[4951] | 1 | MODULE lmdz_lscp_condensation |
---|
| 2 | !---------------------------------------------------------------- |
---|
| 3 | ! Module for condensation of clouds routines |
---|
| 4 | ! that are called in LSCP |
---|
| 5 | |
---|
| 6 | |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | |
---|
| 9 | CONTAINS |
---|
| 10 | |
---|
| 11 | !********************************************************************************** |
---|
| 12 | SUBROUTINE condensation_lognormal( & |
---|
| 13 | klon, temp, qtot, qsat, gamma_cond, ratqs, & |
---|
| 14 | keepgoing, cldfra, qincld, qvc) |
---|
| 15 | |
---|
| 16 | !---------------------------------------------------------------------- |
---|
| 17 | ! This subroutine calculates the formation of clouds, using a |
---|
| 18 | ! statistical cloud scheme. It uses a generalised lognormal distribution |
---|
| 19 | ! of total water in the gridbox |
---|
| 20 | ! See Bony and Emanuel, 2001 |
---|
| 21 | !---------------------------------------------------------------------- |
---|
| 22 | |
---|
| 23 | USE lmdz_lscp_ini, ONLY: eps |
---|
| 24 | |
---|
| 25 | IMPLICIT NONE |
---|
| 26 | |
---|
| 27 | ! |
---|
| 28 | ! Input |
---|
| 29 | ! |
---|
| 30 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 31 | ! |
---|
| 32 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
| 33 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
---|
| 34 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
| 35 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
| 36 | REAL, INTENT(IN) , DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
| 37 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
| 38 | ! |
---|
| 39 | ! Output |
---|
| 40 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
| 41 | ! (in some cases, the values are not re-computed) but the values |
---|
| 42 | ! are never used explicitely |
---|
| 43 | ! |
---|
| 44 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
| 45 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
| 46 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
| 47 | ! |
---|
| 48 | ! Local |
---|
| 49 | ! |
---|
| 50 | INTEGER :: i |
---|
| 51 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
| 52 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
| 53 | ! |
---|
| 54 | !--Loop on klon |
---|
| 55 | ! |
---|
| 56 | DO i = 1, klon |
---|
| 57 | |
---|
| 58 | !--If a new calculation of the condensation is needed, |
---|
| 59 | !--i.e., temperature has not yet converged (or the cloud is |
---|
| 60 | !--formed elsewhere) |
---|
| 61 | IF (keepgoing(i)) THEN |
---|
| 62 | |
---|
| 63 | pdf_std = ratqs(i) * qtot(i) |
---|
| 64 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2. ) ) |
---|
| 65 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
| 66 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
| 67 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
| 68 | pdf_e1 = pdf_a - pdf_b |
---|
| 69 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
| 70 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
| 71 | pdf_e2 = pdf_a + pdf_b |
---|
| 72 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
| 73 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
| 74 | |
---|
| 75 | |
---|
| 76 | IF ( pdf_e1 .LT. eps ) THEN |
---|
| 77 | cldfra(i) = 0. |
---|
| 78 | qincld(i) = qsat(i) |
---|
| 79 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
| 80 | qvc(i) = 0. |
---|
| 81 | ELSE |
---|
| 82 | cldfra(i) = 0.5 * pdf_e1 |
---|
| 83 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
---|
| 84 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
| 85 | qvc(i) = qsat(i) * cldfra(i) |
---|
| 86 | ENDIF |
---|
| 87 | |
---|
| 88 | ENDIF ! end keepgoing |
---|
| 89 | |
---|
| 90 | ENDDO ! end loop on i |
---|
| 91 | END SUBROUTINE condensation_lognormal |
---|
| 92 | !********************************************************************************** |
---|
| 93 | |
---|
| 94 | !********************************************************************************** |
---|
| 95 | SUBROUTINE condensation_ice_supersat( & |
---|
| 96 | klon, dtime, missing_val, pplay, paprsdn, paprsup, & |
---|
| 97 | cf_seri, rvc_seri, ratio_qi_qtot, shear, pbl_eps, cell_area, & |
---|
| 98 | temp, qtot, qsat, gamma_cond, ratqs, keepgoing, & |
---|
| 99 | cldfra, qincld, qvc, issrfra, qissr, dcf_sub, dcf_con, dcf_mix, & |
---|
| 100 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, dqvc_sub, dqvc_con, dqvc_mix, & |
---|
| 101 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, flight_dist, flight_h2o, & |
---|
| 102 | dcf_avi, dqi_avi, dqvc_avi) |
---|
| 103 | |
---|
| 104 | !---------------------------------------------------------------------- |
---|
| 105 | ! This subroutine calculates the formation, evolution and dissipation |
---|
| 106 | ! of clouds, using a process-oriented treatment of the cloud properties |
---|
| 107 | ! (cloud fraction, vapor in the cloud, condensed water in the cloud). |
---|
| 108 | ! It allows for ice supersaturation in cold regions, in clear sky. |
---|
| 109 | ! If ok_unadjusted_clouds, it also allows for sub- and supersaturated |
---|
| 110 | ! cloud water vapors. |
---|
| 111 | ! It also allows for the formation and evolution of condensation trails |
---|
| 112 | ! (contrails) from aviation. |
---|
| 113 | ! Authors: Audran Borella, Etienne Vignon, Olivier Boucher |
---|
| 114 | ! April 2024 |
---|
| 115 | !---------------------------------------------------------------------- |
---|
| 116 | |
---|
| 117 | USE lmdz_lscp_tools, ONLY: calc_qsat_ecmwf, calc_gammasat, GAMMAINC |
---|
| 118 | USE lmdz_lscp_ini, ONLY: RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG, RV, RPI, EPS_W |
---|
| 119 | USE lmdz_lscp_ini, ONLY: eps, temp_nowater, ok_weibull_warm_clouds |
---|
| 120 | USE lmdz_lscp_ini, ONLY: ok_unadjusted_clouds, iflag_cloud_sublim_pdf |
---|
| 121 | USE lmdz_lscp_ini, ONLY: lunout |
---|
| 122 | |
---|
[5165] | 123 | USE lmdz_lscp_ini, ONLY: depo_coef_cirrus, capa_cond_cirrus, & |
---|
| 124 | mu_subl_pdf_lscp, beta_pdf_lscp, temp_thresh_pdf_lscp, & |
---|
[4951] | 125 | rhlmid_pdf_lscp, k0_pdf_lscp, kappa_pdf_lscp, rhl0_pdf_lscp, & |
---|
[5210] | 126 | coef_mixing_lscp, coef_shear_lscp, & |
---|
[4951] | 127 | chi_mixing_lscp, rho_ice |
---|
| 128 | |
---|
| 129 | IMPLICIT NONE |
---|
| 130 | |
---|
| 131 | ! |
---|
| 132 | ! Input |
---|
| 133 | ! |
---|
| 134 | INTEGER, INTENT(IN) :: klon ! number of horizontal grid points |
---|
| 135 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
| 136 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
| 137 | ! |
---|
| 138 | REAL, INTENT(IN) , DIMENSION(klon) :: pplay ! layer pressure [Pa] |
---|
| 139 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsdn ! pressure at the lower interface [Pa] |
---|
| 140 | REAL, INTENT(IN) , DIMENSION(klon) :: paprsup ! pressure at the upper interface [Pa] |
---|
| 141 | REAL, INTENT(IN) , DIMENSION(klon) :: cf_seri ! cloud fraction [-] |
---|
| 142 | REAL, INTENT(IN) , DIMENSION(klon) :: rvc_seri ! gridbox-mean water vapor in cloud [kg/kg] |
---|
| 143 | REAL, INTENT(IN) , DIMENSION(klon) :: ratio_qi_qtot ! specific ice water content to total specific water ratio [-] |
---|
| 144 | REAL, INTENT(IN) , DIMENSION(klon) :: shear ! vertical shear [s-1] |
---|
| 145 | REAL, INTENT(IN) , DIMENSION(klon) :: pbl_eps ! |
---|
| 146 | REAL, INTENT(IN) , DIMENSION(klon) :: cell_area ! |
---|
| 147 | REAL, INTENT(IN) , DIMENSION(klon) :: temp ! temperature [K] |
---|
| 148 | REAL, INTENT(IN) , DIMENSION(klon) :: qtot ! total specific humidity (without precip) [kg/kg] |
---|
| 149 | REAL, INTENT(IN) , DIMENSION(klon) :: qsat ! saturation specific humidity [kg/kg] |
---|
| 150 | REAL, INTENT(IN) , DIMENSION(klon) :: gamma_cond ! condensation threshold w.r.t. qsat [-] |
---|
| 151 | REAL, INTENT(INOUT), DIMENSION(klon) :: ratqs ! ratio between the variance of the total water distribution and its average [-] |
---|
| 152 | LOGICAL, INTENT(IN) , DIMENSION(klon) :: keepgoing ! .TRUE. if a new condensation loop should be computed |
---|
| 153 | ! |
---|
| 154 | ! Input for aviation |
---|
| 155 | ! |
---|
| 156 | REAL, INTENT(IN), DIMENSION(klon) :: flight_dist ! |
---|
| 157 | REAL, INTENT(IN), DIMENSION(klon) :: flight_h2o ! |
---|
| 158 | ! |
---|
| 159 | ! Output |
---|
| 160 | ! NB. cldfra and qincld should be outputed as cf_seri and qi_seri, |
---|
| 161 | ! or as tendencies (maybe in the future) |
---|
| 162 | ! NB. those are in INOUT because of the convergence loop on temperature |
---|
| 163 | ! (in some cases, the values are not re-computed) but the values |
---|
| 164 | ! are never used explicitely |
---|
| 165 | ! |
---|
| 166 | REAL, INTENT(INOUT), DIMENSION(klon) :: cldfra ! cloud fraction [-] |
---|
| 167 | REAL, INTENT(INOUT), DIMENSION(klon) :: qincld ! cloud-mean in-cloud total specific water [kg/kg] |
---|
| 168 | REAL, INTENT(INOUT), DIMENSION(klon) :: qvc ! gridbox-mean vapor in the cloud [kg/kg] |
---|
| 169 | REAL, INTENT(INOUT), DIMENSION(klon) :: issrfra ! ISSR fraction [-] |
---|
| 170 | REAL, INTENT(INOUT), DIMENSION(klon) :: qissr ! gridbox-mean ISSR specific water [kg/kg] |
---|
| 171 | ! |
---|
| 172 | ! Diagnostics for condensation and ice supersaturation |
---|
| 173 | ! NB. idem for the INOUT |
---|
| 174 | ! |
---|
| 175 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_sub ! cloud fraction tendency because of sublimation [s-1] |
---|
| 176 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_con ! cloud fraction tendency because of condensation [s-1] |
---|
| 177 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_mix ! cloud fraction tendency because of cloud mixing [s-1] |
---|
| 178 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_adj ! specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
| 179 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_sub ! specific ice content tendency because of sublimation [kg/kg/s] |
---|
| 180 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_con ! specific ice content tendency because of condensation [kg/kg/s] |
---|
| 181 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_mix ! specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
| 182 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_adj ! specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
| 183 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_sub ! specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
| 184 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_con ! specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
| 185 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_mix ! specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
| 186 | ! |
---|
| 187 | ! Diagnostics for aviation |
---|
| 188 | ! NB. idem for the INOUT |
---|
| 189 | ! |
---|
| 190 | REAL, INTENT(INOUT), DIMENSION(klon) :: Tcontr ! critical temperature for contrail formation (T_LM in Schumann 1996, Eq 31 in appendix 2) [K] |
---|
| 191 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcontr ! |
---|
| 192 | REAL, INTENT(INOUT), DIMENSION(klon) :: qcontr2 ! |
---|
| 193 | REAL, INTENT(INOUT), DIMENSION(klon) :: fcontrN ! |
---|
| 194 | REAL, INTENT(INOUT), DIMENSION(klon) :: fcontrP ! |
---|
| 195 | REAL, INTENT(INOUT), DIMENSION(klon) :: dcf_avi ! cloud fraction tendency because of aviation [s-1] |
---|
| 196 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqi_avi ! specific ice content tendency because of aviation [kg/kg/s] |
---|
| 197 | REAL, INTENT(INOUT), DIMENSION(klon) :: dqvc_avi ! specific cloud water vapor tendency because of aviation [kg/kg/s] |
---|
| 198 | ! |
---|
| 199 | ! Local |
---|
| 200 | ! |
---|
| 201 | INTEGER :: i |
---|
| 202 | LOGICAL :: ok_warm_cloud |
---|
| 203 | REAL, DIMENSION(klon) :: qcld, qzero |
---|
| 204 | ! |
---|
| 205 | ! for lognormal |
---|
| 206 | REAL :: pdf_std, pdf_k, pdf_delta |
---|
| 207 | REAL :: pdf_a, pdf_b, pdf_e1, pdf_e2 |
---|
| 208 | ! |
---|
| 209 | ! for unadjusted clouds |
---|
| 210 | REAL :: qvapincld, qvapincld_new |
---|
| 211 | REAL :: qiceincld, qice_ratio |
---|
| 212 | REAL :: pres_sat, kappa |
---|
| 213 | REAL :: air_thermal_conduct, water_vapor_diff |
---|
[5210] | 214 | REAL :: iwc |
---|
| 215 | REAL :: iwc_log_inf100, iwc_log_sup100 |
---|
| 216 | REAL :: iwc_inf100, alpha_inf100, coef_inf100 |
---|
| 217 | REAL :: mu_sup100, sigma_sup100, coef_sup100 |
---|
| 218 | REAL :: Dm_ice, rm_ice |
---|
[4951] | 219 | ! |
---|
| 220 | ! for sublimation |
---|
| 221 | REAL :: pdf_alpha |
---|
| 222 | REAL :: dqt_sub |
---|
| 223 | ! |
---|
| 224 | ! for condensation |
---|
| 225 | REAL, DIMENSION(klon) :: qsatl, dqsatl |
---|
| 226 | REAL :: clrfra, qclr, sl_clr, rhl_clr |
---|
| 227 | REAL :: pdf_ratqs, pdf_skew, pdf_scale, pdf_loc |
---|
| 228 | REAL :: pdf_x, pdf_y, pdf_T |
---|
| 229 | REAL :: pdf_e3, pdf_e4 |
---|
| 230 | REAL :: cf_cond, qt_cond, dqt_con |
---|
| 231 | ! |
---|
| 232 | ! for mixing |
---|
| 233 | REAL, DIMENSION(klon) :: subfra, qsub |
---|
| 234 | REAL :: dqt_mix_sub, dqt_mix_issr |
---|
| 235 | REAL :: dcf_mix_sub, dcf_mix_issr |
---|
| 236 | REAL :: dqvc_mix_sub, dqvc_mix_issr |
---|
| 237 | REAL :: dqt_mix |
---|
| 238 | REAL :: a_mix, bovera, N_cld_mix, L_mix |
---|
| 239 | REAL :: envfra_mix, cldfra_mix |
---|
| 240 | REAL :: L_shear, shear_fra |
---|
| 241 | REAL :: sigma_mix, issrfra_mix, subfra_mix, qvapinmix |
---|
| 242 | ! |
---|
| 243 | ! for cell properties |
---|
| 244 | REAL :: rho, rhodz, dz |
---|
| 245 | !REAL :: V_cell, M_cell |
---|
| 246 | ! |
---|
| 247 | ! for aviation and cell properties |
---|
| 248 | !REAL :: dqt_avi |
---|
| 249 | !REAL :: contrail_fra |
---|
| 250 | ! |
---|
| 251 | ! |
---|
| 252 | !--more local variables for diagnostics |
---|
| 253 | !--imported from YOMCST.h |
---|
| 254 | !--eps_w = 0.622 = ratio of molecular masses of water and dry air (kg H2O kg air -1) |
---|
| 255 | !--RCPD = 1004 J kg air−1 K−1 = the isobaric heat capacity of air |
---|
| 256 | !--values from Schumann, Meteorol Zeitschrift, 1996 |
---|
| 257 | !--EiH2O = 1.25 / 2.24 / 8.94 kg H2O / kg fuel for kerosene / methane / dihydrogen |
---|
| 258 | !--Qheat = 43. / 50. / 120. MJ / kg fuel for kerosene / methane / dihydrogen |
---|
| 259 | !REAL, PARAMETER :: EiH2O=1.25 !--emission index of water vapour for kerosene (kg kg-1) |
---|
| 260 | !REAL, PARAMETER :: Qheat=43.E6 !--specific combustion heat for kerosene (J kg-1) |
---|
| 261 | !REAL, PARAMETER :: eta=0.3 !--average propulsion efficiency of the aircraft |
---|
| 262 | !--Gcontr is the slope of the mean phase trajectory in the turbulent exhaust field on an absolute |
---|
| 263 | !--temperature versus water vapor partial pressure diagram. G has the unit of Pa K−1. Rap et al JGR 2010. |
---|
| 264 | !REAL :: Gcontr |
---|
| 265 | !--Tcontr = critical temperature for contrail formation (T_LM in Schumann 1996, Eq 31 in appendix 2) |
---|
| 266 | !--qsatliqcontr = e_L(T_LM) in Schumann 1996 but expressed in specific humidity (kg kg humid air-1) |
---|
| 267 | !REAL :: qsatliqcontr |
---|
| 268 | |
---|
| 269 | |
---|
| 270 | !----------------------------------------------- |
---|
| 271 | ! Initialisations |
---|
| 272 | !----------------------------------------------- |
---|
| 273 | |
---|
| 274 | ! Ajout des émissions de H2O dues à l'aviation |
---|
| 275 | ! q is the specific humidity (kg/kg humid air) hence the complicated equation to update q |
---|
| 276 | ! qnew = ( m_humid_air * qold + dm_H2O ) / ( m_humid_air + dm_H2O ) |
---|
| 277 | ! = ( m_dry_air * qold + dm_h2O * (1-qold) ) / (m_dry_air + dm_H2O * (1-qold) ) |
---|
| 278 | ! The equation is derived by writing m_humid_air = m_dry_air + m_H2O = m_dry_air / (1-q) |
---|
| 279 | ! flight_h2O is in kg H2O / s / cell |
---|
| 280 | ! |
---|
| 281 | !IF (ok_plane_h2o) THEN |
---|
| 282 | ! q = ( M_cell*q + flight_h2o(i,k)*dtime*(1.-q) ) / (M_cell + flight_h2o(i,k)*dtime*(1.-q) ) |
---|
| 283 | !ENDIF |
---|
| 284 | |
---|
| 285 | |
---|
| 286 | qzero(:) = 0. |
---|
| 287 | |
---|
| 288 | !--Calculation of qsat w.r.t. liquid |
---|
| 289 | CALL calc_qsat_ecmwf(klon, temp, qzero, pplay, RTT, 1, .FALSE., qsatl, dqsatl) |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !--Loop on klon |
---|
| 293 | ! |
---|
| 294 | DO i = 1, klon |
---|
| 295 | |
---|
| 296 | !--If a new calculation of the condensation is needed, |
---|
| 297 | !--i.e., temperature has not yet converged (or the cloud is |
---|
| 298 | !--formed elsewhere) |
---|
| 299 | IF (keepgoing(i)) THEN |
---|
| 300 | |
---|
| 301 | !--If the temperature is higher than the threshold below which |
---|
| 302 | !--there is no liquid in the gridbox, we activate the usual scheme |
---|
| 303 | !--(generalised lognormal from Bony and Emanuel 2001) |
---|
| 304 | !--If ok_weibull_warm_clouds = .TRUE., the Weibull law is used for |
---|
| 305 | !--all clouds, and the lognormal scheme is not activated |
---|
| 306 | IF ( ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds ) THEN |
---|
| 307 | |
---|
| 308 | pdf_std = ratqs(i) * qtot(i) |
---|
| 309 | pdf_k = -SQRT( LOG( 1. + (pdf_std / qtot(i))**2. ) ) |
---|
| 310 | pdf_delta = LOG( qtot(i) / ( gamma_cond(i) * qsat(i) ) ) |
---|
| 311 | pdf_a = pdf_delta / ( pdf_k * SQRT(2.) ) |
---|
| 312 | pdf_b = pdf_k / (2. * SQRT(2.)) |
---|
| 313 | pdf_e1 = pdf_a - pdf_b |
---|
| 314 | pdf_e1 = SIGN( MIN(ABS(pdf_e1), 5.), pdf_e1 ) |
---|
| 315 | pdf_e1 = 1. - ERF(pdf_e1) |
---|
| 316 | pdf_e2 = pdf_a + pdf_b |
---|
| 317 | pdf_e2 = SIGN( MIN(ABS(pdf_e2), 5.), pdf_e2 ) |
---|
| 318 | pdf_e2 = 1. - ERF(pdf_e2) |
---|
| 319 | |
---|
| 320 | |
---|
| 321 | IF ( pdf_e1 .LT. eps ) THEN |
---|
| 322 | cldfra(i) = 0. |
---|
| 323 | qincld(i) = qsat(i) |
---|
| 324 | qvc(i) = 0. |
---|
| 325 | ELSE |
---|
| 326 | cldfra(i) = 0.5 * pdf_e1 |
---|
| 327 | qincld(i) = qtot(i) * pdf_e2 / pdf_e1 |
---|
| 328 | qvc(i) = qsat(i) * cldfra(i) |
---|
| 329 | ENDIF |
---|
| 330 | |
---|
| 331 | !--If the temperature is lower than temp_nowater, we use the new |
---|
| 332 | !--condensation scheme that allows for ice supersaturation |
---|
| 333 | ELSE |
---|
| 334 | |
---|
| 335 | !--Initialisation |
---|
| 336 | IF ( temp(i) .GT. temp_nowater ) THEN |
---|
| 337 | !--If the air mass is warm (liquid water can exist), |
---|
| 338 | !--all the memory is lost and the scheme becomes statistical, |
---|
| 339 | !--i.e., the sublimation and mixing processes are deactivated, |
---|
| 340 | !--and the condensation process is slightly adapted |
---|
| 341 | !--This can happen only if ok_weibull_warm_clouds = .TRUE. |
---|
| 342 | cldfra(i) = 0. |
---|
| 343 | qvc(i) = 0. |
---|
| 344 | qcld(i) = 0. |
---|
| 345 | ok_warm_cloud = .TRUE. |
---|
| 346 | ELSE |
---|
| 347 | !--The following barriers ensure that the traced cloud properties |
---|
| 348 | !--are consistent. In some rare cases, i.e. the cloud water vapor |
---|
| 349 | !--can be greater than the total water in the gridbox |
---|
| 350 | cldfra(i) = MAX(0., MIN(1., cf_seri(i))) |
---|
| 351 | qcld(i) = MAX(0., MIN(qtot(i), ( ratio_qi_qtot(i) + rvc_seri(i) ) * qtot(i))) |
---|
| 352 | qvc(i) = MAX(0., MIN(qcld(i), rvc_seri(i) * qtot(i))) |
---|
| 353 | ok_warm_cloud = .FALSE. |
---|
| 354 | ENDIF |
---|
| 355 | |
---|
| 356 | dcf_sub(i) = 0. |
---|
| 357 | dqi_sub(i) = 0. |
---|
| 358 | dqvc_sub(i) = 0. |
---|
| 359 | dqi_adj(i) = 0. |
---|
| 360 | dqvc_adj(i) = 0. |
---|
| 361 | dcf_con(i) = 0. |
---|
| 362 | dqi_con(i) = 0. |
---|
| 363 | dqvc_con(i) = 0. |
---|
| 364 | dcf_mix(i) = 0. |
---|
| 365 | dqi_mix(i) = 0. |
---|
| 366 | dqvc_mix(i) = 0. |
---|
| 367 | |
---|
| 368 | issrfra(i) = 0. |
---|
| 369 | qissr(i) = 0. |
---|
| 370 | subfra(i) = 0. |
---|
| 371 | qsub(i) = 0. |
---|
| 372 | |
---|
| 373 | !--Initialisation of the cell properties |
---|
| 374 | !--Dry density [kg/m3] |
---|
| 375 | rho = pplay(i) / temp(i) / RD |
---|
| 376 | !--Dry air mass [kg/m2] |
---|
| 377 | rhodz = ( paprsdn(i) - paprsup(i) ) / RG |
---|
| 378 | !--Cell thickness [m] |
---|
| 379 | dz = rhodz / rho |
---|
| 380 | !--Cell volume [m3] |
---|
| 381 | !V_cell = dz * cell_area(i) |
---|
| 382 | !--Cell dry air mass [kg] |
---|
| 383 | !M_cell = rhodz * cell_area(i) |
---|
| 384 | |
---|
| 385 | |
---|
| 386 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 387 | !--If ok_unadjusted_clouds is set to TRUE, then the saturation adjustment |
---|
| 388 | !--hypothesis is lost, and the vapor in the cloud is purely prognostic. |
---|
| 389 | ! |
---|
| 390 | !--The deposition equation is |
---|
[5041] | 391 | !-- dmi/dt = alpha*4pi*C*Svi / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) |
---|
| 392 | !--from Lohmann et al. (2016), where |
---|
| 393 | !--alpha is the deposition coefficient [-] |
---|
[4951] | 394 | !--mi is the mass of one ice crystal [kg] |
---|
| 395 | !--C is the capacitance of an ice crystal [m] |
---|
| 396 | !--Svi is the supersaturation ratio equal to (qvc - qsat)/qsat [-] |
---|
[5041] | 397 | !--R_v is the specific gas constant for humid air [J/kg/K] |
---|
[4951] | 398 | !--T is the temperature [K] |
---|
| 399 | !--esi is the saturation pressure w.r.t. ice [Pa] |
---|
| 400 | !--Dv is the diffusivity of water vapor [m2/s] |
---|
| 401 | !--Ls is the specific latent heat of sublimation [J/kg/K] |
---|
| 402 | !--ka is the thermal conductivity of dry air [J/m/s/K] |
---|
| 403 | ! |
---|
[5165] | 404 | !--alpha is a coefficient to take into account the fact that during deposition, a water |
---|
| 405 | !--molecule cannot join the crystal from everywhere, it must do so that the crystal stays |
---|
| 406 | !--coherent (with the same structure). It has no impact for sublimation. |
---|
| 407 | !--We fix alpha = depo_coef_cirrus (=0.5 by default following Lohmann et al. (2016)) |
---|
| 408 | !--during deposition, and alpha = 1. during sublimation. |
---|
[5041] | 409 | !--The capacitance of the ice crystals is proportional to a parameter capa_cond_cirrus |
---|
[5210] | 410 | !-- C = capa_cond_cirrus * rm_ice |
---|
[5041] | 411 | ! |
---|
[4951] | 412 | !--We have qice = Nice * mi, where Nice is the ice crystal |
---|
| 413 | !--number concentration per kg of moist air |
---|
| 414 | !--HYPOTHESIS 1: the ice crystals are spherical, therefore |
---|
[5210] | 415 | !-- mi = 4/3 * pi * rm_ice**3 * rho_ice |
---|
[4951] | 416 | !--HYPOTHESIS 2: the ice crystals are monodisperse with the |
---|
[5210] | 417 | !--initial radius rm_ice_0. |
---|
[4951] | 418 | !--NB. this is notably different than the assumption |
---|
| 419 | !--of a distributed qice in the cloud made in the sublimation process; |
---|
| 420 | !--should it be consistent? |
---|
| 421 | ! |
---|
| 422 | !--As the deposition process does not create new ice crystals, |
---|
[5210] | 423 | !--and because we assume a same rm_ice value for all crystals |
---|
[4951] | 424 | !--therefore the sublimation process does not destroy ice crystals |
---|
| 425 | !--(or, in a limit case, it destroys all ice crystals), then |
---|
| 426 | !--Nice is a constant during the sublimation/deposition process. |
---|
[5210] | 427 | !-- dmi = dqi, et Nice = qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
---|
[4951] | 428 | ! |
---|
| 429 | !--The deposition equation then reads: |
---|
[5210] | 430 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus*rm_ice*(qvc-qsat)/qsat / ( R_v*T/esi/Dv + Ls/ka/T * (Ls/R_v/T - 1) ) * Nice |
---|
| 431 | !-- dqi/dt = alpha*4pi*capa_cond_cirrus* (qi / qi_0)**(1/3) *rm_ice_0*(qvc-qsat)/qsat & |
---|
[4951] | 432 | !-- / ( R_v*T/esi/Dv + Ls/ka/T * (Ls*R_v/T - 1) ) & |
---|
[5210] | 433 | !-- * qi_0 / ( 4/3 RPI rm_ice_0**3 rho_ice ) |
---|
[4951] | 434 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) * qi_0**(2/3) & |
---|
[5210] | 435 | !-- *alpha/qsat*capa_cond_cirrus/ (R_v*T/esi/Dv + Ls/ka/T*(Ls*R_v/T - 1)) / ( 1/3 rm_ice_0**2 rho_ice ) |
---|
[4951] | 436 | !--and we have |
---|
[5210] | 437 | !-- dqvc/dt = - qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
---|
| 438 | !-- dqi/dt = qi**(1/3) * (qvc - qsat) / kappa * alpha * qi_0**(2/3) / rm_ice_0**2 |
---|
[5165] | 439 | !--where kappa = 1/3*rho_ice/capa_cond_cirrus*qsat*(R_v*T/esi/Dv + Ls/ka/T*(Ls/R_v/T - 1)) |
---|
[4951] | 440 | ! |
---|
| 441 | !--This system of equations can be resolved with an exact |
---|
| 442 | !--explicit numerical integration, having one variable resolved |
---|
| 443 | !--explicitly, the other exactly. The exactly resolved variable is |
---|
| 444 | !--the one decreasing, so it is qvc if the process is |
---|
| 445 | !--condensation, qi if it is sublimation. |
---|
| 446 | ! |
---|
| 447 | !--kappa is computed as an initialisation constant, as it depends only |
---|
| 448 | !--on temperature and other pre-computed values |
---|
| 449 | pres_sat = qsat(i) / ( EPS_W + ( 1. - EPS_W ) * qsat(i) ) * pplay(i) |
---|
| 450 | !--This formula for air thermal conductivity comes from Beard and Pruppacher (1971) |
---|
| 451 | air_thermal_conduct = ( 5.69 + 0.017 * ( temp(i) - RTT ) ) * 1.e-3 * 4.184 |
---|
| 452 | !--This formula for water vapor diffusivity comes from Hall and Pruppacher (1976) |
---|
| 453 | water_vapor_diff = 0.211 * ( temp(i) / RTT )**1.94 * ( 101325. / pplay(i) ) * 1.e-4 |
---|
[5165] | 454 | kappa = 1. / 3. * rho_ice / capa_cond_cirrus * qsat(i) & |
---|
[4951] | 455 | * ( RV * temp(i) / water_vapor_diff / pres_sat & |
---|
| 456 | + RLSTT / air_thermal_conduct / temp(i) * ( RLSTT / RV / temp(i) - 1. ) ) |
---|
[5041] | 457 | !--NB. the greater kappa, the lower the efficiency of the deposition/sublimation process |
---|
[4951] | 458 | ENDIF |
---|
| 459 | |
---|
| 460 | |
---|
| 461 | !------------------------------------------------------------------- |
---|
| 462 | !-- SUBLIMATION OF ICE AND DEPOSITION OF VAPOR IN THE CLOUD -- |
---|
| 463 | !------------------------------------------------------------------- |
---|
| 464 | |
---|
| 465 | !--If there is a cloud |
---|
| 466 | IF ( cldfra(i) .GT. eps ) THEN |
---|
| 467 | |
---|
| 468 | qvapincld = qvc(i) / cldfra(i) |
---|
| 469 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
---|
| 470 | |
---|
| 471 | !--If the ice water content is too low, the cloud is purely sublimated |
---|
[4974] | 472 | !--Most probably, we advected a cloud with no ice water content (possible |
---|
| 473 | !--if the entire cloud precipited for example) |
---|
[4951] | 474 | IF ( qiceincld .LT. eps ) THEN |
---|
| 475 | dcf_sub(i) = - cldfra(i) |
---|
| 476 | dqvc_sub(i) = - qvc(i) |
---|
| 477 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
| 478 | |
---|
| 479 | cldfra(i) = 0. |
---|
| 480 | qcld(i) = 0. |
---|
| 481 | qvc(i) = 0. |
---|
| 482 | |
---|
| 483 | !--Else, the cloud is adjusted and sublimated |
---|
| 484 | ELSE |
---|
| 485 | |
---|
[4974] | 486 | !--The vapor in cloud cannot be higher than the |
---|
| 487 | !--condensation threshold |
---|
| 488 | qvapincld = MIN(qvapincld, gamma_cond(i) * qsat(i)) |
---|
| 489 | qiceincld = ( qcld(i) / cldfra(i) - qvapincld ) |
---|
| 490 | |
---|
[4951] | 491 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 492 | !--Here, the initial vapor in the cloud is qvapincld, and we compute |
---|
| 493 | !--the new vapor qvapincld_new |
---|
| 494 | |
---|
[5210] | 495 | !--rm_ice formula from McFarquhar and Heymsfield (1997) |
---|
| 496 | iwc = qiceincld * rho * 1e3 |
---|
| 497 | iwc_inf100 = MIN(iwc, 0.252 * iwc**0.837) |
---|
| 498 | iwc_log_inf100 = LOG10( MAX(eps, iwc_inf100) ) |
---|
| 499 | iwc_log_sup100 = LOG10( MAX(eps, iwc - iwc_inf100) ) |
---|
[4951] | 500 | |
---|
[5210] | 501 | alpha_inf100 = - 4.99E-3 - 0.0494 * iwc_log_inf100 |
---|
| 502 | coef_inf100 = iwc_inf100 * alpha_inf100**3. / 120. |
---|
| 503 | |
---|
| 504 | mu_sup100 = ( 5.2 + 0.0013 * ( temp(i) - RTT ) ) & |
---|
| 505 | + ( 0.026 - 1.2E-3 * ( temp(i) - RTT ) ) * iwc_log_sup100 |
---|
| 506 | sigma_sup100 = ( 0.47 + 2.1E-3 * ( temp(i) - RTT ) ) & |
---|
| 507 | + ( 0.018 - 2.1E-4 * ( temp(i) - RTT ) ) * iwc_log_sup100 |
---|
| 508 | coef_sup100 = ( iwc - iwc_inf100 ) / EXP( 3 * mu_sup100 + 4.5 * sigma_sup100**2. ) |
---|
| 509 | |
---|
| 510 | Dm_ice = ( 2. / alpha_inf100 * coef_inf100 + EXP( mu_sup100 + 0.5 * sigma_sup100**2. ) & |
---|
| 511 | * coef_sup100 ) / ( coef_inf100 + coef_sup100 ) |
---|
| 512 | rm_ice = Dm_ice / 2. * 1.E-6 |
---|
| 513 | |
---|
[4951] | 514 | IF ( qvapincld .GE. qsat(i) ) THEN |
---|
| 515 | !--If the cloud is initially supersaturated |
---|
| 516 | !--Exact explicit integration (qvc exact, qice explicit) |
---|
| 517 | qvapincld_new = qsat(i) + ( qvapincld - qsat(i) ) & |
---|
[5210] | 518 | * EXP( - depo_coef_cirrus * dtime * qiceincld / kappa / rm_ice**2. ) |
---|
[4951] | 519 | ELSE |
---|
| 520 | !--If the cloud is initially subsaturated |
---|
| 521 | !--Exact explicit integration (qice exact, qvc explicit) |
---|
| 522 | !--The barrier is set so that the resulting vapor in cloud |
---|
| 523 | !--cannot be greater than qsat |
---|
| 524 | !--qice_ratio is the ratio between the new ice content and |
---|
| 525 | !--the old one, it is comprised between 0 and 1 |
---|
[5210] | 526 | qice_ratio = ( 1. - 2. / 3. / kappa / rm_ice**2. * dtime * ( qsat(i) - qvapincld ) ) |
---|
[4951] | 527 | |
---|
| 528 | IF ( qice_ratio .LT. 0. ) THEN |
---|
| 529 | !--If all the ice has been sublimated, we sublimate |
---|
| 530 | !--completely the cloud and do not activate the sublimation |
---|
| 531 | !--process |
---|
| 532 | !--Tendencies and diagnostics |
---|
| 533 | dcf_sub(i) = - cldfra(i) |
---|
| 534 | dqvc_sub(i) = - qvc(i) |
---|
| 535 | dqi_sub(i) = - ( qcld(i) - qvc(i) ) |
---|
| 536 | |
---|
| 537 | cldfra(i) = 0. |
---|
| 538 | qcld(i) = 0. |
---|
| 539 | qvc(i) = 0. |
---|
| 540 | |
---|
| 541 | !--The new vapor in cloud is set to 0 so that the |
---|
| 542 | !--sublimation process does not activate |
---|
| 543 | qvapincld_new = 0. |
---|
| 544 | ELSE |
---|
| 545 | !--Else, the sublimation process is activated with the |
---|
| 546 | !--diagnosed new cloud water vapor |
---|
| 547 | !--The new vapor in the cloud is increased with the |
---|
| 548 | !--sublimated ice |
---|
| 549 | qvapincld_new = qvapincld + qiceincld * ( 1. - qice_ratio**(3./2.) ) |
---|
| 550 | !--The new vapor in the cloud cannot be greater than qsat |
---|
| 551 | qvapincld_new = MIN(qvapincld_new, qsat(i)) |
---|
| 552 | ENDIF ! qice_ratio .LT. 0. |
---|
| 553 | ENDIF ! qvapincld .GT. qsat(i) |
---|
| 554 | ELSE |
---|
| 555 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
| 556 | !--cloud is set equal to the saturation vapor |
---|
| 557 | qvapincld_new = qsat(i) |
---|
| 558 | ENDIF ! ok_unadjusted_clouds |
---|
[5210] | 559 | |
---|
| 560 | !--Adjustment of the IWC to the new vapor in cloud |
---|
| 561 | !--(this can be either positive or negative) |
---|
| 562 | dqvc_adj(i) = ( qvapincld_new * cldfra(i) - qvc(i) ) |
---|
| 563 | dqi_adj(i) = - dqvc_adj(i) |
---|
[4951] | 564 | |
---|
[5210] | 565 | !--Add tendencies |
---|
| 566 | !--The vapor in the cloud is updated, but not qcld as it is constant |
---|
| 567 | !--through this process, as well as cldfra which is unmodified |
---|
| 568 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_adj(i))) |
---|
| 569 | |
---|
| 570 | |
---|
| 571 | !------------------------------------ |
---|
| 572 | !-- DISSIPATION OF THE CLOUD -- |
---|
| 573 | !------------------------------------ |
---|
| 574 | |
---|
[4951] | 575 | !--If the vapor in cloud is below vapor needed for the cloud to survive |
---|
| 576 | IF ( qvapincld .LT. qvapincld_new ) THEN |
---|
| 577 | !--Sublimation of the subsaturated cloud |
---|
| 578 | !--iflag_cloud_sublim_pdf selects the PDF of the ice water content |
---|
| 579 | !--to use. |
---|
| 580 | !--iflag = 1 --> uniform distribution |
---|
| 581 | !--iflag = 2 --> exponential distribution |
---|
| 582 | !--iflag = 3 --> gamma distribution (Karcher et al 2018) |
---|
| 583 | |
---|
| 584 | IF ( iflag_cloud_sublim_pdf .EQ. 1 ) THEN |
---|
| 585 | !--Uniform distribution starting at qvapincld |
---|
| 586 | pdf_e1 = 1. / ( 2. * qiceincld ) |
---|
| 587 | |
---|
| 588 | dcf_sub(i) = - cldfra(i) * ( qvapincld_new - qvapincld ) * pdf_e1 |
---|
| 589 | dqt_sub = - cldfra(i) * ( qvapincld_new**2. - qvapincld**2. ) & |
---|
| 590 | * pdf_e1 / 2. |
---|
| 591 | |
---|
| 592 | ELSEIF ( iflag_cloud_sublim_pdf .EQ. 2 ) THEN |
---|
| 593 | !--Exponential distribution starting at qvapincld |
---|
| 594 | pdf_alpha = 1. / qiceincld |
---|
| 595 | pdf_e1 = EXP( - pdf_alpha * ( qvapincld_new - qvapincld ) ) |
---|
| 596 | |
---|
| 597 | dcf_sub(i) = - cldfra(i) * ( 1. - pdf_e1 ) |
---|
| 598 | dqt_sub = - cldfra(i) * ( ( 1. - pdf_e1 ) / pdf_alpha & |
---|
| 599 | + qvapincld - qvapincld_new * pdf_e1 ) |
---|
| 600 | |
---|
| 601 | ELSEIF ( iflag_cloud_sublim_pdf .GE. 3 ) THEN |
---|
| 602 | !--Gamma distribution starting at qvapincld |
---|
| 603 | pdf_alpha = ( mu_subl_pdf_lscp + 1. ) / qiceincld |
---|
| 604 | pdf_y = pdf_alpha * ( qvapincld_new - qvapincld ) |
---|
| 605 | pdf_e1 = GAMMAINC ( mu_subl_pdf_lscp + 1. , pdf_y ) |
---|
| 606 | pdf_e2 = GAMMAINC ( mu_subl_pdf_lscp + 2. , pdf_y ) |
---|
| 607 | |
---|
| 608 | dcf_sub(i) = - cldfra(i) * pdf_e1 |
---|
| 609 | dqt_sub = - cldfra(i) * ( pdf_e2 / pdf_alpha + qvapincld * pdf_e1 ) |
---|
| 610 | ENDIF |
---|
| 611 | |
---|
| 612 | !--Tendencies and diagnostics |
---|
[5210] | 613 | dqvc_sub(i) = dqt_sub |
---|
[4951] | 614 | |
---|
| 615 | !--Add tendencies |
---|
| 616 | cldfra(i) = MAX(0., cldfra(i) + dcf_sub(i)) |
---|
| 617 | qcld(i) = MAX(0., qcld(i) + dqt_sub) |
---|
| 618 | qvc(i) = MAX(0., qvc(i) + dqvc_sub(i)) |
---|
| 619 | |
---|
| 620 | ENDIF ! qvapincld .LT. qvapincld_new |
---|
| 621 | |
---|
| 622 | ENDIF ! qiceincld .LT. eps |
---|
| 623 | ENDIF ! cldfra(i) .GT. eps |
---|
| 624 | |
---|
| 625 | |
---|
| 626 | !-------------------------------------------------------------------------- |
---|
| 627 | !-- CONDENSATION AND DIAGNOTICS OF SUB- AND SUPERSATURATED REGIONS -- |
---|
| 628 | !-------------------------------------------------------------------------- |
---|
| 629 | !--This section relies on a distribution of water in the clear-sky region of |
---|
| 630 | !--the mesh. |
---|
| 631 | |
---|
| 632 | !--If there is a clear-sky region |
---|
| 633 | IF ( ( 1. - cldfra(i) ) .GT. eps ) THEN |
---|
| 634 | |
---|
| 635 | !--Water quantity in the clear-sky + potential liquid cloud (gridbox average) |
---|
| 636 | qclr = qtot(i) - qcld(i) |
---|
| 637 | |
---|
| 638 | !--New PDF |
---|
| 639 | rhl_clr = qclr / ( 1. - cldfra(i) ) / qsatl(i) * 100. |
---|
| 640 | rhl_clr = MIN(rhl_clr, 2. * rhlmid_pdf_lscp) |
---|
| 641 | |
---|
| 642 | !--Calculation of the properties of the PDF |
---|
| 643 | !--Parameterization from IAGOS observations |
---|
| 644 | !--pdf_e1 and pdf_e2 will be reused below |
---|
| 645 | |
---|
[5161] | 646 | !--Coefficient for standard deviation: |
---|
| 647 | !-- tuning coef * (clear sky area**0.25) * (function of temperature) |
---|
| 648 | pdf_e1 = beta_pdf_lscp & |
---|
| 649 | * ( ( 1. - cldfra(i) ) * cell_area(i) )**( 1. / 4. ) & |
---|
[4951] | 650 | * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
---|
| 651 | IF ( rhl_clr .GT. rhlmid_pdf_lscp ) THEN |
---|
| 652 | pdf_std = pdf_e1 * ( 2. * rhlmid_pdf_lscp - rhl_clr ) / rhlmid_pdf_lscp |
---|
| 653 | ELSE |
---|
| 654 | pdf_std = pdf_e1 * rhl_clr / rhlmid_pdf_lscp |
---|
| 655 | ENDIF |
---|
| 656 | pdf_e3 = k0_pdf_lscp + kappa_pdf_lscp * MAX( temp_nowater - temp(i), 0. ) |
---|
| 657 | pdf_alpha = EXP( rhl_clr / rhl0_pdf_lscp ) * pdf_e3 |
---|
| 658 | |
---|
| 659 | pdf_e2 = GAMMA(1. + 1. / pdf_alpha) |
---|
| 660 | pdf_scale = MAX(eps, pdf_std / SQRT( GAMMA(1. + 2. / pdf_alpha) - pdf_e2**2. )) |
---|
| 661 | pdf_loc = rhl_clr - pdf_scale * pdf_e2 |
---|
| 662 | |
---|
| 663 | !--Diagnostics of ratqs |
---|
| 664 | ratqs(i) = pdf_std / ( qclr / ( 1. - cldfra(i) ) / qsatl(i) * 100. ) |
---|
| 665 | |
---|
| 666 | !--Calculation of the newly condensed water and fraction (pronostic) |
---|
| 667 | !--Integration of the clear sky PDF between gamma_cond*qsat and +inf |
---|
| 668 | !--NB. the calculated values are clear-sky averaged |
---|
| 669 | |
---|
| 670 | pdf_x = gamma_cond(i) * qsat(i) / qsatl(i) * 100. |
---|
| 671 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
---|
| 672 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
---|
| 673 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
---|
| 674 | cf_cond = EXP( - pdf_y ) |
---|
| 675 | qt_cond = ( pdf_e3 + pdf_loc * cf_cond ) * qsatl(i) / 100. |
---|
| 676 | |
---|
| 677 | IF ( ok_warm_cloud ) THEN |
---|
[5210] | 678 | !--If the statistical scheme is activated, the calculated increase is equal |
---|
| 679 | !--to the cloud fraction, we assume saturation adjustment, and the |
---|
| 680 | !--condensation process stops |
---|
[4951] | 681 | cldfra(i) = cf_cond |
---|
| 682 | qcld(i) = qt_cond |
---|
| 683 | qvc(i) = cldfra(i) * qsat(i) |
---|
| 684 | |
---|
[5210] | 685 | ELSEIF ( cf_cond .GT. eps ) THEN |
---|
[4951] | 686 | |
---|
[5210] | 687 | dcf_con(i) = ( 1. - cldfra(i) ) * cf_cond |
---|
| 688 | dqt_con = ( 1. - cldfra(i) ) * qt_cond |
---|
[4951] | 689 | |
---|
| 690 | !--Barriers |
---|
| 691 | dcf_con(i) = MIN(dcf_con(i), 1. - cldfra(i)) |
---|
| 692 | dqt_con = MIN(dqt_con, qclr) |
---|
| 693 | |
---|
| 694 | |
---|
| 695 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 696 | !--Here, the initial vapor in the cloud is gamma_cond*qsat, and we compute |
---|
| 697 | !--the new vapor qvapincld. The timestep is divided by two because we do not |
---|
| 698 | !--know when the condensation occurs |
---|
| 699 | qvapincld = gamma_cond(i) * qsat(i) |
---|
| 700 | qiceincld = dqt_con / dcf_con(i) - gamma_cond(i) * qsat(i) |
---|
[5210] | 701 | |
---|
| 702 | !--rm_ice formula from McFarquhar and Heymsfield (1997) |
---|
| 703 | iwc = qiceincld * rho * 1e3 |
---|
| 704 | iwc_inf100 = MIN(iwc, 0.252 * iwc**0.837) |
---|
| 705 | iwc_log_inf100 = LOG10( MAX(eps, iwc_inf100) ) |
---|
| 706 | iwc_log_sup100 = LOG10( MAX(eps, iwc - iwc_inf100) ) |
---|
| 707 | |
---|
| 708 | alpha_inf100 = - 4.99E-3 - 0.0494 * iwc_log_inf100 |
---|
| 709 | coef_inf100 = iwc_inf100 * alpha_inf100**3. / 120. |
---|
| 710 | |
---|
| 711 | mu_sup100 = ( 5.2 + 0.0013 * ( temp(i) - RTT ) ) & |
---|
| 712 | + ( 0.026 - 1.2E-3 * ( temp(i) - RTT ) ) * iwc_log_sup100 |
---|
| 713 | sigma_sup100 = ( 0.47 + 2.1E-3 * ( temp(i) - RTT ) ) & |
---|
| 714 | + ( 0.018 - 2.1E-4 * ( temp(i) - RTT ) ) * iwc_log_sup100 |
---|
| 715 | coef_sup100 = ( iwc - iwc_inf100 ) / EXP( 3. * mu_sup100 + 4.5 * sigma_sup100**2. ) |
---|
| 716 | |
---|
| 717 | Dm_ice = ( 2. / alpha_inf100 * coef_inf100 + EXP( mu_sup100 + 0.5 * sigma_sup100**2. ) & |
---|
| 718 | * coef_sup100 ) / ( coef_inf100 + coef_sup100 ) |
---|
| 719 | rm_ice = Dm_ice / 2. * 1.E-6 |
---|
[4951] | 720 | !--As qvapincld is necessarily greater than qsat, we only |
---|
| 721 | !--use the exact explicit formulation |
---|
| 722 | !--Exact explicit version |
---|
| 723 | qvapincld = qsat(i) + ( qvapincld - qsat(i) ) & |
---|
[5210] | 724 | * EXP( - depo_coef_cirrus * dtime / 2. * qiceincld / kappa / rm_ice**2. ) |
---|
[4951] | 725 | ELSE |
---|
| 726 | !--We keep the saturation adjustment hypothesis, and the vapor in the |
---|
| 727 | !--newly formed cloud is set equal to the saturation vapor. |
---|
| 728 | qvapincld = qsat(i) |
---|
| 729 | ENDIF |
---|
| 730 | |
---|
| 731 | !--Tendency on cloud vapor and diagnostic |
---|
| 732 | dqvc_con(i) = qvapincld * dcf_con(i) |
---|
| 733 | dqi_con(i) = dqt_con - dqvc_con(i) |
---|
| 734 | |
---|
| 735 | !--Note that the tendencies are NOT added because they are |
---|
| 736 | !--added after the mixing process. In the following, the gridbox fraction is |
---|
| 737 | !-- 1. - dcf_con(i), and the total water in the gridbox is |
---|
| 738 | !-- qtot(i) - dqi_con(i) - dqvc_con(i) |
---|
| 739 | |
---|
[5210] | 740 | ENDIF ! ok_warm_cloud, cf_cond .GT. eps |
---|
[4951] | 741 | ENDIF ! ( 1. - cldfra(i) ) .GT. eps |
---|
| 742 | |
---|
| 743 | !--If there is still clear sky, we diagnose the ISSR |
---|
| 744 | !--We recalculte the PDF properties (after the condensation process) |
---|
| 745 | IF ( ( ( 1. - dcf_con(i) - cldfra(i) ) .GT. eps ) .AND. .NOT. ok_warm_cloud ) THEN |
---|
| 746 | !--Water quantity in the clear-sky + potential liquid cloud (gridbox average) |
---|
| 747 | qclr = qtot(i) - dqi_con(i) - dqvc_con(i) - qcld(i) |
---|
| 748 | |
---|
| 749 | !--New PDF |
---|
| 750 | rhl_clr = qclr / ( 1. - dcf_con(i) - cldfra(i) ) / qsatl(i) * 100. |
---|
| 751 | rhl_clr = MIN(rhl_clr, 2. * rhlmid_pdf_lscp) |
---|
| 752 | |
---|
| 753 | !--Calculation of the properties of the PDF |
---|
| 754 | !--Parameterization from IAGOS observations |
---|
| 755 | !--pdf_e1 and pdf_e2 will be reused below |
---|
| 756 | |
---|
[5161] | 757 | !--Coefficient for standard deviation: |
---|
| 758 | !-- tuning coef * (clear sky area**0.25) * (function of temperature) |
---|
| 759 | pdf_e1 = beta_pdf_lscp & |
---|
| 760 | * ( ( 1. - dcf_con(i) - cldfra(i) ) * cell_area(i) )**( 1. / 4. ) & |
---|
[4951] | 761 | * MAX( temp(i) - temp_thresh_pdf_lscp, 0. ) |
---|
| 762 | IF ( rhl_clr .GT. rhlmid_pdf_lscp ) THEN |
---|
| 763 | pdf_std = pdf_e1 * ( 2. * rhlmid_pdf_lscp - rhl_clr ) / rhlmid_pdf_lscp |
---|
| 764 | ELSE |
---|
| 765 | pdf_std = pdf_e1 * rhl_clr / rhlmid_pdf_lscp |
---|
| 766 | ENDIF |
---|
| 767 | pdf_e3 = k0_pdf_lscp + kappa_pdf_lscp * MAX( temp_nowater - temp(i), 0. ) |
---|
| 768 | pdf_alpha = EXP( rhl_clr / rhl0_pdf_lscp ) * pdf_e3 |
---|
| 769 | |
---|
| 770 | pdf_e2 = GAMMA(1. + 1. / pdf_alpha) |
---|
| 771 | pdf_scale = MAX(eps, pdf_std / SQRT( GAMMA(1. + 2. / pdf_alpha) - pdf_e2**2. )) |
---|
| 772 | pdf_loc = rhl_clr - pdf_scale * pdf_e2 |
---|
| 773 | |
---|
| 774 | !--We then calculate the part that is greater than qsat |
---|
| 775 | !--and consider it supersaturated |
---|
| 776 | |
---|
| 777 | pdf_x = qsat(i) / qsatl(i) * 100. |
---|
| 778 | pdf_y = ( MAX( pdf_x - pdf_loc, 0. ) / pdf_scale ) ** pdf_alpha |
---|
| 779 | pdf_e3 = GAMMAINC ( 1. + 1. / pdf_alpha , pdf_y ) |
---|
| 780 | pdf_e3 = pdf_scale * ( 1. - pdf_e3 ) * pdf_e2 |
---|
| 781 | issrfra(i) = EXP( - pdf_y ) * ( 1. - dcf_con(i) - cldfra(i) ) |
---|
| 782 | qissr(i) = ( pdf_e3 * ( 1. - dcf_con(i) - cldfra(i) ) + pdf_loc * issrfra(i) ) * qsatl(i) / 100. |
---|
| 783 | ENDIF |
---|
| 784 | |
---|
| 785 | !--Calculation of the subsaturated clear sky fraction and water |
---|
| 786 | subfra(i) = 1. - dcf_con(i) - cldfra(i) - issrfra(i) |
---|
| 787 | qsub(i) = qtot(i) - dqi_con(i) - dqvc_con(i) - qcld(i) - qissr(i) |
---|
| 788 | |
---|
| 789 | |
---|
| 790 | !-------------------------------------- |
---|
| 791 | !-- CLOUD MIXING -- |
---|
| 792 | !-------------------------------------- |
---|
| 793 | !--This process mixes the cloud with its surroundings: the subsaturated clear sky, |
---|
| 794 | !--and the supersaturated clear sky. It is activated if the cloud is big enough, |
---|
| 795 | !--but does not cover the entire mesh. |
---|
| 796 | ! |
---|
| 797 | IF ( ( cldfra(i) .LT. ( 1. - dcf_con(i) - eps ) ) .AND. ( cldfra(i) .GT. eps ) & |
---|
| 798 | .AND. .NOT. ok_warm_cloud ) THEN |
---|
| 799 | |
---|
| 800 | !--Initialisation |
---|
| 801 | dcf_mix_sub = 0. |
---|
| 802 | dqt_mix_sub = 0. |
---|
| 803 | dqvc_mix_sub = 0. |
---|
| 804 | dcf_mix_issr = 0. |
---|
| 805 | dqt_mix_issr = 0. |
---|
| 806 | dqvc_mix_issr = 0. |
---|
| 807 | |
---|
| 808 | |
---|
| 809 | !-- PART 1 - TURBULENT DIFFUSION |
---|
| 810 | |
---|
| 811 | !--Clouds within the mesh are assumed to be ellipses. The length of the |
---|
| 812 | !--semi-major axis is a and the length of the semi-minor axis is b. |
---|
| 813 | !--N_cld_mix is the number of clouds within the mesh, and |
---|
| 814 | !--clouds_perim is the total perimeter of the clouds within the mesh, |
---|
| 815 | !--not considering interfaces with other meshes (only the interfaces with clear |
---|
| 816 | !--sky are taken into account). |
---|
| 817 | !-- |
---|
| 818 | !--The area of each cloud is A = a * b * RPI, |
---|
| 819 | !--and the perimeter of each cloud is |
---|
| 820 | !-- P ~= RPI * ( 3 * (a + b) - SQRT( (3 * a + b) * (a + 3 * b) ) ) |
---|
| 821 | !-- |
---|
| 822 | !--With cell_area the area of the cell, we have: |
---|
| 823 | !-- cldfra = A * N_cld_mix / cell_area |
---|
| 824 | !-- clouds_perim = P * N_cld_mix |
---|
| 825 | !-- |
---|
| 826 | !--We assume that the ratio between b and a is a function of |
---|
| 827 | !--cldfra such that it is 1 for cldfra = 1 and it is low for little cldfra, because |
---|
| 828 | !--if cldfra is low the clouds are linear, and if cldfra is high, the clouds |
---|
| 829 | !--are spherical. |
---|
| 830 | !-- b / a = bovera = MAX(0.1, cldfra) |
---|
| 831 | bovera = MAX(0.1, cldfra(i)) |
---|
| 832 | !--The clouds perimeter is imposed using the formula from Morcrette 2012, |
---|
| 833 | !--based on observations. |
---|
| 834 | !-- clouds_perim_normalized = alpha * cldfra * ( 1. - cldfra ) = clouds_perim / ( norm_constant * cell_area ) |
---|
| 835 | !-- |
---|
| 836 | !--With all this, we have |
---|
| 837 | !-- a = SQRT( cell_area * cldfra / ( b / a * N_cld_mix * RPI ) ) |
---|
| 838 | !-- P = RPI * a * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
---|
| 839 | !--and therefore, using the perimeter |
---|
| 840 | !-- alpha * cldfra * ( 1. - cldfra ) * norm_constant * cell_area |
---|
| 841 | !-- = N_cld_mix * RPI & |
---|
| 842 | !-- * SQRT( cell_area * cldfra / ( b / a * N_cld_mix * RPI ) ) & |
---|
| 843 | !-- * ( 3. * ( 1. + b / a ) - SQRT( (3. + b / a) * (1. + 3. * b / a) ) ) |
---|
| 844 | !--and finally |
---|
| 845 | N_cld_mix = coef_mixing_lscp * cldfra(i) * ( 1. - dcf_con(i) - cldfra(i) )**2. & |
---|
| 846 | * cell_area(i) * ( 1. - dcf_con(i) ) * bovera / RPI & |
---|
| 847 | / ( 3. * (1. + bovera) - SQRT( (3. + bovera) * (1. + 3. * bovera) ) )**2. |
---|
| 848 | !--where coef_mix_lscp = ( alpha * norm_constant )**2. |
---|
| 849 | !--N_cld_mix is the number of clouds in contact with clear sky, and can be non-integer |
---|
| 850 | !--In particular, it is 0 if cldfra = 1 |
---|
| 851 | a_mix = SQRT( cell_area(i) * ( 1. - dcf_con(i) ) * cldfra(i) / bovera / N_cld_mix / RPI ) |
---|
| 852 | |
---|
| 853 | !--The time required for turbulent diffusion to homogenize a region of size |
---|
| 854 | !--L_mix is defined as (L_mix**2./tke_dissip)**(1./3.) (Pope, 2000; Field et al., 2014) |
---|
| 855 | !--We compute L_mix and assume that the cloud is mixed over this length |
---|
| 856 | L_mix = SQRT( dtime**3. * pbl_eps(i) ) |
---|
| 857 | !--The mixing length cannot be greater than the semi-minor axis. In this case, |
---|
| 858 | !--the entire cloud is mixed. |
---|
| 859 | L_mix = MIN(L_mix, a_mix * bovera) |
---|
| 860 | |
---|
| 861 | !--The fraction of clear sky mixed is |
---|
| 862 | !-- N_cld_mix * ( (a + L_mix) * (b + L_mix) - a * b ) * RPI / cell_area |
---|
| 863 | envfra_mix = N_cld_mix * RPI / cell_area(i) / ( 1. - dcf_con(i) ) & |
---|
| 864 | * ( a_mix * ( 1. + bovera ) * L_mix + L_mix**2. ) |
---|
| 865 | !--The fraction of cloudy sky mixed is |
---|
| 866 | !-- N_cld_mix * ( a * b - (a - L_mix) * (b - L_mix) ) * RPI / cell_area |
---|
| 867 | cldfra_mix = N_cld_mix * RPI / cell_area(i) / ( 1. - dcf_con(i) ) & |
---|
| 868 | * ( a_mix * ( 1. + bovera ) * L_mix - L_mix**2. ) |
---|
| 869 | |
---|
| 870 | |
---|
| 871 | !-- PART 2 - SHEARING |
---|
| 872 | |
---|
| 873 | !--The clouds are then sheared. We keep the shape and number |
---|
| 874 | !--assumptions from before. The clouds are sheared along their |
---|
| 875 | !--semi-major axis (a_mix), on the entire cell heigh dz. |
---|
| 876 | !--The increase in size is |
---|
| 877 | L_shear = coef_shear_lscp * shear(i) * dz * dtime |
---|
| 878 | !--therefore, the total increase in fraction is |
---|
[5210] | 879 | !-- N_cld_mix * ( (a + L_shear) * b - a * b ) * RPI / 2. / cell_area |
---|
| 880 | shear_fra = RPI * L_shear * a_mix * bovera / 2. * N_cld_mix & |
---|
[4951] | 881 | / cell_area(i) / ( 1. - dcf_con(i) ) |
---|
| 882 | !--and the environment and cloud mixed fractions are the same, |
---|
| 883 | !--which we add to the previous calculated mixed fractions. |
---|
| 884 | !--We therefore assume that the sheared clouds and the turbulent |
---|
| 885 | !--mixed clouds are different. |
---|
| 886 | envfra_mix = envfra_mix + shear_fra |
---|
| 887 | cldfra_mix = cldfra_mix + shear_fra |
---|
| 888 | |
---|
| 889 | |
---|
| 890 | !-- PART 3 - CALCULATION OF THE MIXING PROPERTIES |
---|
| 891 | |
---|
| 892 | !--The environment fraction is allocated to subsaturated sky or supersaturated sky, |
---|
| 893 | !--according to the factor sigma_mix. This is computed as the ratio of the |
---|
| 894 | !--subsaturated sky fraction to the environment fraction, corrected by a factor |
---|
| 895 | !--chi_mixing_lscp for the supersaturated part. If chi is greater than 1, the |
---|
| 896 | !--supersaturated sky is favoured. Physically, this means that it is more likely |
---|
| 897 | !--to have supersaturated sky around the cloud than subsaturated sky. |
---|
| 898 | sigma_mix = subfra(i) / ( subfra(i) + chi_mixing_lscp * issrfra(i) ) |
---|
| 899 | subfra_mix = MIN( sigma_mix * envfra_mix, subfra(i) ) |
---|
| 900 | issrfra_mix = MIN( ( 1. - sigma_mix ) * envfra_mix, issrfra(i) ) |
---|
| 901 | cldfra_mix = MIN( cldfra_mix, cldfra(i) ) |
---|
| 902 | |
---|
| 903 | !--First, we mix the subsaturated sky (subfra_mix) and the cloud close |
---|
| 904 | !--to this fraction (sigma_mix * cldfra_mix). |
---|
| 905 | IF ( subfra(i) .GT. eps ) THEN |
---|
| 906 | |
---|
| 907 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 908 | !--The subsaturated air is simply added to the cloud, |
---|
| 909 | !--with the corresponding cloud fraction |
---|
| 910 | !--If the cloud is too subsaturated, the sublimation process |
---|
| 911 | !--activated in the following timestep will reduce the cloud |
---|
| 912 | !--fraction |
---|
| 913 | dcf_mix_sub = subfra_mix |
---|
| 914 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
---|
| 915 | dqvc_mix_sub = dqt_mix_sub |
---|
| 916 | |
---|
| 917 | ELSE |
---|
| 918 | !--We compute the total humidity in the mixed air, which |
---|
| 919 | !--can be either sub- or supersaturated. |
---|
| 920 | qvapinmix = ( qsub(i) * subfra_mix / subfra(i) & |
---|
| 921 | + qcld(i) * cldfra_mix * sigma_mix / cldfra(i) ) & |
---|
| 922 | / ( subfra_mix + cldfra_mix * sigma_mix ) |
---|
| 923 | |
---|
| 924 | IF ( qvapinmix .GT. qsat(i) ) THEN |
---|
| 925 | !--If the mixed air is supersaturated, we condense the subsaturated |
---|
| 926 | !--region which was mixed. |
---|
| 927 | dcf_mix_sub = subfra_mix |
---|
| 928 | dqt_mix_sub = dcf_mix_sub * qsub(i) / subfra(i) |
---|
| 929 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
---|
| 930 | ELSE |
---|
| 931 | !--Else, we sublimate the cloud which was mixed. |
---|
| 932 | dcf_mix_sub = - sigma_mix * cldfra_mix |
---|
| 933 | dqt_mix_sub = dcf_mix_sub * qcld(i) / cldfra(i) |
---|
| 934 | dqvc_mix_sub = dcf_mix_sub * qsat(i) |
---|
| 935 | ENDIF |
---|
| 936 | ENDIF ! ok_unadjusted_clouds |
---|
| 937 | ENDIF ! subfra .GT. eps |
---|
| 938 | |
---|
| 939 | !--We then mix the supersaturated sky (issrfra_mix) and the cloud, |
---|
| 940 | !--for which the mixed air is always supersatured, therefore |
---|
| 941 | !--the cloud necessarily expands |
---|
| 942 | IF ( issrfra(i) .GT. eps ) THEN |
---|
| 943 | |
---|
| 944 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 945 | !--The ice supersaturated air is simply added to the |
---|
| 946 | !--cloud, and supersaturated vapor will be deposited on the |
---|
| 947 | !--cloud ice crystals by the deposition process in the |
---|
| 948 | !--following timestep |
---|
| 949 | dcf_mix_issr = issrfra_mix |
---|
| 950 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
---|
| 951 | dqvc_mix_issr = dqt_mix_issr |
---|
| 952 | ELSE |
---|
| 953 | !--In this case, the additionnal vapor condenses |
---|
| 954 | dcf_mix_issr = issrfra_mix |
---|
| 955 | dqt_mix_issr = dcf_mix_issr * qissr(i) / issrfra(i) |
---|
| 956 | dqvc_mix_issr = dcf_mix_issr * qsat(i) |
---|
| 957 | ENDIF ! ok_unadjusted_clouds |
---|
| 958 | |
---|
| 959 | |
---|
| 960 | ENDIF ! issrfra .GT. eps |
---|
| 961 | |
---|
| 962 | !--Sum up the tendencies from subsaturated sky and supersaturated sky |
---|
| 963 | dcf_mix(i) = dcf_mix_sub + dcf_mix_issr |
---|
| 964 | dqt_mix = dqt_mix_sub + dqt_mix_issr |
---|
| 965 | dqvc_mix(i) = dqvc_mix_sub + dqvc_mix_issr |
---|
| 966 | dqi_mix(i) = dqt_mix - dqvc_mix(i) |
---|
| 967 | |
---|
| 968 | !--Add tendencies |
---|
| 969 | issrfra(i) = MAX(0., issrfra(i) - dcf_mix_issr) |
---|
| 970 | qissr(i) = MAX(0., qissr(i) - dqt_mix_issr) |
---|
| 971 | cldfra(i) = MAX(0., MIN(1. - dcf_con(i), cldfra(i) + dcf_mix(i))) |
---|
| 972 | qcld(i) = MAX(0., MIN(qtot(i) - dqi_con(i) - dqvc_con(i), qcld(i) + dqt_mix)) |
---|
| 973 | qvc(i) = MAX(0., MIN(qcld(i), qvc(i) + dqvc_mix(i))) |
---|
| 974 | |
---|
| 975 | ENDIF ! ( ( cldfra(i) .LT. ( 1. - dcf_con(i) - eps ) ) .AND. ( cldfra(i) .GT. eps ) ) |
---|
| 976 | |
---|
| 977 | !--Finally, we add the tendencies of condensation |
---|
| 978 | cldfra(i) = MIN(1., cldfra(i) + dcf_con(i)) |
---|
| 979 | qcld(i) = MIN(qtot(i), qcld(i) + dqvc_con(i) + dqi_con(i)) |
---|
| 980 | qvc(i) = MIN(qcld(i), qvc(i) + dqvc_con(i)) |
---|
| 981 | |
---|
| 982 | |
---|
| 983 | !---------------------------------------- |
---|
| 984 | !-- CONTRAILS AND AVIATION -- |
---|
| 985 | !---------------------------------------- |
---|
| 986 | |
---|
| 987 | !--Add a source of cirrus from aviation contrails |
---|
| 988 | !IF ( ok_plane_contrail ) THEN |
---|
| 989 | ! dcf_avi(i) = 0. |
---|
| 990 | ! dqi_avi(i) = 0. |
---|
| 991 | ! dqvc_avi(i) = 0. |
---|
| 992 | ! ! TODO implement ok_unadjusted_clouds |
---|
| 993 | ! IF ( issrfra(i) .GT. eps ) THEN |
---|
| 994 | ! contrail_fra = MIN(1., flight_m(i,k) * dtime * contrail_cross_section / V_cell) |
---|
| 995 | ! dcf_avi(i) = issrfra(i) * contrail_fra |
---|
| 996 | ! dqt_avi = dcf_avi(i) * qissr(i) / issrfra(i) |
---|
| 997 | ! dqvc_avi(i) = qsat(i) * dcf_avi(i) |
---|
| 998 | ! |
---|
| 999 | ! !--Add tendencies |
---|
| 1000 | ! cldfra(i) = cldfra(i) + dcf_avi(i) |
---|
| 1001 | ! issrfra(i) = issrfra(i) - dcf_avi(i) |
---|
| 1002 | ! qcld(i) = qcld(i) + dqt_avi |
---|
| 1003 | ! qvc(i) = qvc(i) + dqvc_avi(i) |
---|
| 1004 | ! qissr(i) = qissr(i) - dqt_avi |
---|
| 1005 | |
---|
| 1006 | ! !--Diagnostics |
---|
| 1007 | ! dqi_avi(i) = dqt_avi - qsat(i) * dcf_avi(i) |
---|
| 1008 | ! ENDIF |
---|
| 1009 | ! dcf_avi(i) = dcf_avi(i) / dtime |
---|
| 1010 | ! dqi_avi(i) = dqi_avi(i) / dtime |
---|
| 1011 | ! dqvc_avi(i) = dqvc_avi(i) / dtime |
---|
| 1012 | !ENDIF |
---|
| 1013 | |
---|
| 1014 | |
---|
| 1015 | |
---|
| 1016 | !------------------------------------------- |
---|
| 1017 | !-- FINAL BARRIERS AND OUTPUTS -- |
---|
| 1018 | !------------------------------------------- |
---|
| 1019 | |
---|
| 1020 | IF ( cldfra(i) .LT. eps ) THEN |
---|
| 1021 | !--If the cloud is too small, it is sublimated. |
---|
| 1022 | cldfra(i) = 0. |
---|
| 1023 | qcld(i) = 0. |
---|
| 1024 | qvc(i) = 0. |
---|
| 1025 | qincld(i) = qsat(i) |
---|
| 1026 | ELSE |
---|
| 1027 | qincld(i) = qcld(i) / cldfra(i) |
---|
| 1028 | ENDIF ! cldfra .LT. eps |
---|
| 1029 | |
---|
| 1030 | !--Diagnostics |
---|
| 1031 | dcf_sub(i) = dcf_sub(i) / dtime |
---|
| 1032 | dcf_con(i) = dcf_con(i) / dtime |
---|
| 1033 | dcf_mix(i) = dcf_mix(i) / dtime |
---|
| 1034 | dqi_adj(i) = dqi_adj(i) / dtime |
---|
| 1035 | dqi_sub(i) = dqi_sub(i) / dtime |
---|
| 1036 | dqi_con(i) = dqi_con(i) / dtime |
---|
| 1037 | dqi_mix(i) = dqi_mix(i) / dtime |
---|
| 1038 | dqvc_adj(i) = dqvc_adj(i) / dtime |
---|
| 1039 | dqvc_sub(i) = dqvc_sub(i) / dtime |
---|
| 1040 | dqvc_con(i) = dqvc_con(i) / dtime |
---|
| 1041 | dqvc_mix(i) = dqvc_mix(i) / dtime |
---|
| 1042 | |
---|
| 1043 | ENDIF ! ( temp(i) .GT. temp_nowater ) .AND. .NOT. ok_weibull_warm_clouds |
---|
| 1044 | |
---|
| 1045 | ENDIF ! end keepgoing |
---|
| 1046 | |
---|
| 1047 | ENDDO ! end loop on i |
---|
| 1048 | |
---|
| 1049 | END SUBROUTINE condensation_ice_supersat |
---|
| 1050 | !********************************************************************************** |
---|
| 1051 | |
---|
| 1052 | END MODULE lmdz_lscp_condensation |
---|