1 | MODULE lmdz_lscp_condensation |
---|
2 | !---------------------------------------------------------------- |
---|
3 | ! Module for condensation of clouds routines |
---|
4 | ! that are called in LSCP |
---|
5 | |
---|
6 | |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | CONTAINS |
---|
10 | |
---|
11 | !********************************************************************************* |
---|
12 | SUBROUTINE condensation_lognormal_test(klon,klev,k,keepgoing,ratqs, gammasat,zq, zqs, zqn, qvc, rneb) |
---|
13 | |
---|
14 | |
---|
15 | IMPLICIT NONE |
---|
16 | |
---|
17 | INTEGER, INTENT(IN) :: klon,klev,k |
---|
18 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
19 | REAL, INTENT(IN), DIMENSION(klon,klev) :: ratqs |
---|
20 | REAL, INTENT(IN), DIMENSION(klon) :: zq, zqs,gammasat |
---|
21 | REAL, INTENT(INOUT), DIMENSION(klon) :: zqn, qvc |
---|
22 | REAL, INTENT(INOUT), DIMENSION(klon,klev) :: rneb |
---|
23 | |
---|
24 | REAL, DIMENSION(klon) :: zpdf_sig,zpdf_k,zpdf_delta ! lognormal parameters |
---|
25 | REAL, DIMENSION(klon) :: Zpdf_a,zpdf_b,zpdf_e1,zpdf_e2 ! lognormal intermediate variables |
---|
26 | INTEGER :: i |
---|
27 | |
---|
28 | |
---|
29 | DO i=1,klon !todoan : check if loop in i is needed |
---|
30 | |
---|
31 | IF (keepgoing(i)) THEN |
---|
32 | |
---|
33 | zpdf_sig(i)=ratqs(i,k)*zq(i) |
---|
34 | zpdf_k(i)=-sqrt(log(1.+(zpdf_sig(i)/zq(i))**2)) |
---|
35 | zpdf_delta(i)=log(zq(i)/(gammasat(i)*zqs(i))) |
---|
36 | zpdf_a(i)=zpdf_delta(i)/(zpdf_k(i)*sqrt(2.)) |
---|
37 | zpdf_b(i)=zpdf_k(i)/(2.*sqrt(2.)) |
---|
38 | zpdf_e1(i)=zpdf_a(i)-zpdf_b(i) |
---|
39 | zpdf_e1(i)=sign(min(ABS(zpdf_e1(i)),5.),zpdf_e1(i)) |
---|
40 | zpdf_e1(i)=1.-erf(zpdf_e1(i)) |
---|
41 | zpdf_e2(i)=zpdf_a(i)+zpdf_b(i) |
---|
42 | zpdf_e2(i)=sign(min(ABS(zpdf_e2(i)),5.),zpdf_e2(i)) |
---|
43 | zpdf_e2(i)=1.-erf(zpdf_e2(i)) |
---|
44 | |
---|
45 | IF (zpdf_e1(i).LT.1.e-10) THEN |
---|
46 | rneb(i,k)=0. |
---|
47 | zqn(i)=zqs(i) |
---|
48 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
49 | qvc(i) = 0. |
---|
50 | ELSE |
---|
51 | rneb(i,k)=0.5*zpdf_e1(i) |
---|
52 | zqn(i)=zq(i)*zpdf_e2(i)/zpdf_e1(i) |
---|
53 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
54 | qvc(i) = rneb(i,k) * zqs(i) |
---|
55 | ENDIF |
---|
56 | |
---|
57 | ENDIF ! keepgoing |
---|
58 | ENDDO ! loop on klon |
---|
59 | |
---|
60 | |
---|
61 | END SUBROUTINE condensation_lognormal_test |
---|
62 | |
---|
63 | |
---|
64 | !********************************************************************************** |
---|
65 | SUBROUTINE condensation_lognormal( & |
---|
66 | klon, temp, qtot, qsat, gamma_cond, ratqs, & |
---|
67 | keepgoing, cldfra, qincld, qvc) |
---|
68 | |
---|
69 | !---------------------------------------------------------------------- |
---|
70 | ! This subroutine calculates the formation of clouds, using a |
---|
71 | ! statistical cloud scheme. It uses a generalised lognormal distribution |
---|
72 | ! of total water in the gridbox |
---|
73 | ! See Bony and Emanuel, 2001 |
---|
74 | !---------------------------------------------------------------------- |
---|
75 | |
---|
76 | USE lmdz_lscp_ini, ONLY: eps |
---|
77 | |
---|
78 | IMPLICIT NONE |
---|
79 | |
---|
80 | ! |
---|
81 | ! Input |
---|
82 | ! |
---|
83 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
84 | ! |
---|
85 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
86 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
---|
87 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
88 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
89 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
90 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
91 | ! |
---|
92 | ! Output |
---|
93 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
94 | ! (in some cases, the values are not re-computed) but the values |
---|
95 | ! are never used explicitely |
---|
96 | ! |
---|
97 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
98 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
99 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
100 | ! |
---|
101 | ! Local |
---|
102 | ! |
---|
103 | INTEGER :: i |
---|
104 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
105 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
106 | ! |
---|
107 | !--Loop on klon |
---|
108 | ! |
---|
109 | DO i = 1, klon |
---|
110 | |
---|
111 | !--If a new calculation of the condensation is needed, |
---|
112 | !--i.e., temperature has not yet converged (or the cloud is |
---|
113 | !--formed elsewhere) |
---|
114 | IF (keepgoing(i)) THEN |
---|
115 | |
---|
116 | pdf_std = ratqs(i) * qtot(i) |
---|
117 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2 ) ) |
---|
118 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
119 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
120 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
121 | pdf_e1 = pdf_a - pdf_b |
---|
122 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
123 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
124 | pdf_e2 = pdf_a + pdf_b |
---|
125 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
126 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
127 | |
---|
128 | |
---|
129 | IF ( pdf_e1 .LT. eps ) THEN |
---|
130 | cldfra(i) = 0. |
---|
131 | qincld(i) = qsat(i) |
---|
132 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
133 | qvc(i) = 0. |
---|
134 | ELSE |
---|
135 | cldfra(i) = 0.5 * pdf_e1 |
---|
136 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
---|
137 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
138 | qvc(i) = qsat(i) * cldfra(i) |
---|
139 | ENDIF |
---|
140 | |
---|
141 | ENDIF ! end keepgoing |
---|
142 | |
---|
143 | ENDDO ! end loop on i |
---|
144 | END SUBROUTINE condensation_lognormal |
---|
145 | !********************************************************************************** |
---|
146 | |
---|
147 | !********************************************************************************** |
---|
148 | SUBROUTINE condensation_ice_supersat( & |
---|
149 | klon, dtime, missing_val, pplay, paprsdn, paprsup, & |
---|
150 | cf_seri, rvc_seri, ratio_qi_qtot, shear, pbl_eps, cell_area, & |
---|
151 | temp, qtot, qsat, gamma_cond, ratqs, keepgoing, & |
---|
152 | cldfra, qincld, qvc, issrfra, qissr, dcf_sub, dcf_con, dcf_mix, & |
---|
153 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, dqvc_sub, dqvc_con, dqvc_mix, & |
---|
154 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, flight_dist, flight_h2o, & |
---|
155 | dcf_avi, dqi_avi, dqvc_avi) |
---|
156 | |
---|
157 | !---------------------------------------------------------------------- |
---|
158 | ! This subroutine calculates the formation, evolution and dissipation |
---|
159 | ! of clouds, using a process-oriented treatment of the cloud properties |
---|
160 | ! (cloud fraction, vapor in the cloud, condensed water in the cloud). |
---|
161 | ! It allows for ice supersaturation in cold regions, in clear sky. |
---|
162 | ! If ok_unadjusted_clouds, it also allows for sub- and supersaturated |
---|
163 | ! cloud water vapors. |
---|
164 | ! It also allows for the formation and evolution of condensation trails |
---|
165 | ! (contrails) from aviation. |
---|
166 | ! Authors: Audran Borella, Etienne Vignon, Olivier Boucher |
---|
167 | ! April 2024 |
---|
168 | !---------------------------------------------------------------------- |
---|
169 | |
---|
170 | USE lmdz_lscp_tools, ONLY: calc_qsat_ecmwf, calc_gammasat, GAMMAINC |
---|
171 | USE lmdz_lscp_ini, ONLY: RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RV, RPI, EPS_W |
---|
172 | USE lmdz_lscp_ini, ONLY: eps, temp_nowater, ok_weibull_warm_clouds |
---|
173 | USE lmdz_lscp_ini, ONLY: ok_unadjusted_clouds, iflag_cloud_sublim_pdf |
---|
174 | USE lmdz_lscp_ini, ONLY: lunout |
---|
175 | |
---|
176 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, & |
---|
177 | mu_subl_pdf_lscp, beta_pdf_lscp, temp_thresh_pdf_lscp, & |
---|
178 | rhlmid_pdf_lscp, k0_pdf_lscp, kappa_pdf_lscp, rhl0_pdf_lscp, & |
---|
179 | coef_mixing_lscp, coef_shear_lscp, & |
---|
180 | chi_mixing_lscp, rho_ice |
---|
181 | |
---|
182 | IMPLICIT NONE |
---|
183 | |
---|
184 | ! |
---|
185 | ! Input |
---|
186 | ! |
---|
187 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
188 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
189 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
190 | ! |
---|
191 | REAL, INTENT(IN) , DIMENSION(klon) :: pplay ! layer pressure [Pa] |
---|
192 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsdn ! pressure at the lower interface [Pa] |
---|
193 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsup ! pressure at the upper interface [Pa] |
---|
194 | REAL, INTENT(IN) , DIMENSION(klon) :: cf_seri ! cloud fraction [-] |
---|
195 | REAL, INTENT(IN) , DIMENSION(klon) :: rvc_seri ! gridbox-mean water vapor in cloud [kg/kg] |
---|
196 | REAL, INTENT(IN) , DIMENSION(klon) :: ratio_qi_qtot ! specific ice water content to total specific water ratio [-] |
---|
197 | REAL, INTENT(IN) , DIMENSION(klon) :: shear ! vertical shear [s-1] |
---|
198 | REAL, INTENT(IN) , DIMENSION(klon) :: pbl_eps ! |
---|
199 | REAL, INTENT(IN) , DIMENSION(klon) :: cell_area ! |
---|
200 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
201 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
---|
202 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
203 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
204 | REAL, INTENT(INOUT), DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
205 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
206 | ! |
---|
207 | ! Input for aviation |
---|
208 | ! |
---|
209 | REAL, INTENT(IN), DIMENSION(klon) :: flight_dist ! |
---|
210 | REAL, INTENT(IN), DIMENSION(klon) :: flight_h2o ! |
---|
211 | ! |
---|
212 | ! Output |
---|
213 | ! NB. cldfra and qincld should be outputed as cf_seri and qi_seri, |
---|
214 | ! or as tendencies (maybe in the future) |
---|
215 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
216 | ! (in some cases, the values are not re-computed) but the values |
---|
217 | ! are never used explicitely |
---|
218 | ! |
---|
219 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
220 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
221 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
222 | REAL, INTENT(INOUT), DIMENSION(klon) :: issrfra ! ISSR fraction [-] |
---|
223 | REAL, INTENT(INOUT), DIMENSION(klon) :: qissr ! gridbox-mean ISSR specific water [kg/kg] |
---|
224 | ! |
---|
225 | ! Diagnostics for condensation and ice supersaturation |
---|
226 | ! NB. idem for the INOUT |
---|
227 | ! |
---|
228 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_sub ! cloud fraction tendency because of sublimation [s-1] |
---|
229 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_con ! cloud fraction tendency because of condensation [s-1] |
---|
230 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_mix ! cloud fraction tendency because of cloud mixing [s-1] |
---|
231 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_adj ! specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
232 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_sub ! specific ice content tendency because of sublimation [kg/kg/s] |
---|
233 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_con ! specific ice content tendency because of condensation [kg/kg/s] |
---|
234 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_mix ! specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
235 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_adj ! specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
236 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_sub ! specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
237 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_con ! specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
238 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_mix ! specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
239 | ! |
---|
240 | ! Diagnostics for aviation |
---|
241 | ! NB. idem for the INOUT |
---|
242 | ! |
---|
243 | REAL, INTENT(INOUT), DIMENSION(klon) :: Tcontr ! critical temperature for contrail formation (T_LM in Schumann 1996, Eq 31 in appendix 2) [K] |
---|
244 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcontr ! |
---|
245 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcontr2 ! |
---|
246 | REAL, INTENT(INOUT), DIMENSION(klon) :: fcontrN ! |
---|
247 | REAL, INTENT(INOUT), DIMENSION(klon) :: fcontrP ! |
---|
248 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_avi ! cloud fraction tendency because of aviation [s-1] |
---|
249 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_avi ! specific ice content tendency because of aviation [kg/kg/s] |
---|
250 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_avi ! specific cloud water vapor tendency because of aviation [kg/kg/s] |
---|
251 | ! |
---|
252 | ! Local |
---|
253 | ! |
---|
254 | INTEGER :: i |
---|
255 | LOGICAL :: ok_warm_cloud |
---|
256 | REAL, DIMENSION(klon) :: qcld, qzero |
---|
257 | ! |
---|
258 | ! for lognormal |
---|
259 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
260 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
261 | ! |
---|
262 | ! for unadjusted clouds |
---|
263 | REAL :: qvapincld, qvapincld_new |
---|
264 | REAL :: qiceincld, qice_ratio |
---|
265 | REAL :: pres_sat, kappa |
---|
266 | REAL :: air_thermal_conduct, water_vapor_diff |
---|
267 | REAL :: iwc |
---|
268 | REAL :: iwc_log_inf100, iwc_log_sup100 |
---|
269 | REAL :: iwc_inf100, alpha_inf100, coef_inf100 |
---|
270 | REAL :: mu_sup100, sigma_sup100, coef_sup100 |
---|
271 | REAL :: Dm_ice, rm_ice |
---|
272 | ! |
---|
273 | ! for sublimation |
---|
274 | REAL :: pdf_alpha |
---|
275 | REAL :: dqt_sub |
---|
276 | ! |
---|
277 | ! for condensation |
---|
278 | REAL, DIMENSION(klon) :: qsatl, dqsatl |
---|
279 | REAL :: clrfra, qclr, sl_clr, rhl_clr |
---|
280 | REAL :: pdf_ratqs, pdf_skew, pdf_scale, pdf_loc |
---|
281 | REAL :: pdf_x, pdf_y, pdf_T |
---|
282 | REAL :: pdf_e3, pdf_e4 |
---|
283 | REAL :: cf_cond, qt_cond, dqt_con |
---|
284 | ! |
---|
285 | ! for mixing |
---|
286 | REAL, DIMENSION(klon) :: subfra, qsub |
---|
287 | REAL :: dqt_mix_sub, dqt_mix_issr |
---|
288 | REAL :: dcf_mix_sub, dcf_mix_issr |
---|
289 | REAL :: dqvc_mix_sub, dqvc_mix_issr |
---|
290 | REAL :: dqt_mix |
---|
291 | REAL :: a_mix, bovera, N_cld_mix, L_mix |
---|
292 | REAL :: envfra_mix, cldfra_mix |
---|
293 | REAL :: L_shear, shear_fra |
---|
294 | REAL :: sigma_mix, issrfra_mix, subfra_mix, qvapinmix |
---|
295 | ! |
---|
296 | ! for cell properties |
---|
297 | REAL :: rho, rhodz, dz |
---|
298 | !REAL :: V_cell, M_cell |
---|
299 | ! |
---|
300 | ! for aviation and cell properties |
---|
301 | !REAL :: dqt_avi |
---|
302 | !REAL :: contrail_fra |
---|
303 | ! |
---|
304 | ! |
---|
305 | !--more local variables for diagnostics |
---|
306 | !--imported from YOMCST.h |
---|
307 | !--eps_w = 0.622 = ratio of molecular masses of water and dry air (kg H2O kg air -1) |
---|
308 | !--RCPD = 1004 J kg air−1 K−1 = the isobaric heat capacity of air |
---|
309 | !--values from Schumann, Meteorol Zeitschrift, 1996 |
---|
310 | !--EiH2O = 1.25 / 2.24 / 8.94 kg H2O / kg fuel for kerosene / methane / dihydrogen |
---|
311 | !--Qheat = 43. / 50. / 120. MJ / kg fuel for kerosene / methane / dihydrogen |
---|
312 | !REAL, PARAMETER :: EiH2O=1.25 !--emission index of water vapour for kerosene (kg kg-1) |
---|
313 | !REAL, PARAMETER :: Qheat=43.E6 !--specific combustion heat for kerosene (J kg-1) |
---|
314 | !REAL, PARAMETER :: eta=0.3 !--average propulsion efficiency of the aircraft |
---|
315 | !--Gcontr is the slope of the mean phase trajectory in the turbulent exhaust field on an absolute |
---|
316 | !--temperature versus water vapor partial pressure diagram. G has the unit of Pa K−1. Rap et al JGR 2010. |
---|
317 | !REAL :: Gcontr |
---|
318 | !--Tcontr = critical temperature for contrail formation (T_LM in Schumann 1996, Eq 31 in appendix 2) |
---|
319 | !--qsatliqcontr = e_L(T_LM) in Schumann 1996 but expressed in specific humidity (kg kg humid air-1) |
---|
320 | !REAL :: qsatliqcontr |
---|
321 | |
---|
322 | |
---|
323 | !----------------------------------------------- |
---|
324 | ! Initialisations |
---|
325 | !----------------------------------------------- |
---|
326 | |
---|
327 | ! Ajout des émissions de H2O dues à l'aviation |
---|
328 | ! q is the specific humidity (kg/kg humid air) hence the complicated equation to update q |
---|
329 | ! qnew = ( m_humid_air * qold + dm_H2O ) / ( m_humid_air + dm_H2O ) |
---|
330 | ! = ( m_dry_air * qold + dm_h2O * (1-qold) ) / (m_dry_air + dm_H2O * (1-qold) ) |
---|
331 | ! The equation is derived by writing m_humid_air = m_dry_air + m_H2O = m_dry_air / (1-q) |
---|
332 | ! flight_h2O is in kg H2O / s / cell |
---|
333 | ! |
---|
334 | !IF (ok_plane_h2o) THEN |
---|
335 | ! q = ( M_cell*q + flight_h2o(i,k)*dtime*(1.-q) ) / (M_cell + flight_h2o(i,k)*dtime*(1.-q) ) |
---|
336 | !ENDIF |
---|
337 | |
---|
338 | |
---|
339 | qzero(:) = 0. |
---|
340 | |
---|
341 | !--Calculation of qsat w.r.t. liquid |
---|
342 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 1, .FALSE., qsatl, dqsatl) |
---|
343 | |
---|
344 | ! |
---|
345 | !--Loop on klon |
---|
346 | ! |
---|
347 | DO i = 1, klon |
---|
348 | |
---|
349 | !--If a new calculation of the condensation is needed, |
---|
350 | !--i.e., temperature has not yet converged (or the cloud is |
---|
351 | !--formed elsewhere) |
---|
352 | IF (keepgoing(i)) THEN |
---|
353 | |
---|
354 | !--If the temperature is higher than the threshold below which |
---|
355 | !--there is no liquid in the gridbox, we activate the usual scheme |
---|
356 | !--(generalised lognormal from Bony and Emanuel 2001) |
---|
357 | !--If ok_weibull_warm_clouds = .TRUE., the Weibull law is used for |
---|
358 | !--all clouds, and the lognormal scheme is not activated |
---|
359 | IF ( ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds ) THEN |
---|
360 | |
---|
361 | pdf_std = ratqs(i) * qtot(i) |
---|
362 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2. ) ) |
---|
363 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
364 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
365 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
366 | pdf_e1 = pdf_a - pdf_b |
---|
367 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
368 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
369 | pdf_e2 = pdf_a + pdf_b |
---|
370 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
371 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
372 | |
---|
373 | |
---|
374 | IF ( pdf_e1 .LT. eps ) THEN |
---|
375 | cldfra(i) = 0. |
---|
376 | qincld(i) = qsat(i) |
---|
377 | qvc(i) = 0. |
---|
378 | ELSE |
---|
379 | cldfra(i) = 0.5 * pdf_e1 |
---|
380 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
---|
381 | qvc(i) = qsat(i) * cldfra(i) |
---|
382 | ENDIF |
---|
383 | |
---|
384 | !--If the temperature is lower than temp_nowater, we use the new |
---|
385 | !--condensation scheme that allows for ice supersaturation |
---|
386 | ELSE |
---|
387 | |
---|
388 | !--Initialisation |
---|
389 | IF ( temp(i) .GT. temp_nowater ) THEN |
---|
390 | !--If the air mass is warm (liquid water can exist), |
---|
391 | !--all the memory is lost and the scheme becomes statistical, |
---|
392 | !--i.e., the sublimation and mixing processes are deactivated, |
---|
393 | !--and the condensation process is slightly adapted |
---|
394 | !--This can happen only if ok_weibull_warm_clouds = .TRUE. |
---|
395 | cldfra(i) = 0. |
---|
396 | qvc(i) = 0. |
---|
397 | qcld(i) = 0. |
---|
398 | ok_warm_cloud = .TRUE. |
---|
399 | ELSE |
---|
400 | !--The following barriers ensure that the traced cloud properties |
---|
401 | !--are consistent. In some rare cases, i.e. the cloud water vapor |
---|
402 | !--can be greater than the total water in the gridbox |
---|
403 | cldfra(i) = MAX(0., MIN(1., cf_seri(i))) |
---|
404 | qcld(i) = MAX(0., MIN(qtot(i), ( ratio_qi_qtot(i) + rvc_seri(i) ) * qtot(i))) |
---|
405 | qvc(i) = MAX(0., MIN(qcld(i), rvc_seri(i) * qtot(i))) |
---|
406 | ok_warm_cloud = .FALSE. |
---|
407 | ENDIF |
---|
408 | |
---|
409 | dcf_sub(i) = 0. |
---|
410 | dqi_sub(i) = 0. |
---|
411 | dqvc_sub(i) = 0. |
---|
412 | dqi_adj(i) = 0. |
---|
413 | dqvc_adj(i) = 0. |
---|
414 | dcf_con(i) = 0. |
---|
415 | dqi_con(i) = 0. |
---|
416 | dqvc_con(i) = 0. |
---|
417 | dcf_mix(i) = 0. |
---|
418 | dqi_mix(i) = 0. |
---|
419 | dqvc_mix(i) = 0. |
---|
420 | |
---|
421 | issrfra(i) = 0. |
---|
422 | qissr(i) = 0. |
---|
423 | subfra(i) = 0. |
---|
424 | qsub(i) = 0. |
---|
425 | |
---|
426 | !--Initialisation of the cell properties |
---|
427 | !--Dry density [kg/m3] |
---|
428 | rho = pplay(i) / temp(i) / RD |
---|
429 | !--Dry air mass [kg/m2] |
---|
430 | rhodz = ( paprsdn(i) - paprsup(i) ) / RG |
---|
431 | !--Cell thickness [m] |
---|
432 | dz = rhodz / rho |
---|
433 | !--Cell volume [m3] |
---|
434 | !V_cell = dz * cell_area(i) |
---|
435 | !--Cell dry air mass [kg] |
---|
436 | !M_cell = rhodz * cell_area(i) |
---|
437 | |
---|
438 | |
---|
439 | IF ( ok_unadjusted_clouds ) THEN |
---|
440 | !--If ok_unadjusted_clouds is set to TRUE, then the saturation adjustment |
---|
441 | !--hypothesis is lost, and the vapor in the cloud is purely prognostic. |
---|
442 | ! |
---|
443 | !--The deposition equation is |
---|
444 | !-- dmi/dt = alpha*4pi*C*Svi / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) |
---|
445 | !--from Lohmann et al. (2016), where |
---|
446 | !--alpha is the deposition coefficient [-] |
---|
447 | !--mi is the mass of one ice crystal [kg] |
---|
448 | !--C is the capacitance of an ice crystal [m] |
---|
449 | !--Svi is the supersaturation ratio equal to (qvc - qsat)/qsat [-] |
---|
450 | !--R_v is the specific gas constant for humid air [J/kg/K] |
---|
451 | !--T is the temperature [K] |
---|
452 | !--esi is the saturation pressure w.r.t. ice [Pa] |
---|
453 | !--Dv is the diffusivity of water vapor [m2/s] |
---|
454 | !--Ls is the specific latent heat of sublimation [J/kg/K] |
---|
455 | !--ka is the thermal conductivity of dry air [J/m/s/K] |
---|
456 | ! |
---|
457 | !--alpha is a coefficient to take into account the fact that during deposition, a water |
---|
458 | !--molecule cannot join the crystal from everywhere, it must do so that the crystal stays |
---|
459 | !--coherent (with the same structure). It has no impact for sublimation. |
---|
460 | !--We fix alpha = depo_coef_cirrus (=0.5 by default following Lohmann et al. (2016)) |
---|
461 | !--during deposition, and alpha = 1. during sublimation. |
---|
462 | !--The capacitance of the ice crystals is proportional to a parameter capa_cond_cirrus |
---|
463 | !-- C = capa_cond_cirrus * rm_ice |
---|
464 | ! |
---|
465 | !--We have qice = Nice * mi, where Nice is the ice crystal |
---|
466 | !--number concentration per kg of moist air |
---|
467 | !--HYPOTHESIS 1: the ice crystals are spherical, therefore |
---|
468 | !-- mi = 4/3 * pi * rm_ice**3 * rho_ice |
---|
469 | !--HYPOTHESIS 2: the ice crystals are monodisperse with the |
---|
470 | !--initial radius rm_ice_0. |
---|
471 | !--NB. this is notably different than the assumption |
---|
472 | !--of a distributed qice in the cloud made in the sublimation process; |
---|
473 | !--should it be consistent? |
---|
474 | ! |
---|
475 | !--As the deposition process does not create new ice crystals, |
---|
476 | !--and because we assume a same rm_ice value for all crystals |
---|
477 | !--therefore the sublimation process does not destroy ice crystals |
---|
478 | !--(or, in a limit case, it destroys all ice crystals), then |
---|
479 | !--Nice is a constant during the sublimation/deposition process. |
---|
480 | !-- dmi = dqi, et Nice = qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
---|
481 | ! |
---|
482 | !--The deposition equation then reads: |
---|
483 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus*rm_ice*(qvc-qsat)/qsat / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) * Nice |
---|
484 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus* (qi / qi_0)**(1/3) *rm_ice_0*(qvc-qsat)/qsat & |
---|
485 | !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls*R_v/T - 1) ) & |
---|
486 | !-- * qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
---|
487 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) * qi_0**(2/3) & |
---|
488 | !-- *alpha/qsat*capa_cond_cirrus/ (R_v*T/esi/Dv + Ls/ka/T*(Ls*R_v/T - 1)) / ( 1/3 rm_ice_0**2 rho_ice ) |
---|
489 | !--and we have |
---|
490 | !-- dqvc/dt = - qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
---|
491 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
---|
492 | !--where kappa = 1/3*rho_ice/capa_cond_cirrus*qsat*(R_v*T/esi/Dv + Ls/ka/T*(Ls/R_v/T - 1)) |
---|
493 | ! |
---|
494 | !--This system of equations can be resolved with an exact |
---|
495 | !--explicit numerical integration, having one variable resolved |
---|
496 | !--explicitly, the other exactly. The exactly resolved variable is |
---|
497 | !--the one decreasing, so it is qvc if the process is |
---|
498 | !--condensation, qi if it is sublimation. |
---|
499 | ! |
---|
500 | !--kappa is computed as an initialisation constant, as it depends only |
---|
501 | !--on temperature and other pre-computed values |
---|
502 | pres_sat = qsat(i) / ( EPS_W + ( 1. - EPS_W ) * qsat(i) ) * pplay(i) |
---|
503 | !--This formula for air thermal conductivity comes from Beard and Pruppacher (1971) |
---|
504 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 |
---|
505 | !--This formula for water vapor diffusivity comes from Hall and Pruppacher (1976) |
---|
506 | water_vapor_diff = 0.211 * ( temp(i) / RTT )**1.94 * ( 101325. / pplay(i) ) * 1.e-4 |
---|
507 | kappa = 1. / 3. * rho_ice / capa_cond_cirrus * qsat(i) & |
---|
508 | * ( RV * temp(i) / water_vapor_diff / pres_sat & |
---|
509 | + RLSTT / air_thermal_conduct / temp(i) * ( RLSTT / RV / temp(i) - 1. ) ) |
---|
510 | !--NB. the greater kappa, the lower the efficiency of the deposition/sublimation process |
---|
511 | ENDIF |
---|
512 | |
---|
513 | |
---|
514 | !------------------------------------------------------------------- |
---|
515 | !-- SUBLIMATION OF ICE AND DEPOSITION OF VAPOR IN THE CLOUD -- |
---|
516 | !------------------------------------------------------------------- |
---|
517 | |
---|
518 | !--If there is a cloud |
---|
519 | IF ( cldfra(i) .GT. eps ) THEN |
---|
520 | |
---|
521 | qvapincld = qvc(i) / cldfra(i) |
---|
522 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
---|
523 | |
---|
524 | !--If the ice water content is too low, the cloud is purely sublimated |
---|
525 | !--Most probably, we advected a cloud with no ice water content (possible |
---|
526 | !--if the entire cloud precipited for example) |
---|
527 | IF ( qiceincld .LT. eps ) THEN |
---|
528 | dcf_sub(i) = - cldfra(i) |
---|
529 | dqvc_sub(i) = - qvc(i) |
---|
530 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
531 | |
---|
532 | cldfra(i) = 0. |
---|
533 | qcld(i) = 0. |
---|
534 | qvc(i) = 0. |
---|
535 | |
---|
536 | !--Else, the cloud is adjusted and sublimated |
---|
537 | ELSE |
---|
538 | |
---|
539 | !--The vapor in cloud cannot be higher than the |
---|
540 | !--condensation threshold |
---|
541 | qvapincld = MIN(qvapincld, gamma_cond(i) * qsat(i)) |
---|
542 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
---|
543 | |
---|
544 | IF ( ok_unadjusted_clouds ) THEN |
---|
545 | !--Here, the initial vapor in the cloud is qvapincld, and we compute |
---|
546 | !--the new vapor qvapincld_new |
---|
547 | |
---|
548 | !--rm_ice formula from McFarquhar and Heymsfield (1997) |
---|
549 | iwc = qiceincld * rho * 1e3 |
---|
550 | iwc_inf100 = MIN(iwc, 0.252 * iwc**0.837) |
---|
551 | iwc_log_inf100 = LOG10( MAX(eps, iwc_inf100) ) |
---|
552 | iwc_log_sup100 = LOG10( MAX(eps, iwc - iwc_inf100) ) |
---|
553 | |
---|
554 | alpha_inf100 = - 4.99E-3 - 0.0494 * iwc_log_inf100 |
---|
555 | coef_inf100 = iwc_inf100 * alpha_inf100**3. / 120. |
---|
556 | |
---|
557 | mu_sup100 = ( 5.2 + 0.0013 * ( temp(i) - RTT ) ) & |
---|
558 | + ( 0.026 - 1.2E-3 * ( temp(i) - RTT ) ) * iwc_log_sup100 |
---|
559 | sigma_sup100 = ( 0.47 + 2.1E-3 * ( temp(i) - RTT ) ) & |
---|
560 | + ( 0.018 - 2.1E-4 * ( temp(i) - RTT ) ) * iwc_log_sup100 |
---|
561 | coef_sup100 = ( iwc - iwc_inf100 ) / EXP( 3 * mu_sup100 + 4.5 * sigma_sup100**2. ) |
---|
562 | |
---|
563 | Dm_ice = ( 2. / alpha_inf100 * coef_inf100 + EXP( mu_sup100 + 0.5 * sigma_sup100**2. ) & |
---|
564 | * coef_sup100 ) / ( coef_inf100 + coef_sup100 ) |
---|
565 | rm_ice = Dm_ice / 2. * 1.E-6 |
---|
566 | |
---|
567 | IF ( qvapincld .GE. qsat(i) ) THEN |
---|
568 | !--If the cloud is initially supersaturated |
---|
569 | !--Exact explicit integration (qvc exact, qice explicit) |
---|
570 | qvapincld_new = qsat(i) + ( qvapincld - qsat(i) ) & |
---|
571 | * EXP( - depo_coef_cirrus * dtime * qiceincld / kappa / rm_ice**2. ) |
---|
572 | ELSE |
---|
573 | !--If the cloud is initially subsaturated |
---|
574 | !--Exact explicit integration (qice exact, qvc explicit) |
---|
575 | !--The barrier is set so that the resulting vapor in cloud |
---|
576 | !--cannot be greater than qsat |
---|
577 | !--qice_ratio is the ratio between the new ice content and |
---|
578 | !--the old one, it is comprised between 0 and 1 |
---|
579 | qice_ratio = ( 1. - 2. / 3. / kappa / rm_ice**2. * dtime * ( qsat(i) - qvapincld ) ) |
---|
580 | |
---|
581 | IF ( qice_ratio .LT. 0. ) THEN |
---|
582 | !--If all the ice has been sublimated, we sublimate |
---|
583 | !--completely the cloud and do not activate the sublimation |
---|
584 | !--process |
---|
585 | !--Tendencies and diagnostics |
---|
586 | dcf_sub(i) = - cldfra(i) |
---|
587 | dqvc_sub(i) = - qvc(i) |
---|
588 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
589 | |
---|
590 | cldfra(i) = 0. |
---|
591 | qcld(i) = 0. |
---|
592 | qvc(i) = 0. |
---|
593 | |
---|
594 | !--The new vapor in cloud is set to 0 so that the |
---|
595 | !--sublimation process does not activate |
---|
596 | qvapincld_new = 0. |
---|
597 | ELSE |
---|
598 | !--Else, the sublimation process is activated with the |
---|
599 | !--diagnosed new cloud water vapor |
---|
600 | !--The new vapor in the cloud is increased with the |
---|
601 | !--sublimated ice |
---|
602 | qvapincld_new = qvapincld + qiceincld * ( 1. - qice_ratio**(3./2.) ) |
---|
603 | !--The new vapor in the cloud cannot be greater than qsat |
---|
604 | qvapincld_new = MIN(qvapincld_new, qsat(i)) |
---|
605 | ENDIF ! qice_ratio .LT. 0. |
---|
606 | ENDIF ! qvapincld .GT. qsat(i) |
---|
607 | ELSE |
---|
608 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
609 | !--cloud is set equal to the saturation vapor |
---|
610 | qvapincld_new = qsat(i) |
---|
611 | ENDIF ! ok_unadjusted_clouds |
---|
612 | |
---|
613 | !--Adjustment of the IWC to the new vapor in cloud |
---|
614 | !--(this can be either positive or negative) |
---|
615 | dqvc_adj(i) = ( qvapincld_new * cldfra(i) - qvc(i) ) |
---|
616 | dqi_adj(i) = - dqvc_adj(i) |
---|
617 | |
---|
618 | !--Add tendencies |
---|
619 | !--The vapor in the cloud is updated, but not qcld as it is constant |
---|
620 | !--through this process, as well as cldfra which is unmodified |
---|
621 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_adj(i))) |
---|
622 | |
---|
623 | |
---|
624 | !------------------------------------ |
---|
625 | !-- DISSIPATION OF THE CLOUD -- |
---|
626 | !------------------------------------ |
---|
627 | |
---|
628 | !--If the vapor in cloud is below vapor needed for the cloud to survive |
---|
629 | IF ( qvapincld .LT. qvapincld_new ) THEN |
---|
630 | !--Sublimation of the subsaturated cloud |
---|
631 | !--iflag_cloud_sublim_pdf selects the PDF of the ice water content |
---|
632 | !--to use. |
---|
633 | !--iflag = 1 --> uniform distribution |
---|
634 | !--iflag = 2 --> exponential distribution |
---|
635 | !--iflag = 3 --> gamma distribution (Karcher et al 2018) |
---|
636 | |
---|
637 | IF ( iflag_cloud_sublim_pdf .EQ. 1 ) THEN |
---|
638 | !--Uniform distribution starting at qvapincld |
---|
639 | pdf_e1 = 1. / ( 2. * qiceincld ) |
---|
640 | |
---|
641 | dcf_sub(i) = - cldfra(i) * ( qvapincld_new - qvapincld ) * pdf_e1 |
---|
642 | dqt_sub = - cldfra(i) * ( qvapincld_new**2. - qvapincld**2. ) & |
---|
643 | * pdf_e1 / 2. |
---|
644 | |
---|
645 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 2 ) THEN |
---|
646 | !--Exponential distribution starting at qvapincld |
---|
647 | pdf_alpha = 1. / qiceincld |
---|
648 | pdf_e1 = EXP( - pdf_alpha * ( qvapincld_new - qvapincld ) ) |
---|
649 | |
---|
650 | dcf_sub(i) = - cldfra(i) * ( 1. - pdf_e1 ) |
---|
651 | dqt_sub = - cldfra(i) * ( ( 1. - pdf_e1 ) / pdf_alpha & |
---|
652 | + qvapincld - qvapincld_new * pdf_e1 ) |
---|
653 | |
---|
654 | ELSEIF ( iflag_cloud_sublim_pdf .GE. 3 ) THEN |
---|
655 | !--Gamma distribution starting at qvapincld |
---|
656 | pdf_alpha = ( mu_subl_pdf_lscp + 1. ) / qiceincld |
---|
657 | pdf_y = pdf_alpha * ( qvapincld_new - qvapincld ) |
---|
658 | pdf_e1 = GAMMAINC ( mu_subl_pdf_lscp + 1. , pdf_y ) |
---|
659 | pdf_e2 = GAMMAINC ( mu_subl_pdf_lscp + 2. , pdf_y ) |
---|
660 | |
---|
661 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
---|
662 | dqt_sub = - cldfra(i) * ( pdf_e2 / pdf_alpha + qvapincld * pdf_e1 ) |
---|
663 | ENDIF |
---|
664 | |
---|
665 | !--Tendencies and diagnostics |
---|
666 | dqvc_sub(i) = dqt_sub |
---|
667 | |
---|
668 | !--Add tendencies |
---|
669 | cldfra(i) = MAX(0., cldfra(i) + dcf_sub(i)) |
---|
670 | qcld(i) = MAX(0., qcld(i) + dqt_sub) |
---|
671 | qvc(i) = MAX(0., qvc(i) + dqvc_sub(i)) |
---|
672 | |
---|
673 | ENDIF ! qvapincld .LT. qvapincld_new |
---|
674 | |
---|
675 | ENDIF ! qiceincld .LT. eps |
---|
676 | ENDIF ! cldfra(i) .GT. eps |
---|
677 | |
---|
678 | |
---|
679 | !-------------------------------------------------------------------------- |
---|
680 | !-- CONDENSATION AND DIAGNOTICS OF SUB- AND SUPERSATURATED REGIONS -- |
---|
681 | !-------------------------------------------------------------------------- |
---|
682 | !--This section relies on a distribution of water in the clear-sky region of |
---|
683 | !--the mesh. |
---|
684 | |
---|
685 | !--If there is a clear-sky region |
---|
686 | IF ( ( 1. - cldfra(i) ) .GT. eps ) THEN |
---|
687 | |
---|
688 | !--Water quantity in the clear-sky + potential liquid cloud (gridbox average) |
---|
689 | qclr = qtot(i) - qcld(i) |
---|
690 | |
---|
691 | !--New PDF |
---|
692 | rhl_clr = qclr / ( 1. - cldfra(i) ) / qsatl(i) * 100. |
---|
693 | rhl_clr = MIN(rhl_clr, 2. * rhlmid_pdf_lscp) |
---|
694 | |
---|
695 | !--Calculation of the properties of the PDF |
---|
696 | !--Parameterization from IAGOS observations |
---|
697 | !--pdf_e1 and pdf_e2 will be reused below |
---|
698 | |
---|
699 | !--Coefficient for standard deviation: |
---|
700 | !-- tuning coef * (clear sky area**0.25) * (function of temperature) |
---|
701 | pdf_e1 = beta_pdf_lscp & |
---|
702 | * ( ( 1. - cldfra(i) ) * cell_area(i) )**( 1. / 4. ) & |
---|
703 | * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
---|
704 | IF ( rhl_clr .GT. rhlmid_pdf_lscp ) THEN |
---|
705 | pdf_std = pdf_e1 * ( 2. * rhlmid_pdf_lscp - rhl_clr ) / rhlmid_pdf_lscp |
---|
706 | ELSE |
---|
707 | pdf_std = pdf_e1 * rhl_clr / rhlmid_pdf_lscp |
---|
708 | ENDIF |
---|
709 | pdf_e3 = k0_pdf_lscp + kappa_pdf_lscp * MAX( temp_nowater - temp(i), 0. ) |
---|
710 | pdf_alpha = EXP( rhl_clr / rhl0_pdf_lscp ) * pdf_e3 |
---|
711 | |
---|
712 | pdf_e2 = GAMMA(1. + 1. / pdf_alpha) |
---|
713 | pdf_scale = MAX(eps, pdf_std / SQRT( GAMMA(1. + 2. / pdf_alpha) - pdf_e2**2. )) |
---|
714 | pdf_loc = rhl_clr - pdf_scale * pdf_e2 |
---|
715 | |
---|
716 | !--Diagnostics of ratqs |
---|
717 | ratqs(i) = pdf_std / ( qclr / ( 1. - cldfra(i) ) / qsatl(i) * 100. ) |
---|
718 | |
---|
719 | !--Calculation of the newly condensed water and fraction (pronostic) |
---|
720 | !--Integration of the clear sky PDF between gamma_cond*qsat and +inf |
---|
721 | !--NB. the calculated values are clear-sky averaged |
---|
722 | |
---|
723 | pdf_x = gamma_cond(i) * qsat(i) / qsatl(i) * 100. |
---|
724 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
---|
725 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
---|
726 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
---|
727 | cf_cond = EXP( - pdf_y ) |
---|
728 | qt_cond = ( pdf_e3 + pdf_loc * cf_cond ) * qsatl(i) / 100. |
---|
729 | |
---|
730 | IF ( ok_warm_cloud ) THEN |
---|
731 | !--If the statistical scheme is activated, the calculated increase is equal |
---|
732 | !--to the cloud fraction, we assume saturation adjustment, and the |
---|
733 | !--condensation process stops |
---|
734 | cldfra(i) = cf_cond |
---|
735 | qcld(i) = qt_cond |
---|
736 | qvc(i) = cldfra(i) * qsat(i) |
---|
737 | |
---|
738 | ELSEIF ( cf_cond .GT. eps ) THEN |
---|
739 | |
---|
740 | dcf_con(i) = ( 1. - cldfra(i) ) * cf_cond |
---|
741 | dqt_con = ( 1. - cldfra(i) ) * qt_cond |
---|
742 | |
---|
743 | !--Barriers |
---|
744 | dcf_con(i) = MIN(dcf_con(i), 1. - cldfra(i)) |
---|
745 | dqt_con = MIN(dqt_con, qclr) |
---|
746 | |
---|
747 | |
---|
748 | IF ( ok_unadjusted_clouds ) THEN |
---|
749 | !--Here, the initial vapor in the cloud is gamma_cond*qsat, and we compute |
---|
750 | !--the new vapor qvapincld. The timestep is divided by two because we do not |
---|
751 | !--know when the condensation occurs |
---|
752 | qvapincld = gamma_cond(i) * qsat(i) |
---|
753 | qiceincld = dqt_con / dcf_con(i) - gamma_cond(i) * qsat(i) |
---|
754 | |
---|
755 | !--rm_ice formula from McFarquhar and Heymsfield (1997) |
---|
756 | iwc = qiceincld * rho * 1e3 |
---|
757 | iwc_inf100 = MIN(iwc, 0.252 * iwc**0.837) |
---|
758 | iwc_log_inf100 = LOG10( MAX(eps, iwc_inf100) ) |
---|
759 | iwc_log_sup100 = LOG10( MAX(eps, iwc - iwc_inf100) ) |
---|
760 | |
---|
761 | alpha_inf100 = - 4.99E-3 - 0.0494 * iwc_log_inf100 |
---|
762 | coef_inf100 = iwc_inf100 * alpha_inf100**3. / 120. |
---|
763 | |
---|
764 | mu_sup100 = ( 5.2 + 0.0013 * ( temp(i) - RTT ) ) & |
---|
765 | + ( 0.026 - 1.2E-3 * ( temp(i) - RTT ) ) * iwc_log_sup100 |
---|
766 | sigma_sup100 = ( 0.47 + 2.1E-3 * ( temp(i) - RTT ) ) & |
---|
767 | + ( 0.018 - 2.1E-4 * ( temp(i) - RTT ) ) * iwc_log_sup100 |
---|
768 | coef_sup100 = ( iwc - iwc_inf100 ) / EXP( 3. * mu_sup100 + 4.5 * sigma_sup100**2. ) |
---|
769 | |
---|
770 | Dm_ice = ( 2. / alpha_inf100 * coef_inf100 + EXP( mu_sup100 + 0.5 * sigma_sup100**2. ) & |
---|
771 | * coef_sup100 ) / ( coef_inf100 + coef_sup100 ) |
---|
772 | rm_ice = Dm_ice / 2. * 1.E-6 |
---|
773 | !--As qvapincld is necessarily greater than qsat, we only |
---|
774 | !--use the exact explicit formulation |
---|
775 | !--Exact explicit version |
---|
776 | qvapincld = qsat(i) + ( qvapincld - qsat(i) ) & |
---|
777 | * EXP( - depo_coef_cirrus * dtime / 2. * qiceincld / kappa / rm_ice**2. ) |
---|
778 | ELSE |
---|
779 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
780 | !--newly formed cloud is set equal to the saturation vapor. |
---|
781 | qvapincld = qsat(i) |
---|
782 | ENDIF |
---|
783 | |
---|
784 | !--Tendency on cloud vapor and diagnostic |
---|
785 | dqvc_con(i) = qvapincld * dcf_con(i) |
---|
786 | dqi_con(i) = dqt_con - dqvc_con(i) |
---|
787 | |
---|
788 | !--Note that the tendencies are NOT added because they are |
---|
789 | !--added after the mixing process. In the following, the gridbox fraction is |
---|
790 | !-- 1. - dcf_con(i), and the total water in the gridbox is |
---|
791 | !-- qtot(i) - dqi_con(i) - dqvc_con(i) |
---|
792 | |
---|
793 | ENDIF ! ok_warm_cloud, cf_cond .GT. eps |
---|
794 | ENDIF ! ( 1. - cldfra(i) ) .GT. eps |
---|
795 | |
---|
796 | !--If there is still clear sky, we diagnose the ISSR |
---|
797 | !--We recalculte the PDF properties (after the condensation process) |
---|
798 | IF ( ( ( 1. - dcf_con(i) - cldfra(i) ) .GT. eps ) .AND. .NOT. ok_warm_cloud ) THEN |
---|
799 | !--Water quantity in the clear-sky + potential liquid cloud (gridbox average) |
---|
800 | qclr = qtot(i) - dqi_con(i) - dqvc_con(i) - qcld(i) |
---|
801 | |
---|
802 | !--New PDF |
---|
803 | rhl_clr = qclr / ( 1. - dcf_con(i) - cldfra(i) ) / qsatl(i) * 100. |
---|
804 | rhl_clr = MIN(rhl_clr, 2. * rhlmid_pdf_lscp) |
---|
805 | |
---|
806 | !--Calculation of the properties of the PDF |
---|
807 | !--Parameterization from IAGOS observations |
---|
808 | !--pdf_e1 and pdf_e2 will be reused below |
---|
809 | |
---|
810 | !--Coefficient for standard deviation: |
---|
811 | !-- tuning coef * (clear sky area**0.25) * (function of temperature) |
---|
812 | pdf_e1 = beta_pdf_lscp & |
---|
813 | * ( ( 1. - dcf_con(i) - cldfra(i) ) * cell_area(i) )**( 1. / 4. ) & |
---|
814 | * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
---|
815 | IF ( rhl_clr .GT. rhlmid_pdf_lscp ) THEN |
---|
816 | pdf_std = pdf_e1 * ( 2. * rhlmid_pdf_lscp - rhl_clr ) / rhlmid_pdf_lscp |
---|
817 | ELSE |
---|
818 | pdf_std = pdf_e1 * rhl_clr / rhlmid_pdf_lscp |
---|
819 | ENDIF |
---|
820 | pdf_e3 = k0_pdf_lscp + kappa_pdf_lscp * MAX( temp_nowater - temp(i), 0. ) |
---|
821 | pdf_alpha = EXP( rhl_clr / rhl0_pdf_lscp ) * pdf_e3 |
---|
822 | |
---|
823 | pdf_e2 = GAMMA(1. + 1. / pdf_alpha) |
---|
824 | pdf_scale = MAX(eps, pdf_std / SQRT( GAMMA(1. + 2. / pdf_alpha) - pdf_e2**2. )) |
---|
825 | pdf_loc = rhl_clr - pdf_scale * pdf_e2 |
---|
826 | |
---|
827 | !--We then calculate the part that is greater than qsat |
---|
828 | !--and consider it supersaturated |
---|
829 | |
---|
830 | pdf_x = qsat(i) / qsatl(i) * 100. |
---|
831 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
---|
832 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
---|
833 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
---|
834 | issrfra(i) = EXP( - pdf_y ) * ( 1. - dcf_con(i) - cldfra(i) ) |
---|
835 | qissr(i) = ( pdf_e3 * ( 1. - dcf_con(i) - cldfra(i) ) + pdf_loc * issrfra(i) ) * qsatl(i) / 100. |
---|
836 | ENDIF |
---|
837 | |
---|
838 | !--Calculation of the subsaturated clear sky fraction and water |
---|
839 | subfra(i) = 1. - dcf_con(i) - cldfra(i) - issrfra(i) |
---|
840 | qsub(i) = qtot(i) - dqi_con(i) - dqvc_con(i) - qcld(i) - qissr(i) |
---|
841 | |
---|
842 | |
---|
843 | !-------------------------------------- |
---|
844 | !-- CLOUD MIXING -- |
---|
845 | !-------------------------------------- |
---|
846 | !--This process mixes the cloud with its surroundings: the subsaturated clear sky, |
---|
847 | !--and the supersaturated clear sky. It is activated if the cloud is big enough, |
---|
848 | !--but does not cover the entire mesh. |
---|
849 | ! |
---|
850 | IF ( ( cldfra(i) .LT. ( 1. - dcf_con(i) - eps ) ) .AND. ( cldfra(i) .GT. eps ) & |
---|
851 | .AND. .NOT. ok_warm_cloud ) THEN |
---|
852 | |
---|
853 | !--Initialisation |
---|
854 | dcf_mix_sub = 0. |
---|
855 | dqt_mix_sub = 0. |
---|
856 | dqvc_mix_sub = 0. |
---|
857 | dcf_mix_issr = 0. |
---|
858 | dqt_mix_issr = 0. |
---|
859 | dqvc_mix_issr = 0. |
---|
860 | |
---|
861 | |
---|
862 | !-- PART 1 - TURBULENT DIFFUSION |
---|
863 | |
---|
864 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
---|
865 | !--semi-major axis is a and the length of the semi-minor axis is b. |
---|
866 | !--N_cld_mix is the number of clouds within the mesh, and |
---|
867 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
---|
868 | !--not considering interfaces with other meshes (only the interfaces with clear |
---|
869 | !--sky are taken into account). |
---|
870 | !-- |
---|
871 | !--The area of each cloud is A = a * b * RPI, |
---|
872 | !--and the perimeter of each cloud is |
---|
873 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
---|
874 | !-- |
---|
875 | !--With cell_area the area of the cell, we have: |
---|
876 | !-- cldfra = A * N_cld_mix / cell_area |
---|
877 | !-- clouds_perim = P * N_cld_mix |
---|
878 | !-- |
---|
879 | !--We assume that the ratio between b and a is a function of |
---|
880 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
---|
881 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
---|
882 | !--are spherical. |
---|
883 | !-- b / a = bovera = MAX(0.1, cldfra) |
---|
884 | bovera = MAX(0.1, cldfra(i)) |
---|
885 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
---|
886 | !--based on observations. |
---|
887 | !-- clouds_perim_normalized = alpha * cldfra * ( 1. - cldfra ) = clouds_perim / ( norm_constant * cell_area ) |
---|
888 | !-- |
---|
889 | !--With all this, we have |
---|
890 | !-- a = SQRT( cell_area * cldfra / ( b / a * N_cld_mix * RPI ) ) |
---|
891 | !-- P = RPI * a * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
---|
892 | !--and therefore, using the perimeter |
---|
893 | !-- alpha * cldfra * ( 1. - cldfra ) * norm_constant * cell_area |
---|
894 | !-- = N_cld_mix * RPI & |
---|
895 | !-- * SQRT( cell_area * cldfra / ( b / a * N_cld_mix * RPI ) ) & |
---|
896 | !-- * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
---|
897 | !--and finally |
---|
898 | N_cld_mix = coef_mixing_lscp * cldfra(i) * ( 1. - dcf_con(i) - cldfra(i) )**2. & |
---|
899 | * cell_area(i) * ( 1. - dcf_con(i) ) * bovera / RPI & |
---|
900 | / ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) )**2. |
---|
901 | !--where coef_mix_lscp = ( alpha * norm_constant )**2. |
---|
902 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer |
---|
903 | !--In particular, it is 0 if cldfra = 1 |
---|
904 | a_mix = SQRT( cell_area(i) * ( 1. - dcf_con(i) ) * cldfra(i) / bovera / N_cld_mix / RPI ) |
---|
905 | |
---|
906 | !--The time required for turbulent diffusion to homogenize a region of size |
---|
907 | !--L_mix is defined as (L_mix**2./tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
---|
908 | !--We compute L_mix and assume that the cloud is mixed over this length |
---|
909 | L_mix = SQRT( dtime**3. * pbl_eps(i) ) |
---|
910 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
---|
911 | !--the entire cloud is mixed. |
---|
912 | L_mix = MIN(L_mix, a_mix * bovera) |
---|
913 | |
---|
914 | !--The fraction of clear sky mixed is |
---|
915 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
---|
916 | envfra_mix = N_cld_mix * RPI / cell_area(i) / ( 1. - dcf_con(i) ) & |
---|
917 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2. ) |
---|
918 | !--The fraction of cloudy sky mixed is |
---|
919 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
---|
920 | cldfra_mix = N_cld_mix * RPI / cell_area(i) / ( 1. - dcf_con(i) ) & |
---|
921 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2. ) |
---|
922 | |
---|
923 | |
---|
924 | !-- PART 2 - SHEARING |
---|
925 | |
---|
926 | !--The clouds are then sheared. We keep the shape and number |
---|
927 | !--assumptions from before. The clouds are sheared along their |
---|
928 | !--semi-major axis (a_mix), on the entire cell heigh dz. |
---|
929 | !--The increase in size is |
---|
930 | L_shear = coef_shear_lscp * shear(i) * dz * dtime |
---|
931 | !--therefore, the total increase in fraction is |
---|
932 | !-- N_cld_mix * ( (a + L_shear) * b - a * b ) * RPI / 2. / cell_area |
---|
933 | shear_fra = RPI * L_shear * a_mix * bovera / 2. * N_cld_mix & |
---|
934 | / cell_area(i) / ( 1. - dcf_con(i) ) |
---|
935 | !--and the environment and cloud mixed fractions are the same, |
---|
936 | !--which we add to the previous calculated mixed fractions. |
---|
937 | !--We therefore assume that the sheared clouds and the turbulent |
---|
938 | !--mixed clouds are different. |
---|
939 | envfra_mix = envfra_mix + shear_fra |
---|
940 | cldfra_mix = cldfra_mix + shear_fra |
---|
941 | |
---|
942 | |
---|
943 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
---|
944 | |
---|
945 | !--The environment fraction is allocated to subsaturated sky or supersaturated sky, |
---|
946 | !--according to the factor sigma_mix. This is computed as the ratio of the |
---|
947 | !--subsaturated sky fraction to the environment fraction, corrected by a factor |
---|
948 | !--chi_mixing_lscp for the supersaturated part. If chi is greater than 1, the |
---|
949 | !--supersaturated sky is favoured. Physically, this means that it is more likely |
---|
950 | !--to have supersaturated sky around the cloud than subsaturated sky. |
---|
951 | sigma_mix = subfra(i) / ( subfra(i) + chi_mixing_lscp * issrfra(i) ) |
---|
952 | subfra_mix = MIN( sigma_mix * envfra_mix, subfra(i) ) |
---|
953 | issrfra_mix = MIN( ( 1. - sigma_mix ) * envfra_mix, issrfra(i) ) |
---|
954 | cldfra_mix = MIN( cldfra_mix, cldfra(i) ) |
---|
955 | |
---|
956 | !--First, we mix the subsaturated sky (subfra_mix) and the cloud close |
---|
957 | !--to this fraction (sigma_mix * cldfra_mix). |
---|
958 | IF ( subfra(i) .GT. eps ) THEN |
---|
959 | |
---|
960 | IF ( ok_unadjusted_clouds ) THEN |
---|
961 | !--The subsaturated air is simply added to the cloud, |
---|
962 | !--with the corresponding cloud fraction |
---|
963 | !--If the cloud is too subsaturated, the sublimation process |
---|
964 | !--activated in the following timestep will reduce the cloud |
---|
965 | !--fraction |
---|
966 | dcf_mix_sub = subfra_mix |
---|
967 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
---|
968 | dqvc_mix_sub = dqt_mix_sub |
---|
969 | |
---|
970 | ELSE |
---|
971 | !--We compute the total humidity in the mixed air, which |
---|
972 | !--can be either sub- or supersaturated. |
---|
973 | qvapinmix = ( qsub(i) * subfra_mix / subfra(i) & |
---|
974 | + qcld(i) * cldfra_mix * sigma_mix / cldfra(i) ) & |
---|
975 | / ( subfra_mix + cldfra_mix * sigma_mix ) |
---|
976 | |
---|
977 | IF ( qvapinmix .GT. qsat(i) ) THEN |
---|
978 | !--If the mixed air is supersaturated, we condense the subsaturated |
---|
979 | !--region which was mixed. |
---|
980 | dcf_mix_sub = subfra_mix |
---|
981 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
---|
982 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
---|
983 | ELSE |
---|
984 | !--Else, we sublimate the cloud which was mixed. |
---|
985 | dcf_mix_sub = - sigma_mix * cldfra_mix |
---|
986 | dqt_mix_sub = dcf_mix_sub * qcld(i) / cldfra(i) |
---|
987 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
---|
988 | ENDIF |
---|
989 | ENDIF ! ok_unadjusted_clouds |
---|
990 | ENDIF ! subfra .GT. eps |
---|
991 | |
---|
992 | !--We then mix the supersaturated sky (issrfra_mix) and the cloud, |
---|
993 | !--for which the mixed air is always supersatured, therefore |
---|
994 | !--the cloud necessarily expands |
---|
995 | IF ( issrfra(i) .GT. eps ) THEN |
---|
996 | |
---|
997 | IF ( ok_unadjusted_clouds ) THEN |
---|
998 | !--The ice supersaturated air is simply added to the |
---|
999 | !--cloud, and supersaturated vapor will be deposited on the |
---|
1000 | !--cloud ice crystals by the deposition process in the |
---|
1001 | !--following timestep |
---|
1002 | dcf_mix_issr = issrfra_mix |
---|
1003 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
---|
1004 | dqvc_mix_issr = dqt_mix_issr |
---|
1005 | ELSE |
---|
1006 | !--In this case, the additionnal vapor condenses |
---|
1007 | dcf_mix_issr = issrfra_mix |
---|
1008 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
---|
1009 | dqvc_mix_issr = dcf_mix_issr * qsat(i) |
---|
1010 | ENDIF ! ok_unadjusted_clouds |
---|
1011 | |
---|
1012 | |
---|
1013 | ENDIF ! issrfra .GT. eps |
---|
1014 | |
---|
1015 | !--Sum up the tendencies from subsaturated sky and supersaturated sky |
---|
1016 | dcf_mix(i) = dcf_mix_sub + dcf_mix_issr |
---|
1017 | dqt_mix = dqt_mix_sub + dqt_mix_issr |
---|
1018 | dqvc_mix(i) = dqvc_mix_sub + dqvc_mix_issr |
---|
1019 | dqi_mix(i) = dqt_mix - dqvc_mix(i) |
---|
1020 | |
---|
1021 | !--Add tendencies |
---|
1022 | issrfra(i) = MAX(0., issrfra(i) - dcf_mix_issr) |
---|
1023 | qissr(i) = MAX(0., qissr(i) - dqt_mix_issr) |
---|
1024 | cldfra(i) = MAX(0., MIN(1. - dcf_con(i), cldfra(i) + dcf_mix(i))) |
---|
1025 | qcld(i) = MAX(0., MIN(qtot(i) - dqi_con(i) - dqvc_con(i), qcld(i) + dqt_mix)) |
---|
1026 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_mix(i))) |
---|
1027 | |
---|
1028 | ENDIF ! ( ( cldfra(i) .LT. ( 1. - dcf_con(i) - eps ) ) .AND. ( cldfra(i) .GT. eps ) ) |
---|
1029 | |
---|
1030 | !--Finally, we add the tendencies of condensation |
---|
1031 | cldfra(i) = MIN(1., cldfra(i) + dcf_con(i)) |
---|
1032 | qcld(i) = MIN(qtot(i), qcld(i) + dqvc_con(i) + dqi_con(i)) |
---|
1033 | qvc(i) = MIN(qcld(i), qvc(i) + dqvc_con(i)) |
---|
1034 | |
---|
1035 | |
---|
1036 | !---------------------------------------- |
---|
1037 | !-- CONTRAILS AND AVIATION -- |
---|
1038 | !---------------------------------------- |
---|
1039 | |
---|
1040 | !--Add a source of cirrus from aviation contrails |
---|
1041 | !IF ( ok_plane_contrail ) THEN |
---|
1042 | ! dcf_avi(i) = 0. |
---|
1043 | ! dqi_avi(i) = 0. |
---|
1044 | ! dqvc_avi(i) = 0. |
---|
1045 | ! ! TODO implement ok_unadjusted_clouds |
---|
1046 | ! IF ( issrfra(i) .GT. eps ) THEN |
---|
1047 | ! contrail_fra = MIN(1., flight_m(i,k) * dtime * contrail_cross_section / V_cell) |
---|
1048 | ! dcf_avi(i) = issrfra(i) * contrail_fra |
---|
1049 | ! dqt_avi = dcf_avi(i) * qissr(i) / issrfra(i) |
---|
1050 | ! dqvc_avi(i) = qsat(i) * dcf_avi(i) |
---|
1051 | ! |
---|
1052 | ! !--Add tendencies |
---|
1053 | ! cldfra(i) = cldfra(i) + dcf_avi(i) |
---|
1054 | ! issrfra(i) = issrfra(i) - dcf_avi(i) |
---|
1055 | ! qcld(i) = qcld(i) + dqt_avi |
---|
1056 | ! qvc(i) = qvc(i) + dqvc_avi(i) |
---|
1057 | ! qissr(i) = qissr(i) - dqt_avi |
---|
1058 | |
---|
1059 | ! !--Diagnostics |
---|
1060 | ! dqi_avi(i) = dqt_avi - qsat(i) * dcf_avi(i) |
---|
1061 | ! ENDIF |
---|
1062 | ! dcf_avi(i) = dcf_avi(i) / dtime |
---|
1063 | ! dqi_avi(i) = dqi_avi(i) / dtime |
---|
1064 | ! dqvc_avi(i) = dqvc_avi(i) / dtime |
---|
1065 | !ENDIF |
---|
1066 | |
---|
1067 | |
---|
1068 | |
---|
1069 | !------------------------------------------- |
---|
1070 | !-- FINAL BARRIERS AND OUTPUTS -- |
---|
1071 | !------------------------------------------- |
---|
1072 | |
---|
1073 | IF ( cldfra(i) .LT. eps ) THEN |
---|
1074 | !--If the cloud is too small, it is sublimated. |
---|
1075 | cldfra(i) = 0. |
---|
1076 | qcld(i) = 0. |
---|
1077 | qvc(i) = 0. |
---|
1078 | qincld(i) = qsat(i) |
---|
1079 | ELSE |
---|
1080 | qincld(i) = qcld(i) / cldfra(i) |
---|
1081 | ENDIF ! cldfra .LT. eps |
---|
1082 | |
---|
1083 | !--Diagnostics |
---|
1084 | dcf_sub(i) = dcf_sub(i) / dtime |
---|
1085 | dcf_con(i) = dcf_con(i) / dtime |
---|
1086 | dcf_mix(i) = dcf_mix(i) / dtime |
---|
1087 | dqi_adj(i) = dqi_adj(i) / dtime |
---|
1088 | dqi_sub(i) = dqi_sub(i) / dtime |
---|
1089 | dqi_con(i) = dqi_con(i) / dtime |
---|
1090 | dqi_mix(i) = dqi_mix(i) / dtime |
---|
1091 | dqvc_adj(i) = dqvc_adj(i) / dtime |
---|
1092 | dqvc_sub(i) = dqvc_sub(i) / dtime |
---|
1093 | dqvc_con(i) = dqvc_con(i) / dtime |
---|
1094 | dqvc_mix(i) = dqvc_mix(i) / dtime |
---|
1095 | |
---|
1096 | ENDIF ! ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds |
---|
1097 | |
---|
1098 | ENDIF ! end keepgoing |
---|
1099 | |
---|
1100 | ENDDO ! end loop on i |
---|
1101 | |
---|
1102 | END SUBROUTINE condensation_ice_supersat |
---|
1103 | !********************************************************************************** |
---|
1104 | |
---|
1105 | END MODULE lmdz_lscp_condensation |
---|