 | !--Gcontr is the slope of the mean phase trajectory in the turbulent exhaust field on an absolute |
|---|
| 257 | !--temperature versus water vapor partial pressure diagram. G has the unit of Pa K−1. Rap et al JGR 2010. |
|---|
| 258 | !REAL :: Gcontr |
|---|
| 259 | !--Tcontr = critical temperature for contrail formation (T_LM in Schumann 1996, Eq 31 in appendix 2) |
|---|
| 260 | !--qsatliqcontr = e_L(T_LM) in Schumann 1996 but expressed in specific humidity (kg kg humid air-1) |
|---|
| 261 | !REAL :: qsatliqcontr |
|---|
| 262 | |
|---|
| 263 | |
|---|
| 264 | !----------------------------------------------- |
|---|
| 265 | ! Initialisations |
|---|
| 266 | !----------------------------------------------- |
|---|
| 267 | |
|---|
| 268 | ! Ajout des émissions de H2O dues à l'aviation |
|---|
| 269 | ! q is the specific humidity (kg/kg humid air) hence the complicated equation to update q |
|---|
| 270 | ! qnew = ( m_humid_air * qold + dm_H2O ) / ( m_humid_air + dm_H2O ) |
|---|
| 271 | ! = ( m_dry_air * qold + dm_h2O * (1-qold) ) / (m_dry_air + dm_H2O * (1-qold) ) |
|---|
| 272 | ! The equation is derived by writing m_humid_air = m_dry_air + m_H2O = m_dry_air / (1-q) |
|---|
| 273 | ! flight_h2O is in kg H2O / s / cell |
|---|
| 274 | ! |
|---|
| 275 | !IF (ok_plane_h2o) THEN |
|---|
| 276 | ! q = ( M_cell*q + flight_h2o(i,k)*dtime*(1.-q) ) / (M_cell + flight_h2o(i,k)*dtime*(1.-q) ) |
|---|
| 277 | !ENDIF |
|---|
| 278 | |
|---|
| 279 | |
|---|
| 280 | qzero(:) = 0. |
|---|
| 281 | |
|---|
| 282 | !--Calculation of qsat w.r.t. liquid |
|---|
| 283 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 1, .FALSE., qsatl, dqsatl) |
|---|
| 284 | |
|---|
| 285 | ! |
|---|
| 286 | !--Loop on klon |
|---|
| 287 | ! |
|---|
| 288 | DO i = 1, klon |
|---|
| 289 | |
|---|
| 290 | !--If a new calculation of the condensation is needed, |
|---|
| 291 | !--i.e., temperature has not yet converged (or the cloud is |
|---|
| 292 | !--formed elsewhere) |
|---|
| 293 | IF (keepgoing(i)) THEN |
|---|
| 294 | |
|---|
| 295 | !--Initialisation |
|---|
| 296 | issrfra(i) = 0. |
|---|
| 297 | qissr(i) = 0. |
|---|
| 298 | |
|---|
| 299 | !--If the temperature is higher than the threshold below which |
|---|
| 300 | !--there is no liquid in the gridbox, we activate the usual scheme |
|---|
| 301 | !--(generalised lognormal from Bony and Emanuel 2001) |
|---|
| 302 | !--If ok_weibull_warm_clouds = .TRUE., the Weibull law is used for |
|---|
| 303 | !--all clouds, and the lognormal scheme is not activated |
|---|
| 304 | IF ( ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds ) THEN |
|---|
| 305 | |
|---|
| 306 | pdf_std = ratqs(i) * qtot(i) |
|---|
| 307 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2 ) ) |
|---|
| 308 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
|---|
| 309 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
|---|
| 310 | pdf_b = pdf_k / (2. * SQRT(2.)) |
|---|
| 311 | pdf_e1 = pdf_a - pdf_b |
|---|
| 312 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
|---|
| 313 | pdf_e1 = 1. - ERF(pdf_e1) |
|---|
| 314 | pdf_e2 = pdf_a + pdf_b |
|---|
| 315 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
|---|
| 316 | pdf_e2 = 1. - ERF(pdf_e2) |
|---|
| 317 | |
|---|
| 318 | |
|---|
| 319 | IF ( pdf_e1 .LT. eps ) THEN |
|---|
| 320 | cldfra(i) = 0. |
|---|
| 321 | qincld(i) = qsat(i) |
|---|
| 322 | qvc(i) = 0. |
|---|
| 323 | ELSE |
|---|
| 324 | cldfra(i) = 0.5 * pdf_e1 |
|---|
| 325 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
|---|
| 326 | qvc(i) = qsat(i) * cldfra(i) |
|---|
| 327 | ENDIF |
|---|
| 328 | |
|---|
| 329 | !--If the temperature is lower than temp_nowater, we use the new |
|---|
| 330 | !--condensation scheme that allows for ice supersaturation |
|---|
| 331 | ELSE |
|---|
| 332 | |
|---|
| 333 | !--Initialisation |
|---|
| 334 | IF ( temp(i) .GT. temp_nowater ) THEN |
|---|
| 335 | !--If the air mass is warm (liquid water can exist), |
|---|
| 336 | !--all the memory is lost and the scheme becomes statistical, |
|---|
| 337 | !--i.e., the sublimation and mixing processes are deactivated, |
|---|
| 338 | !--and the condensation process is slightly adapted |
|---|
| 339 | !--This can happen only if ok_weibull_warm_clouds = .TRUE. |
|---|
| 340 | ! AB WARM CLOUD |
|---|
| 341 | !cldfra(i) = 0. |
|---|
| 342 | !qcld(i) = 0. |
|---|
| 343 | !qvc(i) = 0. |
|---|
| 344 | cldfra(i) = MAX(0., MIN(1., cf_seri(i))) |
|---|
| 345 | qcld(i) = MAX(0., MIN(qtot(i), ql_seri(i) + qi_seri(i) + rvc_seri(i) * qtot(i))) |
|---|
| 346 | qvc(i) = MAX(0., MIN(qcld(i), rvc_seri(i) * qtot(i))) |
|---|
| 347 | ok_warm_cloud = .TRUE. |
|---|
| 348 | ELSE |
|---|
| 349 | !--The following barriers ensure that the traced cloud properties |
|---|
| 350 | !--are consistent. In some rare cases, i.e. the cloud water vapor |
|---|
| 351 | !--can be greater than the total water in the gridbox |
|---|
| 352 | cldfra(i) = MAX(0., MIN(1., cf_seri(i))) |
|---|
| 353 | qcld(i) = MAX(0., MIN(qtot(i), rvc_seri(i) * qtot(i) + qi_seri(i))) |
|---|
| 354 | qvc(i) = MAX(0., MIN(qcld(i), rvc_seri(i) * qtot(i))) |
|---|
| 355 | ok_warm_cloud = .FALSE. |
|---|
| 356 | ENDIF |
|---|
| 357 | |
|---|
| 358 | dcf_sub(i) = 0. |
|---|
| 359 | dqi_sub(i) = 0. |
|---|
| 360 | dqvc_sub(i) = 0. |
|---|
| 361 | dqi_adj(i) = 0. |
|---|
| 362 | dqvc_adj(i) = 0. |
|---|
| 363 | dcf_con(i) = 0. |
|---|
| 364 | dqi_con(i) = 0. |
|---|
| 365 | dqvc_con(i) = 0. |
|---|
| 366 | dcf_mix(i) = 0. |
|---|
| 367 | dqi_mix(i) = 0. |
|---|
| 368 | dqvc_mix(i) = 0. |
|---|
| 369 | |
|---|
| 370 | !--Initialisation of the cell properties |
|---|
| 371 | !--Dry density [kg/m3] |
|---|
| 372 | rho = pplay(i) / temp(i) / RD |
|---|
| 373 | !--Dry air mass [kg/m2] |
|---|
| 374 | rhodz = ( paprsdn(i) - paprsup(i) ) / RG |
|---|
| 375 | !--Cell thickness [m] |
|---|
| 376 | dz = rhodz / rho |
|---|
| 377 | !--Cell volume [m3] |
|---|
| 378 | !V_cell = dz * cell_area(i) |
|---|
| 379 | !--Cell dry air mass [kg] |
|---|
| 380 | !M_cell = rhodz * cell_area(i) |
|---|
| 381 | |
|---|
| 382 | |
|---|
| 383 | !------------------------------------------------------------------- |
|---|
| 384 | !-- SUBLIMATION OF ICE AND DEPOSITION OF VAPOR IN THE CLOUD -- |
|---|
| 385 | !------------------------------------------------------------------- |
|---|
| 386 | |
|---|
| 387 | !--If there is a cloud |
|---|
| 388 | IF ( cldfra(i) .GT. eps ) THEN |
|---|
| 389 | |
|---|
| 390 | qvapincld = qvc(i) / cldfra(i) |
|---|
| 391 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
|---|
| 392 | |
|---|
| 393 | !--If the ice water content is too low, the cloud is purely sublimated |
|---|
| 394 | !--Most probably, we advected a cloud with no ice water content (possible |
|---|
| 395 | !--if the entire cloud precipited for example) |
|---|
| 396 | IF ( qiceincld .LT. eps ) THEN |
|---|
| 397 | dcf_sub(i) = - cldfra(i) |
|---|
| 398 | dqvc_sub(i) = - qvc(i) |
|---|
| 399 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
|---|
| 400 | |
|---|
| 401 | cldfra(i) = 0. |
|---|
| 402 | qcld(i) = 0. |
|---|
| 403 | qvc(i) = 0. |
|---|
| 404 | |
|---|
| 405 | !--Else, the cloud is adjusted and sublimated |
|---|
| 406 | ELSE |
|---|
| 407 | |
|---|
| 408 | !--The vapor in cloud cannot be higher than the |
|---|
| 409 | !--condensation threshold |
|---|
| 410 | qvapincld = MIN(qvapincld, gamma_cond(i) * qsat(i)) |
|---|
| 411 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
|---|
| 412 | |
|---|
| 413 | ! AB WARM CLOUD |
|---|
| 414 | !IF ( ok_unadjusted_clouds ) THEN |
|---|
| 415 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
|---|
| 416 | CALL deposition_sublimation(qvapincld, qiceincld, temp(i), qsat(i), & |
|---|
| 417 | pplay(i), dtime, qvapincld_new) |
|---|
| 418 | IF ( qvapincld_new .EQ. 0. ) THEN |
|---|
| 419 | !--If all the ice has been sublimated, we sublimate |
|---|
| 420 | !--completely the cloud and do not activate the sublimation |
|---|
| 421 | !--process |
|---|
| 422 | !--Tendencies and diagnostics |
|---|
| 423 | dcf_sub(i) = - cldfra(i) |
|---|
| 424 | dqvc_sub(i) = - qvc(i) |
|---|
| 425 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
|---|
| 426 | |
|---|
| 427 | cldfra(i) = 0. |
|---|
| 428 | qcld(i) = 0. |
|---|
| 429 | qvc(i) = 0. |
|---|
| 430 | ENDIF |
|---|
| 431 | ELSE |
|---|
| 432 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
|---|
| 433 | !--cloud is set equal to the saturation vapor |
|---|
| 434 | qvapincld_new = qsat(i) |
|---|
| 435 | ENDIF ! ok_unadjusted_clouds |
|---|
| 436 | |
|---|
| 437 | !--Adjustment of the IWC to the new vapor in cloud |
|---|
| 438 | !--(this can be either positive or negative) |
|---|
| 439 | dqvc_adj(i) = ( qvapincld_new * cldfra(i) - qvc(i) ) |
|---|
| 440 | dqi_adj(i) = - dqvc_adj(i) |
|---|
| 441 | |
|---|
| 442 | !--Add tendencies |
|---|
| 443 | !--The vapor in the cloud is updated, but not qcld as it is constant |
|---|
| 444 | !--through this process, as well as cldfra which is unmodified |
|---|
| 445 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_adj(i))) |
|---|
| 446 | |
|---|
| 447 | |
|---|
| 448 | !------------------------------------ |
|---|
| 449 | !-- DISSIPATION OF THE CLOUD -- |
|---|
| 450 | !------------------------------------ |
|---|
| 451 | |
|---|
| 452 | !--If the vapor in cloud is below vapor needed for the cloud to survive |
|---|
| 453 | IF ( ( qvapincld .LT. qvapincld_new ) .OR. ( iflag_cloud_sublim_pdf .GE. 4 ) ) THEN |
|---|
| 454 | !--Sublimation of the subsaturated cloud |
|---|
| 455 | !--iflag_cloud_sublim_pdf selects the PDF of the ice water content |
|---|
| 456 | !--to use. |
|---|
| 457 | !--iflag = 1 --> uniform distribution |
|---|
| 458 | !--iflag = 2 --> exponential distribution |
|---|
| 459 | !--iflag = 3 --> gamma distribution (Karcher et al 2018) |
|---|
| 460 | |
|---|
| 461 | IF ( iflag_cloud_sublim_pdf .EQ. 1 ) THEN |
|---|
| 462 | !--Uniform distribution starting at qvapincld |
|---|
| 463 | pdf_e1 = 1. / ( 2. * qiceincld ) |
|---|
| 464 | |
|---|
| 465 | dcf_sub(i) = - cldfra(i) * ( qvapincld_new - qvapincld ) * pdf_e1 |
|---|
| 466 | dqt_sub = - cldfra(i) * ( qvapincld_new**2 - qvapincld**2 ) & |
|---|
| 467 | * pdf_e1 / 2. |
|---|
| 468 | |
|---|
| 469 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 2 ) THEN |
|---|
| 470 | !--Exponential distribution starting at qvapincld |
|---|
| 471 | pdf_alpha = 1. / qiceincld |
|---|
| 472 | pdf_e1 = EXP( - pdf_alpha * ( qvapincld_new - qvapincld ) ) |
|---|
| 473 | |
|---|
| 474 | dcf_sub(i) = - cldfra(i) * ( 1. - pdf_e1 ) |
|---|
| 475 | dqt_sub = - cldfra(i) * ( ( 1. - pdf_e1 ) / pdf_alpha & |
|---|
| 476 | + qvapincld - qvapincld_new * pdf_e1 ) |
|---|
| 477 | |
|---|
| 478 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 3 ) THEN |
|---|
| 479 | !--Gamma distribution starting at qvapincld |
|---|
| 480 | pdf_alpha = ( mu_subl_pdf_lscp + 1. ) / qiceincld |
|---|
| 481 | pdf_y = pdf_alpha * ( qvapincld_new - qvapincld ) |
|---|
| 482 | pdf_e1 = GAMMAINC ( mu_subl_pdf_lscp + 1. , pdf_y ) |
|---|
| 483 | pdf_e2 = GAMMAINC ( mu_subl_pdf_lscp + 2. , pdf_y ) |
|---|
| 484 | |
|---|
| 485 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
|---|
| 486 | dqt_sub = - cldfra(i) * ( pdf_e2 / pdf_alpha + qvapincld * pdf_e1 ) |
|---|
| 487 | |
|---|
| 488 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 4 ) THEN |
|---|
| 489 | !--Normal distribution around qvapincld + qiceincld with width |
|---|
| 490 | !--constant in the RHi space |
|---|
| 491 | pdf_y = ( qvapincld_new - qvapincld - qiceincld ) & |
|---|
| 492 | / ( std_subl_pdf_lscp / 100. * qsat(i)) |
|---|
| 493 | pdf_e1 = 0.5 * ( 1. + ERF( pdf_y / SQRT(2.) ) ) |
|---|
| 494 | pdf_e2 = EXP( - pdf_y**2 / 2. ) / SQRT( 2. * RPI ) |
|---|
| 495 | |
|---|
| 496 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
|---|
| 497 | dqt_sub = - cldfra(i) * ( ( qvapincld + qiceincld ) * pdf_e1 & |
|---|
| 498 | - std_subl_pdf_lscp / 100. * qsat(i) * pdf_e2 ) |
|---|
| 499 | |
|---|
| 500 | ENDIF |
|---|
| 501 | |
|---|
| 502 | !--Tendencies and diagnostics |
|---|
| 503 | dqvc_sub(i) = dqt_sub |
|---|
| 504 | |
|---|
| 505 | !--Add tendencies |
|---|
| 506 | cldfra(i) = MAX(0., cldfra(i) + dcf_sub(i)) |
|---|
| 507 | qcld(i) = MAX(0., qcld(i) + dqt_sub) |
|---|
| 508 | qvc(i) = MAX(0., qvc(i) + dqvc_sub(i)) |
|---|
| 509 | |
|---|
| 510 | ENDIF ! qvapincld .LT. qvapincld_new |
|---|
| 511 | |
|---|
| 512 | ENDIF ! qiceincld .LT. eps |
|---|
| 513 | ENDIF ! cldfra(i) .GT. eps |
|---|
| 514 | |
|---|
| 515 | |
|---|
| 516 | !-------------------------------------------------------------------------- |
|---|
| 517 | !-- CONDENSATION AND DIAGNOTICS OF SUB- AND SUPERSATURATED REGIONS -- |
|---|
| 518 | !-------------------------------------------------------------------------- |
|---|
| 519 | !--This section relies on a distribution of water in the clear-sky region of |
|---|
| 520 | !--the mesh. |
|---|
| 521 | |
|---|
| 522 | !--If there is a clear-sky region |
|---|
| 523 | IF ( ( 1. - cldfra(i) ) .GT. eps ) THEN |
|---|
| 524 | |
|---|
| 525 | !--Water quantity in the clear-sky + potential liquid cloud (gridbox average) |
|---|
| 526 | qclr = qtot(i) - qcld(i) |
|---|
| 527 | |
|---|
| 528 | !--New PDF |
|---|
| 529 | rhl_clr = qclr / ( 1. - cldfra(i) ) / qsatl(i) * 100. |
|---|
| 530 | |
|---|
| 531 | !--Calculation of the properties of the PDF |
|---|
| 532 | !--Parameterization from IAGOS observations |
|---|
| 533 | !--pdf_e1 and pdf_e2 will be reused below |
|---|
| 534 | |
|---|
| 535 | !--Coefficient for standard deviation: |
|---|
| 536 | !-- tuning coef * (clear sky area**0.25) * (function of temperature) |
|---|
| 537 | !pdf_e1 = beta_pdf_lscp & |
|---|
| 538 | ! * ( ( 1. - cldfra(i) ) * cell_area(i) )**( 1. / 4. ) & |
|---|
| 539 | ! * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
|---|
| 540 | !-- tuning coef * (cell area**0.25) * (function of temperature) |
|---|
| 541 | pdf_e1 = beta_pdf_lscp * ( ( 1. - cldfra(i) ) * cell_area(i) )**0.25 & |
|---|
| 542 | * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
|---|
| 543 | IF ( rhl_clr .GT. 50. ) THEN |
|---|
| 544 | pdf_std = ( pdf_e1 - std100_pdf_lscp ) * ( 100. - rhl_clr ) / 50. + std100_pdf_lscp |
|---|
| 545 | ELSE |
|---|
| 546 | pdf_std = pdf_e1 * rhl_clr / 50. |
|---|
| 547 | ENDIF |
|---|
| 548 | pdf_e3 = k0_pdf_lscp + kappa_pdf_lscp * MAX( temp_nowater - temp(i), 0. ) |
|---|
| 549 | pdf_alpha = EXP( rhl_clr / 100. ) * pdf_e3 |
|---|
| 550 | pdf_alpha = MIN(10., pdf_alpha) |
|---|
| 551 | |
|---|
| 552 | IF ( ok_warm_cloud ) THEN |
|---|
| 553 | !--If the statistical scheme is activated, the standard deviation is adapted |
|---|
| 554 | !--to depend on the pressure level. It is multiplied by ratqs, so that near the |
|---|
| 555 | !--surface std is almost 0, and upper than about 450 hPa the std is left untouched |
|---|
| 556 | pdf_std = pdf_std * ratqs(i) |
|---|
| 557 | ENDIF |
|---|
| 558 | |
|---|
| 559 | pdf_e2 = GAMMA(1. + 1. / pdf_alpha) |
|---|
| 560 | pdf_scale = MAX(eps, pdf_std / SQRT( GAMMA(1. + 2. / pdf_alpha) - pdf_e2**2 )) |
|---|
| 561 | pdf_loc = rhl_clr - pdf_scale * pdf_e2 |
|---|
| 562 | |
|---|
| 563 | !--Calculation of the newly condensed water and fraction (pronostic) |
|---|
| 564 | !--Integration of the clear sky PDF between gamma_cond*qsat and +inf |
|---|
| 565 | !--NB. the calculated values are clear-sky averaged |
|---|
| 566 | |
|---|
| 567 | pdf_x = gamma_cond(i) * qsat(i) / qsatl(i) * 100. |
|---|
| 568 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
|---|
| 569 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
|---|
| 570 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
|---|
| 571 | cf_cond = EXP( - pdf_y ) |
|---|
| 572 | qt_cond = ( pdf_e3 + pdf_loc * cf_cond ) * qsatl(i) / 100. |
|---|
| 573 | |
|---|
| 574 | ! AB WARM CLOUD |
|---|
| 575 | !IF ( ok_warm_cloud ) THEN |
|---|
| 576 | ! !--If the statistical scheme is activated, the calculated increase is equal |
|---|
| 577 | ! !--to the cloud fraction, we assume saturation adjustment, and the |
|---|
| 578 | ! !--condensation process stops |
|---|
| 579 | ! cldfra(i) = cf_cond |
|---|
| 580 | ! qcld(i) = qt_cond |
|---|
| 581 | ! qvc(i) = cldfra(i) * qsat(i) |
|---|
| 582 | |
|---|
| 583 | !ELSEIF ( cf_cond .GT. eps ) THEN |
|---|
| 584 | IF ( cf_cond .GT. eps ) THEN |
|---|
| 585 | |
|---|
| 586 | dcf_con(i) = ( 1. - cldfra(i) ) * cf_cond |
|---|
| 587 | dqt_con = ( 1. - cldfra(i) ) * qt_cond |
|---|
| 588 | |
|---|
| 589 | !--Barriers |
|---|
| 590 | dcf_con(i) = MIN(dcf_con(i), 1. - cldfra(i)) |
|---|
| 591 | dqt_con = MIN(dqt_con, qclr) |
|---|
| 592 | |
|---|
| 593 | |
|---|
| 594 | ! AB WARM CLOUD |
|---|
| 595 | !IF ( ok_unadjusted_clouds ) THEN |
|---|
| 596 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
|---|
| 597 | !--Here, the initial vapor in the cloud is gamma_cond*qsat, and we compute |
|---|
| 598 | !--the new vapor qvapincld. The timestep is divided by two because we do not |
|---|
| 599 | !--know when the condensation occurs |
|---|
| 600 | qvapincld = gamma_cond(i) * qsat(i) |
|---|
| 601 | qiceincld = dqt_con / dcf_con(i) - gamma_cond(i) * qsat(i) |
|---|
| 602 | CALL deposition_sublimation(qvapincld, qiceincld, temp(i), qsat(i), & |
|---|
| 603 | pplay(i), dtime / 2., qvapincld_new) |
|---|
| 604 | qvapincld = qvapincld_new |
|---|
| 605 | ELSE |
|---|
| 606 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
|---|
| 607 | !--newly formed cloud is set equal to the saturation vapor. |
|---|
| 608 | qvapincld = qsat(i) |
|---|
| 609 | ENDIF |
|---|
| 610 | |
|---|
| 611 | !--Tendency on cloud vapor and diagnostic |
|---|
| 612 | dqvc_con(i) = qvapincld * dcf_con(i) |
|---|
| 613 | dqi_con(i) = dqt_con - dqvc_con(i) |
|---|
| 614 | |
|---|
| 615 | !--Add tendencies |
|---|
| 616 | cldfra(i) = MIN(1., cldfra(i) + dcf_con(i)) |
|---|
| 617 | qcld(i) = MIN(qtot(i), qcld(i) + dqt_con) |
|---|
| 618 | qvc(i) = MIN(qcld(i), qvc(i) + dqvc_con(i)) |
|---|
| 619 | |
|---|
| 620 | ENDIF ! ok_warm_cloud, cf_cond .GT. eps |
|---|
| 621 | |
|---|
| 622 | !--We then calculate the part that is greater than qsat |
|---|
| 623 | !--and lower than gamma_cond * qsat, which is the ice supersaturated region |
|---|
| 624 | pdf_x = qsat(i) / qsatl(i) * 100. |
|---|
| 625 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
|---|
| 626 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
|---|
| 627 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
|---|
| 628 | issrfra(i) = EXP( - pdf_y ) * ( 1. - cldfra(i) ) |
|---|
| 629 | qissr(i) = ( pdf_e3 * ( 1. - cldfra(i) ) + pdf_loc * issrfra(i) ) * qsatl(i) / 100. |
|---|
| 630 | |
|---|
| 631 | issrfra(i) = issrfra(i) - dcf_con(i) |
|---|
| 632 | qissr(i) = qissr(i) - dqvc_con(i) - dqi_con(i) |
|---|
| 633 | |
|---|
| 634 | ENDIF ! ( 1. - cldfra(i) ) .GT. eps |
|---|
| 635 | |
|---|
| 636 | !--Calculation of the subsaturated clear sky fraction and water |
|---|
| 637 | subfra(i) = 1. - cldfra(i) - issrfra(i) |
|---|
| 638 | qsub(i) = qtot(i) - qcld(i) - qissr(i) |
|---|
| 639 | |
|---|
| 640 | |
|---|
| 641 | !-------------------------------------- |
|---|
| 642 | !-- CLOUD MIXING -- |
|---|
| 643 | !-------------------------------------- |
|---|
| 644 | !--This process mixes the cloud with its surroundings: the subsaturated clear sky, |
|---|
| 645 | !--and the supersaturated clear sky. It is activated if the cloud is big enough, |
|---|
| 646 | !--but does not cover the entire mesh. |
|---|
| 647 | ! |
|---|
| 648 | ! AB WARM CLOUD |
|---|
| 649 | !IF ( ( cldfra(i) .LT. ( 1. - dcf_con(i) - eps ) ) .AND. ( cldfra(i) .GT. eps ) & |
|---|
| 650 | ! .AND. .NOT. ok_warm_cloud ) THEN |
|---|
| 651 | IF ( ( cldfra(i) .LT. ( 1. - eps ) ) .AND. ( cldfra(i) .GT. eps ) ) THEN |
|---|
| 652 | |
|---|
| 653 | !--Initialisation |
|---|
| 654 | dcf_mix_sub = 0. |
|---|
| 655 | dqt_mix_sub = 0. |
|---|
| 656 | dqvc_mix_sub = 0. |
|---|
| 657 | dcf_mix_issr = 0. |
|---|
| 658 | dqt_mix_issr = 0. |
|---|
| 659 | dqvc_mix_issr = 0. |
|---|
| 660 | |
|---|
| 661 | |
|---|
| 662 | !-- PART 1 - TURBULENT DIFFUSION |
|---|
| 663 | |
|---|
| 664 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
|---|
| 665 | !--semi-major axis is a and the length of the semi-minor axis is b. |
|---|
| 666 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer. |
|---|
| 667 | !--In particular, it is 0 if cldfra = 1. |
|---|
| 668 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
|---|
| 669 | !--not considering interfaces with other meshes (only the interfaces with clear |
|---|
| 670 | !--sky are taken into account). |
|---|
| 671 | !-- |
|---|
| 672 | !--The area of each cloud is A = a * b * RPI, |
|---|
| 673 | !--and the perimeter of each cloud is |
|---|
| 674 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
|---|
| 675 | !-- |
|---|
| 676 | !--With cell_area the area of the cell, we have: |
|---|
| 677 | !-- cldfra = A * N_cld_mix / cell_area |
|---|
| 678 | !-- clouds_perim = P * N_cld_mix |
|---|
| 679 | !-- |
|---|
| 680 | !--We assume that the ratio between b and a is a function of |
|---|
| 681 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
|---|
| 682 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
|---|
| 683 | !--are spherical. |
|---|
| 684 | !-- b / a = bovera = MAX(0.1, cldfra) |
|---|
| 685 | bovera = MAX(0.1, cldfra(i)) |
|---|
| 686 | !--P / a is a function of b / a only, that we can calculate |
|---|
| 687 | !-- P / a = RPI * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
|---|
| 688 | Povera = RPI * ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) ) |
|---|
| 689 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
|---|
| 690 | !--based on observations. |
|---|
| 691 | !-- clouds_perim / cell_area = N_cld_mix * ( P / a * a ) / cell_area = coef_mix_lscp * cldfra * ( 1. - cldfra ) |
|---|
| 692 | !--With cldfra = a * ( b / a * a ) * RPI * N_cld_mix / cell_area, we have: |
|---|
| 693 | !-- cldfra = a * b / a * RPI / (P / a) * coef_mix_lscp * cldfra * ( 1. - cldfra ) |
|---|
| 694 | !-- a = (P / a) / ( coef_mix_lscp * RPI * ( 1. - cldfra ) * (b / a) ) |
|---|
| 695 | a_mix = Povera / coef_mixing_lscp / RPI / ( 1. - cldfra(i) ) / bovera |
|---|
| 696 | !--and finally, |
|---|
| 697 | !-- N_cld_mix = coef_mix_lscp * cldfra * ( 1. - cldfra ) * cell_area / ( P / a * a ) |
|---|
| 698 | N_cld_mix = coef_mixing_lscp * cldfra(i) * ( 1. - cldfra(i) ) * cell_area(i) & |
|---|
| 699 | / Povera / a_mix |
|---|
| 700 | |
|---|
| 701 | !--The time required for turbulent diffusion to homogenize a region of size |
|---|
| 702 | !--L_mix is defined as (L_mix**2/tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
|---|
| 703 | !--We compute L_mix and assume that the cloud is mixed over this length |
|---|
| 704 | L_mix = SQRT( dtime**3 * pbl_eps(i) ) |
|---|
| 705 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
|---|
| 706 | !--the entire cloud is mixed. |
|---|
| 707 | L_mix = MIN(L_mix, a_mix * bovera) |
|---|
| 708 | |
|---|
| 709 | !--The fraction of clear sky mixed is |
|---|
| 710 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
|---|
| 711 | envfra_mix = N_cld_mix * RPI / cell_area(i) & |
|---|
| 712 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2 ) |
|---|
| 713 | !--The fraction of cloudy sky mixed is |
|---|
| 714 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
|---|
| 715 | cldfra_mix = N_cld_mix * RPI / cell_area(i) & |
|---|
| 716 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2 ) |
|---|
| 717 | |
|---|
| 718 | |
|---|
| 719 | !-- PART 2 - SHEARING |
|---|
| 720 | |
|---|
| 721 | !--The clouds are then sheared. We keep the shape and number |
|---|
| 722 | !--assumptions from before. The clouds are sheared along their |
|---|
| 723 | !--semi-major axis (a_mix), on the entire cell heigh dz. |
|---|
| 724 | !--The increase in size is |
|---|
| 725 | L_shear = coef_shear_lscp * shear(i) * dz * dtime |
|---|
| 726 | !--therefore, the fraction of clear sky mixed is |
|---|
| 727 | !-- N_cld_mix * ( (a + L_shear) * b - a * b ) * RPI / 2. / cell_area |
|---|
| 728 | !--and the fraction of cloud mixed is |
|---|
| 729 | !-- N_cld_mix * ( (a * b) - (a - L_shear) * b ) * RPI / 2. / cell_area |
|---|
| 730 | !--(note that they are equal) |
|---|
| 731 | shear_fra = RPI * L_shear * a_mix * bovera / 2. * N_cld_mix / cell_area(i) |
|---|
| 732 | !--and the environment and cloud mixed fractions are the same, |
|---|
| 733 | !--which we add to the previous calculated mixed fractions. |
|---|
| 734 | !--We therefore assume that the sheared clouds and the turbulent |
|---|
| 735 | !--mixed clouds are different. |
|---|
| 736 | envfra_mix = envfra_mix + shear_fra |
|---|
| 737 | cldfra_mix = cldfra_mix + shear_fra |
|---|
| 738 | |
|---|
| 739 | |
|---|
| 740 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
|---|
| 741 | |
|---|
| 742 | !--The environment fraction is allocated to subsaturated sky or supersaturated sky, |
|---|
| 743 | !--according to the factor sigma_mix. This is computed as the ratio of the |
|---|
| 744 | !--subsaturated sky fraction to the environment fraction, corrected by a factor |
|---|
| 745 | !--chi_mixing_lscp for the supersaturated part. If chi is greater than 1, the |
|---|
| 746 | !--supersaturated sky is favoured. Physically, this means that it is more likely |
|---|
| 747 | !--to have supersaturated sky around the cloud than subsaturated sky. |
|---|
| 748 | sigma_mix = subfra(i) / ( subfra(i) + chi_mixing_lscp * issrfra(i) ) |
|---|
| 749 | subfra_mix = MIN( sigma_mix * envfra_mix, subfra(i) ) |
|---|
| 750 | issrfra_mix = MIN( ( 1. - sigma_mix ) * envfra_mix, issrfra(i) ) |
|---|
| 751 | cldfra_mix = MIN( cldfra_mix, cldfra(i) ) |
|---|
| 752 | |
|---|
| 753 | !--First, we mix the subsaturated sky (subfra_mix) and the cloud close |
|---|
| 754 | !--to this fraction (sigma_mix * cldfra_mix). |
|---|
| 755 | IF ( subfra(i) .GT. eps ) THEN |
|---|
| 756 | !--We compute the total humidity in the mixed air, which |
|---|
| 757 | !--can be either sub- or supersaturated. |
|---|
| 758 | qvapinmix = ( qsub(i) * subfra_mix / subfra(i) & |
|---|
| 759 | + qcld(i) * cldfra_mix * sigma_mix / cldfra(i) ) & |
|---|
| 760 | / ( subfra_mix + cldfra_mix * sigma_mix ) |
|---|
| 761 | |
|---|
| 762 | ! AB WARM CLOUD |
|---|
| 763 | !IF ( ok_unadjusted_clouds ) THEN |
|---|
| 764 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
|---|
| 765 | qiceincld = ( qcld(i) - qvc(i) ) * cldfra_mix * sigma_mix / cldfra(i) & |
|---|
| 766 | / ( subfra_mix + cldfra_mix * sigma_mix ) |
|---|
| 767 | CALL deposition_sublimation(qvapinmix, qiceincld, temp(i), qsat(i), & |
|---|
| 768 | pplay(i), dtime, qvapincld_new) |
|---|
| 769 | IF ( qvapincld_new .EQ. 0. ) THEN |
|---|
| 770 | !--If all the ice has been sublimated, we sublimate |
|---|
| 771 | !--completely the cloud and do not activate the sublimation |
|---|
| 772 | !--process |
|---|
| 773 | !--Tendencies and diagnostics |
|---|
| 774 | dcf_mix_sub = - sigma_mix * cldfra_mix |
|---|
| 775 | dqt_mix_sub = dcf_mix_sub * qcld(i) / cldfra(i) |
|---|
| 776 | dqvc_mix_sub = dcf_mix_sub * qvc(i) / cldfra(i) |
|---|
| 777 | ELSE |
|---|
| 778 | dcf_mix_sub = subfra_mix |
|---|
| 779 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
|---|
| 780 | dqvc_mix_sub = dcf_mix_sub * qvapincld_new |
|---|
| 781 | ENDIF |
|---|
| 782 | ELSE |
|---|
| 783 | IF ( qvapinmix .GT. qsat(i) ) THEN |
|---|
| 784 | !--If the mixed air is supersaturated, we condense the subsaturated |
|---|
| 785 | !--region which was mixed. |
|---|
| 786 | dcf_mix_sub = subfra_mix |
|---|
| 787 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
|---|
| 788 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
|---|
| 789 | ELSE |
|---|
| 790 | !--Else, we sublimate the cloud which was mixed. |
|---|
| 791 | dcf_mix_sub = - sigma_mix * cldfra_mix |
|---|
| 792 | dqt_mix_sub = dcf_mix_sub * qcld(i) / cldfra(i) |
|---|
| 793 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
|---|
| 794 | ENDIF |
|---|
| 795 | ENDIF ! ok_unadjusted_clouds |
|---|
| 796 | ENDIF ! subfra .GT. eps |
|---|
| 797 | |
|---|
| 798 | !--We then mix the supersaturated sky (issrfra_mix) and the cloud, |
|---|
| 799 | !--for which the mixed air is always supersatured, therefore |
|---|
| 800 | !--the cloud necessarily expands |
|---|
| 801 | IF ( issrfra(i) .GT. eps ) THEN |
|---|
| 802 | |
|---|
| 803 | ! AB WARM CLOUD |
|---|
| 804 | !IF ( ok_unadjusted_clouds ) THEN |
|---|
| 805 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
|---|
| 806 | qvapinmix = ( qissr(i) * issrfra_mix / issrfra(i) & |
|---|
| 807 | + qcld(i) * cldfra_mix * (1. - sigma_mix) / cldfra(i) ) & |
|---|
| 808 | / ( issrfra_mix + cldfra_mix * (1. - sigma_mix) ) |
|---|
| 809 | qiceincld = ( qcld(i) - qvc(i) ) * cldfra_mix * (1. - sigma_mix) / cldfra(i) & |
|---|
| 810 | / ( issrfra_mix + cldfra_mix * (1. - sigma_mix) ) |
|---|
| 811 | CALL deposition_sublimation(qvapinmix, qiceincld, temp(i), qsat(i), & |
|---|
| 812 | pplay(i), dtime, qvapincld_new) |
|---|
| 813 | dcf_mix_issr = issrfra_mix |
|---|
| 814 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
|---|
| 815 | dqvc_mix_issr = dcf_mix_issr * qvapincld_new |
|---|
| 816 | ELSE |
|---|
| 817 | !--In this case, the additionnal vapor condenses |
|---|
| 818 | dcf_mix_issr = issrfra_mix |
|---|
| 819 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
|---|
| 820 | dqvc_mix_issr = dcf_mix_issr * qsat(i) |
|---|
| 821 | ENDIF ! ok_unadjusted_clouds |
|---|
| 822 | |
|---|
| 823 | |
|---|
| 824 | ENDIF ! issrfra .GT. eps |
|---|
| 825 | |
|---|
| 826 | !--Sum up the tendencies from subsaturated sky and supersaturated sky |
|---|
| 827 | dcf_mix(i) = dcf_mix_sub + dcf_mix_issr |
|---|
| 828 | dqt_mix = dqt_mix_sub + dqt_mix_issr |
|---|
| 829 | dqvc_mix(i) = dqvc_mix_sub + dqvc_mix_issr |
|---|
| 830 | dqi_mix(i) = dqt_mix - dqvc_mix(i) |
|---|
| 831 | |
|---|
| 832 | !--Add tendencies |
|---|
| 833 | issrfra(i) = MAX(0., issrfra(i) - dcf_mix_issr) |
|---|
| 834 | qissr(i) = MAX(0., qissr(i) - dqt_mix_issr) |
|---|
| 835 | cldfra(i) = MAX(0., MIN(1., cldfra(i) + dcf_mix(i))) |
|---|
| 836 | qcld(i) = MAX(0., MIN(qtot(i), qcld(i) + dqt_mix)) |
|---|
| 837 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_mix(i))) |
|---|
| 838 | |
|---|
| 839 | ENDIF ! ( ( cldfra(i) .LT. ( 1. - eps ) ) .AND. ( cldfra(i) .GT. eps ) ) |
|---|
| 840 | |
|---|
| 841 | |
|---|
| 842 | !---------------------------------------- |
|---|
| 843 | !-- CONTRAILS AND AVIATION -- |
|---|
| 844 | !---------------------------------------- |
|---|
| 845 | |
|---|
| 846 | !--Add a source of cirrus from aviation contrails |
|---|
| 847 | !IF ( ok_plane_contrail ) THEN |
|---|
| 848 | ! dcf_avi(i) = 0. |
|---|
| 849 | ! dqi_avi(i) = 0. |
|---|
| 850 | ! dqvc_avi(i) = 0. |
|---|
| 851 | ! ! TODO implement ok_unadjusted_clouds |
|---|
| 852 | ! IF ( issrfra(i) .GT. eps ) THEN |
|---|
| 853 | ! contrail_fra = MIN(1., flight_m(i,k) * dtime * contrail_cross_section / V_cell) |
|---|
| 854 | ! dcf_avi(i) = issrfra(i) * contrail_fra |
|---|
| 855 | ! dqt_avi = dcf_avi(i) * qissr(i) / issrfra(i) |
|---|
| 856 | ! dqvc_avi(i) = qsat(i) * dcf_avi(i) |
|---|
| 857 | ! |
|---|
| 858 | ! !--Add tendencies |
|---|
| 859 | ! cldfra(i) = cldfra(i) + dcf_avi(i) |
|---|
| 860 | ! issrfra(i) = issrfra(i) - dcf_avi(i) |
|---|
| 861 | ! qcld(i) = qcld(i) + dqt_avi |
|---|
| 862 | ! qvc(i) = qvc(i) + dqvc_avi(i) |
|---|
| 863 | ! qissr(i) = qissr(i) - dqt_avi |
|---|
| 864 | |
|---|
| 865 | ! !--Diagnostics |
|---|
| 866 | ! dqi_avi(i) = dqt_avi - qsat(i) * dcf_avi(i) |
|---|
| 867 | ! ENDIF |
|---|
| 868 | ! dcf_avi(i) = dcf_avi(i) / dtime |
|---|
| 869 | ! dqi_avi(i) = dqi_avi(i) / dtime |
|---|
| 870 | ! dqvc_avi(i) = dqvc_avi(i) / dtime |
|---|
| 871 | !ENDIF |
|---|
| 872 | |
|---|
| 873 | |
|---|
| 874 | |
|---|
| 875 | !------------------------------------------- |
|---|
| 876 | !-- FINAL BARRIERS AND OUTPUTS -- |
|---|
| 877 | !------------------------------------------- |
|---|
| 878 | |
|---|
| 879 | IF ( cldfra(i) .LT. eps ) THEN |
|---|
| 880 | !--If the cloud is too small, it is sublimated. |
|---|
| 881 | cldfra(i) = 0. |
|---|
| 882 | qcld(i) = 0. |
|---|
| 883 | qvc(i) = 0. |
|---|
| 884 | qincld(i) = qsat(i) |
|---|
| 885 | ELSE |
|---|
| 886 | qincld(i) = qcld(i) / cldfra(i) |
|---|
| 887 | ENDIF ! cldfra .LT. eps |
|---|
| 888 | |
|---|
| 889 | !--Diagnostics |
|---|
| 890 | dcf_sub(i) = dcf_sub(i) / dtime |
|---|
| 891 | dcf_con(i) = dcf_con(i) / dtime |
|---|
| 892 | dcf_mix(i) = dcf_mix(i) / dtime |
|---|
| 893 | dqi_adj(i) = dqi_adj(i) / dtime |
|---|
| 894 | dqi_sub(i) = dqi_sub(i) / dtime |
|---|
| 895 | dqi_con(i) = dqi_con(i) / dtime |
|---|
| 896 | dqi_mix(i) = dqi_mix(i) / dtime |
|---|
| 897 | dqvc_adj(i) = dqvc_adj(i) / dtime |
|---|
| 898 | dqvc_sub(i) = dqvc_sub(i) / dtime |
|---|
| 899 | dqvc_con(i) = dqvc_con(i) / dtime |
|---|
| 900 | dqvc_mix(i) = dqvc_mix(i) / dtime |
|---|
| 901 | |
|---|
| 902 | ENDIF ! ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds |
|---|
| 903 | |
|---|
| 904 | ENDIF ! end keepgoing |
|---|
| 905 | |
|---|
| 906 | ENDDO ! end loop on i |
|---|
| 907 | |
|---|
| 908 | END SUBROUTINE condensation_ice_supersat |
|---|
| 909 | !********************************************************************************** |
|---|
| 910 | |
|---|
| 911 | !********************************************************************************** |
|---|
| 912 | SUBROUTINE deposition_sublimation( & |
|---|
| 913 | qvapincld, qiceincld, temp, qsat, pplay, dtime, & |
|---|
| 914 | qvapincld_new) |
|---|
| 915 | |
|---|
| 916 | USE lmdz_lscp_ini, ONLY: RV, RLSTT, RTT, RD, EPS_W |
|---|
| 917 | USE lmdz_lscp_ini, ONLY: eps |
|---|
| 918 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, rho_ice |
|---|
| 919 | |
|---|
| 920 | REAL, INTENT(IN) :: qvapincld ! |
|---|
| 921 | REAL, INTENT(IN) :: qiceincld ! |
|---|
| 922 | REAL, INTENT(IN) :: temp ! |
|---|
| 923 | REAL, INTENT(IN) :: qsat ! |
|---|
| 924 | REAL, INTENT(IN) :: pplay ! |
|---|
| 925 | REAL, INTENT(IN) :: dtime ! time step [s] |
|---|
| 926 | REAL, INTENT(OUT):: qvapincld_new ! |
|---|
| 927 | |
|---|
| 928 | ! |
|---|
| 929 | ! for unadjusted clouds |
|---|
| 930 | REAL :: qice_ratio |
|---|
| 931 | REAL :: pres_sat, rho, kappa |
|---|
| 932 | REAL :: air_thermal_conduct, water_vapor_diff |
|---|
| 933 | REAL :: iwc |
|---|
| 934 | REAL :: iwc_log_inf100, iwc_log_sup100 |
|---|
| 935 | REAL :: iwc_inf100, alpha_inf100, coef_inf100 |
|---|
| 936 | REAL :: mu_sup100, sigma_sup100, coef_sup100 |
|---|
| 937 | REAL :: Dm_ice, rm_ice |
|---|
| 938 | |
|---|
| 939 | !--If ok_unadjusted_clouds is set to TRUE, then the saturation adjustment |
|---|
| 940 | !--hypothesis is lost, and the vapor in the cloud is purely prognostic. |
|---|
| 941 | ! |
|---|
| 942 | !--The deposition equation is |
|---|
| 943 | !-- dmi/dt = alpha*4pi*C*Svi / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) |
|---|
| 944 | !--from Lohmann et al. (2016), where |
|---|
| 945 | !--alpha is the deposition coefficient [-] |
|---|
| 946 | !--mi is the mass of one ice crystal [kg] |
|---|
| 947 | !--C is the capacitance of an ice crystal [m] |
|---|
| 948 | !--Svi is the supersaturation ratio equal to (qvc - qsat)/qsat [-] |
|---|
| 949 | !--R_v is the specific gas constant for humid air [J/kg/K] |
|---|
| 950 | !--T is the temperature [K] |
|---|
| 951 | !--esi is the saturation pressure w.r.t. ice [Pa] |
|---|
| 952 | !--Dv is the diffusivity of water vapor [m2/s] |
|---|
| 953 | !--Ls is the specific latent heat of sublimation [J/kg/K] |
|---|
| 954 | !--ka is the thermal conductivity of dry air [J/m/s/K] |
|---|
| 955 | ! |
|---|
| 956 | !--alpha is a coefficient to take into account the fact that during deposition, a water |
|---|
| 957 | !--molecule cannot join the crystal from everywhere, it must do so that the crystal stays |
|---|
| 958 | !--coherent (with the same structure). It has no impact for sublimation. |
|---|
| 959 | !--We fix alpha = depo_coef_cirrus (=0.5 by default following Lohmann et al. (2016)) |
|---|
| 960 | !--during deposition, and alpha = 1. during sublimation. |
|---|
| 961 | !--The capacitance of the ice crystals is proportional to a parameter capa_cond_cirrus |
|---|
| 962 | !-- C = capa_cond_cirrus * rm_ice |
|---|
| 963 | ! |
|---|
| 964 | !--We have qice = Nice * mi, where Nice is the ice crystal |
|---|
| 965 | !--number concentration per kg of moist air |
|---|
| 966 | !--HYPOTHESIS 1: the ice crystals are spherical, therefore |
|---|
| 967 | !-- mi = 4/3 * pi * rm_ice**3 * rho_ice |
|---|
| 968 | !--HYPOTHESIS 2: the ice crystals are monodisperse with the |
|---|
| 969 | !--initial radius rm_ice_0. |
|---|
| 970 | !--NB. this is notably different than the assumption |
|---|
| 971 | !--of a distributed qice in the cloud made in the sublimation process; |
|---|
| 972 | !--should it be consistent? |
|---|
| 973 | ! |
|---|
| 974 | !--As the deposition process does not create new ice crystals, |
|---|
| 975 | !--and because we assume a same rm_ice value for all crystals |
|---|
| 976 | !--therefore the sublimation process does not destroy ice crystals |
|---|
| 977 | !--(or, in a limit case, it destroys all ice crystals), then |
|---|
| 978 | !--Nice is a constant during the sublimation/deposition process. |
|---|
| 979 | !-- dmi = dqi, et Nice = qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
|---|
| 980 | ! |
|---|
| 981 | !--The deposition equation then reads: |
|---|
| 982 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus*rm_ice*(qvc-qsat)/qsat / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) * Nice |
|---|
| 983 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus* (qi / qi_0)**(1/3) *rm_ice_0*(qvc-qsat)/qsat & |
|---|
| 984 | !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls*R_v/T - 1) ) & |
|---|
| 985 | !-- * qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
|---|
| 986 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) * qi_0**(2/3) & |
|---|
| 987 | !-- *alpha/qsat*capa_cond_cirrus/ (R_v*T/esi/Dv + Ls/ka/T*(Ls*R_v/T - 1)) / ( 1/3 rm_ice_0**2 rho_ice ) |
|---|
| 988 | !--and we have |
|---|
| 989 | !-- dqvc/dt = - qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
|---|
| 990 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
|---|
| 991 | !--where kappa = 1/3*rho_ice/capa_cond_cirrus*qsat*(R_v*T/esi/Dv + Ls/ka/T*(Ls/R_v/T - 1)) |
|---|
| 992 | ! |
|---|
| 993 | !--This system of equations can be resolved with an exact |
|---|
| 994 | !--explicit numerical integration, having one variable resolved |
|---|
| 995 | !--explicitly, the other exactly. The exactly resolved variable is |
|---|
| 996 | !--the one decreasing, so it is qvc if the process is |
|---|
| 997 | !--condensation, qi if it is sublimation. |
|---|
| 998 | ! |
|---|
| 999 | !--kappa is computed as an initialisation constant, as it depends only |
|---|
| 1000 | !--on temperature and other pre-computed values |
|---|
| 1001 | pres_sat = qsat / ( EPS_W + ( 1. - EPS_W ) * qsat ) * pplay |
|---|
| 1002 | !--This formula for air thermal conductivity comes from Beard and Pruppacher (1971) |
|---|
| 1003 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp - RTT ) ) * 1.e-3 * 4.184 |
|---|
| 1004 | !--This formula for water vapor diffusivity comes from Hall and Pruppacher (1976) |
|---|
| 1005 | water_vapor_diff = 0.211 * ( temp / RTT )**1.94 * ( 101325. / pplay ) * 1.e-4 |
|---|
| 1006 | kappa = 1. / 3. * rho_ice / capa_cond_cirrus * qsat & |
|---|
| 1007 | * ( RV * temp / water_vapor_diff / pres_sat & |
|---|
| 1008 | + RLSTT / air_thermal_conduct / temp * ( RLSTT / RV / temp - 1. ) ) |
|---|
| 1009 | !--NB. the greater kappa, the lower the efficiency of the deposition/sublimation process |
|---|
| 1010 | |
|---|
| 1011 | !--Dry density [kg/m3] |
|---|
| 1012 | rho = pplay / temp / RD |
|---|
| 1013 | |
|---|
| 1014 | !--Here, the initial vapor in the cloud is qvapincld, and we compute |
|---|
| 1015 | !--the new vapor qvapincld_new |
|---|
| 1016 | |
|---|
| 1017 | !--rm_ice formula from McFarquhar and Heymsfield (1997) |
|---|
| 1018 | iwc = qiceincld * rho * 1e3 |
|---|
| 1019 | iwc_inf100 = MIN(iwc, 0.252 * iwc**0.837) |
|---|
| 1020 | iwc_log_inf100 = LOG10( MAX(eps, iwc_inf100) ) |
|---|
| 1021 | iwc_log_sup100 = LOG10( MAX(eps, iwc - iwc_inf100) ) |
|---|
| 1022 | |
|---|
| 1023 | alpha_inf100 = - 4.99E-3 - 0.0494 * iwc_log_inf100 |
|---|
| 1024 | coef_inf100 = iwc_inf100 * alpha_inf100**3 / 120. |
|---|
| 1025 | |
|---|
| 1026 | mu_sup100 = ( 5.2 + 0.0013 * ( temp - RTT ) ) & |
|---|
| 1027 | + ( 0.026 - 1.2E-3 * ( temp - RTT ) ) * iwc_log_sup100 |
|---|
| 1028 | sigma_sup100 = ( 0.47 + 2.1E-3 * ( temp - RTT ) ) & |
|---|
| 1029 | + ( 0.018 - 2.1E-4 * ( temp - RTT ) ) * iwc_log_sup100 |
|---|
| 1030 | coef_sup100 = ( iwc - iwc_inf100 ) / EXP( 3. * mu_sup100 + 4.5 * sigma_sup100**2 ) |
|---|
| 1031 | |
|---|
| 1032 | Dm_ice = ( 2. / alpha_inf100 * coef_inf100 + EXP( mu_sup100 + 0.5 * sigma_sup100**2 ) & |
|---|
| 1033 | * coef_sup100 ) / ( coef_inf100 + coef_sup100 ) |
|---|
| 1034 | rm_ice = Dm_ice / 2. * 1.E-6 |
|---|
| 1035 | |
|---|
| 1036 | IF ( qvapincld .GE. qsat ) THEN |
|---|
| 1037 | !--If the cloud is initially supersaturated |
|---|
| 1038 | !--Exact explicit integration (qvc exact, qice explicit) |
|---|
| 1039 | qvapincld_new = qsat + ( qvapincld - qsat ) & |
|---|
| 1040 | * EXP( - depo_coef_cirrus * dtime * qiceincld / kappa / rm_ice**2 ) |
|---|
| 1041 | ELSE |
|---|
| 1042 | !--If the cloud is initially subsaturated |
|---|
| 1043 | !--Exact explicit integration (qice exact, qvc explicit) |
|---|
| 1044 | !--The barrier is set so that the resulting vapor in cloud |
|---|
| 1045 | !--cannot be greater than qsat |
|---|
| 1046 | !--qice_ratio is the ratio between the new ice content and |
|---|
| 1047 | !--the old one, it is comprised between 0 and 1 |
|---|
| 1048 | qice_ratio = ( 1. - 2. / 3. / kappa / rm_ice**2 * dtime * ( qsat - qvapincld ) ) |
|---|
| 1049 | |
|---|
| 1050 | IF ( qice_ratio .LT. 0. ) THEN |
|---|
| 1051 | !--The new vapor in cloud is set to 0 so that the |
|---|
| 1052 | !--sublimation process does not activate |
|---|
| 1053 | qvapincld_new = 0. |
|---|
| 1054 | ELSE |
|---|
| 1055 | !--Else, the sublimation process is activated with the |
|---|
| 1056 | !--diagnosed new cloud water vapor |
|---|
| 1057 | !--The new vapor in the cloud is increased with the |
|---|
| 1058 | !--sublimated ice |
|---|
| 1059 | qvapincld_new = qvapincld + qiceincld * ( 1. - qice_ratio**1.5 ) |
|---|
| 1060 | !--The new vapor in the cloud cannot be greater than qsat |
|---|
| 1061 | qvapincld_new = MIN(qvapincld_new, qsat) |
|---|
| 1062 | ENDIF ! qice_ratio .LT. 0. |
|---|
| 1063 | ENDIF ! qvapincld .GT. qsat |
|---|
| 1064 | |
|---|
| 1065 | END SUBROUTINE deposition_sublimation |
|---|
| 1066 | |
|---|
| 1067 | |
|---|
| 1068 | !********************************************************************************** |
|---|
| 1069 | |
|---|
| 1070 | !********************************************************************************** |
|---|
| 1071 | SUBROUTINE condensation_cloudth(klon, & |
|---|
| 1072 | & temp,qt,qt_th,frac_th,zpspsk,play,thetal_th, & |
|---|
| 1073 | & ratqs,sigma_qtherm,qsth,qsenv,qcloud,ctot,ctotth,ctot_vol, & |
|---|
| 1074 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 1075 | ! This routine computes the condensation of clouds in convective boundary layers |
|---|
| 1076 | ! with thermals assuming two separate distribution of the saturation deficit in |
|---|
| 1077 | ! the thermal plumes and in the environment |
|---|
| 1078 | ! It is based on the work of Arnaud Jam (Jam et al. 2013, BLM) |
|---|
| 1079 | ! Author : Etienne Vignon (LMDZ/CNRS) |
|---|
| 1080 | ! Date: February 2025 |
|---|
| 1081 | ! Date: Adapted from cloudth_vert_v3 in 2023 by Arnaud Otavio Jam |
|---|
| 1082 | ! IMPORTANT NOTE: we assume iflag_cloudth_vert=7 |
|---|
| 1083 | !----------------------------------------------------------------------------------- |
|---|
| 1084 | |
|---|
| 1085 | use lmdz_lscp_ini, only: iflag_cloudth_vert,iflag_ratqs,iflag_cloudth_vert_noratqs |
|---|
| 1086 | use lmdz_lscp_ini, only: vert_alpha, vert_alpha_th ,sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin |
|---|
| 1087 | use lmdz_lscp_ini, only: RTT, RG, RPI, RD, RV, RCPD, RLVTT, RLSTT, temp_nowater, min_frac_th_cld, min_neb_th |
|---|
| 1088 | |
|---|
| 1089 | IMPLICIT NONE |
|---|
| 1090 | |
|---|
| 1091 | |
|---|
| 1092 | !------------------------------------------------------------------------------ |
|---|
| 1093 | ! Declarations |
|---|
| 1094 | !------------------------------------------------------------------------------ |
|---|
| 1095 | |
|---|
| 1096 | ! INPUT/OUTPUT |
|---|
| 1097 | |
|---|
| 1098 | INTEGER, INTENT(IN) :: klon |
|---|
| 1099 | |
|---|
| 1100 | |
|---|
| 1101 | REAL, DIMENSION(klon), INTENT(IN) :: temp ! Temperature (liquid temperature) in the mesh [K] : has seen evap of precip |
|---|
| 1102 | REAL, DIMENSION(klon), INTENT(IN) :: qt ! total water specific humidity in the mesh [kg/kg]: has seen evap of precip |
|---|
| 1103 | REAL, DIMENSION(klon), INTENT(IN) :: qt_th ! total water specific humidity in thermals [kg/kg]: has not seen evap of precip |
|---|
| 1104 | REAL, DIMENSION(klon), INTENT(IN) :: thetal_th ! Liquid potential temperature in thermals [K]: has not seen the evap of precip |
|---|
| 1105 | REAL, DIMENSION(klon), INTENT(IN) :: frac_th ! Fraction of the mesh covered by thermals [0-1] |
|---|
| 1106 | REAL, DIMENSION(klon), INTENT(IN) :: zpspsk ! Exner potential |
|---|
| 1107 | REAL, DIMENSION(klon), INTENT(IN) :: play ! Pressure of layers [Pa] |
|---|
| 1108 | REAL, DIMENSION(klon), INTENT(IN) :: ratqs ! Parameter that determines the width of the water distrib [-] |
|---|
| 1109 | REAL, DIMENSION(klon), INTENT(IN) :: sigma_qtherm ! Parameter determining the width of the distrib in thermals [-] |
|---|
| 1110 | REAL, DIMENSION(klon), INTENT(IN) :: qsth ! Saturation specific humidity in thermals |
|---|
| 1111 | REAL, DIMENSION(klon), INTENT(IN) :: qsenv ! Saturation specific humidity in environment |
|---|
| 1112 | |
|---|
| 1113 | REAL, DIMENSION(klon), INTENT(INOUT) :: ctot ! Cloud fraction [0-1] |
|---|
| 1114 | REAL, DIMENSION(klon), INTENT(INOUT) :: ctotth ! Cloud fraction [0-1] in thermals |
|---|
| 1115 | REAL, DIMENSION(klon), INTENT(INOUT) :: ctot_vol ! Volume cloud fraction [0-1] |
|---|
| 1116 | REAL, DIMENSION(klon), INTENT(INOUT) :: qcloud ! In cloud total water content [kg/kg] |
|---|
| 1117 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sth ! mean saturation deficit in thermals |
|---|
| 1118 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_senv ! mean saturation deficit in environment |
|---|
| 1119 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmath ! std of saturation deficit in thermals |
|---|
| 1120 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmaenv ! std of saturation deficit in environment |
|---|
| 1121 | |
|---|
| 1122 | |
|---|
| 1123 | ! LOCAL VARIABLES |
|---|
| 1124 | |
|---|
| 1125 | INTEGER itap,ind1,l,ig,iter,k |
|---|
| 1126 | INTEGER iflag_topthermals, niter |
|---|
| 1127 | |
|---|
| 1128 | REAL qcth(klon) |
|---|
| 1129 | REAL qcenv(klon) |
|---|
| 1130 | REAL qctot(klon) |
|---|
| 1131 | REAL cth(klon) |
|---|
| 1132 | REAL cenv(klon) |
|---|
| 1133 | REAL cth_vol(klon) |
|---|
| 1134 | REAL cenv_vol(klon) |
|---|
| 1135 | REAL qt_env(klon), thetal_env(klon) |
|---|
| 1136 | REAL sqrtpi,sqrt2,sqrt2pi |
|---|
| 1137 | REAL alth,alenv,ath,aenv |
|---|
| 1138 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
|---|
| 1139 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
|---|
| 1140 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
|---|
| 1141 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
|---|
| 1142 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
|---|
| 1143 | REAL zdelta,qsatbef,zcor |
|---|
| 1144 | REAL Tbefth(klon), Tbefenv(klon) |
|---|
| 1145 | REAL qlbef |
|---|
| 1146 | REAL dqsatenv(klon), dqsatth(klon) |
|---|
| 1147 | REAL zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon) |
|---|
| 1148 | REAL zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon) |
|---|
| 1149 | REAL qincloud(klon) |
|---|
| 1150 | REAL alenvl, aenvl |
|---|
| 1151 | REAL sthi, sthl, sthil, althl, athl, althi, athi, sthlc, deltasthc, sigma2sc |
|---|
| 1152 | |
|---|
| 1153 | |
|---|
| 1154 | !------------------------------------------------------------------------------ |
|---|
| 1155 | ! Initialisation |
|---|
| 1156 | !------------------------------------------------------------------------------ |
|---|
| 1157 | |
|---|
| 1158 | |
|---|
| 1159 | sqrt2pi=sqrt(2.*rpi) |
|---|
| 1160 | sqrt2=sqrt(2.) |
|---|
| 1161 | sqrtpi=sqrt(rpi) |
|---|
| 1162 | |
|---|
| 1163 | !------------------------------------------------------------------------------- |
|---|
| 1164 | ! Thermal fraction calculation and standard deviation of the distribution |
|---|
| 1165 | !------------------------------------------------------------------------------- |
|---|
| 1166 | |
|---|
| 1167 | ! initialisations and calculation of temperature, humidity and saturation specific humidity |
|---|
| 1168 | |
|---|
| 1169 | cloudth_senv(:) = 0. |
|---|
| 1170 | cloudth_sth(:) = 0. |
|---|
| 1171 | cloudth_sigmaenv(:) = 0. |
|---|
| 1172 | cloudth_sigmath(:) = 0. |
|---|
| 1173 | |
|---|
| 1174 | |
|---|
| 1175 | DO ind1=1,klon |
|---|
| 1176 | |
|---|
| 1177 | Tbefenv(ind1) = temp(ind1) |
|---|
| 1178 | thetal_env(ind1) = Tbefenv(ind1)/zpspsk(ind1) |
|---|
| 1179 | Tbefth(ind1) = thetal_th(ind1)*zpspsk(ind1) |
|---|
| 1180 | qt_env(ind1) = (qt(ind1)-frac_th(ind1)*qt_th(ind1))/(1.-frac_th(ind1)) !qt = a*qtth + (1-a)*qtenv |
|---|
| 1181 | |
|---|
| 1182 | ENDDO |
|---|
| 1183 | |
|---|
| 1184 | |
|---|
| 1185 | |
|---|
| 1186 | DO ind1=1,klon |
|---|
| 1187 | |
|---|
| 1188 | |
|---|
| 1189 | IF (frac_th(ind1).GT.min_frac_th_cld) THEN !Thermal and environnement |
|---|
| 1190 | |
|---|
| 1191 | ! Environment: |
|---|
| 1192 | |
|---|
| 1193 | |
|---|
| 1194 | alenv=(RD/RV*RLVTT*qsenv(ind1))/(rd*thetal_env(ind1)**2) |
|---|
| 1195 | aenv=1./(1.+(alenv*RLVTT/rcpd)) |
|---|
| 1196 | senv=aenv*(qt_env(ind1)-qsenv(ind1)) |
|---|
| 1197 | |
|---|
| 1198 | |
|---|
| 1199 | ! Thermals: |
|---|
| 1200 | |
|---|
| 1201 | |
|---|
| 1202 | alth=(RD/RV*RLVTT*qsth(ind1))/(rd*thetal_th(ind1)**2) |
|---|
| 1203 | ath=1./(1.+(alth*RLVTT/rcpd)) |
|---|
| 1204 | sth=ath*(qt_th(ind1)-qsth(ind1)) |
|---|
| 1205 | |
|---|
| 1206 | |
|---|
| 1207 | ! Standard deviation of the distributions |
|---|
| 1208 | |
|---|
| 1209 | ! environment |
|---|
| 1210 | sigma1s_fraca = (sigma1s_factor**0.5)*(frac_th(ind1)**sigma1s_power) / & |
|---|
| 1211 | & (1-frac_th(ind1))*((sth-senv)**2)**0.5 |
|---|
| 1212 | |
|---|
| 1213 | IF (cloudth_ratqsmin>0.) THEN |
|---|
| 1214 | sigma1s_ratqs = cloudth_ratqsmin*qt(ind1) |
|---|
| 1215 | ELSE |
|---|
| 1216 | sigma1s_ratqs = ratqs(ind1)*qt(ind1) |
|---|
| 1217 | ENDIF |
|---|
| 1218 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
|---|
| 1219 | |
|---|
| 1220 | IF (iflag_ratqs.eq.10.or.iflag_ratqs.eq.11) then |
|---|
| 1221 | sigma1s = ratqs(ind1)*qt(ind1)*aenv |
|---|
| 1222 | ENDIF |
|---|
| 1223 | |
|---|
| 1224 | ! thermals |
|---|
| 1225 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((frac_th(ind1)+0.02)**sigma2s_power))+0.002*qt_th(ind1) |
|---|
| 1226 | |
|---|
| 1227 | IF (iflag_ratqs.eq.10.and.sigma_qtherm(ind1).ne.0) then |
|---|
| 1228 | sigma2s = sigma_qtherm(ind1)*ath |
|---|
| 1229 | ENDIF |
|---|
| 1230 | |
|---|
| 1231 | |
|---|
| 1232 | ! surface cloud fraction |
|---|
| 1233 | |
|---|
| 1234 | deltasenv=aenv*vert_alpha*sigma1s |
|---|
| 1235 | deltasth=ath*vert_alpha_th*sigma2s |
|---|
| 1236 | |
|---|
| 1237 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1238 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1239 | exp_xenv1 = exp(-1.*xenv1**2) |
|---|
| 1240 | exp_xenv2 = exp(-1.*xenv2**2) |
|---|
| 1241 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1242 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1243 | exp_xth1 = exp(-1.*xth1**2) |
|---|
| 1244 | exp_xth2 = exp(-1.*xth2**2) |
|---|
| 1245 | cth(ind1)=0.5*(1.-1.*erf(xth1)) |
|---|
| 1246 | cenv(ind1)=0.5*(1.-1.*erf(xenv1)) |
|---|
| 1247 | ctot(ind1)=frac_th(ind1)*cth(ind1)+(1.-1.*frac_th(ind1))*cenv(ind1) |
|---|
| 1248 | ctotth(ind1)=frac_th(ind1)*cth(ind1) |
|---|
| 1249 | |
|---|
| 1250 | |
|---|
| 1251 | !volume cloud fraction and condensed water |
|---|
| 1252 | |
|---|
| 1253 | !environnement |
|---|
| 1254 | |
|---|
| 1255 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
|---|
| 1256 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
|---|
| 1257 | |
|---|
| 1258 | IF (deltasenv .LT. 1.e-10) THEN |
|---|
| 1259 | qcenv(ind1)=IntJ |
|---|
| 1260 | cenv_vol(ind1)=IntJ_CF |
|---|
| 1261 | ELSE |
|---|
| 1262 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
|---|
| 1263 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
|---|
| 1264 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
|---|
| 1265 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
|---|
| 1266 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
|---|
| 1267 | qcenv(ind1)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1268 | cenv_vol(ind1)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 1269 | ENDIF |
|---|
| 1270 | |
|---|
| 1271 | |
|---|
| 1272 | |
|---|
| 1273 | !thermals |
|---|
| 1274 | |
|---|
| 1275 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
|---|
| 1276 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
|---|
| 1277 | |
|---|
| 1278 | IF (deltasth .LT. 1.e-10) THEN |
|---|
| 1279 | qcth(ind1)=IntJ |
|---|
| 1280 | cth_vol(ind1)=IntJ_CF |
|---|
| 1281 | ELSE |
|---|
| 1282 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
|---|
| 1283 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
|---|
| 1284 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
|---|
| 1285 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
|---|
| 1286 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
|---|
| 1287 | qcth(ind1)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1288 | cth_vol(ind1)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 1289 | ENDIF |
|---|
| 1290 | |
|---|
| 1291 | ! total |
|---|
| 1292 | |
|---|
| 1293 | qctot(ind1)=frac_th(ind1)*qcth(ind1)+(1.-1.*frac_th(ind1))*qcenv(ind1) |
|---|
| 1294 | ctot_vol(ind1)=frac_th(ind1)*cth_vol(ind1)+(1.-1.*frac_th(ind1))*cenv_vol(ind1) |
|---|
| 1295 | |
|---|
| 1296 | IF (cenv(ind1).LT.min_neb_th.and.cth(ind1).LT.min_neb_th) THEN |
|---|
| 1297 | ctot(ind1)=0. |
|---|
| 1298 | ctot_vol(ind1)=0. |
|---|
| 1299 | qcloud(ind1)=qsenv(ind1) |
|---|
| 1300 | qincloud(ind1)=0. |
|---|
| 1301 | ELSE |
|---|
| 1302 | qincloud(ind1)=qctot(ind1)/ctot(ind1) |
|---|
| 1303 | !to prevent situations with cloud condensed water greater than available total water |
|---|
| 1304 | qincloud(ind1)=min(qincloud(ind1),qt(ind1)/ctot(ind1)) |
|---|
| 1305 | ! we assume that water vapor in cloud is qsenv |
|---|
| 1306 | qcloud(ind1)=qincloud(ind1)+qsenv(ind1) |
|---|
| 1307 | ENDIF |
|---|
| 1308 | |
|---|
| 1309 | |
|---|
| 1310 | |
|---|
| 1311 | ! Outputs used to check the PDFs |
|---|
| 1312 | cloudth_senv(ind1) = senv |
|---|
| 1313 | cloudth_sth(ind1) = sth |
|---|
| 1314 | cloudth_sigmaenv(ind1) = sigma1s |
|---|
| 1315 | cloudth_sigmath(ind1) = sigma2s |
|---|
| 1316 | |
|---|
| 1317 | ENDIF ! selection of grid points concerned by thermals |
|---|
| 1318 | |
|---|
| 1319 | |
|---|
| 1320 | ENDDO !loop on klon |
|---|
| 1321 | |
|---|
| 1322 | |
|---|
| 1323 | RETURN |
|---|
| 1324 | |
|---|
| 1325 | |
|---|
| 1326 | END SUBROUTINE condensation_cloudth |
|---|
| 1327 | |
|---|
| 1328 | |
|---|
| 1329 | !***************************************************************************************** |
|---|
| 1330 | !***************************************************************************************** |
|---|
| 1331 | ! pre-cmip7 routines are below and are becoming obsolete |
|---|
| 1332 | !***************************************************************************************** |
|---|
| 1333 | !***************************************************************************************** |
|---|
| 1334 | |
|---|
| 1335 | |
|---|
| 1336 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
|---|
| 1337 | & ztv,po,zqta,fraca, & |
|---|
| 1338 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 1339 | & ratqs,zqs,t, & |
|---|
| 1340 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 1341 | |
|---|
| 1342 | |
|---|
| 1343 | use lmdz_lscp_ini, only: iflag_cloudth_vert,iflag_ratqs |
|---|
| 1344 | |
|---|
| 1345 | USE yomcst_mod_h |
|---|
| 1346 | USE yoethf_mod_h |
|---|
| 1347 | IMPLICIT NONE |
|---|
| 1348 | |
|---|
| 1349 | |
|---|
| 1350 | !=========================================================================== |
|---|
| 1351 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
|---|
| 1352 | ! Date : 25 Mai 2010 |
|---|
| 1353 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
|---|
| 1354 | !=========================================================================== |
|---|
| 1355 | |
|---|
| 1356 | INCLUDE "FCTTRE.h" |
|---|
| 1357 | |
|---|
| 1358 | INTEGER itap,ind1,ind2 |
|---|
| 1359 | INTEGER ngrid,klev,klon,l,ig |
|---|
| 1360 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
|---|
| 1361 | |
|---|
| 1362 | REAL ztv(ngrid,klev) |
|---|
| 1363 | REAL po(ngrid) |
|---|
| 1364 | REAL zqenv(ngrid) |
|---|
| 1365 | REAL zqta(ngrid,klev) |
|---|
| 1366 | |
|---|
| 1367 | REAL fraca(ngrid,klev+1) |
|---|
| 1368 | REAL zpspsk(ngrid,klev) |
|---|
| 1369 | REAL paprs(ngrid,klev+1) |
|---|
| 1370 | REAL pplay(ngrid,klev) |
|---|
| 1371 | REAL ztla(ngrid,klev) |
|---|
| 1372 | REAL zthl(ngrid,klev) |
|---|
| 1373 | |
|---|
| 1374 | REAL zqsatth(ngrid,klev) |
|---|
| 1375 | REAL zqsatenv(ngrid,klev) |
|---|
| 1376 | |
|---|
| 1377 | |
|---|
| 1378 | REAL sigma1(ngrid,klev) |
|---|
| 1379 | REAL sigma2(ngrid,klev) |
|---|
| 1380 | REAL qlth(ngrid,klev) |
|---|
| 1381 | REAL qlenv(ngrid,klev) |
|---|
| 1382 | REAL qltot(ngrid,klev) |
|---|
| 1383 | REAL cth(ngrid,klev) |
|---|
| 1384 | REAL cenv(ngrid,klev) |
|---|
| 1385 | REAL ctot(ngrid,klev) |
|---|
| 1386 | REAL rneb(ngrid,klev) |
|---|
| 1387 | REAL t(ngrid,klev) |
|---|
| 1388 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
|---|
| 1389 | REAL rdd,cppd,Lv |
|---|
| 1390 | REAL alth,alenv,ath,aenv |
|---|
| 1391 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
|---|
| 1392 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 1393 | REAL qlbef |
|---|
| 1394 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
|---|
| 1395 | |
|---|
| 1396 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
|---|
| 1397 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
|---|
| 1398 | REAL zqs(ngrid), qcloud(ngrid) |
|---|
| 1399 | |
|---|
| 1400 | |
|---|
| 1401 | |
|---|
| 1402 | |
|---|
| 1403 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1404 | ! Gestion de deux versions de cloudth |
|---|
| 1405 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1406 | |
|---|
| 1407 | IF (iflag_cloudth_vert.GE.1) THEN |
|---|
| 1408 | CALL cloudth_vert(ngrid,klev,ind2, & |
|---|
| 1409 | & ztv,po,zqta,fraca, & |
|---|
| 1410 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 1411 | & ratqs,zqs,t) |
|---|
| 1412 | RETURN |
|---|
| 1413 | ENDIF |
|---|
| 1414 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1415 | |
|---|
| 1416 | |
|---|
| 1417 | !------------------------------------------------------------------------------- |
|---|
| 1418 | ! Initialisation des variables r?elles |
|---|
| 1419 | !------------------------------------------------------------------------------- |
|---|
| 1420 | sigma1(:,ind2)=0. |
|---|
| 1421 | sigma2(:,ind2)=0. |
|---|
| 1422 | qlth(:,ind2)=0. |
|---|
| 1423 | qlenv(:,ind2)=0. |
|---|
| 1424 | qltot(:,ind2)=0. |
|---|
| 1425 | rneb(:,ind2)=0. |
|---|
| 1426 | qcloud(:)=0. |
|---|
| 1427 | cth(:,ind2)=0. |
|---|
| 1428 | cenv(:,ind2)=0. |
|---|
| 1429 | ctot(:,ind2)=0. |
|---|
| 1430 | qsatmmussig1=0. |
|---|
| 1431 | qsatmmussig2=0. |
|---|
| 1432 | rdd=287.04 |
|---|
| 1433 | cppd=1005.7 |
|---|
| 1434 | pi=3.14159 |
|---|
| 1435 | Lv=2.5e6 |
|---|
| 1436 | sqrt2pi=sqrt(2.*pi) |
|---|
| 1437 | |
|---|
| 1438 | |
|---|
| 1439 | |
|---|
| 1440 | !------------------------------------------------------------------------------- |
|---|
| 1441 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
|---|
| 1442 | !------------------------------------------------------------------------------- |
|---|
| 1443 | do ind1=1,ngrid |
|---|
| 1444 | |
|---|
| 1445 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
|---|
| 1446 | |
|---|
| 1447 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
|---|
| 1448 | |
|---|
| 1449 | |
|---|
| 1450 | ! zqenv(ind1)=po(ind1) |
|---|
| 1451 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 1452 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1453 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1454 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1455 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1456 | qsatbef=qsatbef*zcor |
|---|
| 1457 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 1458 | |
|---|
| 1459 | |
|---|
| 1460 | |
|---|
| 1461 | |
|---|
| 1462 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 1463 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 1464 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 1465 | |
|---|
| 1466 | |
|---|
| 1467 | |
|---|
| 1468 | |
|---|
| 1469 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 1470 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1471 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1472 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1473 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1474 | qsatbef=qsatbef*zcor |
|---|
| 1475 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 1476 | |
|---|
| 1477 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
|---|
| 1478 | ath=1./(1.+(alth*Lv/cppd)) |
|---|
| 1479 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
|---|
| 1480 | |
|---|
| 1481 | |
|---|
| 1482 | |
|---|
| 1483 | !------------------------------------------------------------------------------ |
|---|
| 1484 | ! Calcul des ?cart-types pour s |
|---|
| 1485 | !------------------------------------------------------------------------------ |
|---|
| 1486 | |
|---|
| 1487 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
|---|
| 1488 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 1489 | ! if (paprs(ind1,ind2).gt.90000) then |
|---|
| 1490 | ! ratqs(ind1,ind2)=0.002 |
|---|
| 1491 | ! else |
|---|
| 1492 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
|---|
| 1493 | ! endif |
|---|
| 1494 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 1495 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 1496 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
|---|
| 1497 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
|---|
| 1498 | |
|---|
| 1499 | !------------------------------------------------------------------------------ |
|---|
| 1500 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
|---|
| 1501 | !------------------------------------------------------------------------------ |
|---|
| 1502 | sqrt2pi=sqrt(2.*pi) |
|---|
| 1503 | xth=sth/(sqrt(2.)*sigma2s) |
|---|
| 1504 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 1505 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
|---|
| 1506 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 1507 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 1508 | |
|---|
| 1509 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
|---|
| 1510 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 1511 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 1512 | |
|---|
| 1513 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1514 | if (ctot(ind1,ind2).lt.1.e-10) then |
|---|
| 1515 | ctot(ind1,ind2)=0. |
|---|
| 1516 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 1517 | |
|---|
| 1518 | else |
|---|
| 1519 | |
|---|
| 1520 | ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 1521 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
|---|
| 1522 | |
|---|
| 1523 | endif |
|---|
| 1524 | |
|---|
| 1525 | |
|---|
| 1526 | |
|---|
| 1527 | |
|---|
| 1528 | else ! gaussienne environnement seule |
|---|
| 1529 | |
|---|
| 1530 | zqenv(ind1)=po(ind1) |
|---|
| 1531 | Tbef=t(ind1,ind2) |
|---|
| 1532 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1533 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1534 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1535 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1536 | qsatbef=qsatbef*zcor |
|---|
| 1537 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 1538 | |
|---|
| 1539 | |
|---|
| 1540 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
|---|
| 1541 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
|---|
| 1542 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 1543 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 1544 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 1545 | |
|---|
| 1546 | |
|---|
| 1547 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 1548 | |
|---|
| 1549 | sqrt2pi=sqrt(2.*pi) |
|---|
| 1550 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 1551 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 1552 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 1553 | |
|---|
| 1554 | if (ctot(ind1,ind2).lt.1.e-3) then |
|---|
| 1555 | ctot(ind1,ind2)=0. |
|---|
| 1556 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 1557 | |
|---|
| 1558 | else |
|---|
| 1559 | |
|---|
| 1560 | ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 1561 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 1562 | |
|---|
| 1563 | endif |
|---|
| 1564 | |
|---|
| 1565 | |
|---|
| 1566 | |
|---|
| 1567 | |
|---|
| 1568 | |
|---|
| 1569 | |
|---|
| 1570 | endif |
|---|
| 1571 | enddo |
|---|
| 1572 | |
|---|
| 1573 | return |
|---|
| 1574 | ! end |
|---|
| 1575 | END SUBROUTINE cloudth |
|---|
| 1576 | |
|---|
| 1577 | |
|---|
| 1578 | |
|---|
| 1579 | !=========================================================================== |
|---|
| 1580 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
|---|
| 1581 | & ztv,po,zqta,fraca, & |
|---|
| 1582 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 1583 | & ratqs,zqs,t) |
|---|
| 1584 | |
|---|
| 1585 | !=========================================================================== |
|---|
| 1586 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
|---|
| 1587 | ! Date : 25 Mai 2010 |
|---|
| 1588 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
|---|
| 1589 | !=========================================================================== |
|---|
| 1590 | |
|---|
| 1591 | |
|---|
| 1592 | USE yoethf_mod_h |
|---|
| 1593 | use lmdz_lscp_ini, only: iflag_cloudth_vert, vert_alpha |
|---|
| 1594 | |
|---|
| 1595 | USE yomcst_mod_h |
|---|
| 1596 | IMPLICIT NONE |
|---|
| 1597 | |
|---|
| 1598 | |
|---|
| 1599 | INCLUDE "FCTTRE.h" |
|---|
| 1600 | |
|---|
| 1601 | INTEGER itap,ind1,ind2 |
|---|
| 1602 | INTEGER ngrid,klev,klon,l,ig |
|---|
| 1603 | |
|---|
| 1604 | REAL ztv(ngrid,klev) |
|---|
| 1605 | REAL po(ngrid) |
|---|
| 1606 | REAL zqenv(ngrid) |
|---|
| 1607 | REAL zqta(ngrid,klev) |
|---|
| 1608 | |
|---|
| 1609 | REAL fraca(ngrid,klev+1) |
|---|
| 1610 | REAL zpspsk(ngrid,klev) |
|---|
| 1611 | REAL paprs(ngrid,klev+1) |
|---|
| 1612 | REAL pplay(ngrid,klev) |
|---|
| 1613 | REAL ztla(ngrid,klev) |
|---|
| 1614 | REAL zthl(ngrid,klev) |
|---|
| 1615 | |
|---|
| 1616 | REAL zqsatth(ngrid,klev) |
|---|
| 1617 | REAL zqsatenv(ngrid,klev) |
|---|
| 1618 | |
|---|
| 1619 | |
|---|
| 1620 | REAL sigma1(ngrid,klev) |
|---|
| 1621 | REAL sigma2(ngrid,klev) |
|---|
| 1622 | REAL qlth(ngrid,klev) |
|---|
| 1623 | REAL qlenv(ngrid,klev) |
|---|
| 1624 | REAL qltot(ngrid,klev) |
|---|
| 1625 | REAL cth(ngrid,klev) |
|---|
| 1626 | REAL cenv(ngrid,klev) |
|---|
| 1627 | REAL ctot(ngrid,klev) |
|---|
| 1628 | REAL rneb(ngrid,klev) |
|---|
| 1629 | REAL t(ngrid,klev) |
|---|
| 1630 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
|---|
| 1631 | REAL rdd,cppd,Lv,sqrt2,sqrtpi |
|---|
| 1632 | REAL alth,alenv,ath,aenv |
|---|
| 1633 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
|---|
| 1634 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
|---|
| 1635 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
|---|
| 1636 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 1637 | REAL qlbef |
|---|
| 1638 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
|---|
| 1639 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
|---|
| 1640 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
|---|
| 1641 | |
|---|
| 1642 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
|---|
| 1643 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
|---|
| 1644 | REAL zqs(ngrid), qcloud(ngrid) |
|---|
| 1645 | |
|---|
| 1646 | !------------------------------------------------------------------------------ |
|---|
| 1647 | ! Initialisation des variables r?elles |
|---|
| 1648 | !------------------------------------------------------------------------------ |
|---|
| 1649 | sigma1(:,ind2)=0. |
|---|
| 1650 | sigma2(:,ind2)=0. |
|---|
| 1651 | qlth(:,ind2)=0. |
|---|
| 1652 | qlenv(:,ind2)=0. |
|---|
| 1653 | qltot(:,ind2)=0. |
|---|
| 1654 | rneb(:,ind2)=0. |
|---|
| 1655 | qcloud(:)=0. |
|---|
| 1656 | cth(:,ind2)=0. |
|---|
| 1657 | cenv(:,ind2)=0. |
|---|
| 1658 | ctot(:,ind2)=0. |
|---|
| 1659 | qsatmmussig1=0. |
|---|
| 1660 | qsatmmussig2=0. |
|---|
| 1661 | rdd=287.04 |
|---|
| 1662 | cppd=1005.7 |
|---|
| 1663 | pi=3.14159 |
|---|
| 1664 | Lv=2.5e6 |
|---|
| 1665 | sqrt2pi=sqrt(2.*pi) |
|---|
| 1666 | sqrt2=sqrt(2.) |
|---|
| 1667 | sqrtpi=sqrt(pi) |
|---|
| 1668 | |
|---|
| 1669 | !------------------------------------------------------------------------------- |
|---|
| 1670 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
|---|
| 1671 | !------------------------------------------------------------------------------- |
|---|
| 1672 | do ind1=1,ngrid |
|---|
| 1673 | |
|---|
| 1674 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
|---|
| 1675 | |
|---|
| 1676 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
|---|
| 1677 | |
|---|
| 1678 | |
|---|
| 1679 | ! zqenv(ind1)=po(ind1) |
|---|
| 1680 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 1681 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1682 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1683 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1684 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1685 | qsatbef=qsatbef*zcor |
|---|
| 1686 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 1687 | |
|---|
| 1688 | |
|---|
| 1689 | |
|---|
| 1690 | |
|---|
| 1691 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 1692 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 1693 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 1694 | |
|---|
| 1695 | |
|---|
| 1696 | |
|---|
| 1697 | |
|---|
| 1698 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 1699 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1700 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1701 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1702 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1703 | qsatbef=qsatbef*zcor |
|---|
| 1704 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 1705 | |
|---|
| 1706 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
|---|
| 1707 | ath=1./(1.+(alth*Lv/cppd)) |
|---|
| 1708 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
|---|
| 1709 | |
|---|
| 1710 | |
|---|
| 1711 | |
|---|
| 1712 | !------------------------------------------------------------------------------ |
|---|
| 1713 | ! Calcul des ?cart-types pour s |
|---|
| 1714 | !------------------------------------------------------------------------------ |
|---|
| 1715 | |
|---|
| 1716 | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
|---|
| 1717 | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
|---|
| 1718 | ! if (paprs(ind1,ind2).gt.90000) then |
|---|
| 1719 | ! ratqs(ind1,ind2)=0.002 |
|---|
| 1720 | ! else |
|---|
| 1721 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
|---|
| 1722 | ! endif |
|---|
| 1723 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 1724 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 1725 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
|---|
| 1726 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
|---|
| 1727 | |
|---|
| 1728 | !------------------------------------------------------------------------------ |
|---|
| 1729 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
|---|
| 1730 | !------------------------------------------------------------------------------ |
|---|
| 1731 | sqrt2pi=sqrt(2.*pi) |
|---|
| 1732 | xth=sth/(sqrt(2.)*sigma2s) |
|---|
| 1733 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 1734 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
|---|
| 1735 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 1736 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 1737 | |
|---|
| 1738 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
|---|
| 1739 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 1740 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 1741 | |
|---|
| 1742 | IF (iflag_cloudth_vert == 1) THEN |
|---|
| 1743 | !------------------------------------------------------------------------------- |
|---|
| 1744 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
|---|
| 1745 | !------------------------------------------------------------------------------- |
|---|
| 1746 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
|---|
| 1747 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
|---|
| 1748 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
|---|
| 1749 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
|---|
| 1750 | ! deltasenv=aenv*0.01*po(ind1) |
|---|
| 1751 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
|---|
| 1752 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1753 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1754 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1755 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1756 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
|---|
| 1757 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
|---|
| 1758 | |
|---|
| 1759 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
|---|
| 1760 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
|---|
| 1761 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 1762 | |
|---|
| 1763 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
|---|
| 1764 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
|---|
| 1765 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
|---|
| 1766 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
|---|
| 1767 | |
|---|
| 1768 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1769 | ! qlenv(ind1,ind2)=IntJ |
|---|
| 1770 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
|---|
| 1771 | |
|---|
| 1772 | |
|---|
| 1773 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
|---|
| 1774 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
|---|
| 1775 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
|---|
| 1776 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
|---|
| 1777 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
|---|
| 1778 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
|---|
| 1779 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1780 | ! qlth(ind1,ind2)=IntJ |
|---|
| 1781 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
|---|
| 1782 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 1783 | |
|---|
| 1784 | ELSE IF (iflag_cloudth_vert == 2) THEN |
|---|
| 1785 | |
|---|
| 1786 | !------------------------------------------------------------------------------- |
|---|
| 1787 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
|---|
| 1788 | !------------------------------------------------------------------------------- |
|---|
| 1789 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
|---|
| 1790 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
|---|
| 1791 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
|---|
| 1792 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
|---|
| 1793 | deltasenv=aenv*vert_alpha*sigma1s |
|---|
| 1794 | deltasth=ath*vert_alpha*sigma2s |
|---|
| 1795 | |
|---|
| 1796 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1797 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 1798 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1799 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 1800 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
|---|
| 1801 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
|---|
| 1802 | |
|---|
| 1803 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
|---|
| 1804 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
|---|
| 1805 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 1806 | |
|---|
| 1807 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) |
|---|
| 1808 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
|---|
| 1809 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
|---|
| 1810 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) |
|---|
| 1811 | |
|---|
| 1812 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
|---|
| 1813 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
|---|
| 1814 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
|---|
| 1815 | |
|---|
| 1816 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1817 | ! qlenv(ind1,ind2)=IntJ |
|---|
| 1818 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
|---|
| 1819 | |
|---|
| 1820 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) |
|---|
| 1821 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
|---|
| 1822 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
|---|
| 1823 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) |
|---|
| 1824 | |
|---|
| 1825 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 1826 | ! qlth(ind1,ind2)=IntJ |
|---|
| 1827 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
|---|
| 1828 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 1829 | |
|---|
| 1830 | |
|---|
| 1831 | |
|---|
| 1832 | |
|---|
| 1833 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
|---|
| 1834 | |
|---|
| 1835 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1836 | |
|---|
| 1837 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
|---|
| 1838 | ctot(ind1,ind2)=0. |
|---|
| 1839 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 1840 | |
|---|
| 1841 | else |
|---|
| 1842 | |
|---|
| 1843 | ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 1844 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
|---|
| 1845 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
|---|
| 1846 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
|---|
| 1847 | |
|---|
| 1848 | endif |
|---|
| 1849 | |
|---|
| 1850 | |
|---|
| 1851 | |
|---|
| 1852 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
|---|
| 1853 | |
|---|
| 1854 | |
|---|
| 1855 | else ! gaussienne environnement seule |
|---|
| 1856 | |
|---|
| 1857 | zqenv(ind1)=po(ind1) |
|---|
| 1858 | Tbef=t(ind1,ind2) |
|---|
| 1859 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 1860 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 1861 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 1862 | zcor=1./(1.-retv*qsatbef) |
|---|
| 1863 | qsatbef=qsatbef*zcor |
|---|
| 1864 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 1865 | |
|---|
| 1866 | |
|---|
| 1867 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
|---|
| 1868 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
|---|
| 1869 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 1870 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 1871 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 1872 | |
|---|
| 1873 | |
|---|
| 1874 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 1875 | |
|---|
| 1876 | sqrt2pi=sqrt(2.*pi) |
|---|
| 1877 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 1878 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 1879 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 1880 | |
|---|
| 1881 | if (ctot(ind1,ind2).lt.1.e-3) then |
|---|
| 1882 | ctot(ind1,ind2)=0. |
|---|
| 1883 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 1884 | |
|---|
| 1885 | else |
|---|
| 1886 | |
|---|
| 1887 | ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 1888 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 1889 | |
|---|
| 1890 | endif |
|---|
| 1891 | |
|---|
| 1892 | |
|---|
| 1893 | |
|---|
| 1894 | |
|---|
| 1895 | |
|---|
| 1896 | |
|---|
| 1897 | endif |
|---|
| 1898 | enddo |
|---|
| 1899 | |
|---|
| 1900 | return |
|---|
| 1901 | ! end |
|---|
| 1902 | END SUBROUTINE cloudth_vert |
|---|
| 1903 | |
|---|
| 1904 | |
|---|
| 1905 | |
|---|
| 1906 | |
|---|
| 1907 | SUBROUTINE cloudth_v3(ngrid,klev,ind2, & |
|---|
| 1908 | & ztv,po,zqta,fraca, & |
|---|
| 1909 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 1910 | & ratqs,sigma_qtherm,zqs,t, & |
|---|
| 1911 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 1912 | |
|---|
| 1913 | use lmdz_lscp_ini, only: iflag_cloudth_vert |
|---|
| 1914 | |
|---|
| 1915 | USE yomcst_mod_h |
|---|
| 1916 | USE yoethf_mod_h |
|---|
| 1917 | IMPLICIT NONE |
|---|
| 1918 | |
|---|
| 1919 | |
|---|
| 1920 | !=========================================================================== |
|---|
| 1921 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
|---|
| 1922 | ! Date : 25 Mai 2010 |
|---|
| 1923 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
|---|
| 1924 | !=========================================================================== |
|---|
| 1925 | INCLUDE "FCTTRE.h" |
|---|
| 1926 | |
|---|
| 1927 | integer, intent(in) :: ind2 |
|---|
| 1928 | integer, intent(in) :: ngrid,klev |
|---|
| 1929 | |
|---|
| 1930 | real, dimension(ngrid,klev), intent(in) :: ztv |
|---|
| 1931 | real, dimension(ngrid), intent(in) :: po |
|---|
| 1932 | real, dimension(ngrid,klev), intent(in) :: zqta |
|---|
| 1933 | real, dimension(ngrid,klev+1), intent(in) :: fraca |
|---|
| 1934 | real, dimension(ngrid), intent(out) :: qcloud |
|---|
| 1935 | real, dimension(ngrid,klev), intent(out) :: ctot |
|---|
| 1936 | real, dimension(ngrid,klev), intent(out) :: ctot_vol |
|---|
| 1937 | real, dimension(ngrid,klev), intent(in) :: zpspsk |
|---|
| 1938 | real, dimension(ngrid,klev+1), intent(in) :: paprs |
|---|
| 1939 | real, dimension(ngrid,klev), intent(in) :: pplay |
|---|
| 1940 | real, dimension(ngrid,klev), intent(in) :: ztla |
|---|
| 1941 | real, dimension(ngrid,klev), intent(inout) :: zthl |
|---|
| 1942 | real, dimension(ngrid,klev), intent(in) :: ratqs,sigma_qtherm |
|---|
| 1943 | real, dimension(ngrid), intent(in) :: zqs |
|---|
| 1944 | real, dimension(ngrid,klev), intent(in) :: t |
|---|
| 1945 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
|---|
| 1946 | |
|---|
| 1947 | |
|---|
| 1948 | REAL zqenv(ngrid) |
|---|
| 1949 | REAL zqsatth(ngrid,klev) |
|---|
| 1950 | REAL zqsatenv(ngrid,klev) |
|---|
| 1951 | |
|---|
| 1952 | REAL sigma1(ngrid,klev) |
|---|
| 1953 | REAL sigma2(ngrid,klev) |
|---|
| 1954 | REAL qlth(ngrid,klev) |
|---|
| 1955 | REAL qlenv(ngrid,klev) |
|---|
| 1956 | REAL qltot(ngrid,klev) |
|---|
| 1957 | REAL cth(ngrid,klev) |
|---|
| 1958 | REAL cenv(ngrid,klev) |
|---|
| 1959 | REAL cth_vol(ngrid,klev) |
|---|
| 1960 | REAL cenv_vol(ngrid,klev) |
|---|
| 1961 | REAL rneb(ngrid,klev) |
|---|
| 1962 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi |
|---|
| 1963 | REAL rdd,cppd,Lv |
|---|
| 1964 | REAL alth,alenv,ath,aenv |
|---|
| 1965 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 |
|---|
| 1966 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
|---|
| 1967 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 1968 | REAL qlbef |
|---|
| 1969 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
|---|
| 1970 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
|---|
| 1971 | |
|---|
| 1972 | |
|---|
| 1973 | INTEGER :: ind1,l, ig |
|---|
| 1974 | |
|---|
| 1975 | IF (iflag_cloudth_vert.GE.1) THEN |
|---|
| 1976 | CALL cloudth_vert_v3(ngrid,klev,ind2, & |
|---|
| 1977 | & ztv,po,zqta,fraca, & |
|---|
| 1978 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 1979 | & ratqs,sigma_qtherm,zqs,t, & |
|---|
| 1980 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 1981 | RETURN |
|---|
| 1982 | ENDIF |
|---|
| 1983 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 1984 | |
|---|
| 1985 | |
|---|
| 1986 | !------------------------------------------------------------------------------- |
|---|
| 1987 | ! Initialisation des variables r?elles |
|---|
| 1988 | !------------------------------------------------------------------------------- |
|---|
| 1989 | sigma1(:,ind2)=0. |
|---|
| 1990 | sigma2(:,ind2)=0. |
|---|
| 1991 | qlth(:,ind2)=0. |
|---|
| 1992 | qlenv(:,ind2)=0. |
|---|
| 1993 | qltot(:,ind2)=0. |
|---|
| 1994 | rneb(:,ind2)=0. |
|---|
| 1995 | qcloud(:)=0. |
|---|
| 1996 | cth(:,ind2)=0. |
|---|
| 1997 | cenv(:,ind2)=0. |
|---|
| 1998 | ctot(:,ind2)=0. |
|---|
| 1999 | cth_vol(:,ind2)=0. |
|---|
| 2000 | cenv_vol(:,ind2)=0. |
|---|
| 2001 | ctot_vol(:,ind2)=0. |
|---|
| 2002 | qsatmmussig1=0. |
|---|
| 2003 | qsatmmussig2=0. |
|---|
| 2004 | rdd=287.04 |
|---|
| 2005 | cppd=1005.7 |
|---|
| 2006 | pi=3.14159 |
|---|
| 2007 | Lv=2.5e6 |
|---|
| 2008 | sqrt2pi=sqrt(2.*pi) |
|---|
| 2009 | sqrt2=sqrt(2.) |
|---|
| 2010 | sqrtpi=sqrt(pi) |
|---|
| 2011 | |
|---|
| 2012 | |
|---|
| 2013 | !------------------------------------------------------------------------------- |
|---|
| 2014 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
|---|
| 2015 | !------------------------------------------------------------------------------- |
|---|
| 2016 | do ind1=1,ngrid |
|---|
| 2017 | |
|---|
| 2018 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
|---|
| 2019 | |
|---|
| 2020 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
|---|
| 2021 | |
|---|
| 2022 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 2023 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 2024 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 2025 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 2026 | zcor=1./(1.-retv*qsatbef) |
|---|
| 2027 | qsatbef=qsatbef*zcor |
|---|
| 2028 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 2029 | |
|---|
| 2030 | |
|---|
| 2031 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
|---|
| 2032 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
|---|
| 2033 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
|---|
| 2034 | |
|---|
| 2035 | !po = qt de l'environnement ET des thermique |
|---|
| 2036 | !zqenv = qt environnement |
|---|
| 2037 | !zqsatenv = qsat environnement |
|---|
| 2038 | !zthl = Tl environnement |
|---|
| 2039 | |
|---|
| 2040 | |
|---|
| 2041 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 2042 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 2043 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 2044 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 2045 | zcor=1./(1.-retv*qsatbef) |
|---|
| 2046 | qsatbef=qsatbef*zcor |
|---|
| 2047 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 2048 | |
|---|
| 2049 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
|---|
| 2050 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
|---|
| 2051 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
|---|
| 2052 | |
|---|
| 2053 | !zqta = qt thermals |
|---|
| 2054 | !zqsatth = qsat thermals |
|---|
| 2055 | !ztla = Tl thermals |
|---|
| 2056 | |
|---|
| 2057 | !------------------------------------------------------------------------------ |
|---|
| 2058 | ! s standard deviations |
|---|
| 2059 | !------------------------------------------------------------------------------ |
|---|
| 2060 | |
|---|
| 2061 | ! tests |
|---|
| 2062 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 2063 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
|---|
| 2064 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
|---|
| 2065 | ! final option |
|---|
| 2066 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
|---|
| 2067 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 2068 | |
|---|
| 2069 | !------------------------------------------------------------------------------ |
|---|
| 2070 | ! Condensed water and cloud cover |
|---|
| 2071 | !------------------------------------------------------------------------------ |
|---|
| 2072 | xth=sth/(sqrt2*sigma2s) |
|---|
| 2073 | xenv=senv/(sqrt2*sigma1s) |
|---|
| 2074 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
|---|
| 2075 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
|---|
| 2076 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 2077 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 2078 | |
|---|
| 2079 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) |
|---|
| 2080 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
|---|
| 2081 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 2082 | |
|---|
| 2083 | if (ctot(ind1,ind2).lt.1.e-10) then |
|---|
| 2084 | ctot(ind1,ind2)=0. |
|---|
| 2085 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 2086 | else |
|---|
| 2087 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
|---|
| 2088 | endif |
|---|
| 2089 | |
|---|
| 2090 | else ! Environnement only, follow the if l.110 |
|---|
| 2091 | |
|---|
| 2092 | zqenv(ind1)=po(ind1) |
|---|
| 2093 | Tbef=t(ind1,ind2) |
|---|
| 2094 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 2095 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 2096 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 2097 | zcor=1./(1.-retv*qsatbef) |
|---|
| 2098 | qsatbef=qsatbef*zcor |
|---|
| 2099 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 2100 | |
|---|
| 2101 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
|---|
| 2102 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
|---|
| 2103 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 2104 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 2105 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 2106 | |
|---|
| 2107 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 2108 | |
|---|
| 2109 | xenv=senv/(sqrt2*sigma1s) |
|---|
| 2110 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 2111 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 2112 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
|---|
| 2113 | |
|---|
| 2114 | if (ctot(ind1,ind2).lt.1.e-3) then |
|---|
| 2115 | ctot(ind1,ind2)=0. |
|---|
| 2116 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 2117 | else |
|---|
| 2118 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 2119 | endif |
|---|
| 2120 | |
|---|
| 2121 | |
|---|
| 2122 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
|---|
| 2123 | enddo ! from the loop on ngrid l.108 |
|---|
| 2124 | return |
|---|
| 2125 | ! end |
|---|
| 2126 | END SUBROUTINE cloudth_v3 |
|---|
| 2127 | |
|---|
| 2128 | |
|---|
| 2129 | |
|---|
| 2130 | !=========================================================================== |
|---|
| 2131 | SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2, & |
|---|
| 2132 | & ztv,po,zqta,fraca, & |
|---|
| 2133 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 2134 | & ratqs,sigma_qtherm,zqs,t, & |
|---|
| 2135 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 2136 | |
|---|
| 2137 | !=========================================================================== |
|---|
| 2138 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
|---|
| 2139 | ! Date : 25 Mai 2010 |
|---|
| 2140 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
|---|
| 2141 | !=========================================================================== |
|---|
| 2142 | |
|---|
| 2143 | use yoethf_mod_h |
|---|
| 2144 | use lmdz_lscp_ini, only : iflag_cloudth_vert,iflag_ratqs |
|---|
| 2145 | use lmdz_lscp_ini, only : vert_alpha,vert_alpha_th, sigma1s_factor, sigma1s_power , sigma2s_factor , sigma2s_power , cloudth_ratqsmin , iflag_cloudth_vert_noratqs |
|---|
| 2146 | |
|---|
| 2147 | USE yomcst_mod_h |
|---|
| 2148 | IMPLICIT NONE |
|---|
| 2149 | |
|---|
| 2150 | |
|---|
| 2151 | |
|---|
| 2152 | |
|---|
| 2153 | INCLUDE "FCTTRE.h" |
|---|
| 2154 | |
|---|
| 2155 | INTEGER itap,ind1,ind2 |
|---|
| 2156 | INTEGER ngrid,klev,klon,l,ig |
|---|
| 2157 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
|---|
| 2158 | |
|---|
| 2159 | REAL ztv(ngrid,klev) |
|---|
| 2160 | REAL po(ngrid) |
|---|
| 2161 | REAL zqenv(ngrid) |
|---|
| 2162 | REAL zqta(ngrid,klev) |
|---|
| 2163 | |
|---|
| 2164 | REAL fraca(ngrid,klev+1) |
|---|
| 2165 | REAL zpspsk(ngrid,klev) |
|---|
| 2166 | REAL paprs(ngrid,klev+1) |
|---|
| 2167 | REAL pplay(ngrid,klev) |
|---|
| 2168 | REAL ztla(ngrid,klev) |
|---|
| 2169 | REAL zthl(ngrid,klev) |
|---|
| 2170 | |
|---|
| 2171 | REAL zqsatth(ngrid,klev) |
|---|
| 2172 | REAL zqsatenv(ngrid,klev) |
|---|
| 2173 | |
|---|
| 2174 | REAL sigma1(ngrid,klev) |
|---|
| 2175 | REAL sigma2(ngrid,klev) |
|---|
| 2176 | REAL qlth(ngrid,klev) |
|---|
| 2177 | REAL qlenv(ngrid,klev) |
|---|
| 2178 | REAL qltot(ngrid,klev) |
|---|
| 2179 | REAL cth(ngrid,klev) |
|---|
| 2180 | REAL cenv(ngrid,klev) |
|---|
| 2181 | REAL ctot(ngrid,klev) |
|---|
| 2182 | REAL cth_vol(ngrid,klev) |
|---|
| 2183 | REAL cenv_vol(ngrid,klev) |
|---|
| 2184 | REAL ctot_vol(ngrid,klev) |
|---|
| 2185 | REAL rneb(ngrid,klev) |
|---|
| 2186 | REAL t(ngrid,klev) |
|---|
| 2187 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
|---|
| 2188 | REAL rdd,cppd,Lv |
|---|
| 2189 | REAL alth,alenv,ath,aenv |
|---|
| 2190 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
|---|
| 2191 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
|---|
| 2192 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
|---|
| 2193 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
|---|
| 2194 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
|---|
| 2195 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 2196 | REAL qlbef |
|---|
| 2197 | REAL ratqs(ngrid,klev),sigma_qtherm(ngrid,klev) ! determine la largeur de distribution de vapeur |
|---|
| 2198 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
|---|
| 2199 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
|---|
| 2200 | |
|---|
| 2201 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
|---|
| 2202 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
|---|
| 2203 | REAL zqs(ngrid), qcloud(ngrid) |
|---|
| 2204 | |
|---|
| 2205 | REAL rhodz(ngrid,klev) |
|---|
| 2206 | REAL zrho(ngrid,klev) |
|---|
| 2207 | REAL dz(ngrid,klev) |
|---|
| 2208 | |
|---|
| 2209 | DO ind1 = 1, ngrid |
|---|
| 2210 | !Layer calculation |
|---|
| 2211 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg !kg/m2 |
|---|
| 2212 | zrho(ind1,ind2) = pplay(ind1,ind2)/t(ind1,ind2)/rd !kg/m3 |
|---|
| 2213 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) !m : epaisseur de la couche en metre |
|---|
| 2214 | END DO |
|---|
| 2215 | |
|---|
| 2216 | !------------------------------------------------------------------------------ |
|---|
| 2217 | ! Initialize |
|---|
| 2218 | !------------------------------------------------------------------------------ |
|---|
| 2219 | |
|---|
| 2220 | sigma1(:,ind2)=0. |
|---|
| 2221 | sigma2(:,ind2)=0. |
|---|
| 2222 | qlth(:,ind2)=0. |
|---|
| 2223 | qlenv(:,ind2)=0. |
|---|
| 2224 | qltot(:,ind2)=0. |
|---|
| 2225 | rneb(:,ind2)=0. |
|---|
| 2226 | qcloud(:)=0. |
|---|
| 2227 | cth(:,ind2)=0. |
|---|
| 2228 | cenv(:,ind2)=0. |
|---|
| 2229 | ctot(:,ind2)=0. |
|---|
| 2230 | cth_vol(:,ind2)=0. |
|---|
| 2231 | cenv_vol(:,ind2)=0. |
|---|
| 2232 | ctot_vol(:,ind2)=0. |
|---|
| 2233 | qsatmmussig1=0. |
|---|
| 2234 | qsatmmussig2=0. |
|---|
| 2235 | rdd=287.04 |
|---|
| 2236 | cppd=1005.7 |
|---|
| 2237 | pi=3.14159 |
|---|
| 2238 | Lv=2.5e6 |
|---|
| 2239 | sqrt2pi=sqrt(2.*pi) |
|---|
| 2240 | sqrt2=sqrt(2.) |
|---|
| 2241 | sqrtpi=sqrt(pi) |
|---|
| 2242 | |
|---|
| 2243 | |
|---|
| 2244 | |
|---|
| 2245 | !------------------------------------------------------------------------------- |
|---|
| 2246 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
|---|
| 2247 | !------------------------------------------------------------------------------- |
|---|
| 2248 | do ind1=1,ngrid |
|---|
| 2249 | |
|---|
| 2250 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement |
|---|
| 2251 | |
|---|
| 2252 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv |
|---|
| 2253 | |
|---|
| 2254 | |
|---|
| 2255 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 2256 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 2257 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 2258 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 2259 | zcor=1./(1.-retv*qsatbef) |
|---|
| 2260 | qsatbef=qsatbef*zcor |
|---|
| 2261 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 2262 | |
|---|
| 2263 | |
|---|
| 2264 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
|---|
| 2265 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
|---|
| 2266 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
|---|
| 2267 | |
|---|
| 2268 | !zqenv = qt environnement |
|---|
| 2269 | !zqsatenv = qsat environnement |
|---|
| 2270 | !zthl = Tl environnement |
|---|
| 2271 | |
|---|
| 2272 | |
|---|
| 2273 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 2274 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 2275 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 2276 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 2277 | zcor=1./(1.-retv*qsatbef) |
|---|
| 2278 | qsatbef=qsatbef*zcor |
|---|
| 2279 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 2280 | |
|---|
| 2281 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
|---|
| 2282 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
|---|
| 2283 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
|---|
| 2284 | |
|---|
| 2285 | |
|---|
| 2286 | !zqta = qt thermals |
|---|
| 2287 | !zqsatth = qsat thermals |
|---|
| 2288 | !ztla = Tl thermals |
|---|
| 2289 | !------------------------------------------------------------------------------ |
|---|
| 2290 | ! s standard deviation |
|---|
| 2291 | !------------------------------------------------------------------------------ |
|---|
| 2292 | |
|---|
| 2293 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
|---|
| 2294 | & (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
|---|
| 2295 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
|---|
| 2296 | IF (cloudth_ratqsmin>0.) THEN |
|---|
| 2297 | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
|---|
| 2298 | ELSE |
|---|
| 2299 | sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1) |
|---|
| 2300 | ENDIF |
|---|
| 2301 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
|---|
| 2302 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
|---|
| 2303 | IF (iflag_ratqs.eq.10.or.iflag_ratqs.eq.11) then |
|---|
| 2304 | sigma1s = ratqs(ind1,ind2)*po(ind1)*aenv |
|---|
| 2305 | IF (iflag_ratqs.eq.10.and.sigma_qtherm(ind1,ind2).ne.0) then |
|---|
| 2306 | sigma2s = sigma_qtherm(ind1,ind2)*ath |
|---|
| 2307 | ENDIF |
|---|
| 2308 | ENDIF |
|---|
| 2309 | |
|---|
| 2310 | ! tests |
|---|
| 2311 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
|---|
| 2312 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
|---|
| 2313 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
|---|
| 2314 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
|---|
| 2315 | ! if (paprs(ind1,ind2).gt.90000) then |
|---|
| 2316 | ! ratqs(ind1,ind2)=0.002 |
|---|
| 2317 | ! else |
|---|
| 2318 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
|---|
| 2319 | ! endif |
|---|
| 2320 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 2321 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 2322 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
|---|
| 2323 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
|---|
| 2324 | |
|---|
| 2325 | IF (iflag_cloudth_vert == 1) THEN |
|---|
| 2326 | !------------------------------------------------------------------------------- |
|---|
| 2327 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
|---|
| 2328 | !------------------------------------------------------------------------------- |
|---|
| 2329 | |
|---|
| 2330 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
|---|
| 2331 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
|---|
| 2332 | |
|---|
| 2333 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 2334 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 2335 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 2336 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 2337 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
|---|
| 2338 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
|---|
| 2339 | |
|---|
| 2340 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
|---|
| 2341 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
|---|
| 2342 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 2343 | |
|---|
| 2344 | ! Environment |
|---|
| 2345 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
|---|
| 2346 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
|---|
| 2347 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
|---|
| 2348 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
|---|
| 2349 | |
|---|
| 2350 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 2351 | |
|---|
| 2352 | ! Thermal |
|---|
| 2353 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
|---|
| 2354 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
|---|
| 2355 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
|---|
| 2356 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
|---|
| 2357 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 2358 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 2359 | |
|---|
| 2360 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
|---|
| 2361 | IF (iflag_cloudth_vert < 5) THEN |
|---|
| 2362 | !------------------------------------------------------------------------------- |
|---|
| 2363 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
|---|
| 2364 | !------------------------------------------------------------------------------- |
|---|
| 2365 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
|---|
| 2366 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
|---|
| 2367 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
|---|
| 2368 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
|---|
| 2369 | IF (iflag_cloudth_vert == 3) THEN |
|---|
| 2370 | deltasenv=aenv*vert_alpha*sigma1s |
|---|
| 2371 | deltasth=ath*vert_alpha_th*sigma2s |
|---|
| 2372 | ELSE IF (iflag_cloudth_vert == 4) THEN |
|---|
| 2373 | IF (iflag_cloudth_vert_noratqs == 1) THEN |
|---|
| 2374 | deltasenv=vert_alpha*max(sigma1s_fraca,1e-10) |
|---|
| 2375 | deltasth=vert_alpha_th*sigma2s |
|---|
| 2376 | ELSE |
|---|
| 2377 | deltasenv=vert_alpha*sigma1s |
|---|
| 2378 | deltasth=vert_alpha_th*sigma2s |
|---|
| 2379 | ENDIF |
|---|
| 2380 | ENDIF |
|---|
| 2381 | |
|---|
| 2382 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 2383 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
|---|
| 2384 | exp_xenv1 = exp(-1.*xenv1**2) |
|---|
| 2385 | exp_xenv2 = exp(-1.*xenv2**2) |
|---|
| 2386 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 2387 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
|---|
| 2388 | exp_xth1 = exp(-1.*xth1**2) |
|---|
| 2389 | exp_xth2 = exp(-1.*xth2**2) |
|---|
| 2390 | |
|---|
| 2391 | !CF_surfacique |
|---|
| 2392 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
|---|
| 2393 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
|---|
| 2394 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 2395 | |
|---|
| 2396 | |
|---|
| 2397 | !CF_volumique & eau condense |
|---|
| 2398 | !environnement |
|---|
| 2399 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
|---|
| 2400 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
|---|
| 2401 | if (deltasenv .lt. 1.e-10) then |
|---|
| 2402 | qlenv(ind1,ind2)=IntJ |
|---|
| 2403 | cenv_vol(ind1,ind2)=IntJ_CF |
|---|
| 2404 | else |
|---|
| 2405 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
|---|
| 2406 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
|---|
| 2407 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
|---|
| 2408 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
|---|
| 2409 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
|---|
| 2410 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 2411 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 2412 | endif |
|---|
| 2413 | |
|---|
| 2414 | !thermique |
|---|
| 2415 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
|---|
| 2416 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
|---|
| 2417 | if (deltasth .lt. 1.e-10) then |
|---|
| 2418 | qlth(ind1,ind2)=IntJ |
|---|
| 2419 | cth_vol(ind1,ind2)=IntJ_CF |
|---|
| 2420 | else |
|---|
| 2421 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
|---|
| 2422 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
|---|
| 2423 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
|---|
| 2424 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
|---|
| 2425 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
|---|
| 2426 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
|---|
| 2427 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
|---|
| 2428 | endif |
|---|
| 2429 | |
|---|
| 2430 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 2431 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
|---|
| 2432 | |
|---|
| 2433 | ELSE IF (iflag_cloudth_vert == 5) THEN |
|---|
| 2434 | sigma1s=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
|---|
| 2435 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
|---|
| 2436 | +ratqs(ind1,ind2)*po(ind1) !Environment |
|---|
| 2437 | sigma2s=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.02)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) !Thermals |
|---|
| 2438 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
|---|
| 2439 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
|---|
| 2440 | xth=sth/(sqrt(2.)*sigma2s) |
|---|
| 2441 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 2442 | |
|---|
| 2443 | !Volumique |
|---|
| 2444 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
|---|
| 2445 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 2446 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
|---|
| 2447 | !print *,'jeanjean_CV=',ctot_vol(ind1,ind2) |
|---|
| 2448 | |
|---|
| 2449 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth_vol(ind1,ind2)) |
|---|
| 2450 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv_vol(ind1,ind2)) |
|---|
| 2451 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 2452 | |
|---|
| 2453 | !Surfacique |
|---|
| 2454 | !Neggers |
|---|
| 2455 | !beta=0.0044 |
|---|
| 2456 | !inverse_rho=1.+beta*dz(ind1,ind2) |
|---|
| 2457 | !print *,'jeanjean : beta=',beta |
|---|
| 2458 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho |
|---|
| 2459 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho |
|---|
| 2460 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
|---|
| 2461 | |
|---|
| 2462 | !Brooks |
|---|
| 2463 | a_Brooks=0.6694 |
|---|
| 2464 | b_Brooks=0.1882 |
|---|
| 2465 | A_Maj_Brooks=0.1635 !-- sans shear |
|---|
| 2466 | !A_Maj_Brooks=0.17 !-- ARM LES |
|---|
| 2467 | !A_Maj_Brooks=0.18 !-- RICO LES |
|---|
| 2468 | !A_Maj_Brooks=0.19 !-- BOMEX LES |
|---|
| 2469 | Dx_Brooks=200000. |
|---|
| 2470 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
|---|
| 2471 | !print *,'jeanjean_f=',f_Brooks |
|---|
| 2472 | |
|---|
| 2473 | cth(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cth_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 2474 | cenv(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cenv_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 2475 | ctot(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 2476 | !print *,'JJ_ctot_1',ctot(ind1,ind2) |
|---|
| 2477 | |
|---|
| 2478 | |
|---|
| 2479 | |
|---|
| 2480 | |
|---|
| 2481 | |
|---|
| 2482 | ENDIF ! of if (iflag_cloudth_vert<5) |
|---|
| 2483 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
|---|
| 2484 | |
|---|
| 2485 | ! if (ctot(ind1,ind2).lt.1.e-10) then |
|---|
| 2486 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
|---|
| 2487 | ctot(ind1,ind2)=0. |
|---|
| 2488 | ctot_vol(ind1,ind2)=0. |
|---|
| 2489 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 2490 | |
|---|
| 2491 | else |
|---|
| 2492 | |
|---|
| 2493 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
|---|
| 2494 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
|---|
| 2495 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
|---|
| 2496 | |
|---|
| 2497 | endif |
|---|
| 2498 | |
|---|
| 2499 | else ! gaussienne environnement seule |
|---|
| 2500 | |
|---|
| 2501 | |
|---|
| 2502 | zqenv(ind1)=po(ind1) |
|---|
| 2503 | Tbef=t(ind1,ind2) |
|---|
| 2504 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 2505 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 2506 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 2507 | zcor=1./(1.-retv*qsatbef) |
|---|
| 2508 | qsatbef=qsatbef*zcor |
|---|
| 2509 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 2510 | |
|---|
| 2511 | |
|---|
| 2512 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
|---|
| 2513 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
|---|
| 2514 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
|---|
| 2515 | aenv=1./(1.+(alenv*Lv/cppd)) |
|---|
| 2516 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
|---|
| 2517 | sth=0. |
|---|
| 2518 | |
|---|
| 2519 | |
|---|
| 2520 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 2521 | sigma2s=0. |
|---|
| 2522 | |
|---|
| 2523 | sqrt2pi=sqrt(2.*pi) |
|---|
| 2524 | xenv=senv/(sqrt(2.)*sigma1s) |
|---|
| 2525 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 2526 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 2527 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
|---|
| 2528 | |
|---|
| 2529 | if (ctot(ind1,ind2).lt.1.e-3) then |
|---|
| 2530 | ctot(ind1,ind2)=0. |
|---|
| 2531 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 2532 | |
|---|
| 2533 | else |
|---|
| 2534 | |
|---|
| 2535 | ! ctot(ind1,ind2)=ctot(ind1,ind2) |
|---|
| 2536 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 2537 | |
|---|
| 2538 | endif |
|---|
| 2539 | |
|---|
| 2540 | |
|---|
| 2541 | |
|---|
| 2542 | |
|---|
| 2543 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
|---|
| 2544 | ! Outputs used to check the PDFs |
|---|
| 2545 | cloudth_senv(ind1,ind2) = senv |
|---|
| 2546 | cloudth_sth(ind1,ind2) = sth |
|---|
| 2547 | cloudth_sigmaenv(ind1,ind2) = sigma1s |
|---|
| 2548 | cloudth_sigmath(ind1,ind2) = sigma2s |
|---|
| 2549 | |
|---|
| 2550 | enddo ! from the loop on ngrid l.333 |
|---|
| 2551 | return |
|---|
| 2552 | ! end |
|---|
| 2553 | END SUBROUTINE cloudth_vert_v3 |
|---|
| 2554 | ! |
|---|
| 2555 | |
|---|
| 2556 | |
|---|
| 2557 | |
|---|
| 2558 | |
|---|
| 2559 | |
|---|
| 2560 | |
|---|
| 2561 | |
|---|
| 2562 | |
|---|
| 2563 | |
|---|
| 2564 | |
|---|
| 2565 | |
|---|
| 2566 | SUBROUTINE cloudth_v6(ngrid,klev,ind2, & |
|---|
| 2567 | & ztv,po,zqta,fraca, & |
|---|
| 2568 | & qcloud,ctot_surf,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
|---|
| 2569 | & ratqs,zqs,T, & |
|---|
| 2570 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
|---|
| 2571 | |
|---|
| 2572 | USE yoethf_mod_h |
|---|
| 2573 | USE lmdz_lscp_ini, only: iflag_cloudth_vert |
|---|
| 2574 | |
|---|
| 2575 | USE yomcst_mod_h |
|---|
| 2576 | IMPLICIT NONE |
|---|
| 2577 | |
|---|
| 2578 | |
|---|
| 2579 | |
|---|
| 2580 | INCLUDE "FCTTRE.h" |
|---|
| 2581 | |
|---|
| 2582 | |
|---|
| 2583 | !Domain variables |
|---|
| 2584 | INTEGER ngrid !indice Max lat-lon |
|---|
| 2585 | INTEGER klev !indice Max alt |
|---|
| 2586 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
|---|
| 2587 | INTEGER ind1 !indice in [1:ngrid] |
|---|
| 2588 | INTEGER ind2 !indice in [1:klev] |
|---|
| 2589 | !thermal plume fraction |
|---|
| 2590 | REAL fraca(ngrid,klev+1) !thermal plumes fraction in the gridbox |
|---|
| 2591 | !temperatures |
|---|
| 2592 | REAL T(ngrid,klev) !temperature |
|---|
| 2593 | REAL zpspsk(ngrid,klev) !factor (p/p0)**kappa (used for potential variables) |
|---|
| 2594 | REAL ztv(ngrid,klev) !potential temperature (voir thermcell_env.F90) |
|---|
| 2595 | REAL ztla(ngrid,klev) !liquid temperature in the thermals (Tl_th) |
|---|
| 2596 | REAL zthl(ngrid,klev) !liquid temperature in the environment (Tl_env) |
|---|
| 2597 | !pressure |
|---|
| 2598 | REAL paprs(ngrid,klev+1) !pressure at the interface of levels |
|---|
| 2599 | REAL pplay(ngrid,klev) !pressure at the middle of the level |
|---|
| 2600 | !humidity |
|---|
| 2601 | REAL ratqs(ngrid,klev) !width of the total water subgrid-scale distribution |
|---|
| 2602 | REAL po(ngrid) !total water (qt) |
|---|
| 2603 | REAL zqenv(ngrid) !total water in the environment (qt_env) |
|---|
| 2604 | REAL zqta(ngrid,klev) !total water in the thermals (qt_th) |
|---|
| 2605 | REAL zqsatth(ngrid,klev) !water saturation level in the thermals (q_sat_th) |
|---|
| 2606 | REAL zqsatenv(ngrid,klev) !water saturation level in the environment (q_sat_env) |
|---|
| 2607 | REAL qlth(ngrid,klev) !condensed water in the thermals |
|---|
| 2608 | REAL qlenv(ngrid,klev) !condensed water in the environment |
|---|
| 2609 | REAL qltot(ngrid,klev) !condensed water in the gridbox |
|---|
| 2610 | !cloud fractions |
|---|
| 2611 | REAL cth_vol(ngrid,klev) !cloud fraction by volume in the thermals |
|---|
| 2612 | REAL cenv_vol(ngrid,klev) !cloud fraction by volume in the environment |
|---|
| 2613 | REAL ctot_vol(ngrid,klev) !cloud fraction by volume in the gridbox |
|---|
| 2614 | REAL cth_surf(ngrid,klev) !cloud fraction by surface in the thermals |
|---|
| 2615 | REAL cenv_surf(ngrid,klev) !cloud fraction by surface in the environment |
|---|
| 2616 | REAL ctot_surf(ngrid,klev) !cloud fraction by surface in the gridbox |
|---|
| 2617 | !PDF of saturation deficit variables |
|---|
| 2618 | REAL rdd,cppd,Lv |
|---|
| 2619 | REAL Tbef,zdelta,qsatbef,zcor |
|---|
| 2620 | REAL alth,alenv,ath,aenv |
|---|
| 2621 | REAL sth,senv !saturation deficits in the thermals and environment |
|---|
| 2622 | REAL sigma_env,sigma_th !standard deviations of the biGaussian PDF |
|---|
| 2623 | !cloud fraction variables |
|---|
| 2624 | REAL xth,xenv |
|---|
| 2625 | REAL inverse_rho,beta !Neggers et al. (2011) method |
|---|
| 2626 | REAL a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks !Brooks et al. (2005) method |
|---|
| 2627 | !Incloud total water variables |
|---|
| 2628 | REAL zqs(ngrid) !q_sat |
|---|
| 2629 | REAL qcloud(ngrid) !eau totale dans le nuage |
|---|
| 2630 | !Some arithmetic variables |
|---|
| 2631 | REAL pi,sqrt2,sqrt2pi |
|---|
| 2632 | !Depth of the layer |
|---|
| 2633 | REAL dz(ngrid,klev) !epaisseur de la couche en metre |
|---|
| 2634 | REAL rhodz(ngrid,klev) |
|---|
| 2635 | REAL zrho(ngrid,klev) |
|---|
| 2636 | DO ind1 = 1, ngrid |
|---|
| 2637 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg ![kg/m2] |
|---|
| 2638 | zrho(ind1,ind2) = pplay(ind1,ind2)/T(ind1,ind2)/rd ![kg/m3] |
|---|
| 2639 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) ![m] |
|---|
| 2640 | END DO |
|---|
| 2641 | |
|---|
| 2642 | !------------------------------------------------------------------------------ |
|---|
| 2643 | ! Initialization |
|---|
| 2644 | !------------------------------------------------------------------------------ |
|---|
| 2645 | qlth(:,ind2)=0. |
|---|
| 2646 | qlenv(:,ind2)=0. |
|---|
| 2647 | qltot(:,ind2)=0. |
|---|
| 2648 | cth_vol(:,ind2)=0. |
|---|
| 2649 | cenv_vol(:,ind2)=0. |
|---|
| 2650 | ctot_vol(:,ind2)=0. |
|---|
| 2651 | cth_surf(:,ind2)=0. |
|---|
| 2652 | cenv_surf(:,ind2)=0. |
|---|
| 2653 | ctot_surf(:,ind2)=0. |
|---|
| 2654 | qcloud(:)=0. |
|---|
| 2655 | rdd=287.04 |
|---|
| 2656 | cppd=1005.7 |
|---|
| 2657 | pi=3.14159 |
|---|
| 2658 | Lv=2.5e6 |
|---|
| 2659 | sqrt2=sqrt(2.) |
|---|
| 2660 | sqrt2pi=sqrt(2.*pi) |
|---|
| 2661 | |
|---|
| 2662 | |
|---|
| 2663 | DO ind1=1,ngrid |
|---|
| 2664 | !------------------------------------------------------------------------------- |
|---|
| 2665 | !Both thermal and environment in the gridbox |
|---|
| 2666 | !------------------------------------------------------------------------------- |
|---|
| 2667 | IF ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) THEN |
|---|
| 2668 | !-------------------------------------------- |
|---|
| 2669 | !calcul de qsat_env |
|---|
| 2670 | !-------------------------------------------- |
|---|
| 2671 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 2672 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 2673 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 2674 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 2675 | zcor=1./(1.-retv*qsatbef) |
|---|
| 2676 | qsatbef=qsatbef*zcor |
|---|
| 2677 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 2678 | !-------------------------------------------- |
|---|
| 2679 | !calcul de s_env |
|---|
| 2680 | !-------------------------------------------- |
|---|
| 2681 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
|---|
| 2682 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
|---|
| 2683 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
|---|
| 2684 | !-------------------------------------------- |
|---|
| 2685 | !calcul de qsat_th |
|---|
| 2686 | !-------------------------------------------- |
|---|
| 2687 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 2688 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 2689 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 2690 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 2691 | zcor=1./(1.-retv*qsatbef) |
|---|
| 2692 | qsatbef=qsatbef*zcor |
|---|
| 2693 | zqsatth(ind1,ind2)=qsatbef |
|---|
| 2694 | !-------------------------------------------- |
|---|
| 2695 | !calcul de s_th |
|---|
| 2696 | !-------------------------------------------- |
|---|
| 2697 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
|---|
| 2698 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 these Arnaud Jam |
|---|
| 2699 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 these Arnaud Jam |
|---|
| 2700 | !-------------------------------------------- |
|---|
| 2701 | !calcul standard deviations bi-Gaussian PDF |
|---|
| 2702 | !-------------------------------------------- |
|---|
| 2703 | sigma_th=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.01)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) |
|---|
| 2704 | sigma_env=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
|---|
| 2705 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
|---|
| 2706 | +ratqs(ind1,ind2)*po(ind1) |
|---|
| 2707 | xth=sth/(sqrt2*sigma_th) |
|---|
| 2708 | xenv=senv/(sqrt2*sigma_env) |
|---|
| 2709 | !-------------------------------------------- |
|---|
| 2710 | !Cloud fraction by volume CF_vol |
|---|
| 2711 | !-------------------------------------------- |
|---|
| 2712 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
|---|
| 2713 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 2714 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
|---|
| 2715 | !-------------------------------------------- |
|---|
| 2716 | !Condensed water qc |
|---|
| 2717 | !-------------------------------------------- |
|---|
| 2718 | qlth(ind1,ind2)=sigma_th*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth_vol(ind1,ind2)) |
|---|
| 2719 | qlenv(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv_vol(ind1,ind2)) |
|---|
| 2720 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
|---|
| 2721 | !-------------------------------------------- |
|---|
| 2722 | !Cloud fraction by surface CF_surf |
|---|
| 2723 | !-------------------------------------------- |
|---|
| 2724 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
|---|
| 2725 | !beta=0.0044 (Jouhaud et al.2018) |
|---|
| 2726 | !inverse_rho=1.+beta*dz(ind1,ind2) |
|---|
| 2727 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
|---|
| 2728 | !Method Brooks et al. (2005) : ok for all types of clouds |
|---|
| 2729 | a_Brooks=0.6694 |
|---|
| 2730 | b_Brooks=0.1882 |
|---|
| 2731 | A_Maj_Brooks=0.1635 !-- sans dependence au cisaillement de vent |
|---|
| 2732 | Dx_Brooks=200000. !-- si l'on considere des mailles de 200km de cote |
|---|
| 2733 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
|---|
| 2734 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 2735 | !-------------------------------------------- |
|---|
| 2736 | !Incloud Condensed water qcloud |
|---|
| 2737 | !-------------------------------------------- |
|---|
| 2738 | if (ctot_surf(ind1,ind2) .lt. 1.e-10) then |
|---|
| 2739 | ctot_vol(ind1,ind2)=0. |
|---|
| 2740 | ctot_surf(ind1,ind2)=0. |
|---|
| 2741 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 2742 | else |
|---|
| 2743 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqs(ind1) |
|---|
| 2744 | endif |
|---|
| 2745 | |
|---|
| 2746 | |
|---|
| 2747 | |
|---|
| 2748 | !------------------------------------------------------------------------------- |
|---|
| 2749 | !Environment only in the gridbox |
|---|
| 2750 | !------------------------------------------------------------------------------- |
|---|
| 2751 | ELSE |
|---|
| 2752 | !-------------------------------------------- |
|---|
| 2753 | !calcul de qsat_env |
|---|
| 2754 | !-------------------------------------------- |
|---|
| 2755 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
|---|
| 2756 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
|---|
| 2757 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
|---|
| 2758 | qsatbef=MIN(0.5,qsatbef) |
|---|
| 2759 | zcor=1./(1.-retv*qsatbef) |
|---|
| 2760 | qsatbef=qsatbef*zcor |
|---|
| 2761 | zqsatenv(ind1,ind2)=qsatbef |
|---|
| 2762 | !-------------------------------------------- |
|---|
| 2763 | !calcul de s_env |
|---|
| 2764 | !-------------------------------------------- |
|---|
| 2765 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
|---|
| 2766 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
|---|
| 2767 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
|---|
| 2768 | !-------------------------------------------- |
|---|
| 2769 | !calcul standard deviations Gaussian PDF |
|---|
| 2770 | !-------------------------------------------- |
|---|
| 2771 | zqenv(ind1)=po(ind1) |
|---|
| 2772 | sigma_env=ratqs(ind1,ind2)*zqenv(ind1) |
|---|
| 2773 | xenv=senv/(sqrt2*sigma_env) |
|---|
| 2774 | !-------------------------------------------- |
|---|
| 2775 | !Cloud fraction by volume CF_vol |
|---|
| 2776 | !-------------------------------------------- |
|---|
| 2777 | ctot_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
|---|
| 2778 | !-------------------------------------------- |
|---|
| 2779 | !Condensed water qc |
|---|
| 2780 | !-------------------------------------------- |
|---|
| 2781 | qltot(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*ctot_vol(ind1,ind2)) |
|---|
| 2782 | !-------------------------------------------- |
|---|
| 2783 | !Cloud fraction by surface CF_surf |
|---|
| 2784 | !-------------------------------------------- |
|---|
| 2785 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
|---|
| 2786 | !beta=0.0044 (Jouhaud et al.2018) |
|---|
| 2787 | !inverse_rho=1.+beta*dz(ind1,ind2) |
|---|
| 2788 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
|---|
| 2789 | !Method Brooks et al. (2005) : ok for all types of clouds |
|---|
| 2790 | a_Brooks=0.6694 |
|---|
| 2791 | b_Brooks=0.1882 |
|---|
| 2792 | A_Maj_Brooks=0.1635 !-- sans dependence au shear |
|---|
| 2793 | Dx_Brooks=200000. |
|---|
| 2794 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
|---|
| 2795 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
|---|
| 2796 | !-------------------------------------------- |
|---|
| 2797 | !Incloud Condensed water qcloud |
|---|
| 2798 | !-------------------------------------------- |
|---|
| 2799 | if (ctot_surf(ind1,ind2) .lt. 1.e-8) then |
|---|
| 2800 | ctot_vol(ind1,ind2)=0. |
|---|
| 2801 | ctot_surf(ind1,ind2)=0. |
|---|
| 2802 | qcloud(ind1)=zqsatenv(ind1,ind2) |
|---|
| 2803 | else |
|---|
| 2804 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqsatenv(ind1,ind2) |
|---|
| 2805 | endif |
|---|
| 2806 | |
|---|
| 2807 | |
|---|
| 2808 | END IF ! From the separation (thermal/envrionnement) et (environnement only) |
|---|
| 2809 | |
|---|
| 2810 | ! Outputs used to check the PDFs |
|---|
| 2811 | cloudth_senv(ind1,ind2) = senv |
|---|
| 2812 | cloudth_sth(ind1,ind2) = sth |
|---|
| 2813 | cloudth_sigmaenv(ind1,ind2) = sigma_env |
|---|
| 2814 | cloudth_sigmath(ind1,ind2) = sigma_th |
|---|
| 2815 | |
|---|
| 2816 | END DO ! From the loop on ngrid |
|---|
| 2817 | return |
|---|
| 2818 | |
|---|
| 2819 | END SUBROUTINE cloudth_v6 |
|---|
| 2820 | |
|---|
| 2821 | |
|---|
| 2822 | |
|---|
| 2823 | END MODULE lmdz_lscp_condensation |
|---|