1 | MODULE lmdz_lscp_condensation |
---|
2 | !---------------------------------------------------------------- |
---|
3 | ! Module for condensation of clouds routines |
---|
4 | ! that are called in LSCP |
---|
5 | |
---|
6 | |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | CONTAINS |
---|
10 | |
---|
11 | !********************************************************************************** |
---|
12 | SUBROUTINE condensation_lognormal( & |
---|
13 | klon, temp, qtot, qsat, gamma_cond, ratqs, & |
---|
14 | keepgoing, cldfra, qincld, qvc) |
---|
15 | |
---|
16 | !---------------------------------------------------------------------- |
---|
17 | ! This subroutine calculates the formation of clouds, using a |
---|
18 | ! statistical cloud scheme. It uses a generalised lognormal distribution |
---|
19 | ! of total water in the gridbox |
---|
20 | ! See Bony and Emanuel, 2001 |
---|
21 | !---------------------------------------------------------------------- |
---|
22 | |
---|
23 | USE lmdz_lscp_ini, ONLY: eps |
---|
24 | |
---|
25 | IMPLICIT NONE |
---|
26 | |
---|
27 | ! |
---|
28 | ! Input |
---|
29 | ! |
---|
30 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
31 | ! |
---|
32 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
33 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
---|
34 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
35 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
36 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
37 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
38 | ! |
---|
39 | ! Output |
---|
40 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
41 | ! (in some cases, the values are not re-computed) but the values |
---|
42 | ! are never used explicitely |
---|
43 | ! |
---|
44 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
45 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
46 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
47 | ! |
---|
48 | ! Local |
---|
49 | ! |
---|
50 | INTEGER :: i |
---|
51 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
52 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
53 | ! |
---|
54 | !--Loop on klon |
---|
55 | ! |
---|
56 | DO i = 1, klon |
---|
57 | |
---|
58 | !--If a new calculation of the condensation is needed, |
---|
59 | !--i.e., temperature has not yet converged (or the cloud is |
---|
60 | !--formed elsewhere) |
---|
61 | IF (keepgoing(i)) THEN |
---|
62 | |
---|
63 | pdf_std = ratqs(i) * qtot(i) |
---|
64 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2 ) ) |
---|
65 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
66 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
67 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
68 | pdf_e1 = pdf_a - pdf_b |
---|
69 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
70 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
71 | pdf_e2 = pdf_a + pdf_b |
---|
72 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
73 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
74 | |
---|
75 | |
---|
76 | IF ( pdf_e1 .LT. eps ) THEN |
---|
77 | cldfra(i) = 0. |
---|
78 | qincld(i) = qsat(i) |
---|
79 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
80 | qvc(i) = 0. |
---|
81 | ELSE |
---|
82 | cldfra(i) = 0.5 * pdf_e1 |
---|
83 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
---|
84 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
85 | qvc(i) = qsat(i) * cldfra(i) |
---|
86 | ENDIF |
---|
87 | |
---|
88 | ENDIF ! end keepgoing |
---|
89 | |
---|
90 | ENDDO ! end loop on i |
---|
91 | END SUBROUTINE condensation_lognormal |
---|
92 | !********************************************************************************** |
---|
93 | |
---|
94 | !********************************************************************************** |
---|
95 | SUBROUTINE condensation_ice_supersat( & |
---|
96 | klon, dtime, missing_val, pplay, paprsdn, paprsup, & |
---|
97 | cf_seri, rvc_seri, ql_seri, qi_seri, shear, pbl_eps, cell_area, & |
---|
98 | temp, qtot, qsat, gamma_cond, ratqs, keepgoing, & |
---|
99 | cldfra, qincld, qvc, issrfra, qissr, dcf_sub, dcf_con, dcf_mix, & |
---|
100 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, dqvc_sub, dqvc_con, dqvc_mix, & |
---|
101 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, flight_dist, flight_h2o, & |
---|
102 | dcf_avi, dqi_avi, dqvc_avi) |
---|
103 | |
---|
104 | !---------------------------------------------------------------------- |
---|
105 | ! This subroutine calculates the formation, evolution and dissipation |
---|
106 | ! of clouds, using a process-oriented treatment of the cloud properties |
---|
107 | ! (cloud fraction, vapor in the cloud, condensed water in the cloud). |
---|
108 | ! It allows for ice supersaturation in cold regions, in clear sky. |
---|
109 | ! If ok_unadjusted_clouds, it also allows for sub- and supersaturated |
---|
110 | ! cloud water vapors. |
---|
111 | ! It also allows for the formation and evolution of condensation trails |
---|
112 | ! (contrails) from aviation. |
---|
113 | ! Authors: Audran Borella, Etienne Vignon, Olivier Boucher |
---|
114 | ! April 2024 |
---|
115 | !---------------------------------------------------------------------- |
---|
116 | |
---|
117 | USE lmdz_lscp_tools, ONLY: calc_qsat_ecmwf, calc_gammasat, GAMMAINC |
---|
118 | USE lmdz_lscp_ini, ONLY: RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RV, RPI, EPS_W |
---|
119 | USE lmdz_lscp_ini, ONLY: eps, temp_nowater, ok_weibull_warm_clouds |
---|
120 | USE lmdz_lscp_ini, ONLY: ok_unadjusted_clouds, iflag_cloud_sublim_pdf |
---|
121 | USE lmdz_lscp_ini, ONLY: lunout |
---|
122 | |
---|
123 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, std_subl_pdf_lscp, & |
---|
124 | mu_subl_pdf_lscp, beta_pdf_lscp, temp_thresh_pdf_lscp, & |
---|
125 | std100_pdf_lscp, k0_pdf_lscp, kappa_pdf_lscp, & |
---|
126 | coef_mixing_lscp, coef_shear_lscp, & |
---|
127 | chi_mixing_lscp, rho_ice |
---|
128 | |
---|
129 | IMPLICIT NONE |
---|
130 | |
---|
131 | ! |
---|
132 | ! Input |
---|
133 | ! |
---|
134 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
135 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
136 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
137 | ! |
---|
138 | REAL, INTENT(IN) , DIMENSION(klon) :: pplay ! layer pressure [Pa] |
---|
139 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsdn ! pressure at the lower interface [Pa] |
---|
140 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsup ! pressure at the upper interface [Pa] |
---|
141 | REAL, INTENT(IN) , DIMENSION(klon) :: cf_seri ! cloud fraction [-] |
---|
142 | REAL, INTENT(IN) , DIMENSION(klon) :: rvc_seri ! gridbox-mean water vapor in cloud [kg/kg] |
---|
143 | REAL, INTENT(IN) , DIMENSION(klon) :: ql_seri ! specific liquid water content [kg/kg] |
---|
144 | REAL, INTENT(IN) , DIMENSION(klon) :: qi_seri ! specific ice water content [kg/kg] |
---|
145 | REAL, INTENT(IN) , DIMENSION(klon) :: shear ! vertical shear [s-1] |
---|
146 | REAL, INTENT(IN) , DIMENSION(klon) :: pbl_eps ! |
---|
147 | REAL, INTENT(IN) , DIMENSION(klon) :: cell_area ! |
---|
148 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
149 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
---|
150 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
151 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
152 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
153 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
154 | ! |
---|
155 | ! Input for aviation |
---|
156 | ! |
---|
157 | REAL, INTENT(IN), DIMENSION(klon) :: flight_dist ! |
---|
158 | REAL, INTENT(IN), DIMENSION(klon) :: flight_h2o ! |
---|
159 | ! |
---|
160 | ! Output |
---|
161 | ! NB. cldfra and qincld should be outputed as cf_seri and qi_seri, |
---|
162 | ! or as tendencies (maybe in the future) |
---|
163 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
164 | ! (in some cases, the values are not re-computed) but the values |
---|
165 | ! are never used explicitely |
---|
166 | ! |
---|
167 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
168 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
169 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
170 | REAL, INTENT(INOUT), DIMENSION(klon) :: issrfra ! ISSR fraction [-] |
---|
171 | REAL, INTENT(INOUT), DIMENSION(klon) :: qissr ! gridbox-mean ISSR specific water [kg/kg] |
---|
172 | ! |
---|
173 | ! Diagnostics for condensation and ice supersaturation |
---|
174 | ! NB. idem for the INOUT |
---|
175 | ! |
---|
176 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_sub ! cloud fraction tendency because of sublimation [s-1] |
---|
177 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_con ! cloud fraction tendency because of condensation [s-1] |
---|
178 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_mix ! cloud fraction tendency because of cloud mixing [s-1] |
---|
179 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_adj ! specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
180 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_sub ! specific ice content tendency because of sublimation [kg/kg/s] |
---|
181 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_con ! specific ice content tendency because of condensation [kg/kg/s] |
---|
182 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_mix ! specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
183 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_adj ! specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
184 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_sub ! specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
185 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_con ! specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
186 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_mix ! specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
187 | ! |
---|
188 | ! Diagnostics for aviation |
---|
189 | ! NB. idem for the INOUT |
---|
190 | ! |
---|
191 | REAL, INTENT(INOUT), DIMENSION(klon) :: Tcontr ! critical temperature for contrail formation (T_LM in Schumann 1996, Eq 31 in appendix 2) [K] |
---|
192 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcontr ! |
---|
193 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcontr2 ! |
---|
194 | REAL, INTENT(INOUT), DIMENSION(klon) :: fcontrN ! |
---|
195 | REAL, INTENT(INOUT), DIMENSION(klon) :: fcontrP ! |
---|
196 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_avi ! cloud fraction tendency because of aviation [s-1] |
---|
197 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_avi ! specific ice content tendency because of aviation [kg/kg/s] |
---|
198 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_avi ! specific cloud water vapor tendency because of aviation [kg/kg/s] |
---|
199 | ! |
---|
200 | ! Local |
---|
201 | ! |
---|
202 | INTEGER :: i |
---|
203 | LOGICAL :: ok_warm_cloud |
---|
204 | REAL, DIMENSION(klon) :: qcld, qzero |
---|
205 | ! |
---|
206 | ! for lognormal |
---|
207 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
208 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
209 | ! |
---|
210 | ! for unadjusted clouds |
---|
211 | REAL :: qvapincld, qvapincld_new |
---|
212 | REAL :: qiceincld |
---|
213 | ! |
---|
214 | ! for sublimation |
---|
215 | REAL :: pdf_alpha |
---|
216 | REAL :: dqt_sub |
---|
217 | ! |
---|
218 | ! for condensation |
---|
219 | REAL, DIMENSION(klon) :: qsatl, dqsatl |
---|
220 | REAL :: clrfra, qclr, sl_clr, rhl_clr |
---|
221 | REAL :: pdf_ratqs, pdf_skew, pdf_scale, pdf_loc |
---|
222 | REAL :: pdf_x, pdf_y, pdf_T |
---|
223 | REAL :: pdf_e3, pdf_e4 |
---|
224 | REAL :: cf_cond, qt_cond, dqt_con |
---|
225 | ! |
---|
226 | ! for mixing |
---|
227 | REAL, DIMENSION(klon) :: subfra, qsub |
---|
228 | REAL :: dqt_mix_sub, dqt_mix_issr |
---|
229 | REAL :: dcf_mix_sub, dcf_mix_issr |
---|
230 | REAL :: dqvc_mix_sub, dqvc_mix_issr |
---|
231 | REAL :: dqt_mix |
---|
232 | REAL :: a_mix, bovera, Povera, N_cld_mix, L_mix |
---|
233 | REAL :: envfra_mix, cldfra_mix |
---|
234 | REAL :: L_shear, shear_fra |
---|
235 | REAL :: sigma_mix, issrfra_mix, subfra_mix, qvapinmix |
---|
236 | ! |
---|
237 | ! for cell properties |
---|
238 | REAL :: rho, rhodz, dz |
---|
239 | !REAL :: V_cell, M_cell |
---|
240 | ! |
---|
241 | ! for aviation and cell properties |
---|
242 | !REAL :: dqt_avi |
---|
243 | !REAL :: contrail_fra |
---|
244 | ! |
---|
245 | ! |
---|
246 | !--more local variables for diagnostics |
---|
247 | !--imported from YOMCST.h |
---|
248 | !--eps_w = 0.622 = ratio of molecular masses of water and dry air (kg H2O kg air -1) |
---|
249 | !--RCPD = 1004 J kg air−1 K−1 = the isobaric heat capacity of air |
---|
250 | !--values from Schumann, Meteorol Zeitschrift, 1996 |
---|
251 | !--EiH2O = 1.25 / 2.24 / 8.94 kg H2O / kg fuel for kerosene / methane / dihydrogen |
---|
252 | !--Qheat = 43. / 50. / 120. MJ / kg fuel for kerosene / methane / dihydrogen |
---|
253 | !REAL, PARAMETER :: EiH2O=1.25 !--emission index of water vapour for kerosene (kg kg-1) |
---|
254 | !REAL, PARAMETER :: Qheat=43.E6 !--specific combustion heat for kerosene (J kg-1) |
---|
255 | !REAL, PARAMETER :: eta=0.3 !--average propulsion efficiency of the aircraft |
---|
256 | !--Gcontr is the slope of the mean phase trajectory in the turbulent exhaust field on an absolute |
---|
257 | !--temperature versus water vapor partial pressure diagram. G has the unit of Pa K−1. Rap et al JGR 2010. |
---|
258 | !REAL :: Gcontr |
---|
259 | !--Tcontr = critical temperature for contrail formation (T_LM in Schumann 1996, Eq 31 in appendix 2) |
---|
260 | !--qsatliqcontr = e_L(T_LM) in Schumann 1996 but expressed in specific humidity (kg kg humid air-1) |
---|
261 | !REAL :: qsatliqcontr |
---|
262 | |
---|
263 | |
---|
264 | !----------------------------------------------- |
---|
265 | ! Initialisations |
---|
266 | !----------------------------------------------- |
---|
267 | |
---|
268 | ! Ajout des émissions de H2O dues à l'aviation |
---|
269 | ! q is the specific humidity (kg/kg humid air) hence the complicated equation to update q |
---|
270 | ! qnew = ( m_humid_air * qold + dm_H2O ) / ( m_humid_air + dm_H2O ) |
---|
271 | ! = ( m_dry_air * qold + dm_h2O * (1-qold) ) / (m_dry_air + dm_H2O * (1-qold) ) |
---|
272 | ! The equation is derived by writing m_humid_air = m_dry_air + m_H2O = m_dry_air / (1-q) |
---|
273 | ! flight_h2O is in kg H2O / s / cell |
---|
274 | ! |
---|
275 | !IF (ok_plane_h2o) THEN |
---|
276 | ! q = ( M_cell*q + flight_h2o(i,k)*dtime*(1.-q) ) / (M_cell + flight_h2o(i,k)*dtime*(1.-q) ) |
---|
277 | !ENDIF |
---|
278 | |
---|
279 | |
---|
280 | qzero(:) = 0. |
---|
281 | |
---|
282 | !--Calculation of qsat w.r.t. liquid |
---|
283 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 1, .FALSE., qsatl, dqsatl) |
---|
284 | |
---|
285 | ! |
---|
286 | !--Loop on klon |
---|
287 | ! |
---|
288 | DO i = 1, klon |
---|
289 | |
---|
290 | !--If a new calculation of the condensation is needed, |
---|
291 | !--i.e., temperature has not yet converged (or the cloud is |
---|
292 | !--formed elsewhere) |
---|
293 | IF (keepgoing(i)) THEN |
---|
294 | |
---|
295 | !--Initialisation |
---|
296 | issrfra(i) = 0. |
---|
297 | qissr(i) = 0. |
---|
298 | |
---|
299 | !--If the temperature is higher than the threshold below which |
---|
300 | !--there is no liquid in the gridbox, we activate the usual scheme |
---|
301 | !--(generalised lognormal from Bony and Emanuel 2001) |
---|
302 | !--If ok_weibull_warm_clouds = .TRUE., the Weibull law is used for |
---|
303 | !--all clouds, and the lognormal scheme is not activated |
---|
304 | IF ( ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds ) THEN |
---|
305 | |
---|
306 | pdf_std = ratqs(i) * qtot(i) |
---|
307 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2 ) ) |
---|
308 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
309 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
310 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
311 | pdf_e1 = pdf_a - pdf_b |
---|
312 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
313 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
314 | pdf_e2 = pdf_a + pdf_b |
---|
315 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
316 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
317 | |
---|
318 | |
---|
319 | IF ( pdf_e1 .LT. eps ) THEN |
---|
320 | cldfra(i) = 0. |
---|
321 | qincld(i) = qsat(i) |
---|
322 | qvc(i) = 0. |
---|
323 | ELSE |
---|
324 | cldfra(i) = 0.5 * pdf_e1 |
---|
325 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
---|
326 | qvc(i) = qsat(i) * cldfra(i) |
---|
327 | ENDIF |
---|
328 | |
---|
329 | !--If the temperature is lower than temp_nowater, we use the new |
---|
330 | !--condensation scheme that allows for ice supersaturation |
---|
331 | ELSE |
---|
332 | |
---|
333 | !--Initialisation |
---|
334 | IF ( temp(i) .GT. temp_nowater ) THEN |
---|
335 | !--If the air mass is warm (liquid water can exist), |
---|
336 | !--all the memory is lost and the scheme becomes statistical, |
---|
337 | !--i.e., the sublimation and mixing processes are deactivated, |
---|
338 | !--and the condensation process is slightly adapted |
---|
339 | !--This can happen only if ok_weibull_warm_clouds = .TRUE. |
---|
340 | ! AB WARM CLOUD |
---|
341 | !cldfra(i) = 0. |
---|
342 | !qcld(i) = 0. |
---|
343 | !qvc(i) = 0. |
---|
344 | cldfra(i) = MAX(0., MIN(1., cf_seri(i))) |
---|
345 | qcld(i) = MAX(0., MIN(qtot(i), ql_seri(i) + qi_seri(i) + rvc_seri(i) * qtot(i))) |
---|
346 | qvc(i) = MAX(0., MIN(qcld(i), rvc_seri(i) * qtot(i))) |
---|
347 | ok_warm_cloud = .TRUE. |
---|
348 | ELSE |
---|
349 | !--The following barriers ensure that the traced cloud properties |
---|
350 | !--are consistent. In some rare cases, i.e. the cloud water vapor |
---|
351 | !--can be greater than the total water in the gridbox |
---|
352 | cldfra(i) = MAX(0., MIN(1., cf_seri(i))) |
---|
353 | qcld(i) = MAX(0., MIN(qtot(i), rvc_seri(i) * qtot(i) + qi_seri(i))) |
---|
354 | qvc(i) = MAX(0., MIN(qcld(i), rvc_seri(i) * qtot(i))) |
---|
355 | ok_warm_cloud = .FALSE. |
---|
356 | ENDIF |
---|
357 | |
---|
358 | dcf_sub(i) = 0. |
---|
359 | dqi_sub(i) = 0. |
---|
360 | dqvc_sub(i) = 0. |
---|
361 | dqi_adj(i) = 0. |
---|
362 | dqvc_adj(i) = 0. |
---|
363 | dcf_con(i) = 0. |
---|
364 | dqi_con(i) = 0. |
---|
365 | dqvc_con(i) = 0. |
---|
366 | dcf_mix(i) = 0. |
---|
367 | dqi_mix(i) = 0. |
---|
368 | dqvc_mix(i) = 0. |
---|
369 | |
---|
370 | !--Initialisation of the cell properties |
---|
371 | !--Dry density [kg/m3] |
---|
372 | rho = pplay(i) / temp(i) / RD |
---|
373 | !--Dry air mass [kg/m2] |
---|
374 | rhodz = ( paprsdn(i) - paprsup(i) ) / RG |
---|
375 | !--Cell thickness [m] |
---|
376 | dz = rhodz / rho |
---|
377 | !--Cell volume [m3] |
---|
378 | !V_cell = dz * cell_area(i) |
---|
379 | !--Cell dry air mass [kg] |
---|
380 | !M_cell = rhodz * cell_area(i) |
---|
381 | |
---|
382 | |
---|
383 | !------------------------------------------------------------------- |
---|
384 | !-- SUBLIMATION OF ICE AND DEPOSITION OF VAPOR IN THE CLOUD -- |
---|
385 | !------------------------------------------------------------------- |
---|
386 | |
---|
387 | !--If there is a cloud |
---|
388 | IF ( cldfra(i) .GT. eps ) THEN |
---|
389 | |
---|
390 | qvapincld = qvc(i) / cldfra(i) |
---|
391 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
---|
392 | |
---|
393 | !--If the ice water content is too low, the cloud is purely sublimated |
---|
394 | !--Most probably, we advected a cloud with no ice water content (possible |
---|
395 | !--if the entire cloud precipited for example) |
---|
396 | IF ( qiceincld .LT. eps ) THEN |
---|
397 | dcf_sub(i) = - cldfra(i) |
---|
398 | dqvc_sub(i) = - qvc(i) |
---|
399 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
400 | |
---|
401 | cldfra(i) = 0. |
---|
402 | qcld(i) = 0. |
---|
403 | qvc(i) = 0. |
---|
404 | |
---|
405 | !--Else, the cloud is adjusted and sublimated |
---|
406 | ELSE |
---|
407 | |
---|
408 | !--The vapor in cloud cannot be higher than the |
---|
409 | !--condensation threshold |
---|
410 | qvapincld = MIN(qvapincld, gamma_cond(i) * qsat(i)) |
---|
411 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
---|
412 | |
---|
413 | ! AB WARM CLOUD |
---|
414 | !IF ( ok_unadjusted_clouds ) THEN |
---|
415 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
416 | CALL deposition_sublimation(qvapincld, qiceincld, temp(i), qsat(i), & |
---|
417 | pplay(i), dtime, qvapincld_new) |
---|
418 | IF ( qvapincld_new .EQ. 0. ) THEN |
---|
419 | !--If all the ice has been sublimated, we sublimate |
---|
420 | !--completely the cloud and do not activate the sublimation |
---|
421 | !--process |
---|
422 | !--Tendencies and diagnostics |
---|
423 | dcf_sub(i) = - cldfra(i) |
---|
424 | dqvc_sub(i) = - qvc(i) |
---|
425 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
426 | |
---|
427 | cldfra(i) = 0. |
---|
428 | qcld(i) = 0. |
---|
429 | qvc(i) = 0. |
---|
430 | ENDIF |
---|
431 | ELSE |
---|
432 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
433 | !--cloud is set equal to the saturation vapor |
---|
434 | qvapincld_new = qsat(i) |
---|
435 | ENDIF ! ok_unadjusted_clouds |
---|
436 | |
---|
437 | !--Adjustment of the IWC to the new vapor in cloud |
---|
438 | !--(this can be either positive or negative) |
---|
439 | dqvc_adj(i) = ( qvapincld_new * cldfra(i) - qvc(i) ) |
---|
440 | dqi_adj(i) = - dqvc_adj(i) |
---|
441 | |
---|
442 | !--Add tendencies |
---|
443 | !--The vapor in the cloud is updated, but not qcld as it is constant |
---|
444 | !--through this process, as well as cldfra which is unmodified |
---|
445 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_adj(i))) |
---|
446 | |
---|
447 | |
---|
448 | !------------------------------------ |
---|
449 | !-- DISSIPATION OF THE CLOUD -- |
---|
450 | !------------------------------------ |
---|
451 | |
---|
452 | !--If the vapor in cloud is below vapor needed for the cloud to survive |
---|
453 | IF ( ( qvapincld .LT. qvapincld_new ) .OR. ( iflag_cloud_sublim_pdf .GE. 4 ) ) THEN |
---|
454 | !--Sublimation of the subsaturated cloud |
---|
455 | !--iflag_cloud_sublim_pdf selects the PDF of the ice water content |
---|
456 | !--to use. |
---|
457 | !--iflag = 1 --> uniform distribution |
---|
458 | !--iflag = 2 --> exponential distribution |
---|
459 | !--iflag = 3 --> gamma distribution (Karcher et al 2018) |
---|
460 | |
---|
461 | IF ( iflag_cloud_sublim_pdf .EQ. 1 ) THEN |
---|
462 | !--Uniform distribution starting at qvapincld |
---|
463 | pdf_e1 = 1. / ( 2. * qiceincld ) |
---|
464 | |
---|
465 | dcf_sub(i) = - cldfra(i) * ( qvapincld_new - qvapincld ) * pdf_e1 |
---|
466 | dqt_sub = - cldfra(i) * ( qvapincld_new**2 - qvapincld**2 ) & |
---|
467 | * pdf_e1 / 2. |
---|
468 | |
---|
469 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 2 ) THEN |
---|
470 | !--Exponential distribution starting at qvapincld |
---|
471 | pdf_alpha = 1. / qiceincld |
---|
472 | pdf_e1 = EXP( - pdf_alpha * ( qvapincld_new - qvapincld ) ) |
---|
473 | |
---|
474 | dcf_sub(i) = - cldfra(i) * ( 1. - pdf_e1 ) |
---|
475 | dqt_sub = - cldfra(i) * ( ( 1. - pdf_e1 ) / pdf_alpha & |
---|
476 | + qvapincld - qvapincld_new * pdf_e1 ) |
---|
477 | |
---|
478 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 3 ) THEN |
---|
479 | !--Gamma distribution starting at qvapincld |
---|
480 | pdf_alpha = ( mu_subl_pdf_lscp + 1. ) / qiceincld |
---|
481 | pdf_y = pdf_alpha * ( qvapincld_new - qvapincld ) |
---|
482 | pdf_e1 = GAMMAINC ( mu_subl_pdf_lscp + 1. , pdf_y ) |
---|
483 | pdf_e2 = GAMMAINC ( mu_subl_pdf_lscp + 2. , pdf_y ) |
---|
484 | |
---|
485 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
---|
486 | dqt_sub = - cldfra(i) * ( pdf_e2 / pdf_alpha + qvapincld * pdf_e1 ) |
---|
487 | |
---|
488 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 4 ) THEN |
---|
489 | !--Normal distribution around qvapincld + qiceincld with width |
---|
490 | !--constant in the RHi space |
---|
491 | pdf_y = ( qvapincld_new - qvapincld - qiceincld ) & |
---|
492 | / ( std_subl_pdf_lscp / 100. * qsat(i)) |
---|
493 | pdf_e1 = 0.5 * ( 1. + ERF( pdf_y / SQRT(2.) ) ) |
---|
494 | pdf_e2 = EXP( - pdf_y**2 / 2. ) / SQRT( 2. * RPI ) |
---|
495 | |
---|
496 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
---|
497 | dqt_sub = - cldfra(i) * ( ( qvapincld + qiceincld ) * pdf_e1 & |
---|
498 | - std_subl_pdf_lscp / 100. * qsat(i) * pdf_e2 ) |
---|
499 | |
---|
500 | ENDIF |
---|
501 | |
---|
502 | !--Tendencies and diagnostics |
---|
503 | dqvc_sub(i) = dqt_sub |
---|
504 | |
---|
505 | !--Add tendencies |
---|
506 | cldfra(i) = MAX(0., cldfra(i) + dcf_sub(i)) |
---|
507 | qcld(i) = MAX(0., qcld(i) + dqt_sub) |
---|
508 | qvc(i) = MAX(0., qvc(i) + dqvc_sub(i)) |
---|
509 | |
---|
510 | ENDIF ! qvapincld .LT. qvapincld_new |
---|
511 | |
---|
512 | ENDIF ! qiceincld .LT. eps |
---|
513 | ENDIF ! cldfra(i) .GT. eps |
---|
514 | |
---|
515 | |
---|
516 | !-------------------------------------------------------------------------- |
---|
517 | !-- CONDENSATION AND DIAGNOTICS OF SUB- AND SUPERSATURATED REGIONS -- |
---|
518 | !-------------------------------------------------------------------------- |
---|
519 | !--This section relies on a distribution of water in the clear-sky region of |
---|
520 | !--the mesh. |
---|
521 | |
---|
522 | !--If there is a clear-sky region |
---|
523 | IF ( ( 1. - cldfra(i) ) .GT. eps ) THEN |
---|
524 | |
---|
525 | !--Water quantity in the clear-sky + potential liquid cloud (gridbox average) |
---|
526 | qclr = qtot(i) - qcld(i) |
---|
527 | |
---|
528 | !--New PDF |
---|
529 | rhl_clr = qclr / ( 1. - cldfra(i) ) / qsatl(i) * 100. |
---|
530 | |
---|
531 | !--Calculation of the properties of the PDF |
---|
532 | !--Parameterization from IAGOS observations |
---|
533 | !--pdf_e1 and pdf_e2 will be reused below |
---|
534 | |
---|
535 | !--Coefficient for standard deviation: |
---|
536 | !-- tuning coef * (clear sky area**0.25) * (function of temperature) |
---|
537 | !pdf_e1 = beta_pdf_lscp & |
---|
538 | ! * ( ( 1. - cldfra(i) ) * cell_area(i) )**( 1. / 4. ) & |
---|
539 | ! * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
---|
540 | !-- tuning coef * (cell area**0.25) * (function of temperature) |
---|
541 | pdf_e1 = beta_pdf_lscp * ( ( 1. - cldfra(i) ) * cell_area(i) )**0.25 & |
---|
542 | * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
---|
543 | IF ( rhl_clr .GT. 50. ) THEN |
---|
544 | pdf_std = ( pdf_e1 - std100_pdf_lscp ) * ( 100. - rhl_clr ) / 50. + std100_pdf_lscp |
---|
545 | ELSE |
---|
546 | pdf_std = pdf_e1 * rhl_clr / 50. |
---|
547 | ENDIF |
---|
548 | pdf_e3 = k0_pdf_lscp + kappa_pdf_lscp * MAX( temp_nowater - temp(i), 0. ) |
---|
549 | pdf_alpha = EXP( rhl_clr / 100. ) * pdf_e3 |
---|
550 | pdf_alpha = MIN(10., pdf_alpha) |
---|
551 | |
---|
552 | IF ( ok_warm_cloud ) THEN |
---|
553 | !--If the statistical scheme is activated, the standard deviation is adapted |
---|
554 | !--to depend on the pressure level. It is multiplied by ratqs, so that near the |
---|
555 | !--surface std is almost 0, and upper than about 450 hPa the std is left untouched |
---|
556 | pdf_std = pdf_std * ratqs(i) |
---|
557 | ENDIF |
---|
558 | |
---|
559 | pdf_e2 = GAMMA(1. + 1. / pdf_alpha) |
---|
560 | pdf_scale = MAX(eps, pdf_std / SQRT( GAMMA(1. + 2. / pdf_alpha) - pdf_e2**2 )) |
---|
561 | pdf_loc = rhl_clr - pdf_scale * pdf_e2 |
---|
562 | |
---|
563 | !--Calculation of the newly condensed water and fraction (pronostic) |
---|
564 | !--Integration of the clear sky PDF between gamma_cond*qsat and +inf |
---|
565 | !--NB. the calculated values are clear-sky averaged |
---|
566 | |
---|
567 | pdf_x = gamma_cond(i) * qsat(i) / qsatl(i) * 100. |
---|
568 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
---|
569 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
---|
570 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
---|
571 | cf_cond = EXP( - pdf_y ) |
---|
572 | qt_cond = ( pdf_e3 + pdf_loc * cf_cond ) * qsatl(i) / 100. |
---|
573 | |
---|
574 | ! AB WARM CLOUD |
---|
575 | !IF ( ok_warm_cloud ) THEN |
---|
576 | ! !--If the statistical scheme is activated, the calculated increase is equal |
---|
577 | ! !--to the cloud fraction, we assume saturation adjustment, and the |
---|
578 | ! !--condensation process stops |
---|
579 | ! cldfra(i) = cf_cond |
---|
580 | ! qcld(i) = qt_cond |
---|
581 | ! qvc(i) = cldfra(i) * qsat(i) |
---|
582 | |
---|
583 | !ELSEIF ( cf_cond .GT. eps ) THEN |
---|
584 | IF ( cf_cond .GT. eps ) THEN |
---|
585 | |
---|
586 | dcf_con(i) = ( 1. - cldfra(i) ) * cf_cond |
---|
587 | dqt_con = ( 1. - cldfra(i) ) * qt_cond |
---|
588 | |
---|
589 | !--Barriers |
---|
590 | dcf_con(i) = MIN(dcf_con(i), 1. - cldfra(i)) |
---|
591 | dqt_con = MIN(dqt_con, qclr) |
---|
592 | |
---|
593 | |
---|
594 | ! AB WARM CLOUD |
---|
595 | !IF ( ok_unadjusted_clouds ) THEN |
---|
596 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
597 | !--Here, the initial vapor in the cloud is gamma_cond*qsat, and we compute |
---|
598 | !--the new vapor qvapincld. The timestep is divided by two because we do not |
---|
599 | !--know when the condensation occurs |
---|
600 | qvapincld = gamma_cond(i) * qsat(i) |
---|
601 | qiceincld = dqt_con / dcf_con(i) - gamma_cond(i) * qsat(i) |
---|
602 | CALL deposition_sublimation(qvapincld, qiceincld, temp(i), qsat(i), & |
---|
603 | pplay(i), dtime / 2., qvapincld_new) |
---|
604 | qvapincld = qvapincld_new |
---|
605 | ELSE |
---|
606 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
607 | !--newly formed cloud is set equal to the saturation vapor. |
---|
608 | qvapincld = qsat(i) |
---|
609 | ENDIF |
---|
610 | |
---|
611 | !--Tendency on cloud vapor and diagnostic |
---|
612 | dqvc_con(i) = qvapincld * dcf_con(i) |
---|
613 | dqi_con(i) = dqt_con - dqvc_con(i) |
---|
614 | |
---|
615 | !--Add tendencies |
---|
616 | cldfra(i) = MIN(1., cldfra(i) + dcf_con(i)) |
---|
617 | qcld(i) = MIN(qtot(i), qcld(i) + dqt_con) |
---|
618 | qvc(i) = MIN(qcld(i), qvc(i) + dqvc_con(i)) |
---|
619 | |
---|
620 | ENDIF ! ok_warm_cloud, cf_cond .GT. eps |
---|
621 | |
---|
622 | !--We then calculate the part that is greater than qsat |
---|
623 | !--and lower than gamma_cond * qsat, which is the ice supersaturated region |
---|
624 | pdf_x = qsat(i) / qsatl(i) * 100. |
---|
625 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
---|
626 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
---|
627 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
---|
628 | issrfra(i) = EXP( - pdf_y ) * ( 1. - cldfra(i) ) |
---|
629 | qissr(i) = ( pdf_e3 * ( 1. - cldfra(i) ) + pdf_loc * issrfra(i) ) * qsatl(i) / 100. |
---|
630 | |
---|
631 | issrfra(i) = issrfra(i) - dcf_con(i) |
---|
632 | qissr(i) = qissr(i) - dqvc_con(i) - dqi_con(i) |
---|
633 | |
---|
634 | ENDIF ! ( 1. - cldfra(i) ) .GT. eps |
---|
635 | |
---|
636 | !--Calculation of the subsaturated clear sky fraction and water |
---|
637 | subfra(i) = 1. - cldfra(i) - issrfra(i) |
---|
638 | qsub(i) = qtot(i) - qcld(i) - qissr(i) |
---|
639 | |
---|
640 | |
---|
641 | !-------------------------------------- |
---|
642 | !-- CLOUD MIXING -- |
---|
643 | !-------------------------------------- |
---|
644 | !--This process mixes the cloud with its surroundings: the subsaturated clear sky, |
---|
645 | !--and the supersaturated clear sky. It is activated if the cloud is big enough, |
---|
646 | !--but does not cover the entire mesh. |
---|
647 | ! |
---|
648 | ! AB WARM CLOUD |
---|
649 | !IF ( ( cldfra(i) .LT. ( 1. - dcf_con(i) - eps ) ) .AND. ( cldfra(i) .GT. eps ) & |
---|
650 | ! .AND. .NOT. ok_warm_cloud ) THEN |
---|
651 | IF ( ( cldfra(i) .LT. ( 1. - eps ) ) .AND. ( cldfra(i) .GT. eps ) ) THEN |
---|
652 | |
---|
653 | !--Initialisation |
---|
654 | dcf_mix_sub = 0. |
---|
655 | dqt_mix_sub = 0. |
---|
656 | dqvc_mix_sub = 0. |
---|
657 | dcf_mix_issr = 0. |
---|
658 | dqt_mix_issr = 0. |
---|
659 | dqvc_mix_issr = 0. |
---|
660 | |
---|
661 | |
---|
662 | !-- PART 1 - TURBULENT DIFFUSION |
---|
663 | |
---|
664 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
---|
665 | !--semi-major axis is a and the length of the semi-minor axis is b. |
---|
666 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer. |
---|
667 | !--In particular, it is 0 if cldfra = 1. |
---|
668 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
---|
669 | !--not considering interfaces with other meshes (only the interfaces with clear |
---|
670 | !--sky are taken into account). |
---|
671 | !-- |
---|
672 | !--The area of each cloud is A = a * b * RPI, |
---|
673 | !--and the perimeter of each cloud is |
---|
674 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
---|
675 | !-- |
---|
676 | !--With cell_area the area of the cell, we have: |
---|
677 | !-- cldfra = A * N_cld_mix / cell_area |
---|
678 | !-- clouds_perim = P * N_cld_mix |
---|
679 | !-- |
---|
680 | !--We assume that the ratio between b and a is a function of |
---|
681 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
---|
682 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
---|
683 | !--are spherical. |
---|
684 | !-- b / a = bovera = MAX(0.1, cldfra) |
---|
685 | bovera = MAX(0.1, cldfra(i)) |
---|
686 | !--P / a is a function of b / a only, that we can calculate |
---|
687 | !-- P / a = RPI * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
---|
688 | Povera = RPI * ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) ) |
---|
689 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
---|
690 | !--based on observations. |
---|
691 | !-- clouds_perim / cell_area = N_cld_mix * ( P / a * a ) / cell_area = coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
692 | !--With cldfra = a * ( b / a * a ) * RPI * N_cld_mix / cell_area, we have: |
---|
693 | !-- cldfra = a * b / a * RPI / (P / a) * coef_mix_lscp * cldfra * ( 1. - cldfra ) |
---|
694 | !-- a = (P / a) / ( coef_mix_lscp * RPI * ( 1. - cldfra ) * (b / a) ) |
---|
695 | a_mix = Povera / coef_mixing_lscp / RPI / ( 1. - cldfra(i) ) / bovera |
---|
696 | !--and finally, |
---|
697 | !-- N_cld_mix = coef_mix_lscp * cldfra * ( 1. - cldfra ) * cell_area / ( P / a * a ) |
---|
698 | N_cld_mix = coef_mixing_lscp * cldfra(i) * ( 1. - cldfra(i) ) * cell_area(i) & |
---|
699 | / Povera / a_mix |
---|
700 | |
---|
701 | !--The time required for turbulent diffusion to homogenize a region of size |
---|
702 | !--L_mix is defined as (L_mix**2/tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
---|
703 | !--We compute L_mix and assume that the cloud is mixed over this length |
---|
704 | L_mix = SQRT( dtime**3 * pbl_eps(i) ) |
---|
705 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
---|
706 | !--the entire cloud is mixed. |
---|
707 | L_mix = MIN(L_mix, a_mix * bovera) |
---|
708 | |
---|
709 | !--The fraction of clear sky mixed is |
---|
710 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
---|
711 | envfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
712 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2 ) |
---|
713 | !--The fraction of cloudy sky mixed is |
---|
714 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
---|
715 | cldfra_mix = N_cld_mix * RPI / cell_area(i) & |
---|
716 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2 ) |
---|
717 | |
---|
718 | |
---|
719 | !-- PART 2 - SHEARING |
---|
720 | |
---|
721 | !--The clouds are then sheared. We keep the shape and number |
---|
722 | !--assumptions from before. The clouds are sheared along their |
---|
723 | !--semi-major axis (a_mix), on the entire cell heigh dz. |
---|
724 | !--The increase in size is |
---|
725 | L_shear = coef_shear_lscp * shear(i) * dz * dtime |
---|
726 | !--therefore, the fraction of clear sky mixed is |
---|
727 | !-- N_cld_mix * ( (a + L_shear) * b - a * b ) * RPI / 2. / cell_area |
---|
728 | !--and the fraction of cloud mixed is |
---|
729 | !-- N_cld_mix * ( (a * b) - (a - L_shear) * b ) * RPI / 2. / cell_area |
---|
730 | !--(note that they are equal) |
---|
731 | shear_fra = RPI * L_shear * a_mix * bovera / 2. * N_cld_mix / cell_area(i) |
---|
732 | !--and the environment and cloud mixed fractions are the same, |
---|
733 | !--which we add to the previous calculated mixed fractions. |
---|
734 | !--We therefore assume that the sheared clouds and the turbulent |
---|
735 | !--mixed clouds are different. |
---|
736 | envfra_mix = envfra_mix + shear_fra |
---|
737 | cldfra_mix = cldfra_mix + shear_fra |
---|
738 | |
---|
739 | |
---|
740 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
---|
741 | |
---|
742 | !--The environment fraction is allocated to subsaturated sky or supersaturated sky, |
---|
743 | !--according to the factor sigma_mix. This is computed as the ratio of the |
---|
744 | !--subsaturated sky fraction to the environment fraction, corrected by a factor |
---|
745 | !--chi_mixing_lscp for the supersaturated part. If chi is greater than 1, the |
---|
746 | !--supersaturated sky is favoured. Physically, this means that it is more likely |
---|
747 | !--to have supersaturated sky around the cloud than subsaturated sky. |
---|
748 | sigma_mix = subfra(i) / ( subfra(i) + chi_mixing_lscp * issrfra(i) ) |
---|
749 | subfra_mix = MIN( sigma_mix * envfra_mix, subfra(i) ) |
---|
750 | issrfra_mix = MIN( ( 1. - sigma_mix ) * envfra_mix, issrfra(i) ) |
---|
751 | cldfra_mix = MIN( cldfra_mix, cldfra(i) ) |
---|
752 | |
---|
753 | !--First, we mix the subsaturated sky (subfra_mix) and the cloud close |
---|
754 | !--to this fraction (sigma_mix * cldfra_mix). |
---|
755 | IF ( subfra(i) .GT. eps ) THEN |
---|
756 | !--We compute the total humidity in the mixed air, which |
---|
757 | !--can be either sub- or supersaturated. |
---|
758 | qvapinmix = ( qsub(i) * subfra_mix / subfra(i) & |
---|
759 | + qcld(i) * cldfra_mix * sigma_mix / cldfra(i) ) & |
---|
760 | / ( subfra_mix + cldfra_mix * sigma_mix ) |
---|
761 | |
---|
762 | ! AB WARM CLOUD |
---|
763 | !IF ( ok_unadjusted_clouds ) THEN |
---|
764 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
765 | qiceincld = ( qcld(i) - qvc(i) ) * cldfra_mix * sigma_mix / cldfra(i) & |
---|
766 | / ( subfra_mix + cldfra_mix * sigma_mix ) |
---|
767 | CALL deposition_sublimation(qvapinmix, qiceincld, temp(i), qsat(i), & |
---|
768 | pplay(i), dtime, qvapincld_new) |
---|
769 | IF ( qvapincld_new .EQ. 0. ) THEN |
---|
770 | !--If all the ice has been sublimated, we sublimate |
---|
771 | !--completely the cloud and do not activate the sublimation |
---|
772 | !--process |
---|
773 | !--Tendencies and diagnostics |
---|
774 | dcf_mix_sub = - sigma_mix * cldfra_mix |
---|
775 | dqt_mix_sub = dcf_mix_sub * qcld(i) / cldfra(i) |
---|
776 | dqvc_mix_sub = dcf_mix_sub * qvc(i) / cldfra(i) |
---|
777 | ELSE |
---|
778 | dcf_mix_sub = subfra_mix |
---|
779 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
---|
780 | dqvc_mix_sub = dcf_mix_sub * qvapincld_new |
---|
781 | ENDIF |
---|
782 | ELSE |
---|
783 | IF ( qvapinmix .GT. qsat(i) ) THEN |
---|
784 | !--If the mixed air is supersaturated, we condense the subsaturated |
---|
785 | !--region which was mixed. |
---|
786 | dcf_mix_sub = subfra_mix |
---|
787 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
---|
788 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
---|
789 | ELSE |
---|
790 | !--Else, we sublimate the cloud which was mixed. |
---|
791 | dcf_mix_sub = - sigma_mix * cldfra_mix |
---|
792 | dqt_mix_sub = dcf_mix_sub * qcld(i) / cldfra(i) |
---|
793 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
---|
794 | ENDIF |
---|
795 | ENDIF ! ok_unadjusted_clouds |
---|
796 | ENDIF ! subfra .GT. eps |
---|
797 | |
---|
798 | !--We then mix the supersaturated sky (issrfra_mix) and the cloud, |
---|
799 | !--for which the mixed air is always supersatured, therefore |
---|
800 | !--the cloud necessarily expands |
---|
801 | IF ( issrfra(i) .GT. eps ) THEN |
---|
802 | |
---|
803 | ! AB WARM CLOUD |
---|
804 | !IF ( ok_unadjusted_clouds ) THEN |
---|
805 | IF ( ok_unadjusted_clouds .AND. .NOT. ok_warm_cloud ) THEN |
---|
806 | qvapinmix = ( qissr(i) * issrfra_mix / issrfra(i) & |
---|
807 | + qcld(i) * cldfra_mix * (1. - sigma_mix) / cldfra(i) ) & |
---|
808 | / ( issrfra_mix + cldfra_mix * (1. - sigma_mix) ) |
---|
809 | qiceincld = ( qcld(i) - qvc(i) ) * cldfra_mix * (1. - sigma_mix) / cldfra(i) & |
---|
810 | / ( issrfra_mix + cldfra_mix * (1. - sigma_mix) ) |
---|
811 | CALL deposition_sublimation(qvapinmix, qiceincld, temp(i), qsat(i), & |
---|
812 | pplay(i), dtime, qvapincld_new) |
---|
813 | dcf_mix_issr = issrfra_mix |
---|
814 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
---|
815 | dqvc_mix_issr = dcf_mix_issr * qvapincld_new |
---|
816 | ELSE |
---|
817 | !--In this case, the additionnal vapor condenses |
---|
818 | dcf_mix_issr = issrfra_mix |
---|
819 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
---|
820 | dqvc_mix_issr = dcf_mix_issr * qsat(i) |
---|
821 | ENDIF ! ok_unadjusted_clouds |
---|
822 | |
---|
823 | |
---|
824 | ENDIF ! issrfra .GT. eps |
---|
825 | |
---|
826 | !--Sum up the tendencies from subsaturated sky and supersaturated sky |
---|
827 | dcf_mix(i) = dcf_mix_sub + dcf_mix_issr |
---|
828 | dqt_mix = dqt_mix_sub + dqt_mix_issr |
---|
829 | dqvc_mix(i) = dqvc_mix_sub + dqvc_mix_issr |
---|
830 | dqi_mix(i) = dqt_mix - dqvc_mix(i) |
---|
831 | |
---|
832 | !--Add tendencies |
---|
833 | issrfra(i) = MAX(0., issrfra(i) - dcf_mix_issr) |
---|
834 | qissr(i) = MAX(0., qissr(i) - dqt_mix_issr) |
---|
835 | cldfra(i) = MAX(0., MIN(1., cldfra(i) + dcf_mix(i))) |
---|
836 | qcld(i) = MAX(0., MIN(qtot(i), qcld(i) + dqt_mix)) |
---|
837 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_mix(i))) |
---|
838 | |
---|
839 | ENDIF ! ( ( cldfra(i) .LT. ( 1. - eps ) ) .AND. ( cldfra(i) .GT. eps ) ) |
---|
840 | |
---|
841 | |
---|
842 | !---------------------------------------- |
---|
843 | !-- CONTRAILS AND AVIATION -- |
---|
844 | !---------------------------------------- |
---|
845 | |
---|
846 | !--Add a source of cirrus from aviation contrails |
---|
847 | !IF ( ok_plane_contrail ) THEN |
---|
848 | ! dcf_avi(i) = 0. |
---|
849 | ! dqi_avi(i) = 0. |
---|
850 | ! dqvc_avi(i) = 0. |
---|
851 | ! ! TODO implement ok_unadjusted_clouds |
---|
852 | ! IF ( issrfra(i) .GT. eps ) THEN |
---|
853 | ! contrail_fra = MIN(1., flight_m(i,k) * dtime * contrail_cross_section / V_cell) |
---|
854 | ! dcf_avi(i) = issrfra(i) * contrail_fra |
---|
855 | ! dqt_avi = dcf_avi(i) * qissr(i) / issrfra(i) |
---|
856 | ! dqvc_avi(i) = qsat(i) * dcf_avi(i) |
---|
857 | ! |
---|
858 | ! !--Add tendencies |
---|
859 | ! cldfra(i) = cldfra(i) + dcf_avi(i) |
---|
860 | ! issrfra(i) = issrfra(i) - dcf_avi(i) |
---|
861 | ! qcld(i) = qcld(i) + dqt_avi |
---|
862 | ! qvc(i) = qvc(i) + dqvc_avi(i) |
---|
863 | ! qissr(i) = qissr(i) - dqt_avi |
---|
864 | |
---|
865 | ! !--Diagnostics |
---|
866 | ! dqi_avi(i) = dqt_avi - qsat(i) * dcf_avi(i) |
---|
867 | ! ENDIF |
---|
868 | ! dcf_avi(i) = dcf_avi(i) / dtime |
---|
869 | ! dqi_avi(i) = dqi_avi(i) / dtime |
---|
870 | ! dqvc_avi(i) = dqvc_avi(i) / dtime |
---|
871 | !ENDIF |
---|
872 | |
---|
873 | |
---|
874 | |
---|
875 | !------------------------------------------- |
---|
876 | !-- FINAL BARRIERS AND OUTPUTS -- |
---|
877 | !------------------------------------------- |
---|
878 | |
---|
879 | IF ( cldfra(i) .LT. eps ) THEN |
---|
880 | !--If the cloud is too small, it is sublimated. |
---|
881 | cldfra(i) = 0. |
---|
882 | qcld(i) = 0. |
---|
883 | qvc(i) = 0. |
---|
884 | qincld(i) = qsat(i) |
---|
885 | ELSE |
---|
886 | qincld(i) = qcld(i) / cldfra(i) |
---|
887 | ENDIF ! cldfra .LT. eps |
---|
888 | |
---|
889 | !--Diagnostics |
---|
890 | dcf_sub(i) = dcf_sub(i) / dtime |
---|
891 | dcf_con(i) = dcf_con(i) / dtime |
---|
892 | dcf_mix(i) = dcf_mix(i) / dtime |
---|
893 | dqi_adj(i) = dqi_adj(i) / dtime |
---|
894 | dqi_sub(i) = dqi_sub(i) / dtime |
---|
895 | dqi_con(i) = dqi_con(i) / dtime |
---|
896 | dqi_mix(i) = dqi_mix(i) / dtime |
---|
897 | dqvc_adj(i) = dqvc_adj(i) / dtime |
---|
898 | dqvc_sub(i) = dqvc_sub(i) / dtime |
---|
899 | dqvc_con(i) = dqvc_con(i) / dtime |
---|
900 | dqvc_mix(i) = dqvc_mix(i) / dtime |
---|
901 | |
---|
902 | ENDIF ! ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds |
---|
903 | |
---|
904 | ENDIF ! end keepgoing |
---|
905 | |
---|
906 | ENDDO ! end loop on i |
---|
907 | |
---|
908 | END SUBROUTINE condensation_ice_supersat |
---|
909 | !********************************************************************************** |
---|
910 | |
---|
911 | !********************************************************************************** |
---|
912 | SUBROUTINE deposition_sublimation( & |
---|
913 | qvapincld, qiceincld, temp, qsat, pplay, dtime, & |
---|
914 | qvapincld_new) |
---|
915 | |
---|
916 | USE lmdz_lscp_ini, ONLY: RV, RLSTT, RTT, RD, EPS_W |
---|
917 | USE lmdz_lscp_ini, ONLY: eps |
---|
918 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, rho_ice |
---|
919 | |
---|
920 | REAL, INTENT(IN) :: qvapincld ! |
---|
921 | REAL, INTENT(IN) :: qiceincld ! |
---|
922 | REAL, INTENT(IN) :: temp ! |
---|
923 | REAL, INTENT(IN) :: qsat ! |
---|
924 | REAL, INTENT(IN) :: pplay ! |
---|
925 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
926 | REAL, INTENT(OUT):: qvapincld_new ! |
---|
927 | |
---|
928 | ! |
---|
929 | ! for unadjusted clouds |
---|
930 | REAL :: qice_ratio |
---|
931 | REAL :: pres_sat, rho, kappa |
---|
932 | REAL :: air_thermal_conduct, water_vapor_diff |
---|
933 | REAL :: iwc |
---|
934 | REAL :: iwc_log_inf100, iwc_log_sup100 |
---|
935 | REAL :: iwc_inf100, alpha_inf100, coef_inf100 |
---|
936 | REAL :: mu_sup100, sigma_sup100, coef_sup100 |
---|
937 | REAL :: Dm_ice, rm_ice |
---|
938 | |
---|
939 | !--If ok_unadjusted_clouds is set to TRUE, then the saturation adjustment |
---|
940 | !--hypothesis is lost, and the vapor in the cloud is purely prognostic. |
---|
941 | ! |
---|
942 | !--The deposition equation is |
---|
943 | !-- dmi/dt = alpha*4pi*C*Svi / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) |
---|
944 | !--from Lohmann et al. (2016), where |
---|
945 | !--alpha is the deposition coefficient [-] |
---|
946 | !--mi is the mass of one ice crystal [kg] |
---|
947 | !--C is the capacitance of an ice crystal [m] |
---|
948 | !--Svi is the supersaturation ratio equal to (qvc - qsat)/qsat [-] |
---|
949 | !--R_v is the specific gas constant for humid air [J/kg/K] |
---|
950 | !--T is the temperature [K] |
---|
951 | !--esi is the saturation pressure w.r.t. ice [Pa] |
---|
952 | !--Dv is the diffusivity of water vapor [m2/s] |
---|
953 | !--Ls is the specific latent heat of sublimation [J/kg/K] |
---|
954 | !--ka is the thermal conductivity of dry air [J/m/s/K] |
---|
955 | ! |
---|
956 | !--alpha is a coefficient to take into account the fact that during deposition, a water |
---|
957 | !--molecule cannot join the crystal from everywhere, it must do so that the crystal stays |
---|
958 | !--coherent (with the same structure). It has no impact for sublimation. |
---|
959 | !--We fix alpha = depo_coef_cirrus (=0.5 by default following Lohmann et al. (2016)) |
---|
960 | !--during deposition, and alpha = 1. during sublimation. |
---|
961 | !--The capacitance of the ice crystals is proportional to a parameter capa_cond_cirrus |
---|
962 | !-- C = capa_cond_cirrus * rm_ice |
---|
963 | ! |
---|
964 | !--We have qice = Nice * mi, where Nice is the ice crystal |
---|
965 | !--number concentration per kg of moist air |
---|
966 | !--HYPOTHESIS 1: the ice crystals are spherical, therefore |
---|
967 | !-- mi = 4/3 * pi * rm_ice**3 * rho_ice |
---|
968 | !--HYPOTHESIS 2: the ice crystals are monodisperse with the |
---|
969 | !--initial radius rm_ice_0. |
---|
970 | !--NB. this is notably different than the assumption |
---|
971 | !--of a distributed qice in the cloud made in the sublimation process; |
---|
972 | !--should it be consistent? |
---|
973 | ! |
---|
974 | !--As the deposition process does not create new ice crystals, |
---|
975 | !--and because we assume a same rm_ice value for all crystals |
---|
976 | !--therefore the sublimation process does not destroy ice crystals |
---|
977 | !--(or, in a limit case, it destroys all ice crystals), then |
---|
978 | !--Nice is a constant during the sublimation/deposition process. |
---|
979 | !-- dmi = dqi, et Nice = qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
---|
980 | ! |
---|
981 | !--The deposition equation then reads: |
---|
982 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus*rm_ice*(qvc-qsat)/qsat / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) * Nice |
---|
983 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus* (qi / qi_0)**(1/3) *rm_ice_0*(qvc-qsat)/qsat & |
---|
984 | !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls*R_v/T - 1) ) & |
---|
985 | !-- * qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
---|
986 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) * qi_0**(2/3) & |
---|
987 | !-- *alpha/qsat*capa_cond_cirrus/ (R_v*T/esi/Dv + Ls/ka/T*(Ls*R_v/T - 1)) / ( 1/3 rm_ice_0**2 rho_ice ) |
---|
988 | !--and we have |
---|
989 | !-- dqvc/dt = - qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
---|
990 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
---|
991 | !--where kappa = 1/3*rho_ice/capa_cond_cirrus*qsat*(R_v*T/esi/Dv + Ls/ka/T*(Ls/R_v/T - 1)) |
---|
992 | ! |
---|
993 | !--This system of equations can be resolved with an exact |
---|
994 | !--explicit numerical integration, having one variable resolved |
---|
995 | !--explicitly, the other exactly. The exactly resolved variable is |
---|
996 | !--the one decreasing, so it is qvc if the process is |
---|
997 | !--condensation, qi if it is sublimation. |
---|
998 | ! |
---|
999 | !--kappa is computed as an initialisation constant, as it depends only |
---|
1000 | !--on temperature and other pre-computed values |
---|
1001 | pres_sat = qsat / ( EPS_W + ( 1. - EPS_W ) * qsat ) * pplay |
---|
1002 | !--This formula for air thermal conductivity comes from Beard and Pruppacher (1971) |
---|
1003 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp - RTT ) ) * 1.e-3 * 4.184 |
---|
1004 | !--This formula for water vapor diffusivity comes from Hall and Pruppacher (1976) |
---|
1005 | water_vapor_diff = 0.211 * ( temp / RTT )**1.94 * ( 101325. / pplay ) * 1.e-4 |
---|
1006 | kappa = 1. / 3. * rho_ice / capa_cond_cirrus * qsat & |
---|
1007 | * ( RV * temp / water_vapor_diff / pres_sat & |
---|
1008 | + RLSTT / air_thermal_conduct / temp * ( RLSTT / RV / temp - 1. ) ) |
---|
1009 | !--NB. the greater kappa, the lower the efficiency of the deposition/sublimation process |
---|
1010 | |
---|
1011 | !--Dry density [kg/m3] |
---|
1012 | rho = pplay / temp / RD |
---|
1013 | |
---|
1014 | !--Here, the initial vapor in the cloud is qvapincld, and we compute |
---|
1015 | !--the new vapor qvapincld_new |
---|
1016 | |
---|
1017 | !--rm_ice formula from McFarquhar and Heymsfield (1997) |
---|
1018 | iwc = qiceincld * rho * 1e3 |
---|
1019 | iwc_inf100 = MIN(iwc, 0.252 * iwc**0.837) |
---|
1020 | iwc_log_inf100 = LOG10( MAX(eps, iwc_inf100) ) |
---|
1021 | iwc_log_sup100 = LOG10( MAX(eps, iwc - iwc_inf100) ) |
---|
1022 | |
---|
1023 | alpha_inf100 = - 4.99E-3 - 0.0494 * iwc_log_inf100 |
---|
1024 | coef_inf100 = iwc_inf100 * alpha_inf100**3 / 120. |
---|
1025 | |
---|
1026 | mu_sup100 = ( 5.2 + 0.0013 * ( temp - RTT ) ) & |
---|
1027 | + ( 0.026 - 1.2E-3 * ( temp - RTT ) ) * iwc_log_sup100 |
---|
1028 | sigma_sup100 = ( 0.47 + 2.1E-3 * ( temp - RTT ) ) & |
---|
1029 | + ( 0.018 - 2.1E-4 * ( temp - RTT ) ) * iwc_log_sup100 |
---|
1030 | coef_sup100 = ( iwc - iwc_inf100 ) / EXP( 3. * mu_sup100 + 4.5 * sigma_sup100**2 ) |
---|
1031 | |
---|
1032 | Dm_ice = ( 2. / alpha_inf100 * coef_inf100 + EXP( mu_sup100 + 0.5 * sigma_sup100**2 ) & |
---|
1033 | * coef_sup100 ) / ( coef_inf100 + coef_sup100 ) |
---|
1034 | rm_ice = Dm_ice / 2. * 1.E-6 |
---|
1035 | |
---|
1036 | IF ( qvapincld .GE. qsat ) THEN |
---|
1037 | !--If the cloud is initially supersaturated |
---|
1038 | !--Exact explicit integration (qvc exact, qice explicit) |
---|
1039 | qvapincld_new = qsat + ( qvapincld - qsat ) & |
---|
1040 | * EXP( - depo_coef_cirrus * dtime * qiceincld / kappa / rm_ice**2 ) |
---|
1041 | ELSE |
---|
1042 | !--If the cloud is initially subsaturated |
---|
1043 | !--Exact explicit integration (qice exact, qvc explicit) |
---|
1044 | !--The barrier is set so that the resulting vapor in cloud |
---|
1045 | !--cannot be greater than qsat |
---|
1046 | !--qice_ratio is the ratio between the new ice content and |
---|
1047 | !--the old one, it is comprised between 0 and 1 |
---|
1048 | qice_ratio = ( 1. - 2. / 3. / kappa / rm_ice**2 * dtime * ( qsat - qvapincld ) ) |
---|
1049 | |
---|
1050 | IF ( qice_ratio .LT. 0. ) THEN |
---|
1051 | !--The new vapor in cloud is set to 0 so that the |
---|
1052 | !--sublimation process does not activate |
---|
1053 | qvapincld_new = 0. |
---|
1054 | ELSE |
---|
1055 | !--Else, the sublimation process is activated with the |
---|
1056 | !--diagnosed new cloud water vapor |
---|
1057 | !--The new vapor in the cloud is increased with the |
---|
1058 | !--sublimated ice |
---|
1059 | qvapincld_new = qvapincld + qiceincld * ( 1. - qice_ratio**1.5 ) |
---|
1060 | !--The new vapor in the cloud cannot be greater than qsat |
---|
1061 | qvapincld_new = MIN(qvapincld_new, qsat) |
---|
1062 | ENDIF ! qice_ratio .LT. 0. |
---|
1063 | ENDIF ! qvapincld .GT. qsat |
---|
1064 | |
---|
1065 | END SUBROUTINE deposition_sublimation |
---|
1066 | |
---|
1067 | |
---|
1068 | !********************************************************************************** |
---|
1069 | |
---|
1070 | !********************************************************************************** |
---|
1071 | SUBROUTINE condensation_cloudth(klon, & |
---|
1072 | & temp,qt,qt_th,frac_th,zpspsk,play,thetal_th, & |
---|
1073 | & ratqs,sigma_qtherm,qsth,qsenv,qcloud,ctot,ctotth,ctot_vol, & |
---|
1074 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
1075 | ! This routine computes the condensation of clouds in convective boundary layers |
---|
1076 | ! with thermals assuming two separate distribution of the saturation deficit in |
---|
1077 | ! the thermal plumes and in the environment |
---|
1078 | ! It is based on the work of Arnaud Jam (Jam et al. 2013, BLM) |
---|
1079 | ! Author : Etienne Vignon (LMDZ/CNRS) |
---|
1080 | ! Date: February 2025 |
---|
1081 | ! Date: Adapted from cloudth_vert_v3 in 2023 by Arnaud Otavio Jam |
---|
1082 | ! IMPORTANT NOTE: we assume iflag_cloudth_vert=7 |
---|
1083 | !----------------------------------------------------------------------------------- |
---|
1084 | |
---|
1085 | use lmdz_lscp_ini, only: iflag_cloudth_vert,iflag_ratqs,iflag_cloudth_vert_noratqs |
---|
1086 | use lmdz_lscp_ini, only: vert_alpha, vert_alpha_th ,sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin |
---|
1087 | use lmdz_lscp_ini, only: RTT, RG, RPI, RD, RV, RCPD, RLVTT, RLSTT, temp_nowater, min_frac_th_cld, min_neb_th |
---|
1088 | |
---|
1089 | IMPLICIT NONE |
---|
1090 | |
---|
1091 | |
---|
1092 | !------------------------------------------------------------------------------ |
---|
1093 | ! Declarations |
---|
1094 | !------------------------------------------------------------------------------ |
---|
1095 | |
---|
1096 | ! INPUT/OUTPUT |
---|
1097 | |
---|
1098 | INTEGER, INTENT(IN) :: klon |
---|
1099 | |
---|
1100 | |
---|
1101 | REAL, DIMENSION(klon), INTENT(IN) :: temp ! Temperature (liquid temperature) in the mesh [K] : has seen evap of precip |
---|
1102 | REAL, DIMENSION(klon), INTENT(IN) :: qt ! total water specific humidity in the mesh [kg/kg]: has seen evap of precip |
---|
1103 | REAL, DIMENSION(klon), INTENT(IN) :: qt_th ! total water specific humidity in thermals [kg/kg]: has not seen evap of precip |
---|
1104 | REAL, DIMENSION(klon), INTENT(IN) :: thetal_th ! Liquid potential temperature in thermals [K]: has not seen the evap of precip |
---|
1105 | REAL, DIMENSION(klon), INTENT(IN) :: frac_th ! Fraction of the mesh covered by thermals [0-1] |
---|
1106 | REAL, DIMENSION(klon), INTENT(IN) :: zpspsk ! Exner potential |
---|
1107 | REAL, DIMENSION(klon), INTENT(IN) :: play ! Pressure of layers [Pa] |
---|
1108 | REAL, DIMENSION(klon), INTENT(IN) :: ratqs ! Parameter that determines the width of the water distrib [-] |
---|
1109 | REAL, DIMENSION(klon), INTENT(IN) :: sigma_qtherm ! Parameter determining the width of the distrib in thermals [-] |
---|
1110 | REAL, DIMENSION(klon), INTENT(IN) :: qsth ! Saturation specific humidity in thermals |
---|
1111 | REAL, DIMENSION(klon), INTENT(IN) :: qsenv ! Saturation specific humidity in environment |
---|
1112 | |
---|
1113 | REAL, DIMENSION(klon), INTENT(INOUT) :: ctot ! Cloud fraction [0-1] |
---|
1114 | REAL, DIMENSION(klon), INTENT(INOUT) :: ctotth ! Cloud fraction [0-1] in thermals |
---|
1115 | REAL, DIMENSION(klon), INTENT(INOUT) :: ctot_vol ! Volume cloud fraction [0-1] |
---|
1116 | REAL, DIMENSION(klon), INTENT(INOUT) :: qcloud ! In cloud total water content [kg/kg] |
---|
1117 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sth ! mean saturation deficit in thermals |
---|
1118 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_senv ! mean saturation deficit in environment |
---|
1119 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmath ! std of saturation deficit in thermals |
---|
1120 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmaenv ! std of saturation deficit in environment |
---|
1121 | |
---|
1122 | |
---|
1123 | ! LOCAL VARIABLES |
---|
1124 | |
---|
1125 | INTEGER itap,ind1,l,ig,iter,k |
---|
1126 | INTEGER iflag_topthermals, niter |
---|
1127 | |
---|
1128 | REAL qcth(klon) |
---|
1129 | REAL qcenv(klon) |
---|
1130 | REAL qctot(klon) |
---|
1131 | REAL cth(klon) |
---|
1132 | REAL cenv(klon) |
---|
1133 | REAL cth_vol(klon) |
---|
1134 | REAL cenv_vol(klon) |
---|
1135 | REAL qt_env(klon), thetal_env(klon) |
---|
1136 | REAL sqrtpi,sqrt2,sqrt2pi |
---|
1137 | REAL alth,alenv,ath,aenv |
---|
1138 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
---|
1139 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
1140 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
1141 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
1142 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
---|
1143 | REAL zdelta,qsatbef,zcor |
---|
1144 | REAL Tbefth(klon), Tbefenv(klon) |
---|
1145 | REAL qlbef |
---|
1146 | REAL dqsatenv(klon), dqsatth(klon) |
---|
1147 | REAL zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon) |
---|
1148 | REAL zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon) |
---|
1149 | REAL qincloud(klon) |
---|
1150 | REAL alenvl, aenvl |
---|
1151 | REAL sthi, sthl, sthil, althl, athl, althi, athi, sthlc, deltasthc, sigma2sc |
---|
1152 | |
---|
1153 | |
---|
1154 | !------------------------------------------------------------------------------ |
---|
1155 | ! Initialisation |
---|
1156 | !------------------------------------------------------------------------------ |
---|
1157 | |
---|
1158 | |
---|
1159 | sqrt2pi=sqrt(2.*rpi) |
---|
1160 | sqrt2=sqrt(2.) |
---|
1161 | sqrtpi=sqrt(rpi) |
---|
1162 | |
---|
1163 | !------------------------------------------------------------------------------- |
---|
1164 | ! Thermal fraction calculation and standard deviation of the distribution |
---|
1165 | !------------------------------------------------------------------------------- |
---|
1166 | |
---|
1167 | ! initialisations and calculation of temperature, humidity and saturation specific humidity |
---|
1168 | |
---|
1169 | cloudth_senv(:) = 0. |
---|
1170 | cloudth_sth(:) = 0. |
---|
1171 | cloudth_sigmaenv(:) = 0. |
---|
1172 | cloudth_sigmath(:) = 0. |
---|
1173 | |
---|
1174 | |
---|
1175 | DO ind1=1,klon |
---|
1176 | |
---|
1177 | Tbefenv(ind1) = temp(ind1) |
---|
1178 | thetal_env(ind1) = Tbefenv(ind1)/zpspsk(ind1) |
---|
1179 | Tbefth(ind1) = thetal_th(ind1)*zpspsk(ind1) |
---|
1180 | qt_env(ind1) = (qt(ind1)-frac_th(ind1)*qt_th(ind1))/(1.-frac_th(ind1)) !qt = a*qtth + (1-a)*qtenv |
---|
1181 | |
---|
1182 | ENDDO |
---|
1183 | |
---|
1184 | |
---|
1185 | |
---|
1186 | DO ind1=1,klon |
---|
1187 | |
---|
1188 | |
---|
1189 | IF (frac_th(ind1).GT.min_frac_th_cld) THEN !Thermal and environnement |
---|
1190 | |
---|
1191 | ! Environment: |
---|
1192 | |
---|
1193 | |
---|
1194 | alenv=(RD/RV*RLVTT*qsenv(ind1))/(rd*thetal_env(ind1)**2) |
---|
1195 | aenv=1./(1.+(alenv*RLVTT/rcpd)) |
---|
1196 | senv=aenv*(qt_env(ind1)-qsenv(ind1)) |
---|
1197 | |
---|
1198 | |
---|
1199 | ! Thermals: |
---|
1200 | |
---|
1201 | |
---|
1202 | alth=(RD/RV*RLVTT*qsth(ind1))/(rd*thetal_th(ind1)**2) |
---|
1203 | ath=1./(1.+(alth*RLVTT/rcpd)) |
---|
1204 | sth=ath*(qt_th(ind1)-qsth(ind1)) |
---|
1205 | |
---|
1206 | |
---|
1207 | ! Standard deviation of the distributions |
---|
1208 | |
---|
1209 | ! environment |
---|
1210 | sigma1s_fraca = (sigma1s_factor**0.5)*(frac_th(ind1)**sigma1s_power) / & |
---|
1211 | & (1-frac_th(ind1))*((sth-senv)**2)**0.5 |
---|
1212 | |
---|
1213 | IF (cloudth_ratqsmin>0.) THEN |
---|
1214 | sigma1s_ratqs = cloudth_ratqsmin*qt(ind1) |
---|
1215 | ELSE |
---|
1216 | sigma1s_ratqs = ratqs(ind1)*qt(ind1) |
---|
1217 | ENDIF |
---|
1218 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
1219 | |
---|
1220 | IF (iflag_ratqs.eq.10.or.iflag_ratqs.eq.11) then |
---|
1221 | sigma1s = ratqs(ind1)*qt(ind1)*aenv |
---|
1222 | ENDIF |
---|
1223 | |
---|
1224 | ! thermals |
---|
1225 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((frac_th(ind1)+0.02)**sigma2s_power))+0.002*qt_th(ind1) |
---|
1226 | |
---|
1227 | IF (iflag_ratqs.eq.10.and.sigma_qtherm(ind1).ne.0) then |
---|
1228 | sigma2s = sigma_qtherm(ind1)*ath |
---|
1229 | ENDIF |
---|
1230 | |
---|
1231 | |
---|
1232 | ! surface cloud fraction |
---|
1233 | |
---|
1234 | deltasenv=aenv*vert_alpha*sigma1s |
---|
1235 | deltasth=ath*vert_alpha_th*sigma2s |
---|
1236 | |
---|
1237 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1238 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1239 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
1240 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
1241 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
1242 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
1243 | exp_xth1 = exp(-1.*xth1**2) |
---|
1244 | exp_xth2 = exp(-1.*xth2**2) |
---|
1245 | cth(ind1)=0.5*(1.-1.*erf(xth1)) |
---|
1246 | cenv(ind1)=0.5*(1.-1.*erf(xenv1)) |
---|
1247 | ctot(ind1)=frac_th(ind1)*cth(ind1)+(1.-1.*frac_th(ind1))*cenv(ind1) |
---|
1248 | ctotth(ind1)=frac_th(ind1)*cth(ind1) |
---|
1249 | |
---|
1250 | |
---|
1251 | !volume cloud fraction and condensed water |
---|
1252 | |
---|
1253 | !environnement |
---|
1254 | |
---|
1255 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
1256 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
1257 | |
---|
1258 | IF (deltasenv .LT. 1.e-10) THEN |
---|
1259 | qcenv(ind1)=IntJ |
---|
1260 | cenv_vol(ind1)=IntJ_CF |
---|
1261 | ELSE |
---|
1262 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
1263 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
1264 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
1265 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
1266 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
1267 | qcenv(ind1)=IntJ+IntI1+IntI2+IntI3 |
---|
1268 | cenv_vol(ind1)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1269 | ENDIF |
---|
1270 | |
---|
1271 | |
---|
1272 | |
---|
1273 | !thermals |
---|
1274 | |
---|
1275 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
1276 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
1277 | |
---|
1278 | IF (deltasth .LT. 1.e-10) THEN |
---|
1279 | qcth(ind1)=IntJ |
---|
1280 | cth_vol(ind1)=IntJ_CF |
---|
1281 | ELSE |
---|
1282 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1283 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1284 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
1285 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
1286 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
1287 | qcth(ind1)=IntJ+IntI1+IntI2+IntI3 |
---|
1288 | cth_vol(ind1)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
1289 | ENDIF |
---|
1290 | |
---|
1291 | ! total |
---|
1292 | |
---|
1293 | qctot(ind1)=frac_th(ind1)*qcth(ind1)+(1.-1.*frac_th(ind1))*qcenv(ind1) |
---|
1294 | ctot_vol(ind1)=frac_th(ind1)*cth_vol(ind1)+(1.-1.*frac_th(ind1))*cenv_vol(ind1) |
---|
1295 | |
---|
1296 | IF (cenv(ind1).LT.min_neb_th.and.cth(ind1).LT.min_neb_th) THEN |
---|
1297 | ctot(ind1)=0. |
---|
1298 | ctot_vol(ind1)=0. |
---|
1299 | qcloud(ind1)=qsenv(ind1) |
---|
1300 | qincloud(ind1)=0. |
---|
1301 | ELSE |
---|
1302 | qincloud(ind1)=qctot(ind1)/ctot(ind1) |
---|
1303 | !to prevent situations with cloud condensed water greater than available total water |
---|
1304 | qincloud(ind1)=min(qincloud(ind1),qt(ind1)/ctot(ind1)) |
---|
1305 | ! we assume that water vapor in cloud is qsenv |
---|
1306 | qcloud(ind1)=qincloud(ind1)+qsenv(ind1) |
---|
1307 | ENDIF |
---|
1308 | |
---|
1309 | |
---|
1310 | |
---|
1311 | ! Outputs used to check the PDFs |
---|
1312 | cloudth_senv(ind1) = senv |
---|
1313 | cloudth_sth(ind1) = sth |
---|
1314 | cloudth_sigmaenv(ind1) = sigma1s |
---|
1315 | cloudth_sigmath(ind1) = sigma2s |
---|
1316 | |
---|
1317 | ENDIF ! selection of grid points concerned by thermals |
---|
1318 | |
---|
1319 | |
---|
1320 | ENDDO !loop on klon |
---|
1321 | |
---|
1322 | |
---|
1323 | RETURN |
---|
1324 | |
---|
1325 | |
---|
1326 | END SUBROUTINE condensation_cloudth |
---|
1327 | |
---|
1328 | |
---|
1329 | !***************************************************************************************** |
---|
1330 | !***************************************************************************************** |
---|
1331 | ! pre-cmip7 routines are below and are becoming obsolete |
---|
1332 | !***************************************************************************************** |
---|
1333 | !***************************************************************************************** |
---|
1334 | |
---|
1335 | |
---|
1336 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
---|
1337 | & ztv,po,zqta,fraca, & |
---|
1338 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
1339 | & ratqs,zqs,t, & |
---|
1340 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
1341 | |
---|
1342 | |
---|
1343 | use lmdz_lscp_ini, only: iflag_cloudth_vert,iflag_ratqs |
---|
1344 | |
---|
1345 | USE yomcst_mod_h |
---|
1346 | USE yoethf_mod_h |
---|
1347 | IMPLICIT NONE |
---|
1348 | |
---|
1349 | |
---|
1350 | !=========================================================================== |
---|
1351 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
1352 | ! Date : 25 Mai 2010 |
---|
1353 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
1354 | !=========================================================================== |
---|
1355 | |
---|
1356 | INCLUDE "FCTTRE.h" |
---|
1357 | |
---|
1358 | INTEGER itap,ind1,ind2 |
---|
1359 | INTEGER ngrid,klev,klon,l,ig |
---|
1360 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
1361 | |
---|
1362 | REAL ztv(ngrid,klev) |
---|
1363 | REAL po(ngrid) |
---|
1364 | REAL zqenv(ngrid) |
---|
1365 | REAL zqta(ngrid,klev) |
---|
1366 | |
---|
1367 | REAL fraca(ngrid,klev+1) |
---|
1368 | REAL zpspsk(ngrid,klev) |
---|
1369 | REAL paprs(ngrid,klev+1) |
---|
1370 | REAL pplay(ngrid,klev) |
---|
1371 | REAL ztla(ngrid,klev) |
---|
1372 | REAL zthl(ngrid,klev) |
---|
1373 | |
---|
1374 | REAL zqsatth(ngrid,klev) |
---|
1375 | REAL zqsatenv(ngrid,klev) |
---|
1376 | |
---|
1377 | |
---|
1378 | REAL sigma1(ngrid,klev) |
---|
1379 | REAL sigma2(ngrid,klev) |
---|
1380 | REAL qlth(ngrid,klev) |
---|
1381 | REAL qlenv(ngrid,klev) |
---|
1382 | REAL qltot(ngrid,klev) |
---|
1383 | REAL cth(ngrid,klev) |
---|
1384 | REAL cenv(ngrid,klev) |
---|
1385 | REAL ctot(ngrid,klev) |
---|
1386 | REAL rneb(ngrid,klev) |
---|
1387 | REAL t(ngrid,klev) |
---|
1388 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
1389 | REAL rdd,cppd,Lv |
---|
1390 | REAL alth,alenv,ath,aenv |
---|
1391 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
1392 | REAL Tbef,zdelta,qsatbef,zcor |
---|
1393 | REAL qlbef |
---|
1394 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
1395 | |
---|
1396 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
1397 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
1398 | REAL zqs(ngrid), qcloud(ngrid) |
---|
1399 | |
---|
1400 | |
---|
1401 | |
---|
1402 | |
---|
1403 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1404 | ! Gestion de deux versions de cloudth |
---|
1405 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1406 | |
---|
1407 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
1408 | CALL cloudth_vert(ngrid,klev,ind2, & |
---|
1409 | & ztv,po,zqta,fraca, & |
---|
1410 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
1411 | & ratqs,zqs,t) |
---|
1412 | RETURN |
---|
1413 | ENDIF |
---|
1414 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1415 | |
---|
1416 | |
---|
1417 | !------------------------------------------------------------------------------- |
---|
1418 | ! Initialisation des variables r?elles |
---|
1419 | !------------------------------------------------------------------------------- |
---|
1420 | sigma1(:,ind2)=0. |
---|
1421 | sigma2(:,ind2)=0. |
---|
1422 | qlth(:,ind2)=0. |
---|
1423 | qlenv(:,ind2)=0. |
---|
1424 | qltot(:,ind2)=0. |
---|
1425 | rneb(:,ind2)=0. |
---|
1426 | qcloud(:)=0. |
---|
1427 | cth(:,ind2)=0. |
---|
1428 | cenv(:,ind2)=0. |
---|
1429 | ctot(:,ind2)=0. |
---|
1430 | qsatmmussig1=0. |
---|
1431 | qsatmmussig2=0. |
---|
1432 | rdd=287.04 |
---|
1433 | cppd=1005.7 |
---|
1434 | pi=3.14159 |
---|
1435 | Lv=2.5e6 |
---|
1436 | sqrt2pi=sqrt(2.*pi) |
---|
1437 | |
---|
1438 | |
---|
1439 | |
---|
1440 | !------------------------------------------------------------------------------- |
---|
1441 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
1442 | !------------------------------------------------------------------------------- |
---|
1443 | do ind1=1,ngrid |
---|
1444 | |
---|
1445 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
1446 | |
---|
1447 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
1448 | |
---|
1449 | |
---|
1450 | ! zqenv(ind1)=po(ind1) |
---|
1451 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1452 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1453 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1454 | qsatbef=MIN(0.5,qsatbef) |
---|
1455 | zcor=1./(1.-retv*qsatbef) |
---|
1456 | qsatbef=qsatbef*zcor |
---|
1457 | zqsatenv(ind1,ind2)=qsatbef |
---|
1458 | |
---|
1459 | |
---|
1460 | |
---|
1461 | |
---|
1462 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
1463 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
1464 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
1465 | |
---|
1466 | |
---|
1467 | |
---|
1468 | |
---|
1469 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1470 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1471 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1472 | qsatbef=MIN(0.5,qsatbef) |
---|
1473 | zcor=1./(1.-retv*qsatbef) |
---|
1474 | qsatbef=qsatbef*zcor |
---|
1475 | zqsatth(ind1,ind2)=qsatbef |
---|
1476 | |
---|
1477 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
1478 | ath=1./(1.+(alth*Lv/cppd)) |
---|
1479 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
1480 | |
---|
1481 | |
---|
1482 | |
---|
1483 | !------------------------------------------------------------------------------ |
---|
1484 | ! Calcul des ?cart-types pour s |
---|
1485 | !------------------------------------------------------------------------------ |
---|
1486 | |
---|
1487 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
1488 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
---|
1489 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
1490 | ! ratqs(ind1,ind2)=0.002 |
---|
1491 | ! else |
---|
1492 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
1493 | ! endif |
---|
1494 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
1495 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
1496 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
1497 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
1498 | |
---|
1499 | !------------------------------------------------------------------------------ |
---|
1500 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
1501 | !------------------------------------------------------------------------------ |
---|
1502 | sqrt2pi=sqrt(2.*pi) |
---|
1503 | xth=sth/(sqrt(2.)*sigma2s) |
---|
1504 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
1505 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
1506 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1507 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1508 | |
---|
1509 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
1510 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
1511 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1512 | |
---|
1513 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1514 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
1515 | ctot(ind1,ind2)=0. |
---|
1516 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1517 | |
---|
1518 | else |
---|
1519 | |
---|
1520 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
1521 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
1522 | |
---|
1523 | endif |
---|
1524 | |
---|
1525 | |
---|
1526 | |
---|
1527 | |
---|
1528 | else ! gaussienne environnement seule |
---|
1529 | |
---|
1530 | zqenv(ind1)=po(ind1) |
---|
1531 | Tbef=t(ind1,ind2) |
---|
1532 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1533 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1534 | qsatbef=MIN(0.5,qsatbef) |
---|
1535 | zcor=1./(1.-retv*qsatbef) |
---|
1536 | qsatbef=qsatbef*zcor |
---|
1537 | zqsatenv(ind1,ind2)=qsatbef |
---|
1538 | |
---|
1539 | |
---|
1540 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
1541 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
1542 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
1543 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
1544 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
1545 | |
---|
1546 | |
---|
1547 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
1548 | |
---|
1549 | sqrt2pi=sqrt(2.*pi) |
---|
1550 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
1551 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1552 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
1553 | |
---|
1554 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
1555 | ctot(ind1,ind2)=0. |
---|
1556 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1557 | |
---|
1558 | else |
---|
1559 | |
---|
1560 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
1561 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
1562 | |
---|
1563 | endif |
---|
1564 | |
---|
1565 | |
---|
1566 | |
---|
1567 | |
---|
1568 | |
---|
1569 | |
---|
1570 | endif |
---|
1571 | enddo |
---|
1572 | |
---|
1573 | return |
---|
1574 | ! end |
---|
1575 | END SUBROUTINE cloudth |
---|
1576 | |
---|
1577 | |
---|
1578 | |
---|
1579 | !=========================================================================== |
---|
1580 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
---|
1581 | & ztv,po,zqta,fraca, & |
---|
1582 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
1583 | & ratqs,zqs,t) |
---|
1584 | |
---|
1585 | !=========================================================================== |
---|
1586 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
1587 | ! Date : 25 Mai 2010 |
---|
1588 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
1589 | !=========================================================================== |
---|
1590 | |
---|
1591 | |
---|
1592 | USE yoethf_mod_h |
---|
1593 | use lmdz_lscp_ini, only: iflag_cloudth_vert, vert_alpha |
---|
1594 | |
---|
1595 | USE yomcst_mod_h |
---|
1596 | IMPLICIT NONE |
---|
1597 | |
---|
1598 | |
---|
1599 | INCLUDE "FCTTRE.h" |
---|
1600 | |
---|
1601 | INTEGER itap,ind1,ind2 |
---|
1602 | INTEGER ngrid,klev,klon,l,ig |
---|
1603 | |
---|
1604 | REAL ztv(ngrid,klev) |
---|
1605 | REAL po(ngrid) |
---|
1606 | REAL zqenv(ngrid) |
---|
1607 | REAL zqta(ngrid,klev) |
---|
1608 | |
---|
1609 | REAL fraca(ngrid,klev+1) |
---|
1610 | REAL zpspsk(ngrid,klev) |
---|
1611 | REAL paprs(ngrid,klev+1) |
---|
1612 | REAL pplay(ngrid,klev) |
---|
1613 | REAL ztla(ngrid,klev) |
---|
1614 | REAL zthl(ngrid,klev) |
---|
1615 | |
---|
1616 | REAL zqsatth(ngrid,klev) |
---|
1617 | REAL zqsatenv(ngrid,klev) |
---|
1618 | |
---|
1619 | |
---|
1620 | REAL sigma1(ngrid,klev) |
---|
1621 | REAL sigma2(ngrid,klev) |
---|
1622 | REAL qlth(ngrid,klev) |
---|
1623 | REAL qlenv(ngrid,klev) |
---|
1624 | REAL qltot(ngrid,klev) |
---|
1625 | REAL cth(ngrid,klev) |
---|
1626 | REAL cenv(ngrid,klev) |
---|
1627 | REAL ctot(ngrid,klev) |
---|
1628 | REAL rneb(ngrid,klev) |
---|
1629 | REAL t(ngrid,klev) |
---|
1630 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
1631 | REAL rdd,cppd,Lv,sqrt2,sqrtpi |
---|
1632 | REAL alth,alenv,ath,aenv |
---|
1633 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
1634 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
1635 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
---|
1636 | REAL Tbef,zdelta,qsatbef,zcor |
---|
1637 | REAL qlbef |
---|
1638 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
1639 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
1640 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
1641 | |
---|
1642 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
1643 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
1644 | REAL zqs(ngrid), qcloud(ngrid) |
---|
1645 | |
---|
1646 | !------------------------------------------------------------------------------ |
---|
1647 | ! Initialisation des variables r?elles |
---|
1648 | !------------------------------------------------------------------------------ |
---|
1649 | sigma1(:,ind2)=0. |
---|
1650 | sigma2(:,ind2)=0. |
---|
1651 | qlth(:,ind2)=0. |
---|
1652 | qlenv(:,ind2)=0. |
---|
1653 | qltot(:,ind2)=0. |
---|
1654 | rneb(:,ind2)=0. |
---|
1655 | qcloud(:)=0. |
---|
1656 | cth(:,ind2)=0. |
---|
1657 | cenv(:,ind2)=0. |
---|
1658 | ctot(:,ind2)=0. |
---|
1659 | qsatmmussig1=0. |
---|
1660 | qsatmmussig2=0. |
---|
1661 | rdd=287.04 |
---|
1662 | cppd=1005.7 |
---|
1663 | pi=3.14159 |
---|
1664 | Lv=2.5e6 |
---|
1665 | sqrt2pi=sqrt(2.*pi) |
---|
1666 | sqrt2=sqrt(2.) |
---|
1667 | sqrtpi=sqrt(pi) |
---|
1668 | |
---|
1669 | !------------------------------------------------------------------------------- |
---|
1670 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
1671 | !------------------------------------------------------------------------------- |
---|
1672 | do ind1=1,ngrid |
---|
1673 | |
---|
1674 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
1675 | |
---|
1676 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
1677 | |
---|
1678 | |
---|
1679 | ! zqenv(ind1)=po(ind1) |
---|
1680 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1681 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1682 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1683 | qsatbef=MIN(0.5,qsatbef) |
---|
1684 | zcor=1./(1.-retv*qsatbef) |
---|
1685 | qsatbef=qsatbef*zcor |
---|
1686 | zqsatenv(ind1,ind2)=qsatbef |
---|
1687 | |
---|
1688 | |
---|
1689 | |
---|
1690 | |
---|
1691 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
1692 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
1693 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
1694 | |
---|
1695 | |
---|
1696 | |
---|
1697 | |
---|
1698 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
1699 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1700 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1701 | qsatbef=MIN(0.5,qsatbef) |
---|
1702 | zcor=1./(1.-retv*qsatbef) |
---|
1703 | qsatbef=qsatbef*zcor |
---|
1704 | zqsatth(ind1,ind2)=qsatbef |
---|
1705 | |
---|
1706 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
1707 | ath=1./(1.+(alth*Lv/cppd)) |
---|
1708 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
1709 | |
---|
1710 | |
---|
1711 | |
---|
1712 | !------------------------------------------------------------------------------ |
---|
1713 | ! Calcul des ?cart-types pour s |
---|
1714 | !------------------------------------------------------------------------------ |
---|
1715 | |
---|
1716 | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
1717 | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
1718 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
1719 | ! ratqs(ind1,ind2)=0.002 |
---|
1720 | ! else |
---|
1721 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
1722 | ! endif |
---|
1723 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
1724 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
1725 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
1726 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
1727 | |
---|
1728 | !------------------------------------------------------------------------------ |
---|
1729 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
1730 | !------------------------------------------------------------------------------ |
---|
1731 | sqrt2pi=sqrt(2.*pi) |
---|
1732 | xth=sth/(sqrt(2.)*sigma2s) |
---|
1733 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
1734 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
1735 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1736 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1737 | |
---|
1738 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
1739 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
1740 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1741 | |
---|
1742 | IF (iflag_cloudth_vert == 1) THEN |
---|
1743 | !------------------------------------------------------------------------------- |
---|
1744 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
---|
1745 | !------------------------------------------------------------------------------- |
---|
1746 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
1747 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
1748 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
1749 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
1750 | ! deltasenv=aenv*0.01*po(ind1) |
---|
1751 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
---|
1752 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1753 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1754 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
1755 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
1756 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
1757 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
1758 | |
---|
1759 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
1760 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
1761 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1762 | |
---|
1763 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
1764 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
1765 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
1766 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
1767 | |
---|
1768 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1769 | ! qlenv(ind1,ind2)=IntJ |
---|
1770 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
1771 | |
---|
1772 | |
---|
1773 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
1774 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
---|
1775 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
---|
1776 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
1777 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
1778 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
1779 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1780 | ! qlth(ind1,ind2)=IntJ |
---|
1781 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
1782 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1783 | |
---|
1784 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
1785 | |
---|
1786 | !------------------------------------------------------------------------------- |
---|
1787 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
---|
1788 | !------------------------------------------------------------------------------- |
---|
1789 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
1790 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
1791 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
1792 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
1793 | deltasenv=aenv*vert_alpha*sigma1s |
---|
1794 | deltasth=ath*vert_alpha*sigma2s |
---|
1795 | |
---|
1796 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1797 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1798 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
1799 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
1800 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
1801 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
1802 | |
---|
1803 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
1804 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
1805 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1806 | |
---|
1807 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) |
---|
1808 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
1809 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
1810 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) |
---|
1811 | |
---|
1812 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
1813 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
1814 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
1815 | |
---|
1816 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1817 | ! qlenv(ind1,ind2)=IntJ |
---|
1818 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
1819 | |
---|
1820 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) |
---|
1821 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1822 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
1823 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) |
---|
1824 | |
---|
1825 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1826 | ! qlth(ind1,ind2)=IntJ |
---|
1827 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
1828 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1829 | |
---|
1830 | |
---|
1831 | |
---|
1832 | |
---|
1833 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
1834 | |
---|
1835 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1836 | |
---|
1837 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
1838 | ctot(ind1,ind2)=0. |
---|
1839 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1840 | |
---|
1841 | else |
---|
1842 | |
---|
1843 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
1844 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
1845 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
1846 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
1847 | |
---|
1848 | endif |
---|
1849 | |
---|
1850 | |
---|
1851 | |
---|
1852 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
1853 | |
---|
1854 | |
---|
1855 | else ! gaussienne environnement seule |
---|
1856 | |
---|
1857 | zqenv(ind1)=po(ind1) |
---|
1858 | Tbef=t(ind1,ind2) |
---|
1859 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1860 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1861 | qsatbef=MIN(0.5,qsatbef) |
---|
1862 | zcor=1./(1.-retv*qsatbef) |
---|
1863 | qsatbef=qsatbef*zcor |
---|
1864 | zqsatenv(ind1,ind2)=qsatbef |
---|
1865 | |
---|
1866 | |
---|
1867 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
1868 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
1869 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
1870 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
1871 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
1872 | |
---|
1873 | |
---|
1874 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
1875 | |
---|
1876 | sqrt2pi=sqrt(2.*pi) |
---|
1877 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
1878 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1879 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
1880 | |
---|
1881 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
1882 | ctot(ind1,ind2)=0. |
---|
1883 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1884 | |
---|
1885 | else |
---|
1886 | |
---|
1887 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
1888 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
1889 | |
---|
1890 | endif |
---|
1891 | |
---|
1892 | |
---|
1893 | |
---|
1894 | |
---|
1895 | |
---|
1896 | |
---|
1897 | endif |
---|
1898 | enddo |
---|
1899 | |
---|
1900 | return |
---|
1901 | ! end |
---|
1902 | END SUBROUTINE cloudth_vert |
---|
1903 | |
---|
1904 | |
---|
1905 | |
---|
1906 | |
---|
1907 | SUBROUTINE cloudth_v3(ngrid,klev,ind2, & |
---|
1908 | & ztv,po,zqta,fraca, & |
---|
1909 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
1910 | & ratqs,sigma_qtherm,zqs,t, & |
---|
1911 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
1912 | |
---|
1913 | use lmdz_lscp_ini, only: iflag_cloudth_vert |
---|
1914 | |
---|
1915 | USE yomcst_mod_h |
---|
1916 | USE yoethf_mod_h |
---|
1917 | IMPLICIT NONE |
---|
1918 | |
---|
1919 | |
---|
1920 | !=========================================================================== |
---|
1921 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
---|
1922 | ! Date : 25 Mai 2010 |
---|
1923 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
1924 | !=========================================================================== |
---|
1925 | INCLUDE "FCTTRE.h" |
---|
1926 | |
---|
1927 | integer, intent(in) :: ind2 |
---|
1928 | integer, intent(in) :: ngrid,klev |
---|
1929 | |
---|
1930 | real, dimension(ngrid,klev), intent(in) :: ztv |
---|
1931 | real, dimension(ngrid), intent(in) :: po |
---|
1932 | real, dimension(ngrid,klev), intent(in) :: zqta |
---|
1933 | real, dimension(ngrid,klev+1), intent(in) :: fraca |
---|
1934 | real, dimension(ngrid), intent(out) :: qcloud |
---|
1935 | real, dimension(ngrid,klev), intent(out) :: ctot |
---|
1936 | real, dimension(ngrid,klev), intent(out) :: ctot_vol |
---|
1937 | real, dimension(ngrid,klev), intent(in) :: zpspsk |
---|
1938 | real, dimension(ngrid,klev+1), intent(in) :: paprs |
---|
1939 | real, dimension(ngrid,klev), intent(in) :: pplay |
---|
1940 | real, dimension(ngrid,klev), intent(in) :: ztla |
---|
1941 | real, dimension(ngrid,klev), intent(inout) :: zthl |
---|
1942 | real, dimension(ngrid,klev), intent(in) :: ratqs,sigma_qtherm |
---|
1943 | real, dimension(ngrid), intent(in) :: zqs |
---|
1944 | real, dimension(ngrid,klev), intent(in) :: t |
---|
1945 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
1946 | |
---|
1947 | |
---|
1948 | REAL zqenv(ngrid) |
---|
1949 | REAL zqsatth(ngrid,klev) |
---|
1950 | REAL zqsatenv(ngrid,klev) |
---|
1951 | |
---|
1952 | REAL sigma1(ngrid,klev) |
---|
1953 | REAL sigma2(ngrid,klev) |
---|
1954 | REAL qlth(ngrid,klev) |
---|
1955 | REAL qlenv(ngrid,klev) |
---|
1956 | REAL qltot(ngrid,klev) |
---|
1957 | REAL cth(ngrid,klev) |
---|
1958 | REAL cenv(ngrid,klev) |
---|
1959 | REAL cth_vol(ngrid,klev) |
---|
1960 | REAL cenv_vol(ngrid,klev) |
---|
1961 | REAL rneb(ngrid,klev) |
---|
1962 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi |
---|
1963 | REAL rdd,cppd,Lv |
---|
1964 | REAL alth,alenv,ath,aenv |
---|
1965 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 |
---|
1966 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
1967 | REAL Tbef,zdelta,qsatbef,zcor |
---|
1968 | REAL qlbef |
---|
1969 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
1970 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
1971 | |
---|
1972 | |
---|
1973 | INTEGER :: ind1,l, ig |
---|
1974 | |
---|
1975 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
1976 | CALL cloudth_vert_v3(ngrid,klev,ind2, & |
---|
1977 | & ztv,po,zqta,fraca, & |
---|
1978 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
1979 | & ratqs,sigma_qtherm,zqs,t, & |
---|
1980 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
1981 | RETURN |
---|
1982 | ENDIF |
---|
1983 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1984 | |
---|
1985 | |
---|
1986 | !------------------------------------------------------------------------------- |
---|
1987 | ! Initialisation des variables r?elles |
---|
1988 | !------------------------------------------------------------------------------- |
---|
1989 | sigma1(:,ind2)=0. |
---|
1990 | sigma2(:,ind2)=0. |
---|
1991 | qlth(:,ind2)=0. |
---|
1992 | qlenv(:,ind2)=0. |
---|
1993 | qltot(:,ind2)=0. |
---|
1994 | rneb(:,ind2)=0. |
---|
1995 | qcloud(:)=0. |
---|
1996 | cth(:,ind2)=0. |
---|
1997 | cenv(:,ind2)=0. |
---|
1998 | ctot(:,ind2)=0. |
---|
1999 | cth_vol(:,ind2)=0. |
---|
2000 | cenv_vol(:,ind2)=0. |
---|
2001 | ctot_vol(:,ind2)=0. |
---|
2002 | qsatmmussig1=0. |
---|
2003 | qsatmmussig2=0. |
---|
2004 | rdd=287.04 |
---|
2005 | cppd=1005.7 |
---|
2006 | pi=3.14159 |
---|
2007 | Lv=2.5e6 |
---|
2008 | sqrt2pi=sqrt(2.*pi) |
---|
2009 | sqrt2=sqrt(2.) |
---|
2010 | sqrtpi=sqrt(pi) |
---|
2011 | |
---|
2012 | |
---|
2013 | !------------------------------------------------------------------------------- |
---|
2014 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
---|
2015 | !------------------------------------------------------------------------------- |
---|
2016 | do ind1=1,ngrid |
---|
2017 | |
---|
2018 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
2019 | |
---|
2020 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
2021 | |
---|
2022 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
2023 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
2024 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
2025 | qsatbef=MIN(0.5,qsatbef) |
---|
2026 | zcor=1./(1.-retv*qsatbef) |
---|
2027 | qsatbef=qsatbef*zcor |
---|
2028 | zqsatenv(ind1,ind2)=qsatbef |
---|
2029 | |
---|
2030 | |
---|
2031 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
2032 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
2033 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
2034 | |
---|
2035 | !po = qt de l'environnement ET des thermique |
---|
2036 | !zqenv = qt environnement |
---|
2037 | !zqsatenv = qsat environnement |
---|
2038 | !zthl = Tl environnement |
---|
2039 | |
---|
2040 | |
---|
2041 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
2042 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
2043 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
2044 | qsatbef=MIN(0.5,qsatbef) |
---|
2045 | zcor=1./(1.-retv*qsatbef) |
---|
2046 | qsatbef=qsatbef*zcor |
---|
2047 | zqsatth(ind1,ind2)=qsatbef |
---|
2048 | |
---|
2049 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
2050 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
2051 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
2052 | |
---|
2053 | !zqta = qt thermals |
---|
2054 | !zqsatth = qsat thermals |
---|
2055 | !ztla = Tl thermals |
---|
2056 | |
---|
2057 | !------------------------------------------------------------------------------ |
---|
2058 | ! s standard deviations |
---|
2059 | !------------------------------------------------------------------------------ |
---|
2060 | |
---|
2061 | ! tests |
---|
2062 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
2063 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
---|
2064 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
2065 | ! final option |
---|
2066 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
2067 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
2068 | |
---|
2069 | !------------------------------------------------------------------------------ |
---|
2070 | ! Condensed water and cloud cover |
---|
2071 | !------------------------------------------------------------------------------ |
---|
2072 | xth=sth/(sqrt2*sigma2s) |
---|
2073 | xenv=senv/(sqrt2*sigma1s) |
---|
2074 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
2075 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
2076 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
2077 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
2078 | |
---|
2079 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) |
---|
2080 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
2081 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
2082 | |
---|
2083 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
2084 | ctot(ind1,ind2)=0. |
---|
2085 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
2086 | else |
---|
2087 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
2088 | endif |
---|
2089 | |
---|
2090 | else ! Environnement only, follow the if l.110 |
---|
2091 | |
---|
2092 | zqenv(ind1)=po(ind1) |
---|
2093 | Tbef=t(ind1,ind2) |
---|
2094 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
2095 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
2096 | qsatbef=MIN(0.5,qsatbef) |
---|
2097 | zcor=1./(1.-retv*qsatbef) |
---|
2098 | qsatbef=qsatbef*zcor |
---|
2099 | zqsatenv(ind1,ind2)=qsatbef |
---|
2100 | |
---|
2101 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
2102 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
2103 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
2104 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
2105 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
2106 | |
---|
2107 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
2108 | |
---|
2109 | xenv=senv/(sqrt2*sigma1s) |
---|
2110 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
2111 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
2112 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
2113 | |
---|
2114 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
2115 | ctot(ind1,ind2)=0. |
---|
2116 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
2117 | else |
---|
2118 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
2119 | endif |
---|
2120 | |
---|
2121 | |
---|
2122 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
---|
2123 | enddo ! from the loop on ngrid l.108 |
---|
2124 | return |
---|
2125 | ! end |
---|
2126 | END SUBROUTINE cloudth_v3 |
---|
2127 | |
---|
2128 | |
---|
2129 | |
---|
2130 | !=========================================================================== |
---|
2131 | SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2, & |
---|
2132 | & ztv,po,zqta,fraca, & |
---|
2133 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
2134 | & ratqs,sigma_qtherm,zqs,t, & |
---|
2135 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
2136 | |
---|
2137 | !=========================================================================== |
---|
2138 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
2139 | ! Date : 25 Mai 2010 |
---|
2140 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
2141 | !=========================================================================== |
---|
2142 | |
---|
2143 | use yoethf_mod_h |
---|
2144 | use lmdz_lscp_ini, only : iflag_cloudth_vert,iflag_ratqs |
---|
2145 | use lmdz_lscp_ini, only : vert_alpha,vert_alpha_th, sigma1s_factor, sigma1s_power , sigma2s_factor , sigma2s_power , cloudth_ratqsmin , iflag_cloudth_vert_noratqs |
---|
2146 | |
---|
2147 | USE yomcst_mod_h |
---|
2148 | IMPLICIT NONE |
---|
2149 | |
---|
2150 | |
---|
2151 | |
---|
2152 | |
---|
2153 | INCLUDE "FCTTRE.h" |
---|
2154 | |
---|
2155 | INTEGER itap,ind1,ind2 |
---|
2156 | INTEGER ngrid,klev,klon,l,ig |
---|
2157 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
2158 | |
---|
2159 | REAL ztv(ngrid,klev) |
---|
2160 | REAL po(ngrid) |
---|
2161 | REAL zqenv(ngrid) |
---|
2162 | REAL zqta(ngrid,klev) |
---|
2163 | |
---|
2164 | REAL fraca(ngrid,klev+1) |
---|
2165 | REAL zpspsk(ngrid,klev) |
---|
2166 | REAL paprs(ngrid,klev+1) |
---|
2167 | REAL pplay(ngrid,klev) |
---|
2168 | REAL ztla(ngrid,klev) |
---|
2169 | REAL zthl(ngrid,klev) |
---|
2170 | |
---|
2171 | REAL zqsatth(ngrid,klev) |
---|
2172 | REAL zqsatenv(ngrid,klev) |
---|
2173 | |
---|
2174 | REAL sigma1(ngrid,klev) |
---|
2175 | REAL sigma2(ngrid,klev) |
---|
2176 | REAL qlth(ngrid,klev) |
---|
2177 | REAL qlenv(ngrid,klev) |
---|
2178 | REAL qltot(ngrid,klev) |
---|
2179 | REAL cth(ngrid,klev) |
---|
2180 | REAL cenv(ngrid,klev) |
---|
2181 | REAL ctot(ngrid,klev) |
---|
2182 | REAL cth_vol(ngrid,klev) |
---|
2183 | REAL cenv_vol(ngrid,klev) |
---|
2184 | REAL ctot_vol(ngrid,klev) |
---|
2185 | REAL rneb(ngrid,klev) |
---|
2186 | REAL t(ngrid,klev) |
---|
2187 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
---|
2188 | REAL rdd,cppd,Lv |
---|
2189 | REAL alth,alenv,ath,aenv |
---|
2190 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
---|
2191 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
2192 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
2193 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
2194 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
---|
2195 | REAL Tbef,zdelta,qsatbef,zcor |
---|
2196 | REAL qlbef |
---|
2197 | REAL ratqs(ngrid,klev),sigma_qtherm(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
2198 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
2199 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
2200 | |
---|
2201 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
2202 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
2203 | REAL zqs(ngrid), qcloud(ngrid) |
---|
2204 | |
---|
2205 | REAL rhodz(ngrid,klev) |
---|
2206 | REAL zrho(ngrid,klev) |
---|
2207 | REAL dz(ngrid,klev) |
---|
2208 | |
---|
2209 | DO ind1 = 1, ngrid |
---|
2210 | !Layer calculation |
---|
2211 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg !kg/m2 |
---|
2212 | zrho(ind1,ind2) = pplay(ind1,ind2)/t(ind1,ind2)/rd !kg/m3 |
---|
2213 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) !m : epaisseur de la couche en metre |
---|
2214 | END DO |
---|
2215 | |
---|
2216 | !------------------------------------------------------------------------------ |
---|
2217 | ! Initialize |
---|
2218 | !------------------------------------------------------------------------------ |
---|
2219 | |
---|
2220 | sigma1(:,ind2)=0. |
---|
2221 | sigma2(:,ind2)=0. |
---|
2222 | qlth(:,ind2)=0. |
---|
2223 | qlenv(:,ind2)=0. |
---|
2224 | qltot(:,ind2)=0. |
---|
2225 | rneb(:,ind2)=0. |
---|
2226 | qcloud(:)=0. |
---|
2227 | cth(:,ind2)=0. |
---|
2228 | cenv(:,ind2)=0. |
---|
2229 | ctot(:,ind2)=0. |
---|
2230 | cth_vol(:,ind2)=0. |
---|
2231 | cenv_vol(:,ind2)=0. |
---|
2232 | ctot_vol(:,ind2)=0. |
---|
2233 | qsatmmussig1=0. |
---|
2234 | qsatmmussig2=0. |
---|
2235 | rdd=287.04 |
---|
2236 | cppd=1005.7 |
---|
2237 | pi=3.14159 |
---|
2238 | Lv=2.5e6 |
---|
2239 | sqrt2pi=sqrt(2.*pi) |
---|
2240 | sqrt2=sqrt(2.) |
---|
2241 | sqrtpi=sqrt(pi) |
---|
2242 | |
---|
2243 | |
---|
2244 | |
---|
2245 | !------------------------------------------------------------------------------- |
---|
2246 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
---|
2247 | !------------------------------------------------------------------------------- |
---|
2248 | do ind1=1,ngrid |
---|
2249 | |
---|
2250 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement |
---|
2251 | |
---|
2252 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv |
---|
2253 | |
---|
2254 | |
---|
2255 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
2256 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
2257 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
2258 | qsatbef=MIN(0.5,qsatbef) |
---|
2259 | zcor=1./(1.-retv*qsatbef) |
---|
2260 | qsatbef=qsatbef*zcor |
---|
2261 | zqsatenv(ind1,ind2)=qsatbef |
---|
2262 | |
---|
2263 | |
---|
2264 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
2265 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
2266 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
2267 | |
---|
2268 | !zqenv = qt environnement |
---|
2269 | !zqsatenv = qsat environnement |
---|
2270 | !zthl = Tl environnement |
---|
2271 | |
---|
2272 | |
---|
2273 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
2274 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
2275 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
2276 | qsatbef=MIN(0.5,qsatbef) |
---|
2277 | zcor=1./(1.-retv*qsatbef) |
---|
2278 | qsatbef=qsatbef*zcor |
---|
2279 | zqsatth(ind1,ind2)=qsatbef |
---|
2280 | |
---|
2281 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
2282 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
2283 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
2284 | |
---|
2285 | |
---|
2286 | !zqta = qt thermals |
---|
2287 | !zqsatth = qsat thermals |
---|
2288 | !ztla = Tl thermals |
---|
2289 | !------------------------------------------------------------------------------ |
---|
2290 | ! s standard deviation |
---|
2291 | !------------------------------------------------------------------------------ |
---|
2292 | |
---|
2293 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
---|
2294 | & (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
2295 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
2296 | IF (cloudth_ratqsmin>0.) THEN |
---|
2297 | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
---|
2298 | ELSE |
---|
2299 | sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1) |
---|
2300 | ENDIF |
---|
2301 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
2302 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
2303 | IF (iflag_ratqs.eq.10.or.iflag_ratqs.eq.11) then |
---|
2304 | sigma1s = ratqs(ind1,ind2)*po(ind1)*aenv |
---|
2305 | IF (iflag_ratqs.eq.10.and.sigma_qtherm(ind1,ind2).ne.0) then |
---|
2306 | sigma2s = sigma_qtherm(ind1,ind2)*ath |
---|
2307 | ENDIF |
---|
2308 | ENDIF |
---|
2309 | |
---|
2310 | ! tests |
---|
2311 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
2312 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
---|
2313 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
2314 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
2315 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
2316 | ! ratqs(ind1,ind2)=0.002 |
---|
2317 | ! else |
---|
2318 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
2319 | ! endif |
---|
2320 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
2321 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
2322 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
2323 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
2324 | |
---|
2325 | IF (iflag_cloudth_vert == 1) THEN |
---|
2326 | !------------------------------------------------------------------------------- |
---|
2327 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
---|
2328 | !------------------------------------------------------------------------------- |
---|
2329 | |
---|
2330 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
2331 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
2332 | |
---|
2333 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
2334 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
2335 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
2336 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
2337 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
2338 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
2339 | |
---|
2340 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
2341 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
2342 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
2343 | |
---|
2344 | ! Environment |
---|
2345 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
2346 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
2347 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
2348 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
2349 | |
---|
2350 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
2351 | |
---|
2352 | ! Thermal |
---|
2353 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
2354 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
2355 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
2356 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
2357 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
2358 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
2359 | |
---|
2360 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
---|
2361 | IF (iflag_cloudth_vert < 5) THEN |
---|
2362 | !------------------------------------------------------------------------------- |
---|
2363 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
---|
2364 | !------------------------------------------------------------------------------- |
---|
2365 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
2366 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
2367 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
2368 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
2369 | IF (iflag_cloudth_vert == 3) THEN |
---|
2370 | deltasenv=aenv*vert_alpha*sigma1s |
---|
2371 | deltasth=ath*vert_alpha_th*sigma2s |
---|
2372 | ELSE IF (iflag_cloudth_vert == 4) THEN |
---|
2373 | IF (iflag_cloudth_vert_noratqs == 1) THEN |
---|
2374 | deltasenv=vert_alpha*max(sigma1s_fraca,1e-10) |
---|
2375 | deltasth=vert_alpha_th*sigma2s |
---|
2376 | ELSE |
---|
2377 | deltasenv=vert_alpha*sigma1s |
---|
2378 | deltasth=vert_alpha_th*sigma2s |
---|
2379 | ENDIF |
---|
2380 | ENDIF |
---|
2381 | |
---|
2382 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
2383 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
2384 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
2385 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
2386 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
2387 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
2388 | exp_xth1 = exp(-1.*xth1**2) |
---|
2389 | exp_xth2 = exp(-1.*xth2**2) |
---|
2390 | |
---|
2391 | !CF_surfacique |
---|
2392 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
2393 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
2394 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
2395 | |
---|
2396 | |
---|
2397 | !CF_volumique & eau condense |
---|
2398 | !environnement |
---|
2399 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
2400 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
2401 | if (deltasenv .lt. 1.e-10) then |
---|
2402 | qlenv(ind1,ind2)=IntJ |
---|
2403 | cenv_vol(ind1,ind2)=IntJ_CF |
---|
2404 | else |
---|
2405 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
2406 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
2407 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
2408 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
2409 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
2410 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
2411 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
2412 | endif |
---|
2413 | |
---|
2414 | !thermique |
---|
2415 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
2416 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
2417 | if (deltasth .lt. 1.e-10) then |
---|
2418 | qlth(ind1,ind2)=IntJ |
---|
2419 | cth_vol(ind1,ind2)=IntJ_CF |
---|
2420 | else |
---|
2421 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
2422 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
2423 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
2424 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
2425 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
2426 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
2427 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
2428 | endif |
---|
2429 | |
---|
2430 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
2431 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
2432 | |
---|
2433 | ELSE IF (iflag_cloudth_vert == 5) THEN |
---|
2434 | sigma1s=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
---|
2435 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
---|
2436 | +ratqs(ind1,ind2)*po(ind1) !Environment |
---|
2437 | sigma2s=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.02)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) !Thermals |
---|
2438 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
2439 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
2440 | xth=sth/(sqrt(2.)*sigma2s) |
---|
2441 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
2442 | |
---|
2443 | !Volumique |
---|
2444 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
2445 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
2446 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
2447 | !print *,'jeanjean_CV=',ctot_vol(ind1,ind2) |
---|
2448 | |
---|
2449 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth_vol(ind1,ind2)) |
---|
2450 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv_vol(ind1,ind2)) |
---|
2451 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
2452 | |
---|
2453 | !Surfacique |
---|
2454 | !Neggers |
---|
2455 | !beta=0.0044 |
---|
2456 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
2457 | !print *,'jeanjean : beta=',beta |
---|
2458 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho |
---|
2459 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho |
---|
2460 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
2461 | |
---|
2462 | !Brooks |
---|
2463 | a_Brooks=0.6694 |
---|
2464 | b_Brooks=0.1882 |
---|
2465 | A_Maj_Brooks=0.1635 !-- sans shear |
---|
2466 | !A_Maj_Brooks=0.17 !-- ARM LES |
---|
2467 | !A_Maj_Brooks=0.18 !-- RICO LES |
---|
2468 | !A_Maj_Brooks=0.19 !-- BOMEX LES |
---|
2469 | Dx_Brooks=200000. |
---|
2470 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
2471 | !print *,'jeanjean_f=',f_Brooks |
---|
2472 | |
---|
2473 | cth(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cth_vol(ind1,ind2),1.)))- 1.)) |
---|
2474 | cenv(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cenv_vol(ind1,ind2),1.)))- 1.)) |
---|
2475 | ctot(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
2476 | !print *,'JJ_ctot_1',ctot(ind1,ind2) |
---|
2477 | |
---|
2478 | |
---|
2479 | |
---|
2480 | |
---|
2481 | |
---|
2482 | ENDIF ! of if (iflag_cloudth_vert<5) |
---|
2483 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
---|
2484 | |
---|
2485 | ! if (ctot(ind1,ind2).lt.1.e-10) then |
---|
2486 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
2487 | ctot(ind1,ind2)=0. |
---|
2488 | ctot_vol(ind1,ind2)=0. |
---|
2489 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
2490 | |
---|
2491 | else |
---|
2492 | |
---|
2493 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
2494 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
2495 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
2496 | |
---|
2497 | endif |
---|
2498 | |
---|
2499 | else ! gaussienne environnement seule |
---|
2500 | |
---|
2501 | |
---|
2502 | zqenv(ind1)=po(ind1) |
---|
2503 | Tbef=t(ind1,ind2) |
---|
2504 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
2505 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
2506 | qsatbef=MIN(0.5,qsatbef) |
---|
2507 | zcor=1./(1.-retv*qsatbef) |
---|
2508 | qsatbef=qsatbef*zcor |
---|
2509 | zqsatenv(ind1,ind2)=qsatbef |
---|
2510 | |
---|
2511 | |
---|
2512 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
2513 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
2514 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
2515 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
2516 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
2517 | sth=0. |
---|
2518 | |
---|
2519 | |
---|
2520 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
2521 | sigma2s=0. |
---|
2522 | |
---|
2523 | sqrt2pi=sqrt(2.*pi) |
---|
2524 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
2525 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
2526 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
2527 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
2528 | |
---|
2529 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
2530 | ctot(ind1,ind2)=0. |
---|
2531 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
2532 | |
---|
2533 | else |
---|
2534 | |
---|
2535 | ! ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
2536 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
2537 | |
---|
2538 | endif |
---|
2539 | |
---|
2540 | |
---|
2541 | |
---|
2542 | |
---|
2543 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
---|
2544 | ! Outputs used to check the PDFs |
---|
2545 | cloudth_senv(ind1,ind2) = senv |
---|
2546 | cloudth_sth(ind1,ind2) = sth |
---|
2547 | cloudth_sigmaenv(ind1,ind2) = sigma1s |
---|
2548 | cloudth_sigmath(ind1,ind2) = sigma2s |
---|
2549 | |
---|
2550 | enddo ! from the loop on ngrid l.333 |
---|
2551 | return |
---|
2552 | ! end |
---|
2553 | END SUBROUTINE cloudth_vert_v3 |
---|
2554 | ! |
---|
2555 | |
---|
2556 | |
---|
2557 | |
---|
2558 | |
---|
2559 | |
---|
2560 | |
---|
2561 | |
---|
2562 | |
---|
2563 | |
---|
2564 | |
---|
2565 | |
---|
2566 | SUBROUTINE cloudth_v6(ngrid,klev,ind2, & |
---|
2567 | & ztv,po,zqta,fraca, & |
---|
2568 | & qcloud,ctot_surf,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
2569 | & ratqs,zqs,T, & |
---|
2570 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
2571 | |
---|
2572 | USE yoethf_mod_h |
---|
2573 | USE lmdz_lscp_ini, only: iflag_cloudth_vert |
---|
2574 | |
---|
2575 | USE yomcst_mod_h |
---|
2576 | IMPLICIT NONE |
---|
2577 | |
---|
2578 | |
---|
2579 | |
---|
2580 | INCLUDE "FCTTRE.h" |
---|
2581 | |
---|
2582 | |
---|
2583 | !Domain variables |
---|
2584 | INTEGER ngrid !indice Max lat-lon |
---|
2585 | INTEGER klev !indice Max alt |
---|
2586 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
2587 | INTEGER ind1 !indice in [1:ngrid] |
---|
2588 | INTEGER ind2 !indice in [1:klev] |
---|
2589 | !thermal plume fraction |
---|
2590 | REAL fraca(ngrid,klev+1) !thermal plumes fraction in the gridbox |
---|
2591 | !temperatures |
---|
2592 | REAL T(ngrid,klev) !temperature |
---|
2593 | REAL zpspsk(ngrid,klev) !factor (p/p0)**kappa (used for potential variables) |
---|
2594 | REAL ztv(ngrid,klev) !potential temperature (voir thermcell_env.F90) |
---|
2595 | REAL ztla(ngrid,klev) !liquid temperature in the thermals (Tl_th) |
---|
2596 | REAL zthl(ngrid,klev) !liquid temperature in the environment (Tl_env) |
---|
2597 | !pressure |
---|
2598 | REAL paprs(ngrid,klev+1) !pressure at the interface of levels |
---|
2599 | REAL pplay(ngrid,klev) !pressure at the middle of the level |
---|
2600 | !humidity |
---|
2601 | REAL ratqs(ngrid,klev) !width of the total water subgrid-scale distribution |
---|
2602 | REAL po(ngrid) !total water (qt) |
---|
2603 | REAL zqenv(ngrid) !total water in the environment (qt_env) |
---|
2604 | REAL zqta(ngrid,klev) !total water in the thermals (qt_th) |
---|
2605 | REAL zqsatth(ngrid,klev) !water saturation level in the thermals (q_sat_th) |
---|
2606 | REAL zqsatenv(ngrid,klev) !water saturation level in the environment (q_sat_env) |
---|
2607 | REAL qlth(ngrid,klev) !condensed water in the thermals |
---|
2608 | REAL qlenv(ngrid,klev) !condensed water in the environment |
---|
2609 | REAL qltot(ngrid,klev) !condensed water in the gridbox |
---|
2610 | !cloud fractions |
---|
2611 | REAL cth_vol(ngrid,klev) !cloud fraction by volume in the thermals |
---|
2612 | REAL cenv_vol(ngrid,klev) !cloud fraction by volume in the environment |
---|
2613 | REAL ctot_vol(ngrid,klev) !cloud fraction by volume in the gridbox |
---|
2614 | REAL cth_surf(ngrid,klev) !cloud fraction by surface in the thermals |
---|
2615 | REAL cenv_surf(ngrid,klev) !cloud fraction by surface in the environment |
---|
2616 | REAL ctot_surf(ngrid,klev) !cloud fraction by surface in the gridbox |
---|
2617 | !PDF of saturation deficit variables |
---|
2618 | REAL rdd,cppd,Lv |
---|
2619 | REAL Tbef,zdelta,qsatbef,zcor |
---|
2620 | REAL alth,alenv,ath,aenv |
---|
2621 | REAL sth,senv !saturation deficits in the thermals and environment |
---|
2622 | REAL sigma_env,sigma_th !standard deviations of the biGaussian PDF |
---|
2623 | !cloud fraction variables |
---|
2624 | REAL xth,xenv |
---|
2625 | REAL inverse_rho,beta !Neggers et al. (2011) method |
---|
2626 | REAL a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks !Brooks et al. (2005) method |
---|
2627 | !Incloud total water variables |
---|
2628 | REAL zqs(ngrid) !q_sat |
---|
2629 | REAL qcloud(ngrid) !eau totale dans le nuage |
---|
2630 | !Some arithmetic variables |
---|
2631 | REAL pi,sqrt2,sqrt2pi |
---|
2632 | !Depth of the layer |
---|
2633 | REAL dz(ngrid,klev) !epaisseur de la couche en metre |
---|
2634 | REAL rhodz(ngrid,klev) |
---|
2635 | REAL zrho(ngrid,klev) |
---|
2636 | DO ind1 = 1, ngrid |
---|
2637 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg ![kg/m2] |
---|
2638 | zrho(ind1,ind2) = pplay(ind1,ind2)/T(ind1,ind2)/rd ![kg/m3] |
---|
2639 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) ![m] |
---|
2640 | END DO |
---|
2641 | |
---|
2642 | !------------------------------------------------------------------------------ |
---|
2643 | ! Initialization |
---|
2644 | !------------------------------------------------------------------------------ |
---|
2645 | qlth(:,ind2)=0. |
---|
2646 | qlenv(:,ind2)=0. |
---|
2647 | qltot(:,ind2)=0. |
---|
2648 | cth_vol(:,ind2)=0. |
---|
2649 | cenv_vol(:,ind2)=0. |
---|
2650 | ctot_vol(:,ind2)=0. |
---|
2651 | cth_surf(:,ind2)=0. |
---|
2652 | cenv_surf(:,ind2)=0. |
---|
2653 | ctot_surf(:,ind2)=0. |
---|
2654 | qcloud(:)=0. |
---|
2655 | rdd=287.04 |
---|
2656 | cppd=1005.7 |
---|
2657 | pi=3.14159 |
---|
2658 | Lv=2.5e6 |
---|
2659 | sqrt2=sqrt(2.) |
---|
2660 | sqrt2pi=sqrt(2.*pi) |
---|
2661 | |
---|
2662 | |
---|
2663 | DO ind1=1,ngrid |
---|
2664 | !------------------------------------------------------------------------------- |
---|
2665 | !Both thermal and environment in the gridbox |
---|
2666 | !------------------------------------------------------------------------------- |
---|
2667 | IF ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) THEN |
---|
2668 | !-------------------------------------------- |
---|
2669 | !calcul de qsat_env |
---|
2670 | !-------------------------------------------- |
---|
2671 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
2672 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
2673 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
2674 | qsatbef=MIN(0.5,qsatbef) |
---|
2675 | zcor=1./(1.-retv*qsatbef) |
---|
2676 | qsatbef=qsatbef*zcor |
---|
2677 | zqsatenv(ind1,ind2)=qsatbef |
---|
2678 | !-------------------------------------------- |
---|
2679 | !calcul de s_env |
---|
2680 | !-------------------------------------------- |
---|
2681 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
2682 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
2683 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
2684 | !-------------------------------------------- |
---|
2685 | !calcul de qsat_th |
---|
2686 | !-------------------------------------------- |
---|
2687 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
2688 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
2689 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
2690 | qsatbef=MIN(0.5,qsatbef) |
---|
2691 | zcor=1./(1.-retv*qsatbef) |
---|
2692 | qsatbef=qsatbef*zcor |
---|
2693 | zqsatth(ind1,ind2)=qsatbef |
---|
2694 | !-------------------------------------------- |
---|
2695 | !calcul de s_th |
---|
2696 | !-------------------------------------------- |
---|
2697 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
2698 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
2699 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
2700 | !-------------------------------------------- |
---|
2701 | !calcul standard deviations bi-Gaussian PDF |
---|
2702 | !-------------------------------------------- |
---|
2703 | sigma_th=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.01)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) |
---|
2704 | sigma_env=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
---|
2705 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
---|
2706 | +ratqs(ind1,ind2)*po(ind1) |
---|
2707 | xth=sth/(sqrt2*sigma_th) |
---|
2708 | xenv=senv/(sqrt2*sigma_env) |
---|
2709 | !-------------------------------------------- |
---|
2710 | !Cloud fraction by volume CF_vol |
---|
2711 | !-------------------------------------------- |
---|
2712 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
2713 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
2714 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
2715 | !-------------------------------------------- |
---|
2716 | !Condensed water qc |
---|
2717 | !-------------------------------------------- |
---|
2718 | qlth(ind1,ind2)=sigma_th*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth_vol(ind1,ind2)) |
---|
2719 | qlenv(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv_vol(ind1,ind2)) |
---|
2720 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
2721 | !-------------------------------------------- |
---|
2722 | !Cloud fraction by surface CF_surf |
---|
2723 | !-------------------------------------------- |
---|
2724 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
2725 | !beta=0.0044 (Jouhaud et al.2018) |
---|
2726 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
2727 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
2728 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
2729 | a_Brooks=0.6694 |
---|
2730 | b_Brooks=0.1882 |
---|
2731 | A_Maj_Brooks=0.1635 !-- sans dependence au cisaillement de vent |
---|
2732 | Dx_Brooks=200000. !-- si l'on considere des mailles de 200km de cote |
---|
2733 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
2734 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
2735 | !-------------------------------------------- |
---|
2736 | !Incloud Condensed water qcloud |
---|
2737 | !-------------------------------------------- |
---|
2738 | if (ctot_surf(ind1,ind2) .lt. 1.e-10) then |
---|
2739 | ctot_vol(ind1,ind2)=0. |
---|
2740 | ctot_surf(ind1,ind2)=0. |
---|
2741 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
2742 | else |
---|
2743 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqs(ind1) |
---|
2744 | endif |
---|
2745 | |
---|
2746 | |
---|
2747 | |
---|
2748 | !------------------------------------------------------------------------------- |
---|
2749 | !Environment only in the gridbox |
---|
2750 | !------------------------------------------------------------------------------- |
---|
2751 | ELSE |
---|
2752 | !-------------------------------------------- |
---|
2753 | !calcul de qsat_env |
---|
2754 | !-------------------------------------------- |
---|
2755 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
2756 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
2757 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
2758 | qsatbef=MIN(0.5,qsatbef) |
---|
2759 | zcor=1./(1.-retv*qsatbef) |
---|
2760 | qsatbef=qsatbef*zcor |
---|
2761 | zqsatenv(ind1,ind2)=qsatbef |
---|
2762 | !-------------------------------------------- |
---|
2763 | !calcul de s_env |
---|
2764 | !-------------------------------------------- |
---|
2765 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
2766 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
2767 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
2768 | !-------------------------------------------- |
---|
2769 | !calcul standard deviations Gaussian PDF |
---|
2770 | !-------------------------------------------- |
---|
2771 | zqenv(ind1)=po(ind1) |
---|
2772 | sigma_env=ratqs(ind1,ind2)*zqenv(ind1) |
---|
2773 | xenv=senv/(sqrt2*sigma_env) |
---|
2774 | !-------------------------------------------- |
---|
2775 | !Cloud fraction by volume CF_vol |
---|
2776 | !-------------------------------------------- |
---|
2777 | ctot_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
2778 | !-------------------------------------------- |
---|
2779 | !Condensed water qc |
---|
2780 | !-------------------------------------------- |
---|
2781 | qltot(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*ctot_vol(ind1,ind2)) |
---|
2782 | !-------------------------------------------- |
---|
2783 | !Cloud fraction by surface CF_surf |
---|
2784 | !-------------------------------------------- |
---|
2785 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
2786 | !beta=0.0044 (Jouhaud et al.2018) |
---|
2787 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
2788 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
2789 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
2790 | a_Brooks=0.6694 |
---|
2791 | b_Brooks=0.1882 |
---|
2792 | A_Maj_Brooks=0.1635 !-- sans dependence au shear |
---|
2793 | Dx_Brooks=200000. |
---|
2794 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
2795 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
2796 | !-------------------------------------------- |
---|
2797 | !Incloud Condensed water qcloud |
---|
2798 | !-------------------------------------------- |
---|
2799 | if (ctot_surf(ind1,ind2) .lt. 1.e-8) then |
---|
2800 | ctot_vol(ind1,ind2)=0. |
---|
2801 | ctot_surf(ind1,ind2)=0. |
---|
2802 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
2803 | else |
---|
2804 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
2805 | endif |
---|
2806 | |
---|
2807 | |
---|
2808 | END IF ! From the separation (thermal/envrionnement) et (environnement only) |
---|
2809 | |
---|
2810 | ! Outputs used to check the PDFs |
---|
2811 | cloudth_senv(ind1,ind2) = senv |
---|
2812 | cloudth_sth(ind1,ind2) = sth |
---|
2813 | cloudth_sigmaenv(ind1,ind2) = sigma_env |
---|
2814 | cloudth_sigmath(ind1,ind2) = sigma_th |
---|
2815 | |
---|
2816 | END DO ! From the loop on ngrid |
---|
2817 | return |
---|
2818 | |
---|
2819 | END SUBROUTINE cloudth_v6 |
---|
2820 | |
---|
2821 | |
---|
2822 | |
---|
2823 | END MODULE lmdz_lscp_condensation |
---|