source: LMDZ6/trunk/libf/phylmd/lmdz_lscp.f90 @ 5433

Last change on this file since 5433 was 5430, checked in by evignon, 2 weeks ago

ajout de la deposition de vapeur sur les precipitations
glacees (croissance) dans poprecip, A borella

File size: 49.1 KB
RevLine 
[4664]1MODULE lmdz_lscp
[3999]2
3IMPLICIT NONE
4
5CONTAINS
6
7!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
[4380]8SUBROUTINE lscp(klon,klev,dtime,missing_val,            &
[5396]9     paprs, pplay, omega, temp, qt, ql_seri, qi_seri,   &
10     ptconv, ratqs, sigma_qtherm,                       &
[5204]11     d_t, d_q, d_ql, d_qi, rneb, rneblsvol,             &
[5007]12     pfraclr, pfracld,                                  &
13     cldfraliq, sigma2_icefracturb,mean_icefracturb,    &
[4530]14     radocond, radicefrac, rain, snow,                  &
[3999]15     frac_impa, frac_nucl, beta,                        &
[5007]16     prfl, psfl, rhcl, qta, fraca,                      &
17     tv, pspsk, tla, thl, iflag_cld_th,                 &
[5204]18     iflag_ice_thermo, distcltop, temp_cltop,           &
19     tke, tke_dissip,                                   &
20     cell_area,                                         &
21     cf_seri, rvc_seri, u_seri, v_seri,                 &
22     qsub, qissr, qcld, subfra, issrfra, gamma_cond,    &
[5396]23     dcf_sub, dcf_con, dcf_mix,          &
[5204]24     dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj,      &
25     dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati,        &
26     Tcontr, qcontr, qcontr2, fcontrN, fcontrP, dcf_avi,&
27     dqi_avi, dqvc_avi, flight_dist, flight_h2o,        &
[4803]28     cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv, &
[4830]29     qraindiag, qsnowdiag, dqreva, dqssub, dqrauto,     &
30     dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim,&
[4819]31     dqsmelt, dqsfreez)
[3999]32
33!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
34! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD)
35!          A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD)
36!--------------------------------------------------------------------------------
37! Date: 01/2021
38!--------------------------------------------------------------------------------
39! Aim: Large Scale Clouds and Precipitation (LSCP)
[4226]40!
[3999]41! This code is a new version of the fisrtilp.F90 routine, which is itself a
[4072]42! merge of 'first' (superrsaturation physics, P. LeVan K. Laval)
[3999]43! and 'ilp' (il pleut, L. Li)
44!
[4380]45! Compared to the original fisrtilp code, lscp
[3999]46! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.)
47! -> consider always precipitation thermalisation (fl_cor_ebil>0)
48! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T)
49! -> option "oldbug" by JYG has been removed
50! -> iflag_t_glace >0 always
51! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always)
52! -> rectangular distribution from L. Li no longer available
53! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt)
54!--------------------------------------------------------------------------------
55! References:
56!
[4412]57! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2
[3999]58! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y
59! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3
[4412]60! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379
[3999]61! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046
[4412]62! - Touzze-Peifert Ludo, PhD thesis, p117-124
[3999]63! -------------------------------------------------------------------------------
64! Code structure:
65!
[4226]66! P0>     Thermalization of the precipitation coming from the overlying layer
[3999]67! P1>     Evaporation of the precipitation (falling from the k+1 level)
68! P2>     Cloud formation (at the k level)
[4412]69! P2.A.1> With the PDFs, calculation of cloud properties using the inital
[3999]70!         values of T and Q
71! P2.A.2> Coupling between condensed water and temperature
72! P2.A.3> Calculation of final quantities associated with cloud formation
[4412]73! P2.B>   Release of Latent heat after cloud formation
[3999]74! P3>     Autoconversion to precipitation (k-level)
75! P4>     Wet scavenging
76!------------------------------------------------------------------------------
77! Some preliminary comments (JBM) :
78!
79! The cloud water that the radiation scheme sees is not the same that the cloud
80! water used in the physics and the dynamics
81!
[4412]82! During the autoconversion to precipitation (P3 step), radocond (cloud water used
[3999]83! by the radiation scheme) is calculated as an average of the water that remains
84! in the cloud during the precipitation and not the water remaining at the end
85! of the time step. The latter is used in the rest of the physics and advected
86! by the dynamics.
87!
88! In summary:
89!
90! Radiation:
91! xflwc(newmicro)+xfiwc(newmicro) =
[4412]92!   radocond=lwcon(nc)+iwcon(nc)
[3999]93!
94! Notetheless, be aware of:
95!
[4412]96! radocond .NE. ocond(nc)
[3999]97! i.e.:
98! lwcon(nc)+iwcon(nc) .NE. ocond(nc)
[4412]99! but oliq+(ocond-oliq) .EQ. ocond
[3999]100! (which is not trivial)
101!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
[4226]102!
[4654]103
104! USE de modules contenant des fonctions.
[4651]105USE lmdz_cloudth, ONLY : cloudth, cloudth_v3, cloudth_v6, cloudth_mpc
[5007]106USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, calc_gammasat
[5413]107USE lmdz_lscp_tools, ONLY : icefrac_lscp, icefrac_lscp_turb, distance_to_cloud_top
[5241]108USE lmdz_lscp_condensation, ONLY : condensation_lognormal, condensation_ice_supersat
[5413]109USE lmdz_lscp_precip, ONLY : histprecip_precld, histprecip_postcld
110USE lmdz_lscp_precip, ONLY : poprecip_precld, poprecip_postcld
[3999]111
[4664]112! Use du module lmdz_lscp_ini contenant les constantes
[5204]113USE lmdz_lscp_ini, ONLY : prt_level, lunout, eps
[5413]114USE lmdz_lscp_ini, ONLY : seuil_neb, iflag_evap_prec, DDT0
115USE lmdz_lscp_ini, ONLY : ok_radocond_snow, a_tr_sca
116USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_t_glace, iflag_fisrtilp_qsat
117USE lmdz_lscp_ini, ONLY : t_glace_min, min_frac_th_cld
118USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RVTMP2, RTT, RD, RG
[5412]119USE lmdz_lscp_ini, ONLY : ok_poprecip, ok_bug_phase_lscp
[5211]120USE lmdz_lscp_ini, ONLY : ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac
[5204]121
[3999]122IMPLICIT NONE
123
124!===============================================================================
[4380]125! VARIABLES DECLARATION
[3999]126!===============================================================================
127
128! INPUT VARIABLES:
129!-----------------
130
[4380]131  INTEGER,                         INTENT(IN)   :: klon,klev       ! number of horizontal grid points and vertical levels
[3999]132  REAL,                            INTENT(IN)   :: dtime           ! time step [s]
[4380]133  REAL,                            INTENT(IN)   :: missing_val     ! missing value for output
[4059]134
[3999]135  REAL, DIMENSION(klon,klev+1),    INTENT(IN)   :: paprs           ! inter-layer pressure [Pa]
136  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: pplay           ! mid-layer pressure [Pa]
[4654]137  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: temp            ! temperature (K)
[5383]138  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: omega           ! vertical velocity [Pa/s]
[4686]139  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: qt              ! total specific humidity (in vapor phase in input) [kg/kg]
[5396]140  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: ql_seri         ! liquid specific content [kg/kg]
141  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: qi_seri         ! ice specific content [kg/kg]
[3999]142  INTEGER,                         INTENT(IN)   :: iflag_cld_th    ! flag that determines the distribution of convective clouds
143  INTEGER,                         INTENT(IN)   :: iflag_ice_thermo! flag to activate the ice thermodynamics
[4226]144                                                                   ! CR: if iflag_ice_thermo=2, only convection is active
[3999]145  LOGICAL, DIMENSION(klon,klev),   INTENT(IN)   :: ptconv          ! grid points where deep convection scheme is active
146
147  !Inputs associated with thermal plumes
[4226]148
[5007]149  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: tv                  ! virtual potential temperature [K]
150  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: qta                 ! specific humidity within thermals [kg/kg]
151  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: fraca               ! fraction of thermals within the mesh [-]
152  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: pspsk               ! exner potential (p/100000)**(R/cp)
153  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: tla                 ! liquid temperature within thermals [K]
[5413]154  REAL, DIMENSION(klon,klev+1),    INTENT(IN)   :: tke                 !--turbulent kinetic energy [m2/s2]
155  REAL, DIMENSION(klon,klev+1),    INTENT(IN)   :: tke_dissip          !--TKE dissipation [m2/s3]
[3999]156
157  ! INPUT/OUTPUT variables
158  !------------------------
[4562]159 
[5208]160  REAL, DIMENSION(klon,klev),      INTENT(INOUT)   :: thl          ! liquid potential temperature [K]
161  REAL, DIMENSION(klon,klev),      INTENT(INOUT)   :: ratqs,sigma_qtherm        ! function of pressure that sets the large-scale
[4059]162
[5208]163
[5204]164  ! INPUT/OUTPUT condensation and ice supersaturation
165  !--------------------------------------------------
166  REAL, DIMENSION(klon,klev),      INTENT(INOUT):: cf_seri          ! cloud fraction [-]
167  REAL, DIMENSION(klon,klev),      INTENT(INOUT):: rvc_seri         ! cloudy water vapor to total water vapor ratio [-]
168  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: u_seri           ! eastward wind [m/s]
169  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: v_seri           ! northward wind [m/s]
170  REAL, DIMENSION(klon),           INTENT(IN)   :: cell_area        ! area of each cell [m2]
[4380]171
[5204]172  ! INPUT/OUTPUT aviation
173  !--------------------------------------------------
174  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: flight_dist      ! Aviation distance flown within the mesh [m/s/mesh]
175  REAL, DIMENSION(klon,klev),      INTENT(IN)   :: flight_h2o       ! Aviation H2O emitted within the mesh [kg H2O/s/mesh]
[3999]176 
177  ! OUTPUT variables
178  !-----------------
179
[5204]180  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: d_t              ! temperature increment [K]
181  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: d_q              ! specific humidity increment [kg/kg]
182  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: d_ql             ! liquid water increment [kg/kg]
183  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: d_qi             ! cloud ice mass increment [kg/kg]
184  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: rneb             ! cloud fraction [-]
185  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: rneblsvol        ! cloud fraction per unit volume [-] 
186  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: pfraclr          ! precip fraction clear-sky part [-]
187  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: pfracld          ! precip fraction cloudy part [-]
[5007]188  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: cldfraliq           ! liquid fraction of cloud [-]
189  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: sigma2_icefracturb  ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-]
190  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: mean_icefracturb    ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-]
[5204]191  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: radocond         ! condensed water used in the radiation scheme [kg/kg]
192  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: radicefrac       ! ice fraction of condensed water for radiation scheme
193  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: rhcl             ! clear-sky relative humidity [-]
194  REAL, DIMENSION(klon),           INTENT(OUT)  :: rain             ! surface large-scale rainfall [kg/s/m2]
195  REAL, DIMENSION(klon),           INTENT(OUT)  :: snow             ! surface large-scale snowfall [kg/s/m2]
196  REAL, DIMENSION(klon,klev+1),    INTENT(OUT)  :: prfl             ! large-scale rainfall flux in the column [kg/s/m2]
197  REAL, DIMENSION(klon,klev+1),    INTENT(OUT)  :: psfl             ! large-scale snowfall flux in the column [kg/s/m2]
198  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: distcltop        ! distance to cloud top [m]
199  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: temp_cltop       ! temperature of cloud top [K]
200  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: beta             ! conversion rate of condensed water
[4686]201
[5007]202  ! fraction of aerosol scavenging through impaction and nucleation    (for on-line)
[3999]203 
[5007]204  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: frac_impa           ! scavenging fraction due tu impaction [-]
205  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: frac_nucl           ! scavenging fraction due tu nucleation [-]
[3999]206 
[5204]207  ! for condensation and ice supersaturation
[3999]208
[5204]209  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: qsub           !--specific total water content in sub-saturated clear sky region [kg/kg]
210  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: qissr          !--specific total water content in supersat region [kg/kg]
211  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: qcld           !--specific total water content in cloudy region [kg/kg]
212  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: subfra         !--mesh fraction of subsaturated clear sky [-]   
213  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: issrfra        !--mesh fraction of ISSR [-] 
214  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: gamma_cond     !--coefficient governing the ice nucleation RHi threshold [-]     
215  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dcf_sub        !--cloud fraction tendency because of sublimation [s-1]
216  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dcf_con        !--cloud fraction tendency because of condensation [s-1]
217  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dcf_mix        !--cloud fraction tendency because of cloud mixing [s-1]
218  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqi_adj        !--specific ice content tendency because of temperature adjustment [kg/kg/s]
219  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqi_sub        !--specific ice content tendency because of sublimation [kg/kg/s]
220  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqi_con        !--specific ice content tendency because of condensation [kg/kg/s]
221  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqi_mix        !--specific ice content tendency because of cloud mixing [kg/kg/s]
222  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqvc_adj       !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s]
223  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqvc_sub       !--specific cloud water vapor tendency because of sublimation [kg/kg/s]
224  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqvc_con       !--specific cloud water vapor tendency because of condensation [kg/kg/s]
225  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqvc_mix       !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s]
226  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: qsatl          !--saturation specific humidity wrt liquid [kg/kg]
227  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: qsati          !--saturation specific humidity wrt ice [kg/kg] 
228
229  ! for contrails and aviation
230
231  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: Tcontr         !--threshold temperature for contrail formation [K]
232  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: qcontr         !--threshold humidity for contrail formation [kg/kg]
233  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: qcontr2        !--// (2nd expression more consistent with LMDZ expression of q)
234  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: fcontrN        !--fraction of grid favourable to non-persistent contrails
235  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: fcontrP        !--fraction of grid favourable to persistent contrails
236  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dcf_avi        !--cloud fraction tendency because of aviation [s-1]
237  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqi_avi        !--specific ice content tendency because of aviation [kg/kg/s]
238  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqvc_avi       !--specific cloud water vapor tendency because of aviation [kg/kg/s]
239
240
[4803]241  ! for POPRECIP
[4686]242
[4830]243  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: qraindiag      !--DIAGNOSTIC specific rain content [kg/kg]
244  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: qsnowdiag      !--DIAGNOSTIC specific snow content [kg/kg]
[4819]245  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqreva         !--rain tendendy due to evaporation [kg/kg/s]
246  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqssub         !--snow tendency due to sublimation [kg/kg/s]
247  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqrcol         !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s]
248  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqsagg         !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s]
249  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqrauto        !--rain tendency due to autoconversion of cloud liquid [kg/kg/s]
250  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqsauto        !--snow tendency due to autoconversion of cloud ice [kg/kg/s]
251  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqsrim         !--snow tendency due to riming [kg/kg/s]
252  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqsmelt        !--snow tendency due to melting [kg/kg/s]
253  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqrmelt        !--rain tendency due to melting [kg/kg/s]
254  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqsfreez       !--snow tendency due to freezing [kg/kg/s]
255  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: dqrfreez       !--rain tendency due to freezing [kg/kg/s]
[4686]256
[5204]257  ! for thermals
[4803]258
[5204]259  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: cloudth_sth      !--mean saturation deficit in thermals
260  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: cloudth_senv     !--mean saturation deficit in environment
261  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: cloudth_sigmath  !--std of saturation deficit in thermals
262  REAL, DIMENSION(klon,klev),      INTENT(OUT)  :: cloudth_sigmaenv !--std of saturation deficit in environment
263
264
[3999]265  ! LOCAL VARIABLES:
266  !----------------
[5383]267  REAL,DIMENSION(klon) :: qice_ini
[4654]268  REAL, DIMENSION(klon,klev) :: ctot
269  REAL, DIMENSION(klon,klev) :: ctot_vol
270  REAL, DIMENSION(klon) :: zqs, zdqs
[5413]271  REAL :: zdelta
[4654]272  REAL, DIMENSION(klon) :: zdqsdT_raw
[5007]273  REAL, DIMENSION(klon) :: gammasat,dgammasatdt                   ! coefficient to make cold condensation at the correct RH and derivative wrt T
274  REAL, DIMENSION(klon) :: Tbef,qlbef,DT                          ! temperature, humidity and temp. variation during lognormal iteration
[4654]275  REAL :: num,denom
276  REAL :: cste
[4910]277  REAL, DIMENSION(klon) :: zfice_th
[4654]278  REAL, DIMENSION(klon) :: qcloud, qincloud_mpc
[5413]279  REAL, DIMENSION(klon) :: zrfl, zifl
[4654]280  REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn
281  REAL, DIMENSION(klon) :: zoliql, zoliqi
282  REAL, DIMENSION(klon) :: zt
[5408]283  REAL, DIMENSION(klon) :: zfice,zneb
[4654]284  REAL, DIMENSION(klon) :: dzfice
[5007]285  REAL, DIMENSION(klon) :: zfice_turb, dzfice_turb
[4654]286  REAL, DIMENSION(klon) :: qtot, qzero
[3999]287  ! Variables precipitation energy conservation
[4654]288  REAL, DIMENSION(klon) :: zmqc
289  REAL :: zalpha_tr
290  REAL :: zfrac_lessi
291  REAL, DIMENSION(klon) :: zprec_cond
292  REAL, DIMENSION(klon) :: zlh_solid
[4803]293  REAL, DIMENSION(klon) :: ztupnew
[4913]294  REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl
[4654]295  REAL, DIMENSION(klon) :: zrflclr, zrflcld
296  REAL, DIMENSION(klon) :: ziflclr, ziflcld
[5411]297  REAL, DIMENSION(klon) :: znebprecip, znebprecipclr, znebprecipcld
[5413]298  REAL, DIMENSION(klon) :: tot_zneb
[4654]299  REAL :: qlmpc, qimpc, rnebmpc
[5007]300  REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop
301  REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl        ! for icefrac_lscp_turb
[5413]302
303  ! for quantity of condensates seen by radiation
304  REAL, DIMENSION(klon) :: zradocond, zradoice
305  REAL, DIMENSION(klon) :: zrho_up, zvelo_up
[5204]306 
307  ! for condensation and ice supersaturation
308  REAL, DIMENSION(klon) :: qvc, shear
309  REAL :: delta_z
310  !--Added for ice supersaturation (ok_ice_supersat) and contrails (ok_plane_contrails)
311  ! Constants used for calculating ratios that are advected (using a parent-child
312  ! formalism). This is not done in the dynamical core because at this moment,
313  ! only isotopes can use this parent-child formalism. Note that the two constants
314  ! are the same as the one use in the dynamical core, being also defined in
315  ! dyn3d_common/infotrac.F90
316  REAL :: min_qParent, min_ratio
[3999]317
[5413]318  INTEGER i, k, kk, iter
[4654]319  INTEGER, DIMENSION(klon) :: n_i
[4226]320  INTEGER ncoreczq
[4654]321  INTEGER, DIMENSION(klon,klev) :: mpc_bl_points
[4803]322  LOGICAL iftop
[3999]323
[4654]324  LOGICAL, DIMENSION(klon) :: lognormale
325  LOGICAL, DIMENSION(klon) :: keepgoing
[3999]326
327  CHARACTER (len = 20) :: modname = 'lscp'
328  CHARACTER (len = 80) :: abort_message
329 
330
331!===============================================================================
332! INITIALISATION
333!===============================================================================
334
[4226]335! Few initial checks
[3999]336
[4654]337
[3999]338IF (iflag_fisrtilp_qsat .LT. 0) THEN
[4226]339    abort_message = 'lscp cannot be used with iflag_fisrtilp<0'
340    CALL abort_physic(modname,abort_message,1)
[3999]341ENDIF
342
343! Few initialisations
344
345ctot_vol(1:klon,1:klev)=0.0
346rneblsvol(1:klon,1:klev)=0.0
[5411]347znebprecip(:)=0.0
[4226]348znebprecipclr(:)=0.0
349znebprecipcld(:)=0.0
[3999]350mpc_bl_points(:,:)=0
351
352IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM'
353
354! AA for 'safety' reasons
355zalpha_tr   = 0.
356zfrac_lessi = 0.
[4380]357beta(:,:)= 0.
[3999]358
[4380]359! Initialisation of variables:
360
[3999]361prfl(:,:) = 0.0
362psfl(:,:) = 0.0
363d_t(:,:) = 0.0
364d_q(:,:) = 0.0
365d_ql(:,:) = 0.0
366d_qi(:,:) = 0.0
367rneb(:,:) = 0.0
[4530]368pfraclr(:,:)=0.0
369pfracld(:,:)=0.0
[5007]370cldfraliq(:,:)=0.
371sigma2_icefracturb(:,:)=0.
372mean_icefracturb(:,:)=0.
[4412]373radocond(:,:) = 0.0
[3999]374radicefrac(:,:) = 0.0
[4226]375frac_nucl(:,:) = 1.0
376frac_impa(:,:) = 1.0
[3999]377rain(:) = 0.0
378snow(:) = 0.0
[4114]379zfice(:)=0.0
380dzfice(:)=0.0
[5007]381zfice_turb(:)=0.0
382dzfice_turb(:)=0.0
[3999]383zrfl(:) = 0.0
384zifl(:) = 0.0
385zneb(:) = seuil_neb
[4226]386zrflclr(:) = 0.0
387ziflclr(:) = 0.0
388zrflcld(:) = 0.0
389ziflcld(:) = 0.0
390tot_zneb(:) = 0.0
391qzero(:) = 0.0
[5007]392zdistcltop(:)=0.0
393ztemp_cltop(:) = 0.0
[4803]394ztupnew(:)=0.0
[5204]395
[4654]396distcltop(:,:)=0.
397temp_cltop(:,:)=0.
[5007]398
[5204]399!--Ice supersaturation
400gamma_cond(:,:) = 1.
401qissr(:,:)      = 0.
402issrfra(:,:)    = 0.
403dcf_sub(:,:)    = 0.
404dcf_con(:,:)    = 0.
405dcf_mix(:,:)    = 0.
406dqi_adj(:,:)    = 0.
407dqi_sub(:,:)    = 0.
408dqi_con(:,:)    = 0.
409dqi_mix(:,:)    = 0.
410dqvc_adj(:,:)   = 0.
411dqvc_sub(:,:)   = 0.
412dqvc_con(:,:)   = 0.
413dqvc_mix(:,:)   = 0.
414fcontrN(:,:)    = 0.
415fcontrP(:,:)    = 0.
416Tcontr(:,:)     = missing_val
417qcontr(:,:)     = missing_val
418qcontr2(:,:)    = missing_val
419dcf_avi(:,:)    = 0.
420dqi_avi(:,:)    = 0.
421dqvc_avi(:,:)   = 0.
422qvc(:)          = 0.
423shear(:)        = 0.
424min_qParent     = 1.e-30
425min_ratio       = 1.e-16
426
[4803]427!-- poprecip
[4830]428qraindiag(:,:)= 0.
429qsnowdiag(:,:)= 0.
[4819]430dqreva(:,:)   = 0.
431dqrauto(:,:)  = 0.
432dqrmelt(:,:)  = 0.
433dqrfreez(:,:) = 0.
434dqrcol(:,:)   = 0.
435dqssub(:,:)   = 0.
436dqsauto(:,:)  = 0.
437dqsrim(:,:)   = 0.
438dqsagg(:,:)   = 0.
439dqsfreez(:,:) = 0.
440dqsmelt(:,:)  = 0.
[4913]441zqupnew(:)    = 0.
442zqvapclr(:)   = 0.
[3999]443
[4803]444
445
[4392]446!c_iso: variable initialisation for iso
447
448
[3999]449!===============================================================================
450!              BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM
451!===============================================================================
452
453ncoreczq=0
454
455DO k = klev, 1, -1
456
[5408]457    qice_ini = qi_seri(:,k)
458
[4803]459    IF (k.LE.klev-1) THEN
460       iftop=.false.
461    ELSE
462       iftop=.true.
463    ENDIF
464
[3999]465    ! Initialisation temperature and specific humidity
[5007]466    ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt
467    ! at the end of the klon loop, a temperature incremtent d_t due to all processes
468    ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated
469    ! d_t = temperature tendency due to lscp
470    ! The temperature of the overlying layer is updated here because needed for thermalization
[3999]471    DO i = 1, klon
[4654]472        zt(i)=temp(i,k)
[4686]473        zq(i)=qt(i,k)
[4803]474        IF (.not. iftop) THEN
[4913]475           ztupnew(i)  = temp(i,k+1) + d_t(i,k+1)
476           zqupnew(i)  = qt(i,k+1) + d_q(i,k+1) + d_ql(i,k+1) + d_qi(i,k+1)
477           !--zqs(i) is the saturation specific humidity in the layer above
478           zqvapclr(i) = MAX(0., qt(i,k+1) + d_q(i,k+1) - rneb(i,k+1) * zqs(i))
[4803]479        ENDIF
[4392]480        !c_iso init of iso
[3999]481    ENDDO
[5408]482
483    ! --------------------------------------------------------------------
484    ! P1> Precipitation processes, before cloud formation:
485    !     Thermalization of precipitation falling from the overlying layer AND
486    !     Precipitation evaporation/sublimation/melting
487    !---------------------------------------------------------------------
[4803]488   
489    !================================================================
490    ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R)
[5423]491    IF ( ok_poprecip ) THEN
[4803]492
[5408]493      CALL poprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), &
494                        zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, &
495                        zqvapclr, zqupnew, &
[5430]496                        cf_seri(:,k), rvc_seri(:,k), ql_seri(:,k), qi_seri(:,k), &
[5408]497                        zrfl, zrflclr, zrflcld, &
498                        zifl, ziflclr, ziflcld, &
499                        dqreva(:,k), dqssub(:,k) &
500                        )
[4803]501
502    !================================================================
503    ELSE
504
[5408]505      CALL histprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), &
[5411]506                        zt, ztupnew, zq, zmqc, zneb, znebprecip, znebprecipclr, &
[5408]507                        zrfl, zrflclr, zrflcld, &
508                        zifl, ziflclr, ziflcld, &
509                        dqreva(:,k), dqssub(:,k) &
510                        )
[3999]511
[4803]512    ENDIF ! (ok_poprecip)
[3999]513   
514    ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter
515    !-------------------------------------------------------
[4226]516
[4072]517     qtot(:)=zq(:)+zmqc(:)
[5383]518     CALL calc_qsat_ecmwf(klon,zt,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs)
[4072]519     DO i = 1, klon
[3999]520            zdelta = MAX(0.,SIGN(1.,RTT-zt(i)))
[4059]521            zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta)
[3999]522            IF (zq(i) .LT. 1.e-15) THEN
523                ncoreczq=ncoreczq+1
524                zq(i)=1.e-15
525            ENDIF
[4392]526            ! c_iso: do something similar for isotopes
[3999]527
[4072]528     ENDDO
[3999]529   
530    ! --------------------------------------------------------------------
[5408]531    ! P2> Cloud formation
[3999]532    !---------------------------------------------------------------------
533    !
534    ! Unlike fisrtilp, we always assume a 'fractional cloud' approach
535    ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution
536    ! is prescribed and depends on large scale variables and boundary layer
537    ! properties)
538    ! The decrease in condensed part due tu latent heating is taken into
539    ! account
540    ! -------------------------------------------------------------------
541
[5408]542        ! P2.1> With the PDFs (log-normal, bigaussian)
[4424]543        ! cloud properties calculation with the initial values of t and q
[3999]544        ! ----------------------------------------------------------------
545
546        ! initialise gammasat and qincloud_mpc
547        gammasat(:)=1.
548        qincloud_mpc(:)=0.
549
550        IF (iflag_cld_th.GE.5) THEN
[4910]551               ! Cloud cover and content in meshes affected by shallow convection,
552               ! are retrieved from a bi-gaussian distribution of the saturation deficit
553               ! following Jam et al. 2013
[3999]554
[4910]555               IF (iflag_cloudth_vert.LE.2) THEN
556                  ! Old version of Arnaud Jam
[3999]557
[4910]558                    CALL cloudth(klon,klev,k,tv,                  &
559                         zq,qta,fraca,                            &
560                         qcloud,ctot,pspsk,paprs,pplay,tla,thl, &
[4654]561                         ratqs,zqs,temp,                              &
[4651]562                         cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv)
[3999]563
[4651]564
[3999]565                ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN
[4910]566                   ! Default version of Arnaud Jam
567                       
568                    CALL cloudth_v3(klon,klev,k,tv,                        &
569                         zq,qta,fraca,                                     &
570                         qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, &
[5208]571                         ratqs,sigma_qtherm,zqs,temp, &
[4651]572                         cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv)
[3999]573
574
575                ELSEIF (iflag_cloudth_vert.EQ.6) THEN
[4910]576                   ! Jean Jouhaud's version, with specific separation between surface and volume
577                   ! cloud fraction Decembre 2018
[3999]578
[4910]579                    CALL cloudth_v6(klon,klev,k,tv,                        &
580                         zq,qta,fraca,                                     &
581                         qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, &
[4654]582                         ratqs,zqs,temp, &
[4651]583                         cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv)
[3999]584
[4910]585                ELSEIF (iflag_cloudth_vert .EQ. 7) THEN
586                   ! Updated version of Arnaud Jam (correction by E. Vignon) + adapted treatment
[5007]587                   ! for boundary-layer mixed phase clouds
[4910]588                    CALL cloudth_mpc(klon,klev,k,mpc_bl_points,zt,zq,qta(:,k),fraca(:,k), &
589                                     pspsk(:,k),paprs(:,k+1),paprs(:,k),pplay(:,k), tla(:,k), &
590                                     ratqs(:,k),qcloud,qincloud_mpc,zfice_th,ctot(:,k),ctot_vol(:,k), &
591                                     cloudth_sth(:,k),cloudth_senv(:,k),cloudth_sigmath(:,k),cloudth_sigmaenv(:,k))
592
[3999]593                ENDIF
594
595
596                DO i=1,klon
597                    rneb(i,k)=ctot(i,k)
598                    rneblsvol(i,k)=ctot_vol(i,k)
599                    zqn(i)=qcloud(i)
[5204]600                    !--AB grid-mean vapor in the cloud - we assume saturation adjustment
601                    qvc(i) = rneb(i,k) * zqs(i)
[3999]602                ENDDO
603
604        ENDIF
605
606        IF (iflag_cld_th .LE. 4) THEN
607           
608                ! lognormal
[5007]609            lognormale(:) = .TRUE.
[3999]610
611        ELSEIF (iflag_cld_th .GE. 6) THEN
612           
613                ! lognormal distribution when no thermals
[5007]614            lognormale(:) = fraca(:,k) < min_frac_th_cld
[3999]615
616        ELSE
[4226]617                ! When iflag_cld_th=5, we always assume
[3999]618                ! bi-gaussian distribution
[5007]619            lognormale(:) = .FALSE.
[3999]620       
621        ENDIF
622
623        DT(:) = 0.
624        n_i(:)=0
625        Tbef(:)=zt(:)
626        qlbef(:)=0.
627
628        ! Treatment of non-boundary layer clouds (lognormale)
[5383]629        ! We iterate here to take into account the change in qsat(T) and ice fraction
630        ! during the condensation process
631        ! the increment in temperature is calculated using the first principle of
632        ! thermodynamics (enthalpy conservation equation in a mesh composed of a cloud fraction
633        ! and a clear sky fraction)
634        ! note that we assume that the vapor in the cloud is at saturation for this calculation     
[4226]635
[3999]636        DO iter=1,iflag_fisrtilp_qsat+1
[4226]637
[5204]638                keepgoing(:) = .FALSE.
639
[3999]640                DO i=1,klon
641
[4424]642                    ! keepgoing = .true. while convergence is not satisfied
[4226]643
[5204]644                    IF (((ABS(DT(i)).GT.DDT0) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN
[4226]645
[3999]646                        ! if not convergence:
[5204]647                        ! we calculate a new iteration
648                        keepgoing(i) = .TRUE.
[3999]649
650                        ! P2.2.1> cloud fraction and condensed water mass calculation
651                        ! Calculated variables:
652                        ! rneb : cloud fraction
653                        ! zqn : total water within the cloud
654                        ! zcond: mean condensed water within the mesh
655                        ! rhcl: clear-sky relative humidity
656                        !---------------------------------------------------------------
657
[4424]658                        ! new temperature that only serves in the iteration process:
[3999]659                        Tbef(i)=Tbef(i)+DT(i)
660
661                        ! Rneb, qzn and zcond for lognormal PDFs
[4072]662                        qtot(i)=zq(i)+zmqc(i)
[4226]663
[4072]664                      ENDIF
[3999]665
[4072]666                  ENDDO
667
[4380]668                  ! Calculation of saturation specific humidity and ice fraction
[5383]669                  CALL calc_qsat_ecmwf(klon,Tbef,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs)
670                  CALL calc_gammasat(klon,Tbef,qtot,pplay(:,k),gammasat,dgammasatdt)
[4072]671                  ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs
672                  zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:)
[4562]673                  ! cloud phase determination
674                  IF (iflag_t_glace.GE.4) THEN
675                  ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top
[5007]676                       CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop)
[4562]677                  ENDIF
[4072]678
[5383]679                  CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop,ztemp_cltop,zfice,dzfice)
[5007]680
[5204]681                  !--AB Activates a condensation scheme that allows for
682                  !--ice supersaturation and contrails evolution from aviation
683                  IF (ok_ice_supersat) THEN
684
685                    !--Calculate the shear value (input for condensation and ice supersat)
686                    DO i = 1, klon
687                      !--Cell thickness [m]
688                      delta_z = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * Tbef(i) * RD
689                      IF ( iftop ) THEN
690                        ! top
691                        shear(i) = SQRT( ( (u_seri(i,k) - u_seri(i,k-1)) / delta_z )**2. &
692                                       + ( (v_seri(i,k) - v_seri(i,k-1)) / delta_z )**2. )
693                      ELSEIF ( k .EQ. 1 ) THEN
694                        ! surface
695                        shear(i) = SQRT( ( (u_seri(i,k+1) - u_seri(i,k)) / delta_z )**2. &
696                                       + ( (v_seri(i,k+1) - v_seri(i,k)) / delta_z )**2. )
697                      ELSE
698                        ! other layers
699                        shear(i) = SQRT( ( ( (u_seri(i,k+1) + u_seri(i,k)) / 2. &
700                                           - (u_seri(i,k) + u_seri(i,k-1)) / 2. ) / delta_z )**2. &
701                                       + ( ( (v_seri(i,k+1) + v_seri(i,k)) / 2. &
702                                           - (v_seri(i,k) + v_seri(i,k-1)) / 2. ) / delta_z )**2. )
703                      ENDIF
704                    ENDDO
705
706                    !---------------------------------------------
707                    !--   CONDENSATION AND ICE SUPERSATURATION  --
708                    !---------------------------------------------
709
710                    CALL condensation_ice_supersat( &
711                        klon, dtime, missing_val, &
712                        pplay(:,k), paprs(:,k), paprs(:,k+1), &
[5396]713                        cf_seri(:,k), rvc_seri(:,k), ql_seri(:,k), qi_seri(:,k), &
[5406]714                        shear, tke_dissip(:,k), cell_area, &
715                        Tbef, zq, zqs, gammasat, ratqs(:,k), keepgoing, &
716                        rneb(:,k), zqn, qvc, issrfra(:,k), qissr(:,k), &
[5204]717                        dcf_sub(:,k), dcf_con(:,k), dcf_mix(:,k), &
718                        dqi_adj(:,k), dqi_sub(:,k), dqi_con(:,k), dqi_mix(:,k), &
719                        dqvc_adj(:,k), dqvc_sub(:,k), dqvc_con(:,k), dqvc_mix(:,k), &
720                        Tcontr(:,k), qcontr(:,k), qcontr2(:,k), fcontrN(:,k), fcontrP(:,k), &
721                        flight_dist(:,k), flight_h2o(:,k), &
722                        dcf_avi(:,k), dqi_avi(:,k), dqvc_avi(:,k))
723
724
[5211]725                  ELSE
726                  !--generalised lognormal condensation scheme (Bony and Emanuel 2001)
727
[5241]728                   CALL condensation_lognormal( &
729                       klon, Tbef, zq, zqs, gammasat, ratqs(:,k), &
730                       keepgoing, rneb(:,k), zqn, qvc)
[5204]731
732
733                  ENDIF ! .NOT. ok_ice_supersat
[4226]734
[5204]735                  DO i=1,klon
736                      IF (keepgoing(i)) THEN
[3999]737
738                        ! If vertical heterogeneity, change fraction by volume as well
739                        IF (iflag_cloudth_vert.GE.3) THEN
740                            ctot_vol(i,k)=rneb(i,k)
741                            rneblsvol(i,k)=ctot_vol(i,k)
742                        ENDIF
743
744
[4072]745                       ! P2.2.2> Approximative calculation of temperature variation DT
746                       !           due to condensation.
747                       ! Calculated variables:
748                       ! dT : temperature change due to condensation
749                       !---------------------------------------------------------------
[3999]750
751               
752                        IF (zfice(i).LT.1) THEN
753                            cste=RLVTT
754                        ELSE
755                            cste=RLSTT
756                        ENDIF
[5007]757                       
758                        ! LEA_R : check formule
[5204]759                        IF ( ok_unadjusted_clouds ) THEN
760                          !--AB We relax the saturation adjustment assumption
761                          !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme
762                          IF ( rneb(i,k) .GT. eps ) THEN
763                            qlbef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i,k))
764                          ELSE
765                            qlbef(i) = 0.
766                          ENDIF
767                        ELSE
768                          qlbef(i)=max(0.,zqn(i)-zqs(i))
769                        ENDIF
770
[3999]771                        num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT &
[4226]772                              +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i)
[3999]773                        denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) &
774                              -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k)      &
[4226]775                              *qlbef(i)*dzfice(i)
[4424]776                        ! here we update a provisory temperature variable that only serves in the iteration
777                        ! process
[3999]778                        DT(i)=num/denom
779                        n_i(i)=n_i(i)+1
780
[4424]781                    ENDIF ! end keepgoing
[3999]782
783                ENDDO     ! end loop on i
784
785        ENDDO         ! iter=1,iflag_fisrtilp_qsat+1
786
[5408]787        ! P2.2> Final quantities calculation
[3999]788        ! Calculated variables:
789        !   rneb : cloud fraction
790        !   zcond: mean condensed water in the mesh
791        !   zqn  : mean water vapor in the mesh
[4562]792        !   zfice: ice fraction in clouds
[3999]793        !   zt   : temperature
794        !   rhcl : clear-sky relative humidity
795        ! ----------------------------------------------------------------
796
797
[4562]798        ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top
799        IF (iflag_t_glace.GE.4) THEN
[5007]800           CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop)
801           distcltop(:,k)=zdistcltop(:)
802           temp_cltop(:,k)=ztemp_cltop(:)
803        ENDIF
[3999]804
[5007]805        ! Partition function depending on temperature
[5204]806        CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice)
[4562]807
[5007]808        ! Partition function depending on tke for non shallow-convective clouds
809        IF (iflag_icefrac .GE. 1) THEN
[5383]810           CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:,k), paprs(:,k), paprs(:,k+1), omega(:,k), qice_ini, ziflcld, zqn, &
[5007]811           rneb(:,k), tke(:,k), tke_dissip(:,k), zqliq, zqvapcl, zqice, zfice_turb, dzfice_turb, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k))
812        ENDIF
813
[4562]814        ! Water vapor update, Phase determination and subsequent latent heat exchange
[3999]815        DO i=1, klon
[5007]816            ! Overwrite phase partitioning in boundary layer mixed phase clouds when the
817            ! iflag_cloudth_vert=7 and specific param is activated
[3999]818            IF (mpc_bl_points(i,k) .GT. 0) THEN
819                zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k)
820                ! following line is very strange and probably wrong
821                rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i)
822                ! water vapor update and partition function if thermals
823                zq(i) = zq(i) - zcond(i)       
[4910]824                zfice(i)=zfice_th(i)
[3999]825            ELSE
826                ! Checks on rneb, rhcl and zqn
827                IF (rneb(i,k) .LE. 0.0) THEN
828                    zqn(i) = 0.0
829                    rneb(i,k) = 0.0
830                    zcond(i) = 0.0
831                    rhcl(i,k)=zq(i)/zqs(i)
832                ELSE IF (rneb(i,k) .GE. 1.0) THEN
833                    zqn(i) = zq(i)
834                    rneb(i,k) = 1.0
[5204]835                    IF ( ok_unadjusted_clouds ) THEN
836                      !--AB We relax the saturation adjustment assumption
837                      !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme
838                      zcond(i) = MAX(0., zqn(i) - qvc(i))
839                    ELSE
840                      zcond(i) = MAX(0.0,zqn(i)-zqs(i))
841                    ENDIF
[3999]842                    rhcl(i,k)=1.0
843                ELSE
[5204]844                    IF ( ok_unadjusted_clouds ) THEN
845                      !--AB We relax the saturation adjustment assumption
846                      !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme
847                      zcond(i) = MAX(0., zqn(i) * rneb(i,k) - qvc(i))
848                    ELSE
849                      zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k)
850                    ENDIF
[3999]851                    ! following line is very strange and probably wrong:
852                    rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i)
[5007]853                    ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param)
854                    IF (iflag_icefrac .GE. 1) THEN
855                        IF (lognormale(i)) THEN 
856                           zcond(i)  = zqliq(i) + zqice(i)
857                           zfice(i)=zfice_turb(i)
858                           rhcl(i,k) = zqvapcl(i) * rneb(i,k) + (zq(i) - zqn(i)) * (1.-rneb(i,k))
859                        ENDIF
860                    ENDIF
[3999]861                ENDIF
862
[4226]863                ! water vapor update
864                zq(i) = zq(i) - zcond(i)
[3999]865
866            ENDIF
867
[4392]868            ! c_iso : routine that computes in-cloud supersaturation
869            ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input)
870
[3999]871            ! temperature update due to phase change
872            zt(i) = zt(i) + (1.-zfice(i))*zcond(i) &
873            &     * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) &
874                  +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i)))
875        ENDDO
876
877        ! If vertical heterogeneity, change volume fraction
878        IF (iflag_cloudth_vert .GE. 3) THEN
879          ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.)
880          rneblsvol(1:klon,k)=ctot_vol(1:klon,k)
881        ENDIF
882
[5204]883
[3999]884    ! ----------------------------------------------------------------
[5408]885    ! P3> Precipitation processes, after cloud formation
886    !     - precipitation formation, melting/freezing
[3999]887    ! ----------------------------------------------------------------
[4226]888
[5413]889    ! Initiate the quantity of liquid and solid condensates
890    ! Note that in the following, zcond is the total amount of condensates
891    ! including newly formed precipitations (i.e., condensates formed by the
892    ! condensation process), while zoliq is the total amount of condensates in
893    ! the cloud (i.e., on which precipitation processes have applied)
894    DO i = 1, klon
895      zoliq(i)  = zcond(i)
896      zoliql(i) = zcond(i) * ( 1. - zfice(i) )
897      zoliqi(i) = zcond(i) * zfice(i)
898      ! c_iso : initialisation of zoliq* also for isotopes
899    ENDDO
900
[4803]901    !================================================================
[5408]902    ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R)
[4803]903    IF (ok_poprecip) THEN
904
905      CALL poprecip_postcld(klon, dtime, paprs(:,k), paprs(:,k+1), pplay(:,k), &
906                            ctot_vol(:,k), ptconv(:,k), &
907                            zt, zq, zoliql, zoliqi, zfice, &
908                            rneb(:,k), znebprecipclr, znebprecipcld, &
909                            zrfl, zrflclr, zrflcld, &
910                            zifl, ziflclr, ziflcld, &
[4830]911                            qraindiag(:,k), qsnowdiag(:,k), dqrauto(:,k), &
[4819]912                            dqrcol(:,k), dqrmelt(:,k), dqrfreez(:,k), &
913                            dqsauto(:,k), dqsagg(:,k), dqsrim(:,k), &
914                            dqsmelt(:,k), dqsfreez(:,k) &
[4803]915                            )
[5419]916      DO i = 1, klon
917          zoliq(i) = zoliql(i) + zoliqi(i)
918      ENDDO
[4803]919
920    !================================================================
921    ELSE
922
[5413]923      CALL histprecip_postcld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), &
924                            ctot_vol(:,k), ptconv(:,k), zdqsdT_raw, &
925                            zt, zq, zoliq, zoliql, zoliqi, zcond, zfice, zmqc, &
926                            rneb(:,k), znebprecipclr, znebprecipcld, &
927                            zneb, tot_zneb, zrho_up, zvelo_up, &
928                            zrfl, zrflclr, zrflcld, zifl, ziflclr, ziflcld, &
929                            zradocond, zradoice, dqrauto(:,k), dqsauto(:,k) &
930                            )
[3999]931
[4803]932    ENDIF ! ok_poprecip
933
[5408]934    ! End of precipitation processes after cloud formation
935    ! ----------------------------------------------------
[3999]936
[5406]937    !----------------------------------------------------------------------
[5408]938    ! P4> Calculation of cloud condensates amount seen by radiative scheme
[5406]939    !----------------------------------------------------------------------
[4803]940
[5413]941    DO i=1,klon
[3999]942
[5413]943      IF (ok_poprecip) THEN
944        IF (ok_radocond_snow) THEN
945          radocond(i,k) = zoliq(i)
946          zradoice(i) = zoliqi(i) + qsnowdiag(i,k)
947        ELSE
948          radocond(i,k) = zoliq(i)
949          zradoice(i) = zoliqi(i)
950        ENDIF
951      ELSE
952        radocond(i,k) = zradocond(i)
953      ENDIF
[4114]954
[5413]955      ! calculate the percentage of ice in "radocond" so cloud+precip seen
956      ! by the radiation scheme
957      IF (radocond(i,k) .GT. 0.) THEN
958        radicefrac(i,k)=MIN(MAX(zradoice(i)/radocond(i,k),0.),1.)
959      ENDIF
[4114]960    ENDDO
961
[3999]962    ! ----------------------------------------------------------------
[5408]963    ! P5> Wet scavenging
[3999]964    ! ----------------------------------------------------------------
965
966    !Scavenging through nucleation in the layer
967
968    DO i = 1,klon
969       
970        IF(zcond(i).GT.zoliq(i)+1.e-10) THEN
971            beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime
972        ELSE
973            beta(i,k) = 0.
974        ENDIF
975
[4059]976        zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG
[3999]977
978        IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN
979
[4654]980            IF (temp(i,k) .GE. t_glace_min) THEN
[3999]981                zalpha_tr = a_tr_sca(3)
982            ELSE
983                zalpha_tr = a_tr_sca(4)
984            ENDIF
985
986            zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i))
987            frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi
[4226]988
[3999]989            ! Nucleation with a factor of -1 instead of -0.5
990            zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i))
991
992        ENDIF
993
[4226]994    ENDDO
995
[3999]996    ! Scavenging through impaction in the underlying layer
997
998    DO kk = k-1, 1, -1
999
1000        DO i = 1, klon
1001
1002            IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN
1003
[4654]1004                IF (temp(i,kk) .GE. t_glace_min) THEN
[3999]1005                    zalpha_tr = a_tr_sca(1)
1006                ELSE
1007                    zalpha_tr = a_tr_sca(2)
1008                ENDIF
1009
1010              zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i))
1011              frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi
1012
1013            ENDIF
1014
1015        ENDDO
1016
1017    ENDDO
[5406]1018   
1019    !------------------------------------------------------------
[5408]1020    ! P6 > write diagnostics and outputs
[5406]1021    !------------------------------------------------------------
1022   
1023    !--AB Write diagnostics and tracers for ice supersaturation
1024    IF ( ok_ice_supersat ) THEN
1025      CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,1,.false.,qsatl(:,k),zdqs)
1026      CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,2,.false.,qsati(:,k),zdqs)
[4226]1027
[5406]1028      DO i = 1, klon
1029
1030        IF ( zoliq(i) .LE. 0. ) THEN
1031          !--If everything was precipitated, the remaining empty cloud is dissipated
1032          !--and everything is transfered to the subsaturated clear sky region
1033          rneb(i,k) = 0.
1034          qvc(i) = 0.
1035        ENDIF
1036
1037        cf_seri(i,k) = rneb(i,k)
1038
1039        IF ( .NOT. ok_unadjusted_clouds ) THEN
1040          qvc(i) = zqs(i) * rneb(i,k)
1041        ENDIF
1042        IF ( zq(i) .GT. min_qParent ) THEN
1043          rvc_seri(i,k) = qvc(i) / zq(i)
1044        ELSE
1045          rvc_seri(i,k) = min_ratio
1046        ENDIF
1047        !--The MIN barrier is NEEDED because of:
1048        !-- 1) very rare pathological cases of the lsc scheme (rvc = 1. + 1e-16 sometimes)
1049        !-- 2) the thermal scheme does NOT guarantee that qvc <= qvap (or even qincld <= qtot)
1050        !--The MAX barrier is a safeguard that should not be activated
1051        rvc_seri(i,k) = MIN(MAX(rvc_seri(i,k), 0.), 1.)
1052
1053        !--Diagnostics
1054        gamma_cond(i,k) = gammasat(i)
1055        subfra(i,k) = 1. - cf_seri(i,k) - issrfra(i,k)
1056        qsub(i,k) = zq(i) - qvc(i) - qissr(i,k)
[5412]1057        qcld(i,k) = qvc(i) + zoliq(i)
[5406]1058      ENDDO
1059    ENDIF
1060
[4803]1061    ! Outputs:
1062    !-------------------------------
1063    ! Precipitation fluxes at layer interfaces
1064    ! + precipitation fractions +
1065    ! temperature and water species tendencies
1066    DO i = 1, klon
1067        psfl(i,k)=zifl(i)
1068        prfl(i,k)=zrfl(i)
1069        pfraclr(i,k)=znebprecipclr(i)
1070        pfracld(i,k)=znebprecipcld(i)
1071        d_q(i,k) = zq(i) - qt(i,k)
1072        d_t(i,k) = zt(i) - temp(i,k)
[5412]1073
1074        IF (ok_bug_phase_lscp) THEN
1075           d_ql(i,k) = (1-zfice(i))*zoliq(i)
1076           d_qi(i,k) = zfice(i)*zoliq(i)
1077        ELSE
1078           d_ql(i,k) = zoliql(i)
1079           d_qi(i,k) = zoliqi(i)   
1080        ENDIF
1081
[4803]1082    ENDDO
1083
1084
[5413]1085ENDDO ! loop on k from top to bottom
[4059]1086
[3999]1087
1088  ! Rain or snow at the surface (depending on the first layer temperature)
1089  DO i = 1, klon
1090      snow(i) = zifl(i)
1091      rain(i) = zrfl(i)
[4392]1092      ! c_iso final output
[3999]1093  ENDDO
1094
1095  IF (ncoreczq>0) THEN
1096      WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.'
1097  ENDIF
1098
[4654]1099
1100RETURN
1101
[4380]1102END SUBROUTINE lscp
[3999]1103!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1104
[4664]1105END MODULE lmdz_lscp
Note: See TracBrowser for help on using the repository browser.