[4664] | 1 | MODULE lmdz_lscp |
---|
[3999] | 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4380] | 8 | SUBROUTINE lscp(klon,klev,dtime,missing_val, & |
---|
[5396] | 9 | paprs, pplay, omega, temp, qt, ql_seri, qi_seri, & |
---|
| 10 | ptconv, ratqs, sigma_qtherm, & |
---|
[5204] | 11 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & |
---|
[5007] | 12 | pfraclr, pfracld, & |
---|
| 13 | cldfraliq, sigma2_icefracturb,mean_icefracturb, & |
---|
[4530] | 14 | radocond, radicefrac, rain, snow, & |
---|
[3999] | 15 | frac_impa, frac_nucl, beta, & |
---|
[5007] | 16 | prfl, psfl, rhcl, qta, fraca, & |
---|
| 17 | tv, pspsk, tla, thl, iflag_cld_th, & |
---|
[5204] | 18 | iflag_ice_thermo, distcltop, temp_cltop, & |
---|
| 19 | tke, tke_dissip, & |
---|
| 20 | cell_area, & |
---|
| 21 | cf_seri, rvc_seri, u_seri, v_seri, & |
---|
| 22 | qsub, qissr, qcld, subfra, issrfra, gamma_cond, & |
---|
[5396] | 23 | dcf_sub, dcf_con, dcf_mix, & |
---|
[5204] | 24 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & |
---|
| 25 | dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & |
---|
| 26 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, dcf_avi,& |
---|
| 27 | dqi_avi, dqvc_avi, flight_dist, flight_h2o, & |
---|
[4803] | 28 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv, & |
---|
[4830] | 29 | qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & |
---|
| 30 | dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim,& |
---|
[4819] | 31 | dqsmelt, dqsfreez) |
---|
[3999] | 32 | |
---|
| 33 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 34 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
---|
| 35 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
---|
| 36 | !-------------------------------------------------------------------------------- |
---|
| 37 | ! Date: 01/2021 |
---|
| 38 | !-------------------------------------------------------------------------------- |
---|
| 39 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
---|
[4226] | 40 | ! |
---|
[3999] | 41 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
---|
[4072] | 42 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
---|
[3999] | 43 | ! and 'ilp' (il pleut, L. Li) |
---|
| 44 | ! |
---|
[4380] | 45 | ! Compared to the original fisrtilp code, lscp |
---|
[3999] | 46 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
---|
| 47 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
---|
| 48 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
---|
| 49 | ! -> option "oldbug" by JYG has been removed |
---|
| 50 | ! -> iflag_t_glace >0 always |
---|
| 51 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
---|
| 52 | ! -> rectangular distribution from L. Li no longer available |
---|
| 53 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
---|
| 54 | !-------------------------------------------------------------------------------- |
---|
| 55 | ! References: |
---|
| 56 | ! |
---|
[4412] | 57 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
---|
[3999] | 58 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
---|
| 59 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
---|
[4412] | 60 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
---|
[3999] | 61 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
---|
[4412] | 62 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
---|
[3999] | 63 | ! ------------------------------------------------------------------------------- |
---|
| 64 | ! Code structure: |
---|
| 65 | ! |
---|
[4226] | 66 | ! P0> Thermalization of the precipitation coming from the overlying layer |
---|
[3999] | 67 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
---|
| 68 | ! P2> Cloud formation (at the k level) |
---|
[4412] | 69 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
---|
[3999] | 70 | ! values of T and Q |
---|
| 71 | ! P2.A.2> Coupling between condensed water and temperature |
---|
| 72 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
---|
[4412] | 73 | ! P2.B> Release of Latent heat after cloud formation |
---|
[3999] | 74 | ! P3> Autoconversion to precipitation (k-level) |
---|
| 75 | ! P4> Wet scavenging |
---|
| 76 | !------------------------------------------------------------------------------ |
---|
| 77 | ! Some preliminary comments (JBM) : |
---|
| 78 | ! |
---|
| 79 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
---|
| 80 | ! water used in the physics and the dynamics |
---|
| 81 | ! |
---|
[4412] | 82 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
---|
[3999] | 83 | ! by the radiation scheme) is calculated as an average of the water that remains |
---|
| 84 | ! in the cloud during the precipitation and not the water remaining at the end |
---|
| 85 | ! of the time step. The latter is used in the rest of the physics and advected |
---|
| 86 | ! by the dynamics. |
---|
| 87 | ! |
---|
| 88 | ! In summary: |
---|
| 89 | ! |
---|
| 90 | ! Radiation: |
---|
| 91 | ! xflwc(newmicro)+xfiwc(newmicro) = |
---|
[4412] | 92 | ! radocond=lwcon(nc)+iwcon(nc) |
---|
[3999] | 93 | ! |
---|
| 94 | ! Notetheless, be aware of: |
---|
| 95 | ! |
---|
[4412] | 96 | ! radocond .NE. ocond(nc) |
---|
[3999] | 97 | ! i.e.: |
---|
| 98 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
---|
[4412] | 99 | ! but oliq+(ocond-oliq) .EQ. ocond |
---|
[3999] | 100 | ! (which is not trivial) |
---|
| 101 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4226] | 102 | ! |
---|
[4654] | 103 | |
---|
| 104 | ! USE de modules contenant des fonctions. |
---|
[4651] | 105 | USE lmdz_cloudth, ONLY : cloudth, cloudth_v3, cloudth_v6, cloudth_mpc |
---|
[5007] | 106 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, calc_gammasat |
---|
[5413] | 107 | USE lmdz_lscp_tools, ONLY : icefrac_lscp, icefrac_lscp_turb, distance_to_cloud_top |
---|
[5241] | 108 | USE lmdz_lscp_condensation, ONLY : condensation_lognormal, condensation_ice_supersat |
---|
[5413] | 109 | USE lmdz_lscp_precip, ONLY : histprecip_precld, histprecip_postcld |
---|
| 110 | USE lmdz_lscp_precip, ONLY : poprecip_precld, poprecip_postcld |
---|
[3999] | 111 | |
---|
[4664] | 112 | ! Use du module lmdz_lscp_ini contenant les constantes |
---|
[5204] | 113 | USE lmdz_lscp_ini, ONLY : prt_level, lunout, eps |
---|
[5413] | 114 | USE lmdz_lscp_ini, ONLY : seuil_neb, iflag_evap_prec, DDT0 |
---|
| 115 | USE lmdz_lscp_ini, ONLY : ok_radocond_snow, a_tr_sca |
---|
| 116 | USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_t_glace, iflag_fisrtilp_qsat |
---|
| 117 | USE lmdz_lscp_ini, ONLY : t_glace_min, min_frac_th_cld |
---|
| 118 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RVTMP2, RTT, RD, RG |
---|
[5412] | 119 | USE lmdz_lscp_ini, ONLY : ok_poprecip, ok_bug_phase_lscp |
---|
[5211] | 120 | USE lmdz_lscp_ini, ONLY : ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac |
---|
[5204] | 121 | |
---|
[3999] | 122 | IMPLICIT NONE |
---|
| 123 | |
---|
| 124 | !=============================================================================== |
---|
[4380] | 125 | ! VARIABLES DECLARATION |
---|
[3999] | 126 | !=============================================================================== |
---|
| 127 | |
---|
| 128 | ! INPUT VARIABLES: |
---|
| 129 | !----------------- |
---|
| 130 | |
---|
[4380] | 131 | INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels |
---|
[3999] | 132 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
[4380] | 133 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
[4059] | 134 | |
---|
[3999] | 135 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
---|
| 136 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
---|
[4654] | 137 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature (K) |
---|
[5383] | 138 | REAL, DIMENSION(klon,klev), INTENT(IN) :: omega ! vertical velocity [Pa/s] |
---|
[4686] | 139 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
---|
[5396] | 140 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ql_seri ! liquid specific content [kg/kg] |
---|
| 141 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qi_seri ! ice specific content [kg/kg] |
---|
[3999] | 142 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
---|
| 143 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
---|
[4226] | 144 | ! CR: if iflag_ice_thermo=2, only convection is active |
---|
[3999] | 145 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
---|
| 146 | |
---|
| 147 | !Inputs associated with thermal plumes |
---|
[4226] | 148 | |
---|
[5007] | 149 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tv ! virtual potential temperature [K] |
---|
| 150 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] |
---|
| 151 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
---|
| 152 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) |
---|
| 153 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tla ! liquid temperature within thermals [K] |
---|
[5413] | 154 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke !--turbulent kinetic energy [m2/s2] |
---|
| 155 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip !--TKE dissipation [m2/s3] |
---|
[3999] | 156 | |
---|
| 157 | ! INPUT/OUTPUT variables |
---|
| 158 | !------------------------ |
---|
[4562] | 159 | |
---|
[5208] | 160 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] |
---|
| 161 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: ratqs,sigma_qtherm ! function of pressure that sets the large-scale |
---|
[4059] | 162 | |
---|
[5208] | 163 | |
---|
[5204] | 164 | ! INPUT/OUTPUT condensation and ice supersaturation |
---|
| 165 | !-------------------------------------------------- |
---|
| 166 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cf_seri ! cloud fraction [-] |
---|
| 167 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: rvc_seri ! cloudy water vapor to total water vapor ratio [-] |
---|
| 168 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_seri ! eastward wind [m/s] |
---|
| 169 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_seri ! northward wind [m/s] |
---|
| 170 | REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] |
---|
[4380] | 171 | |
---|
[5204] | 172 | ! INPUT/OUTPUT aviation |
---|
| 173 | !-------------------------------------------------- |
---|
| 174 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_dist ! Aviation distance flown within the mesh [m/s/mesh] |
---|
| 175 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_h2o ! Aviation H2O emitted within the mesh [kg H2O/s/mesh] |
---|
[3999] | 176 | |
---|
| 177 | ! OUTPUT variables |
---|
| 178 | !----------------- |
---|
| 179 | |
---|
[5204] | 180 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
---|
| 181 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
---|
| 182 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
---|
| 183 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
---|
| 184 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
---|
| 185 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
---|
| 186 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
---|
| 187 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
---|
[5007] | 188 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud [-] |
---|
| 189 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
| 190 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
[5204] | 191 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
---|
| 192 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
---|
| 193 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
---|
| 194 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
---|
| 195 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
---|
| 196 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
---|
| 197 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
---|
| 198 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
---|
| 199 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
---|
| 200 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
---|
[4686] | 201 | |
---|
[5007] | 202 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
---|
[3999] | 203 | |
---|
[5007] | 204 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
---|
| 205 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
---|
[3999] | 206 | |
---|
[5204] | 207 | ! for condensation and ice supersaturation |
---|
[3999] | 208 | |
---|
[5204] | 209 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] |
---|
| 210 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] |
---|
| 211 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] |
---|
| 212 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] |
---|
| 213 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] |
---|
| 214 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] |
---|
| 215 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] |
---|
| 216 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] |
---|
| 217 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] |
---|
| 218 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
| 219 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] |
---|
| 220 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] |
---|
| 221 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
| 222 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
| 223 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
| 224 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
| 225 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
| 226 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] |
---|
| 227 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] |
---|
| 228 | |
---|
| 229 | ! for contrails and aviation |
---|
| 230 | |
---|
| 231 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcontr !--threshold temperature for contrail formation [K] |
---|
| 232 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr !--threshold humidity for contrail formation [kg/kg] |
---|
| 233 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr2 !--// (2nd expression more consistent with LMDZ expression of q) |
---|
| 234 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrN !--fraction of grid favourable to non-persistent contrails |
---|
| 235 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrP !--fraction of grid favourable to persistent contrails |
---|
| 236 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_avi !--cloud fraction tendency because of aviation [s-1] |
---|
| 237 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_avi !--specific ice content tendency because of aviation [kg/kg/s] |
---|
| 238 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_avi !--specific cloud water vapor tendency because of aviation [kg/kg/s] |
---|
| 239 | |
---|
| 240 | |
---|
[4803] | 241 | ! for POPRECIP |
---|
[4686] | 242 | |
---|
[4830] | 243 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
| 244 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
[4819] | 245 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] |
---|
| 246 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
| 247 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
| 248 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
| 249 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
| 250 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
| 251 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
| 252 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
| 253 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
| 254 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
| 255 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
[4686] | 256 | |
---|
[5204] | 257 | ! for thermals |
---|
[4803] | 258 | |
---|
[5204] | 259 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals |
---|
| 260 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment |
---|
| 261 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals |
---|
| 262 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment |
---|
| 263 | |
---|
| 264 | |
---|
[3999] | 265 | ! LOCAL VARIABLES: |
---|
| 266 | !---------------- |
---|
[5383] | 267 | REAL,DIMENSION(klon) :: qice_ini |
---|
[4654] | 268 | REAL, DIMENSION(klon,klev) :: ctot |
---|
| 269 | REAL, DIMENSION(klon,klev) :: ctot_vol |
---|
| 270 | REAL, DIMENSION(klon) :: zqs, zdqs |
---|
[5413] | 271 | REAL :: zdelta |
---|
[4654] | 272 | REAL, DIMENSION(klon) :: zdqsdT_raw |
---|
[5007] | 273 | REAL, DIMENSION(klon) :: gammasat,dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
---|
| 274 | REAL, DIMENSION(klon) :: Tbef,qlbef,DT ! temperature, humidity and temp. variation during lognormal iteration |
---|
[4654] | 275 | REAL :: num,denom |
---|
| 276 | REAL :: cste |
---|
[4910] | 277 | REAL, DIMENSION(klon) :: zfice_th |
---|
[4654] | 278 | REAL, DIMENSION(klon) :: qcloud, qincloud_mpc |
---|
[5413] | 279 | REAL, DIMENSION(klon) :: zrfl, zifl |
---|
[4654] | 280 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn |
---|
| 281 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
---|
| 282 | REAL, DIMENSION(klon) :: zt |
---|
[5408] | 283 | REAL, DIMENSION(klon) :: zfice,zneb |
---|
[4654] | 284 | REAL, DIMENSION(klon) :: dzfice |
---|
[5007] | 285 | REAL, DIMENSION(klon) :: zfice_turb, dzfice_turb |
---|
[4654] | 286 | REAL, DIMENSION(klon) :: qtot, qzero |
---|
[3999] | 287 | ! Variables precipitation energy conservation |
---|
[4654] | 288 | REAL, DIMENSION(klon) :: zmqc |
---|
| 289 | REAL :: zalpha_tr |
---|
| 290 | REAL :: zfrac_lessi |
---|
| 291 | REAL, DIMENSION(klon) :: zprec_cond |
---|
| 292 | REAL, DIMENSION(klon) :: zlh_solid |
---|
[4803] | 293 | REAL, DIMENSION(klon) :: ztupnew |
---|
[4913] | 294 | REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl |
---|
[4654] | 295 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
---|
| 296 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
---|
[5411] | 297 | REAL, DIMENSION(klon) :: znebprecip, znebprecipclr, znebprecipcld |
---|
[5413] | 298 | REAL, DIMENSION(klon) :: tot_zneb |
---|
[4654] | 299 | REAL :: qlmpc, qimpc, rnebmpc |
---|
[5007] | 300 | REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop |
---|
| 301 | REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl ! for icefrac_lscp_turb |
---|
[5413] | 302 | |
---|
| 303 | ! for quantity of condensates seen by radiation |
---|
| 304 | REAL, DIMENSION(klon) :: zradocond, zradoice |
---|
| 305 | REAL, DIMENSION(klon) :: zrho_up, zvelo_up |
---|
[5204] | 306 | |
---|
| 307 | ! for condensation and ice supersaturation |
---|
| 308 | REAL, DIMENSION(klon) :: qvc, shear |
---|
| 309 | REAL :: delta_z |
---|
| 310 | !--Added for ice supersaturation (ok_ice_supersat) and contrails (ok_plane_contrails) |
---|
| 311 | ! Constants used for calculating ratios that are advected (using a parent-child |
---|
| 312 | ! formalism). This is not done in the dynamical core because at this moment, |
---|
| 313 | ! only isotopes can use this parent-child formalism. Note that the two constants |
---|
| 314 | ! are the same as the one use in the dynamical core, being also defined in |
---|
| 315 | ! dyn3d_common/infotrac.F90 |
---|
| 316 | REAL :: min_qParent, min_ratio |
---|
[3999] | 317 | |
---|
[5413] | 318 | INTEGER i, k, kk, iter |
---|
[4654] | 319 | INTEGER, DIMENSION(klon) :: n_i |
---|
[4226] | 320 | INTEGER ncoreczq |
---|
[4654] | 321 | INTEGER, DIMENSION(klon,klev) :: mpc_bl_points |
---|
[4803] | 322 | LOGICAL iftop |
---|
[3999] | 323 | |
---|
[4654] | 324 | LOGICAL, DIMENSION(klon) :: lognormale |
---|
| 325 | LOGICAL, DIMENSION(klon) :: keepgoing |
---|
[3999] | 326 | |
---|
| 327 | CHARACTER (len = 20) :: modname = 'lscp' |
---|
| 328 | CHARACTER (len = 80) :: abort_message |
---|
| 329 | |
---|
| 330 | |
---|
| 331 | !=============================================================================== |
---|
| 332 | ! INITIALISATION |
---|
| 333 | !=============================================================================== |
---|
| 334 | |
---|
[4226] | 335 | ! Few initial checks |
---|
[3999] | 336 | |
---|
[4654] | 337 | |
---|
[3999] | 338 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
---|
[4226] | 339 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
---|
| 340 | CALL abort_physic(modname,abort_message,1) |
---|
[3999] | 341 | ENDIF |
---|
| 342 | |
---|
| 343 | ! Few initialisations |
---|
| 344 | |
---|
| 345 | ctot_vol(1:klon,1:klev)=0.0 |
---|
| 346 | rneblsvol(1:klon,1:klev)=0.0 |
---|
[5411] | 347 | znebprecip(:)=0.0 |
---|
[4226] | 348 | znebprecipclr(:)=0.0 |
---|
| 349 | znebprecipcld(:)=0.0 |
---|
[3999] | 350 | mpc_bl_points(:,:)=0 |
---|
| 351 | |
---|
| 352 | IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' |
---|
| 353 | |
---|
| 354 | ! AA for 'safety' reasons |
---|
| 355 | zalpha_tr = 0. |
---|
| 356 | zfrac_lessi = 0. |
---|
[4380] | 357 | beta(:,:)= 0. |
---|
[3999] | 358 | |
---|
[4380] | 359 | ! Initialisation of variables: |
---|
| 360 | |
---|
[3999] | 361 | prfl(:,:) = 0.0 |
---|
| 362 | psfl(:,:) = 0.0 |
---|
| 363 | d_t(:,:) = 0.0 |
---|
| 364 | d_q(:,:) = 0.0 |
---|
| 365 | d_ql(:,:) = 0.0 |
---|
| 366 | d_qi(:,:) = 0.0 |
---|
| 367 | rneb(:,:) = 0.0 |
---|
[4530] | 368 | pfraclr(:,:)=0.0 |
---|
| 369 | pfracld(:,:)=0.0 |
---|
[5007] | 370 | cldfraliq(:,:)=0. |
---|
| 371 | sigma2_icefracturb(:,:)=0. |
---|
| 372 | mean_icefracturb(:,:)=0. |
---|
[4412] | 373 | radocond(:,:) = 0.0 |
---|
[3999] | 374 | radicefrac(:,:) = 0.0 |
---|
[4226] | 375 | frac_nucl(:,:) = 1.0 |
---|
| 376 | frac_impa(:,:) = 1.0 |
---|
[3999] | 377 | rain(:) = 0.0 |
---|
| 378 | snow(:) = 0.0 |
---|
[4114] | 379 | zfice(:)=0.0 |
---|
| 380 | dzfice(:)=0.0 |
---|
[5007] | 381 | zfice_turb(:)=0.0 |
---|
| 382 | dzfice_turb(:)=0.0 |
---|
[3999] | 383 | zrfl(:) = 0.0 |
---|
| 384 | zifl(:) = 0.0 |
---|
| 385 | zneb(:) = seuil_neb |
---|
[4226] | 386 | zrflclr(:) = 0.0 |
---|
| 387 | ziflclr(:) = 0.0 |
---|
| 388 | zrflcld(:) = 0.0 |
---|
| 389 | ziflcld(:) = 0.0 |
---|
| 390 | tot_zneb(:) = 0.0 |
---|
| 391 | qzero(:) = 0.0 |
---|
[5007] | 392 | zdistcltop(:)=0.0 |
---|
| 393 | ztemp_cltop(:) = 0.0 |
---|
[4803] | 394 | ztupnew(:)=0.0 |
---|
[5204] | 395 | |
---|
[4654] | 396 | distcltop(:,:)=0. |
---|
| 397 | temp_cltop(:,:)=0. |
---|
[5007] | 398 | |
---|
[5204] | 399 | !--Ice supersaturation |
---|
| 400 | gamma_cond(:,:) = 1. |
---|
| 401 | qissr(:,:) = 0. |
---|
| 402 | issrfra(:,:) = 0. |
---|
| 403 | dcf_sub(:,:) = 0. |
---|
| 404 | dcf_con(:,:) = 0. |
---|
| 405 | dcf_mix(:,:) = 0. |
---|
| 406 | dqi_adj(:,:) = 0. |
---|
| 407 | dqi_sub(:,:) = 0. |
---|
| 408 | dqi_con(:,:) = 0. |
---|
| 409 | dqi_mix(:,:) = 0. |
---|
| 410 | dqvc_adj(:,:) = 0. |
---|
| 411 | dqvc_sub(:,:) = 0. |
---|
| 412 | dqvc_con(:,:) = 0. |
---|
| 413 | dqvc_mix(:,:) = 0. |
---|
| 414 | fcontrN(:,:) = 0. |
---|
| 415 | fcontrP(:,:) = 0. |
---|
| 416 | Tcontr(:,:) = missing_val |
---|
| 417 | qcontr(:,:) = missing_val |
---|
| 418 | qcontr2(:,:) = missing_val |
---|
| 419 | dcf_avi(:,:) = 0. |
---|
| 420 | dqi_avi(:,:) = 0. |
---|
| 421 | dqvc_avi(:,:) = 0. |
---|
| 422 | qvc(:) = 0. |
---|
| 423 | shear(:) = 0. |
---|
| 424 | min_qParent = 1.e-30 |
---|
| 425 | min_ratio = 1.e-16 |
---|
| 426 | |
---|
[4803] | 427 | !-- poprecip |
---|
[4830] | 428 | qraindiag(:,:)= 0. |
---|
| 429 | qsnowdiag(:,:)= 0. |
---|
[4819] | 430 | dqreva(:,:) = 0. |
---|
| 431 | dqrauto(:,:) = 0. |
---|
| 432 | dqrmelt(:,:) = 0. |
---|
| 433 | dqrfreez(:,:) = 0. |
---|
| 434 | dqrcol(:,:) = 0. |
---|
| 435 | dqssub(:,:) = 0. |
---|
| 436 | dqsauto(:,:) = 0. |
---|
| 437 | dqsrim(:,:) = 0. |
---|
| 438 | dqsagg(:,:) = 0. |
---|
| 439 | dqsfreez(:,:) = 0. |
---|
| 440 | dqsmelt(:,:) = 0. |
---|
[4913] | 441 | zqupnew(:) = 0. |
---|
| 442 | zqvapclr(:) = 0. |
---|
[3999] | 443 | |
---|
[4803] | 444 | |
---|
| 445 | |
---|
[4392] | 446 | !c_iso: variable initialisation for iso |
---|
| 447 | |
---|
| 448 | |
---|
[3999] | 449 | !=============================================================================== |
---|
| 450 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
---|
| 451 | !=============================================================================== |
---|
| 452 | |
---|
| 453 | ncoreczq=0 |
---|
| 454 | |
---|
| 455 | DO k = klev, 1, -1 |
---|
| 456 | |
---|
[5408] | 457 | qice_ini = qi_seri(:,k) |
---|
| 458 | |
---|
[4803] | 459 | IF (k.LE.klev-1) THEN |
---|
| 460 | iftop=.false. |
---|
| 461 | ELSE |
---|
| 462 | iftop=.true. |
---|
| 463 | ENDIF |
---|
| 464 | |
---|
[3999] | 465 | ! Initialisation temperature and specific humidity |
---|
[5007] | 466 | ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt |
---|
| 467 | ! at the end of the klon loop, a temperature incremtent d_t due to all processes |
---|
| 468 | ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated |
---|
| 469 | ! d_t = temperature tendency due to lscp |
---|
| 470 | ! The temperature of the overlying layer is updated here because needed for thermalization |
---|
[3999] | 471 | DO i = 1, klon |
---|
[4654] | 472 | zt(i)=temp(i,k) |
---|
[4686] | 473 | zq(i)=qt(i,k) |
---|
[4803] | 474 | IF (.not. iftop) THEN |
---|
[4913] | 475 | ztupnew(i) = temp(i,k+1) + d_t(i,k+1) |
---|
| 476 | zqupnew(i) = qt(i,k+1) + d_q(i,k+1) + d_ql(i,k+1) + d_qi(i,k+1) |
---|
| 477 | !--zqs(i) is the saturation specific humidity in the layer above |
---|
| 478 | zqvapclr(i) = MAX(0., qt(i,k+1) + d_q(i,k+1) - rneb(i,k+1) * zqs(i)) |
---|
[4803] | 479 | ENDIF |
---|
[4392] | 480 | !c_iso init of iso |
---|
[3999] | 481 | ENDDO |
---|
[5408] | 482 | |
---|
| 483 | ! -------------------------------------------------------------------- |
---|
| 484 | ! P1> Precipitation processes, before cloud formation: |
---|
| 485 | ! Thermalization of precipitation falling from the overlying layer AND |
---|
| 486 | ! Precipitation evaporation/sublimation/melting |
---|
| 487 | !--------------------------------------------------------------------- |
---|
[4803] | 488 | |
---|
| 489 | !================================================================ |
---|
| 490 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
---|
[5408] | 491 | IF ( ok_poprecip .OR. ( iflag_evap_prec .EQ. 6 ) ) THEN |
---|
[4803] | 492 | |
---|
[5408] | 493 | CALL poprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
---|
| 494 | zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & |
---|
| 495 | zqvapclr, zqupnew, & |
---|
| 496 | zrfl, zrflclr, zrflcld, & |
---|
| 497 | zifl, ziflclr, ziflcld, & |
---|
| 498 | dqreva(:,k), dqssub(:,k) & |
---|
| 499 | ) |
---|
[4803] | 500 | |
---|
| 501 | !================================================================ |
---|
| 502 | ELSE |
---|
| 503 | |
---|
[5408] | 504 | CALL histprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
---|
[5411] | 505 | zt, ztupnew, zq, zmqc, zneb, znebprecip, znebprecipclr, & |
---|
[5408] | 506 | zrfl, zrflclr, zrflcld, & |
---|
| 507 | zifl, ziflclr, ziflcld, & |
---|
| 508 | dqreva(:,k), dqssub(:,k) & |
---|
| 509 | ) |
---|
[3999] | 510 | |
---|
[4803] | 511 | ENDIF ! (ok_poprecip) |
---|
[3999] | 512 | |
---|
| 513 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
---|
| 514 | !------------------------------------------------------- |
---|
[4226] | 515 | |
---|
[4072] | 516 | qtot(:)=zq(:)+zmqc(:) |
---|
[5383] | 517 | CALL calc_qsat_ecmwf(klon,zt,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs) |
---|
[4072] | 518 | DO i = 1, klon |
---|
[3999] | 519 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
---|
[4059] | 520 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
---|
[3999] | 521 | IF (zq(i) .LT. 1.e-15) THEN |
---|
| 522 | ncoreczq=ncoreczq+1 |
---|
| 523 | zq(i)=1.e-15 |
---|
| 524 | ENDIF |
---|
[4392] | 525 | ! c_iso: do something similar for isotopes |
---|
[3999] | 526 | |
---|
[4072] | 527 | ENDDO |
---|
[3999] | 528 | |
---|
| 529 | ! -------------------------------------------------------------------- |
---|
[5408] | 530 | ! P2> Cloud formation |
---|
[3999] | 531 | !--------------------------------------------------------------------- |
---|
| 532 | ! |
---|
| 533 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
---|
| 534 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
---|
| 535 | ! is prescribed and depends on large scale variables and boundary layer |
---|
| 536 | ! properties) |
---|
| 537 | ! The decrease in condensed part due tu latent heating is taken into |
---|
| 538 | ! account |
---|
| 539 | ! ------------------------------------------------------------------- |
---|
| 540 | |
---|
[5408] | 541 | ! P2.1> With the PDFs (log-normal, bigaussian) |
---|
[4424] | 542 | ! cloud properties calculation with the initial values of t and q |
---|
[3999] | 543 | ! ---------------------------------------------------------------- |
---|
| 544 | |
---|
| 545 | ! initialise gammasat and qincloud_mpc |
---|
| 546 | gammasat(:)=1. |
---|
| 547 | qincloud_mpc(:)=0. |
---|
| 548 | |
---|
| 549 | IF (iflag_cld_th.GE.5) THEN |
---|
[4910] | 550 | ! Cloud cover and content in meshes affected by shallow convection, |
---|
| 551 | ! are retrieved from a bi-gaussian distribution of the saturation deficit |
---|
| 552 | ! following Jam et al. 2013 |
---|
[3999] | 553 | |
---|
[4910] | 554 | IF (iflag_cloudth_vert.LE.2) THEN |
---|
| 555 | ! Old version of Arnaud Jam |
---|
[3999] | 556 | |
---|
[4910] | 557 | CALL cloudth(klon,klev,k,tv, & |
---|
| 558 | zq,qta,fraca, & |
---|
| 559 | qcloud,ctot,pspsk,paprs,pplay,tla,thl, & |
---|
[4654] | 560 | ratqs,zqs,temp, & |
---|
[4651] | 561 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 562 | |
---|
[4651] | 563 | |
---|
[3999] | 564 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
---|
[4910] | 565 | ! Default version of Arnaud Jam |
---|
| 566 | |
---|
| 567 | CALL cloudth_v3(klon,klev,k,tv, & |
---|
| 568 | zq,qta,fraca, & |
---|
| 569 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
---|
[5208] | 570 | ratqs,sigma_qtherm,zqs,temp, & |
---|
[4651] | 571 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 572 | |
---|
| 573 | |
---|
| 574 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
---|
[4910] | 575 | ! Jean Jouhaud's version, with specific separation between surface and volume |
---|
| 576 | ! cloud fraction Decembre 2018 |
---|
[3999] | 577 | |
---|
[4910] | 578 | CALL cloudth_v6(klon,klev,k,tv, & |
---|
| 579 | zq,qta,fraca, & |
---|
| 580 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
---|
[4654] | 581 | ratqs,zqs,temp, & |
---|
[4651] | 582 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 583 | |
---|
[4910] | 584 | ELSEIF (iflag_cloudth_vert .EQ. 7) THEN |
---|
| 585 | ! Updated version of Arnaud Jam (correction by E. Vignon) + adapted treatment |
---|
[5007] | 586 | ! for boundary-layer mixed phase clouds |
---|
[4910] | 587 | CALL cloudth_mpc(klon,klev,k,mpc_bl_points,zt,zq,qta(:,k),fraca(:,k), & |
---|
| 588 | pspsk(:,k),paprs(:,k+1),paprs(:,k),pplay(:,k), tla(:,k), & |
---|
| 589 | ratqs(:,k),qcloud,qincloud_mpc,zfice_th,ctot(:,k),ctot_vol(:,k), & |
---|
| 590 | cloudth_sth(:,k),cloudth_senv(:,k),cloudth_sigmath(:,k),cloudth_sigmaenv(:,k)) |
---|
| 591 | |
---|
[3999] | 592 | ENDIF |
---|
| 593 | |
---|
| 594 | |
---|
| 595 | DO i=1,klon |
---|
| 596 | rneb(i,k)=ctot(i,k) |
---|
| 597 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
| 598 | zqn(i)=qcloud(i) |
---|
[5204] | 599 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
| 600 | qvc(i) = rneb(i,k) * zqs(i) |
---|
[3999] | 601 | ENDDO |
---|
| 602 | |
---|
| 603 | ENDIF |
---|
| 604 | |
---|
| 605 | IF (iflag_cld_th .LE. 4) THEN |
---|
| 606 | |
---|
| 607 | ! lognormal |
---|
[5007] | 608 | lognormale(:) = .TRUE. |
---|
[3999] | 609 | |
---|
| 610 | ELSEIF (iflag_cld_th .GE. 6) THEN |
---|
| 611 | |
---|
| 612 | ! lognormal distribution when no thermals |
---|
[5007] | 613 | lognormale(:) = fraca(:,k) < min_frac_th_cld |
---|
[3999] | 614 | |
---|
| 615 | ELSE |
---|
[4226] | 616 | ! When iflag_cld_th=5, we always assume |
---|
[3999] | 617 | ! bi-gaussian distribution |
---|
[5007] | 618 | lognormale(:) = .FALSE. |
---|
[3999] | 619 | |
---|
| 620 | ENDIF |
---|
| 621 | |
---|
| 622 | DT(:) = 0. |
---|
| 623 | n_i(:)=0 |
---|
| 624 | Tbef(:)=zt(:) |
---|
| 625 | qlbef(:)=0. |
---|
| 626 | |
---|
| 627 | ! Treatment of non-boundary layer clouds (lognormale) |
---|
[5383] | 628 | ! We iterate here to take into account the change in qsat(T) and ice fraction |
---|
| 629 | ! during the condensation process |
---|
| 630 | ! the increment in temperature is calculated using the first principle of |
---|
| 631 | ! thermodynamics (enthalpy conservation equation in a mesh composed of a cloud fraction |
---|
| 632 | ! and a clear sky fraction) |
---|
| 633 | ! note that we assume that the vapor in the cloud is at saturation for this calculation |
---|
[4226] | 634 | |
---|
[3999] | 635 | DO iter=1,iflag_fisrtilp_qsat+1 |
---|
[4226] | 636 | |
---|
[5204] | 637 | keepgoing(:) = .FALSE. |
---|
| 638 | |
---|
[3999] | 639 | DO i=1,klon |
---|
| 640 | |
---|
[4424] | 641 | ! keepgoing = .true. while convergence is not satisfied |
---|
[4226] | 642 | |
---|
[5204] | 643 | IF (((ABS(DT(i)).GT.DDT0) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
---|
[4226] | 644 | |
---|
[3999] | 645 | ! if not convergence: |
---|
[5204] | 646 | ! we calculate a new iteration |
---|
| 647 | keepgoing(i) = .TRUE. |
---|
[3999] | 648 | |
---|
| 649 | ! P2.2.1> cloud fraction and condensed water mass calculation |
---|
| 650 | ! Calculated variables: |
---|
| 651 | ! rneb : cloud fraction |
---|
| 652 | ! zqn : total water within the cloud |
---|
| 653 | ! zcond: mean condensed water within the mesh |
---|
| 654 | ! rhcl: clear-sky relative humidity |
---|
| 655 | !--------------------------------------------------------------- |
---|
| 656 | |
---|
[4424] | 657 | ! new temperature that only serves in the iteration process: |
---|
[3999] | 658 | Tbef(i)=Tbef(i)+DT(i) |
---|
| 659 | |
---|
| 660 | ! Rneb, qzn and zcond for lognormal PDFs |
---|
[4072] | 661 | qtot(i)=zq(i)+zmqc(i) |
---|
[4226] | 662 | |
---|
[4072] | 663 | ENDIF |
---|
[3999] | 664 | |
---|
[4072] | 665 | ENDDO |
---|
| 666 | |
---|
[4380] | 667 | ! Calculation of saturation specific humidity and ice fraction |
---|
[5383] | 668 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs) |
---|
| 669 | CALL calc_gammasat(klon,Tbef,qtot,pplay(:,k),gammasat,dgammasatdt) |
---|
[4072] | 670 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
---|
| 671 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
---|
[4562] | 672 | ! cloud phase determination |
---|
| 673 | IF (iflag_t_glace.GE.4) THEN |
---|
| 674 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
[5007] | 675 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
---|
[4562] | 676 | ENDIF |
---|
[4072] | 677 | |
---|
[5383] | 678 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop,ztemp_cltop,zfice,dzfice) |
---|
[5007] | 679 | |
---|
[5204] | 680 | !--AB Activates a condensation scheme that allows for |
---|
| 681 | !--ice supersaturation and contrails evolution from aviation |
---|
| 682 | IF (ok_ice_supersat) THEN |
---|
| 683 | |
---|
| 684 | !--Calculate the shear value (input for condensation and ice supersat) |
---|
| 685 | DO i = 1, klon |
---|
| 686 | !--Cell thickness [m] |
---|
| 687 | delta_z = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * Tbef(i) * RD |
---|
| 688 | IF ( iftop ) THEN |
---|
| 689 | ! top |
---|
| 690 | shear(i) = SQRT( ( (u_seri(i,k) - u_seri(i,k-1)) / delta_z )**2. & |
---|
| 691 | + ( (v_seri(i,k) - v_seri(i,k-1)) / delta_z )**2. ) |
---|
| 692 | ELSEIF ( k .EQ. 1 ) THEN |
---|
| 693 | ! surface |
---|
| 694 | shear(i) = SQRT( ( (u_seri(i,k+1) - u_seri(i,k)) / delta_z )**2. & |
---|
| 695 | + ( (v_seri(i,k+1) - v_seri(i,k)) / delta_z )**2. ) |
---|
| 696 | ELSE |
---|
| 697 | ! other layers |
---|
| 698 | shear(i) = SQRT( ( ( (u_seri(i,k+1) + u_seri(i,k)) / 2. & |
---|
| 699 | - (u_seri(i,k) + u_seri(i,k-1)) / 2. ) / delta_z )**2. & |
---|
| 700 | + ( ( (v_seri(i,k+1) + v_seri(i,k)) / 2. & |
---|
| 701 | - (v_seri(i,k) + v_seri(i,k-1)) / 2. ) / delta_z )**2. ) |
---|
| 702 | ENDIF |
---|
| 703 | ENDDO |
---|
| 704 | |
---|
| 705 | !--------------------------------------------- |
---|
| 706 | !-- CONDENSATION AND ICE SUPERSATURATION -- |
---|
| 707 | !--------------------------------------------- |
---|
| 708 | |
---|
| 709 | CALL condensation_ice_supersat( & |
---|
| 710 | klon, dtime, missing_val, & |
---|
| 711 | pplay(:,k), paprs(:,k), paprs(:,k+1), & |
---|
[5396] | 712 | cf_seri(:,k), rvc_seri(:,k), ql_seri(:,k), qi_seri(:,k), & |
---|
[5406] | 713 | shear, tke_dissip(:,k), cell_area, & |
---|
| 714 | Tbef, zq, zqs, gammasat, ratqs(:,k), keepgoing, & |
---|
| 715 | rneb(:,k), zqn, qvc, issrfra(:,k), qissr(:,k), & |
---|
[5204] | 716 | dcf_sub(:,k), dcf_con(:,k), dcf_mix(:,k), & |
---|
| 717 | dqi_adj(:,k), dqi_sub(:,k), dqi_con(:,k), dqi_mix(:,k), & |
---|
| 718 | dqvc_adj(:,k), dqvc_sub(:,k), dqvc_con(:,k), dqvc_mix(:,k), & |
---|
| 719 | Tcontr(:,k), qcontr(:,k), qcontr2(:,k), fcontrN(:,k), fcontrP(:,k), & |
---|
| 720 | flight_dist(:,k), flight_h2o(:,k), & |
---|
| 721 | dcf_avi(:,k), dqi_avi(:,k), dqvc_avi(:,k)) |
---|
| 722 | |
---|
| 723 | |
---|
[5211] | 724 | ELSE |
---|
| 725 | !--generalised lognormal condensation scheme (Bony and Emanuel 2001) |
---|
| 726 | |
---|
[5241] | 727 | CALL condensation_lognormal( & |
---|
| 728 | klon, Tbef, zq, zqs, gammasat, ratqs(:,k), & |
---|
| 729 | keepgoing, rneb(:,k), zqn, qvc) |
---|
[5204] | 730 | |
---|
| 731 | |
---|
| 732 | ENDIF ! .NOT. ok_ice_supersat |
---|
[4226] | 733 | |
---|
[5204] | 734 | DO i=1,klon |
---|
| 735 | IF (keepgoing(i)) THEN |
---|
[3999] | 736 | |
---|
| 737 | ! If vertical heterogeneity, change fraction by volume as well |
---|
| 738 | IF (iflag_cloudth_vert.GE.3) THEN |
---|
| 739 | ctot_vol(i,k)=rneb(i,k) |
---|
| 740 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
| 741 | ENDIF |
---|
| 742 | |
---|
| 743 | |
---|
[4072] | 744 | ! P2.2.2> Approximative calculation of temperature variation DT |
---|
| 745 | ! due to condensation. |
---|
| 746 | ! Calculated variables: |
---|
| 747 | ! dT : temperature change due to condensation |
---|
| 748 | !--------------------------------------------------------------- |
---|
[3999] | 749 | |
---|
| 750 | |
---|
| 751 | IF (zfice(i).LT.1) THEN |
---|
| 752 | cste=RLVTT |
---|
| 753 | ELSE |
---|
| 754 | cste=RLSTT |
---|
| 755 | ENDIF |
---|
[5007] | 756 | |
---|
| 757 | ! LEA_R : check formule |
---|
[5204] | 758 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 759 | !--AB We relax the saturation adjustment assumption |
---|
| 760 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
| 761 | IF ( rneb(i,k) .GT. eps ) THEN |
---|
| 762 | qlbef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i,k)) |
---|
| 763 | ELSE |
---|
| 764 | qlbef(i) = 0. |
---|
| 765 | ENDIF |
---|
| 766 | ELSE |
---|
| 767 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
---|
| 768 | ENDIF |
---|
| 769 | |
---|
[3999] | 770 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
---|
[4226] | 771 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) |
---|
[3999] | 772 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
---|
| 773 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
---|
[4226] | 774 | *qlbef(i)*dzfice(i) |
---|
[4424] | 775 | ! here we update a provisory temperature variable that only serves in the iteration |
---|
| 776 | ! process |
---|
[3999] | 777 | DT(i)=num/denom |
---|
| 778 | n_i(i)=n_i(i)+1 |
---|
| 779 | |
---|
[4424] | 780 | ENDIF ! end keepgoing |
---|
[3999] | 781 | |
---|
| 782 | ENDDO ! end loop on i |
---|
| 783 | |
---|
| 784 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
---|
| 785 | |
---|
[5408] | 786 | ! P2.2> Final quantities calculation |
---|
[3999] | 787 | ! Calculated variables: |
---|
| 788 | ! rneb : cloud fraction |
---|
| 789 | ! zcond: mean condensed water in the mesh |
---|
| 790 | ! zqn : mean water vapor in the mesh |
---|
[4562] | 791 | ! zfice: ice fraction in clouds |
---|
[3999] | 792 | ! zt : temperature |
---|
| 793 | ! rhcl : clear-sky relative humidity |
---|
| 794 | ! ---------------------------------------------------------------- |
---|
| 795 | |
---|
| 796 | |
---|
[4562] | 797 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
| 798 | IF (iflag_t_glace.GE.4) THEN |
---|
[5007] | 799 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
---|
| 800 | distcltop(:,k)=zdistcltop(:) |
---|
| 801 | temp_cltop(:,k)=ztemp_cltop(:) |
---|
| 802 | ENDIF |
---|
[3999] | 803 | |
---|
[5007] | 804 | ! Partition function depending on temperature |
---|
[5204] | 805 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
---|
[4562] | 806 | |
---|
[5007] | 807 | ! Partition function depending on tke for non shallow-convective clouds |
---|
| 808 | IF (iflag_icefrac .GE. 1) THEN |
---|
[5383] | 809 | CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:,k), paprs(:,k), paprs(:,k+1), omega(:,k), qice_ini, ziflcld, zqn, & |
---|
[5007] | 810 | rneb(:,k), tke(:,k), tke_dissip(:,k), zqliq, zqvapcl, zqice, zfice_turb, dzfice_turb, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k)) |
---|
| 811 | ENDIF |
---|
| 812 | |
---|
[4562] | 813 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
---|
[3999] | 814 | DO i=1, klon |
---|
[5007] | 815 | ! Overwrite phase partitioning in boundary layer mixed phase clouds when the |
---|
| 816 | ! iflag_cloudth_vert=7 and specific param is activated |
---|
[3999] | 817 | IF (mpc_bl_points(i,k) .GT. 0) THEN |
---|
| 818 | zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) |
---|
| 819 | ! following line is very strange and probably wrong |
---|
| 820 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
---|
| 821 | ! water vapor update and partition function if thermals |
---|
| 822 | zq(i) = zq(i) - zcond(i) |
---|
[4910] | 823 | zfice(i)=zfice_th(i) |
---|
[3999] | 824 | ELSE |
---|
| 825 | ! Checks on rneb, rhcl and zqn |
---|
| 826 | IF (rneb(i,k) .LE. 0.0) THEN |
---|
| 827 | zqn(i) = 0.0 |
---|
| 828 | rneb(i,k) = 0.0 |
---|
| 829 | zcond(i) = 0.0 |
---|
| 830 | rhcl(i,k)=zq(i)/zqs(i) |
---|
| 831 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
---|
| 832 | zqn(i) = zq(i) |
---|
| 833 | rneb(i,k) = 1.0 |
---|
[5204] | 834 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 835 | !--AB We relax the saturation adjustment assumption |
---|
| 836 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
| 837 | zcond(i) = MAX(0., zqn(i) - qvc(i)) |
---|
| 838 | ELSE |
---|
| 839 | zcond(i) = MAX(0.0,zqn(i)-zqs(i)) |
---|
| 840 | ENDIF |
---|
[3999] | 841 | rhcl(i,k)=1.0 |
---|
| 842 | ELSE |
---|
[5204] | 843 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 844 | !--AB We relax the saturation adjustment assumption |
---|
| 845 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
| 846 | zcond(i) = MAX(0., zqn(i) * rneb(i,k) - qvc(i)) |
---|
| 847 | ELSE |
---|
| 848 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) |
---|
| 849 | ENDIF |
---|
[3999] | 850 | ! following line is very strange and probably wrong: |
---|
| 851 | rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) |
---|
[5007] | 852 | ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) |
---|
| 853 | IF (iflag_icefrac .GE. 1) THEN |
---|
| 854 | IF (lognormale(i)) THEN |
---|
| 855 | zcond(i) = zqliq(i) + zqice(i) |
---|
| 856 | zfice(i)=zfice_turb(i) |
---|
| 857 | rhcl(i,k) = zqvapcl(i) * rneb(i,k) + (zq(i) - zqn(i)) * (1.-rneb(i,k)) |
---|
| 858 | ENDIF |
---|
| 859 | ENDIF |
---|
[3999] | 860 | ENDIF |
---|
| 861 | |
---|
[4226] | 862 | ! water vapor update |
---|
| 863 | zq(i) = zq(i) - zcond(i) |
---|
[3999] | 864 | |
---|
| 865 | ENDIF |
---|
| 866 | |
---|
[4392] | 867 | ! c_iso : routine that computes in-cloud supersaturation |
---|
| 868 | ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input) |
---|
| 869 | |
---|
[3999] | 870 | ! temperature update due to phase change |
---|
| 871 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
---|
| 872 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
---|
| 873 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
| 874 | ENDDO |
---|
| 875 | |
---|
| 876 | ! If vertical heterogeneity, change volume fraction |
---|
| 877 | IF (iflag_cloudth_vert .GE. 3) THEN |
---|
| 878 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
---|
| 879 | rneblsvol(1:klon,k)=ctot_vol(1:klon,k) |
---|
| 880 | ENDIF |
---|
| 881 | |
---|
[5204] | 882 | |
---|
[3999] | 883 | ! ---------------------------------------------------------------- |
---|
[5408] | 884 | ! P3> Precipitation processes, after cloud formation |
---|
| 885 | ! - precipitation formation, melting/freezing |
---|
[3999] | 886 | ! ---------------------------------------------------------------- |
---|
[4226] | 887 | |
---|
[5413] | 888 | ! Initiate the quantity of liquid and solid condensates |
---|
| 889 | ! Note that in the following, zcond is the total amount of condensates |
---|
| 890 | ! including newly formed precipitations (i.e., condensates formed by the |
---|
| 891 | ! condensation process), while zoliq is the total amount of condensates in |
---|
| 892 | ! the cloud (i.e., on which precipitation processes have applied) |
---|
| 893 | DO i = 1, klon |
---|
| 894 | zoliq(i) = zcond(i) |
---|
| 895 | zoliql(i) = zcond(i) * ( 1. - zfice(i) ) |
---|
| 896 | zoliqi(i) = zcond(i) * zfice(i) |
---|
| 897 | ! c_iso : initialisation of zoliq* also for isotopes |
---|
| 898 | ENDDO |
---|
| 899 | |
---|
[4803] | 900 | !================================================================ |
---|
[5408] | 901 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
---|
[4803] | 902 | IF (ok_poprecip) THEN |
---|
| 903 | |
---|
| 904 | CALL poprecip_postcld(klon, dtime, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
---|
| 905 | ctot_vol(:,k), ptconv(:,k), & |
---|
| 906 | zt, zq, zoliql, zoliqi, zfice, & |
---|
| 907 | rneb(:,k), znebprecipclr, znebprecipcld, & |
---|
| 908 | zrfl, zrflclr, zrflcld, & |
---|
| 909 | zifl, ziflclr, ziflcld, & |
---|
[4830] | 910 | qraindiag(:,k), qsnowdiag(:,k), dqrauto(:,k), & |
---|
[4819] | 911 | dqrcol(:,k), dqrmelt(:,k), dqrfreez(:,k), & |
---|
| 912 | dqsauto(:,k), dqsagg(:,k), dqsrim(:,k), & |
---|
| 913 | dqsmelt(:,k), dqsfreez(:,k) & |
---|
[4803] | 914 | ) |
---|
[5419] | 915 | DO i = 1, klon |
---|
| 916 | zoliq(i) = zoliql(i) + zoliqi(i) |
---|
| 917 | ENDDO |
---|
[4803] | 918 | |
---|
| 919 | !================================================================ |
---|
| 920 | ELSE |
---|
| 921 | |
---|
[5413] | 922 | CALL histprecip_postcld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
---|
| 923 | ctot_vol(:,k), ptconv(:,k), zdqsdT_raw, & |
---|
| 924 | zt, zq, zoliq, zoliql, zoliqi, zcond, zfice, zmqc, & |
---|
| 925 | rneb(:,k), znebprecipclr, znebprecipcld, & |
---|
| 926 | zneb, tot_zneb, zrho_up, zvelo_up, & |
---|
| 927 | zrfl, zrflclr, zrflcld, zifl, ziflclr, ziflcld, & |
---|
| 928 | zradocond, zradoice, dqrauto(:,k), dqsauto(:,k) & |
---|
| 929 | ) |
---|
[3999] | 930 | |
---|
[4803] | 931 | ENDIF ! ok_poprecip |
---|
| 932 | |
---|
[5408] | 933 | ! End of precipitation processes after cloud formation |
---|
| 934 | ! ---------------------------------------------------- |
---|
[3999] | 935 | |
---|
[5406] | 936 | !---------------------------------------------------------------------- |
---|
[5408] | 937 | ! P4> Calculation of cloud condensates amount seen by radiative scheme |
---|
[5406] | 938 | !---------------------------------------------------------------------- |
---|
[4803] | 939 | |
---|
[5413] | 940 | DO i=1,klon |
---|
[3999] | 941 | |
---|
[5413] | 942 | IF (ok_poprecip) THEN |
---|
| 943 | IF (ok_radocond_snow) THEN |
---|
| 944 | radocond(i,k) = zoliq(i) |
---|
| 945 | zradoice(i) = zoliqi(i) + qsnowdiag(i,k) |
---|
| 946 | ELSE |
---|
| 947 | radocond(i,k) = zoliq(i) |
---|
| 948 | zradoice(i) = zoliqi(i) |
---|
| 949 | ENDIF |
---|
| 950 | ELSE |
---|
| 951 | radocond(i,k) = zradocond(i) |
---|
| 952 | ENDIF |
---|
[4114] | 953 | |
---|
[5413] | 954 | ! calculate the percentage of ice in "radocond" so cloud+precip seen |
---|
| 955 | ! by the radiation scheme |
---|
| 956 | IF (radocond(i,k) .GT. 0.) THEN |
---|
| 957 | radicefrac(i,k)=MIN(MAX(zradoice(i)/radocond(i,k),0.),1.) |
---|
| 958 | ENDIF |
---|
[4114] | 959 | ENDDO |
---|
| 960 | |
---|
[3999] | 961 | ! ---------------------------------------------------------------- |
---|
[5408] | 962 | ! P5> Wet scavenging |
---|
[3999] | 963 | ! ---------------------------------------------------------------- |
---|
| 964 | |
---|
| 965 | !Scavenging through nucleation in the layer |
---|
| 966 | |
---|
| 967 | DO i = 1,klon |
---|
| 968 | |
---|
| 969 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
---|
| 970 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
---|
| 971 | ELSE |
---|
| 972 | beta(i,k) = 0. |
---|
| 973 | ENDIF |
---|
| 974 | |
---|
[4059] | 975 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
[3999] | 976 | |
---|
| 977 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
| 978 | |
---|
[4654] | 979 | IF (temp(i,k) .GE. t_glace_min) THEN |
---|
[3999] | 980 | zalpha_tr = a_tr_sca(3) |
---|
| 981 | ELSE |
---|
| 982 | zalpha_tr = a_tr_sca(4) |
---|
| 983 | ENDIF |
---|
| 984 | |
---|
| 985 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 986 | frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi |
---|
[4226] | 987 | |
---|
[3999] | 988 | ! Nucleation with a factor of -1 instead of -0.5 |
---|
| 989 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) |
---|
| 990 | |
---|
| 991 | ENDIF |
---|
| 992 | |
---|
[4226] | 993 | ENDDO |
---|
| 994 | |
---|
[3999] | 995 | ! Scavenging through impaction in the underlying layer |
---|
| 996 | |
---|
| 997 | DO kk = k-1, 1, -1 |
---|
| 998 | |
---|
| 999 | DO i = 1, klon |
---|
| 1000 | |
---|
| 1001 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
| 1002 | |
---|
[4654] | 1003 | IF (temp(i,kk) .GE. t_glace_min) THEN |
---|
[3999] | 1004 | zalpha_tr = a_tr_sca(1) |
---|
| 1005 | ELSE |
---|
| 1006 | zalpha_tr = a_tr_sca(2) |
---|
| 1007 | ENDIF |
---|
| 1008 | |
---|
| 1009 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 1010 | frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi |
---|
| 1011 | |
---|
| 1012 | ENDIF |
---|
| 1013 | |
---|
| 1014 | ENDDO |
---|
| 1015 | |
---|
| 1016 | ENDDO |
---|
[5406] | 1017 | |
---|
| 1018 | !------------------------------------------------------------ |
---|
[5408] | 1019 | ! P6 > write diagnostics and outputs |
---|
[5406] | 1020 | !------------------------------------------------------------ |
---|
| 1021 | |
---|
| 1022 | !--AB Write diagnostics and tracers for ice supersaturation |
---|
| 1023 | IF ( ok_ice_supersat ) THEN |
---|
| 1024 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,1,.false.,qsatl(:,k),zdqs) |
---|
| 1025 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,2,.false.,qsati(:,k),zdqs) |
---|
[4226] | 1026 | |
---|
[5406] | 1027 | DO i = 1, klon |
---|
| 1028 | |
---|
| 1029 | IF ( zoliq(i) .LE. 0. ) THEN |
---|
| 1030 | !--If everything was precipitated, the remaining empty cloud is dissipated |
---|
| 1031 | !--and everything is transfered to the subsaturated clear sky region |
---|
| 1032 | rneb(i,k) = 0. |
---|
| 1033 | qvc(i) = 0. |
---|
| 1034 | ENDIF |
---|
| 1035 | |
---|
| 1036 | cf_seri(i,k) = rneb(i,k) |
---|
| 1037 | |
---|
| 1038 | IF ( .NOT. ok_unadjusted_clouds ) THEN |
---|
| 1039 | qvc(i) = zqs(i) * rneb(i,k) |
---|
| 1040 | ENDIF |
---|
| 1041 | IF ( zq(i) .GT. min_qParent ) THEN |
---|
| 1042 | rvc_seri(i,k) = qvc(i) / zq(i) |
---|
| 1043 | ELSE |
---|
| 1044 | rvc_seri(i,k) = min_ratio |
---|
| 1045 | ENDIF |
---|
| 1046 | !--The MIN barrier is NEEDED because of: |
---|
| 1047 | !-- 1) very rare pathological cases of the lsc scheme (rvc = 1. + 1e-16 sometimes) |
---|
| 1048 | !-- 2) the thermal scheme does NOT guarantee that qvc <= qvap (or even qincld <= qtot) |
---|
| 1049 | !--The MAX barrier is a safeguard that should not be activated |
---|
| 1050 | rvc_seri(i,k) = MIN(MAX(rvc_seri(i,k), 0.), 1.) |
---|
| 1051 | |
---|
| 1052 | !--Diagnostics |
---|
| 1053 | gamma_cond(i,k) = gammasat(i) |
---|
| 1054 | subfra(i,k) = 1. - cf_seri(i,k) - issrfra(i,k) |
---|
| 1055 | qsub(i,k) = zq(i) - qvc(i) - qissr(i,k) |
---|
[5412] | 1056 | qcld(i,k) = qvc(i) + zoliq(i) |
---|
[5406] | 1057 | ENDDO |
---|
| 1058 | ENDIF |
---|
| 1059 | |
---|
[4803] | 1060 | ! Outputs: |
---|
| 1061 | !------------------------------- |
---|
| 1062 | ! Precipitation fluxes at layer interfaces |
---|
| 1063 | ! + precipitation fractions + |
---|
| 1064 | ! temperature and water species tendencies |
---|
| 1065 | DO i = 1, klon |
---|
| 1066 | psfl(i,k)=zifl(i) |
---|
| 1067 | prfl(i,k)=zrfl(i) |
---|
| 1068 | pfraclr(i,k)=znebprecipclr(i) |
---|
| 1069 | pfracld(i,k)=znebprecipcld(i) |
---|
| 1070 | d_q(i,k) = zq(i) - qt(i,k) |
---|
| 1071 | d_t(i,k) = zt(i) - temp(i,k) |
---|
[5412] | 1072 | |
---|
| 1073 | IF (ok_bug_phase_lscp) THEN |
---|
| 1074 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
---|
| 1075 | d_qi(i,k) = zfice(i)*zoliq(i) |
---|
| 1076 | ELSE |
---|
| 1077 | d_ql(i,k) = zoliql(i) |
---|
| 1078 | d_qi(i,k) = zoliqi(i) |
---|
| 1079 | ENDIF |
---|
| 1080 | |
---|
[4803] | 1081 | ENDDO |
---|
| 1082 | |
---|
| 1083 | |
---|
[5413] | 1084 | ENDDO ! loop on k from top to bottom |
---|
[4059] | 1085 | |
---|
[3999] | 1086 | |
---|
| 1087 | ! Rain or snow at the surface (depending on the first layer temperature) |
---|
| 1088 | DO i = 1, klon |
---|
| 1089 | snow(i) = zifl(i) |
---|
| 1090 | rain(i) = zrfl(i) |
---|
[4392] | 1091 | ! c_iso final output |
---|
[3999] | 1092 | ENDDO |
---|
| 1093 | |
---|
| 1094 | IF (ncoreczq>0) THEN |
---|
| 1095 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
---|
| 1096 | ENDIF |
---|
| 1097 | |
---|
[4654] | 1098 | |
---|
| 1099 | RETURN |
---|
| 1100 | |
---|
[4380] | 1101 | END SUBROUTINE lscp |
---|
[3999] | 1102 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1103 | |
---|
[4664] | 1104 | END MODULE lmdz_lscp |
---|