[4664] | 1 | MODULE lmdz_lscp |
---|
[3999] | 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4380] | 8 | SUBROUTINE lscp(klon,klev,dtime,missing_val, & |
---|
[5396] | 9 | paprs, pplay, omega, temp, qt, ql_seri, qi_seri, & |
---|
| 10 | ptconv, ratqs, sigma_qtherm, & |
---|
[5204] | 11 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & |
---|
[5007] | 12 | pfraclr, pfracld, & |
---|
| 13 | cldfraliq, sigma2_icefracturb,mean_icefracturb, & |
---|
[4530] | 14 | radocond, radicefrac, rain, snow, & |
---|
[3999] | 15 | frac_impa, frac_nucl, beta, & |
---|
[5007] | 16 | prfl, psfl, rhcl, qta, fraca, & |
---|
| 17 | tv, pspsk, tla, thl, iflag_cld_th, & |
---|
[5204] | 18 | iflag_ice_thermo, distcltop, temp_cltop, & |
---|
| 19 | tke, tke_dissip, & |
---|
| 20 | cell_area, & |
---|
| 21 | cf_seri, rvc_seri, u_seri, v_seri, & |
---|
| 22 | qsub, qissr, qcld, subfra, issrfra, gamma_cond, & |
---|
[5396] | 23 | dcf_sub, dcf_con, dcf_mix, & |
---|
[5204] | 24 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & |
---|
| 25 | dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & |
---|
| 26 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, dcf_avi,& |
---|
| 27 | dqi_avi, dqvc_avi, flight_dist, flight_h2o, & |
---|
[4803] | 28 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv, & |
---|
[4830] | 29 | qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & |
---|
| 30 | dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim,& |
---|
[4819] | 31 | dqsmelt, dqsfreez) |
---|
[3999] | 32 | |
---|
| 33 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 34 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
---|
| 35 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
---|
| 36 | !-------------------------------------------------------------------------------- |
---|
| 37 | ! Date: 01/2021 |
---|
| 38 | !-------------------------------------------------------------------------------- |
---|
| 39 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
---|
[4226] | 40 | ! |
---|
[3999] | 41 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
---|
[4072] | 42 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
---|
[3999] | 43 | ! and 'ilp' (il pleut, L. Li) |
---|
| 44 | ! |
---|
[4380] | 45 | ! Compared to the original fisrtilp code, lscp |
---|
[3999] | 46 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
---|
| 47 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
---|
| 48 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
---|
| 49 | ! -> option "oldbug" by JYG has been removed |
---|
| 50 | ! -> iflag_t_glace >0 always |
---|
| 51 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
---|
| 52 | ! -> rectangular distribution from L. Li no longer available |
---|
| 53 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
---|
| 54 | !-------------------------------------------------------------------------------- |
---|
| 55 | ! References: |
---|
| 56 | ! |
---|
[4412] | 57 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
---|
[3999] | 58 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
---|
| 59 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
---|
[4412] | 60 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
---|
[3999] | 61 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
---|
[4412] | 62 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
---|
[3999] | 63 | ! ------------------------------------------------------------------------------- |
---|
| 64 | ! Code structure: |
---|
| 65 | ! |
---|
[4226] | 66 | ! P0> Thermalization of the precipitation coming from the overlying layer |
---|
[3999] | 67 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
---|
| 68 | ! P2> Cloud formation (at the k level) |
---|
[4412] | 69 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
---|
[3999] | 70 | ! values of T and Q |
---|
| 71 | ! P2.A.2> Coupling between condensed water and temperature |
---|
| 72 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
---|
[4412] | 73 | ! P2.B> Release of Latent heat after cloud formation |
---|
[3999] | 74 | ! P3> Autoconversion to precipitation (k-level) |
---|
| 75 | ! P4> Wet scavenging |
---|
| 76 | !------------------------------------------------------------------------------ |
---|
| 77 | ! Some preliminary comments (JBM) : |
---|
| 78 | ! |
---|
| 79 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
---|
| 80 | ! water used in the physics and the dynamics |
---|
| 81 | ! |
---|
[4412] | 82 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
---|
[3999] | 83 | ! by the radiation scheme) is calculated as an average of the water that remains |
---|
| 84 | ! in the cloud during the precipitation and not the water remaining at the end |
---|
| 85 | ! of the time step. The latter is used in the rest of the physics and advected |
---|
| 86 | ! by the dynamics. |
---|
| 87 | ! |
---|
| 88 | ! In summary: |
---|
| 89 | ! |
---|
| 90 | ! Radiation: |
---|
| 91 | ! xflwc(newmicro)+xfiwc(newmicro) = |
---|
[4412] | 92 | ! radocond=lwcon(nc)+iwcon(nc) |
---|
[3999] | 93 | ! |
---|
| 94 | ! Notetheless, be aware of: |
---|
| 95 | ! |
---|
[4412] | 96 | ! radocond .NE. ocond(nc) |
---|
[3999] | 97 | ! i.e.: |
---|
| 98 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
---|
[4412] | 99 | ! but oliq+(ocond-oliq) .EQ. ocond |
---|
[3999] | 100 | ! (which is not trivial) |
---|
| 101 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4226] | 102 | ! |
---|
[4654] | 103 | |
---|
| 104 | ! USE de modules contenant des fonctions. |
---|
[4651] | 105 | USE lmdz_cloudth, ONLY : cloudth, cloudth_v3, cloudth_v6, cloudth_mpc |
---|
[5007] | 106 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, calc_gammasat |
---|
| 107 | USE lmdz_lscp_tools, ONLY : icefrac_lscp, icefrac_lscp_turb |
---|
[4664] | 108 | USE lmdz_lscp_tools, ONLY : fallice_velocity, distance_to_cloud_top |
---|
[5241] | 109 | USE lmdz_lscp_condensation, ONLY : condensation_lognormal, condensation_ice_supersat |
---|
[4879] | 110 | USE lmdz_lscp_poprecip, ONLY : poprecip_precld, poprecip_postcld |
---|
[3999] | 111 | |
---|
[4664] | 112 | ! Use du module lmdz_lscp_ini contenant les constantes |
---|
[5204] | 113 | USE lmdz_lscp_ini, ONLY : prt_level, lunout, eps |
---|
[4664] | 114 | USE lmdz_lscp_ini, ONLY : seuil_neb, niter_lscp, iflag_evap_prec, t_coup, DDT0, ztfondue, rain_int_min |
---|
[4910] | 115 | USE lmdz_lscp_ini, ONLY : ok_radocond_snow, a_tr_sca, cld_expo_con, cld_expo_lsc |
---|
[4664] | 116 | USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_rain_incloud_vol, iflag_t_glace, t_glace_min |
---|
[4830] | 117 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub,cld_tau_lsc, cld_tau_con, cld_lc_lsc, cld_lc_con |
---|
[4664] | 118 | USE lmdz_lscp_ini, ONLY : iflag_bergeron, iflag_fisrtilp_qsat, iflag_vice, cice_velo, dice_velo |
---|
[4910] | 119 | USE lmdz_lscp_ini, ONLY : iflag_autoconversion, ffallv_con, ffallv_lsc, min_frac_th_cld |
---|
[4664] | 120 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
[4915] | 121 | USE lmdz_lscp_ini, ONLY : ok_poprecip |
---|
[5211] | 122 | USE lmdz_lscp_ini, ONLY : ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac |
---|
[5204] | 123 | |
---|
[3999] | 124 | IMPLICIT NONE |
---|
| 125 | |
---|
| 126 | !=============================================================================== |
---|
[4380] | 127 | ! VARIABLES DECLARATION |
---|
[3999] | 128 | !=============================================================================== |
---|
| 129 | |
---|
| 130 | ! INPUT VARIABLES: |
---|
| 131 | !----------------- |
---|
| 132 | |
---|
[4380] | 133 | INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels |
---|
[3999] | 134 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
[4380] | 135 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
[4059] | 136 | |
---|
[3999] | 137 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
---|
| 138 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
---|
[4654] | 139 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature (K) |
---|
[5383] | 140 | REAL, DIMENSION(klon,klev), INTENT(IN) :: omega ! vertical velocity [Pa/s] |
---|
[4686] | 141 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
---|
[5396] | 142 | REAL, DIMENSION(klon,klev), INTENT(IN) :: ql_seri ! liquid specific content [kg/kg] |
---|
| 143 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qi_seri ! ice specific content [kg/kg] |
---|
[3999] | 144 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
---|
| 145 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
---|
[4226] | 146 | ! CR: if iflag_ice_thermo=2, only convection is active |
---|
[3999] | 147 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
---|
| 148 | |
---|
| 149 | !Inputs associated with thermal plumes |
---|
[4226] | 150 | |
---|
[5007] | 151 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tv ! virtual potential temperature [K] |
---|
| 152 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] |
---|
| 153 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
---|
| 154 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) |
---|
| 155 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tla ! liquid temperature within thermals [K] |
---|
[5204] | 156 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke !--turbulent kinetic energy [m2/s2] |
---|
| 157 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip !--TKE dissipation [m2/s3] |
---|
[3999] | 158 | |
---|
| 159 | ! INPUT/OUTPUT variables |
---|
| 160 | !------------------------ |
---|
[4562] | 161 | |
---|
[5208] | 162 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] |
---|
| 163 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: ratqs,sigma_qtherm ! function of pressure that sets the large-scale |
---|
[4059] | 164 | |
---|
[5208] | 165 | |
---|
[5204] | 166 | ! INPUT/OUTPUT condensation and ice supersaturation |
---|
| 167 | !-------------------------------------------------- |
---|
| 168 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cf_seri ! cloud fraction [-] |
---|
| 169 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: rvc_seri ! cloudy water vapor to total water vapor ratio [-] |
---|
| 170 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_seri ! eastward wind [m/s] |
---|
| 171 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_seri ! northward wind [m/s] |
---|
| 172 | REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] |
---|
[4380] | 173 | |
---|
[5204] | 174 | ! INPUT/OUTPUT aviation |
---|
| 175 | !-------------------------------------------------- |
---|
| 176 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_dist ! Aviation distance flown within the mesh [m/s/mesh] |
---|
| 177 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_h2o ! Aviation H2O emitted within the mesh [kg H2O/s/mesh] |
---|
[3999] | 178 | |
---|
| 179 | ! OUTPUT variables |
---|
| 180 | !----------------- |
---|
| 181 | |
---|
[5204] | 182 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
---|
| 183 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
---|
| 184 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
---|
| 185 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
---|
| 186 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
---|
| 187 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
---|
| 188 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
---|
| 189 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
---|
[5007] | 190 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud [-] |
---|
| 191 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
| 192 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
[5204] | 193 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
---|
| 194 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
---|
| 195 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
---|
| 196 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
---|
| 197 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
---|
| 198 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
---|
| 199 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
---|
| 200 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
---|
| 201 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
---|
| 202 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
---|
[4686] | 203 | |
---|
[5007] | 204 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
---|
[3999] | 205 | |
---|
[5007] | 206 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
---|
| 207 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
---|
[3999] | 208 | |
---|
[5204] | 209 | ! for condensation and ice supersaturation |
---|
[3999] | 210 | |
---|
[5204] | 211 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] |
---|
| 212 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] |
---|
| 213 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] |
---|
| 214 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] |
---|
| 215 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] |
---|
| 216 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] |
---|
| 217 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] |
---|
| 218 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] |
---|
| 219 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] |
---|
| 220 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
| 221 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] |
---|
| 222 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] |
---|
| 223 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
| 224 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
| 225 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
| 226 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
| 227 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
| 228 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] |
---|
| 229 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] |
---|
| 230 | |
---|
| 231 | ! for contrails and aviation |
---|
| 232 | |
---|
| 233 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcontr !--threshold temperature for contrail formation [K] |
---|
| 234 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr !--threshold humidity for contrail formation [kg/kg] |
---|
| 235 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr2 !--// (2nd expression more consistent with LMDZ expression of q) |
---|
| 236 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrN !--fraction of grid favourable to non-persistent contrails |
---|
| 237 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrP !--fraction of grid favourable to persistent contrails |
---|
| 238 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_avi !--cloud fraction tendency because of aviation [s-1] |
---|
| 239 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_avi !--specific ice content tendency because of aviation [kg/kg/s] |
---|
| 240 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_avi !--specific cloud water vapor tendency because of aviation [kg/kg/s] |
---|
| 241 | |
---|
| 242 | |
---|
[4803] | 243 | ! for POPRECIP |
---|
[4686] | 244 | |
---|
[4830] | 245 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
| 246 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
[4819] | 247 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] |
---|
| 248 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
| 249 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
| 250 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
| 251 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
| 252 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
| 253 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
| 254 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
| 255 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
| 256 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
| 257 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
[4686] | 258 | |
---|
[5204] | 259 | ! for thermals |
---|
[4803] | 260 | |
---|
[5204] | 261 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals |
---|
| 262 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment |
---|
| 263 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals |
---|
| 264 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment |
---|
| 265 | |
---|
| 266 | |
---|
[3999] | 267 | ! LOCAL VARIABLES: |
---|
| 268 | !---------------- |
---|
[5007] | 269 | REAL,DIMENSION(klon) :: qsl, qsi ! saturation threshold at current vertical level |
---|
[5383] | 270 | REAL,DIMENSION(klon) :: qice_ini |
---|
[4654] | 271 | REAL :: zct, zcl,zexpo |
---|
| 272 | REAL, DIMENSION(klon,klev) :: ctot |
---|
| 273 | REAL, DIMENSION(klon,klev) :: ctot_vol |
---|
| 274 | REAL, DIMENSION(klon) :: zqs, zdqs |
---|
| 275 | REAL :: zdelta, zcor, zcvm5 |
---|
| 276 | REAL, DIMENSION(klon) :: zdqsdT_raw |
---|
[5007] | 277 | REAL, DIMENSION(klon) :: gammasat,dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
---|
| 278 | REAL, DIMENSION(klon) :: Tbef,qlbef,DT ! temperature, humidity and temp. variation during lognormal iteration |
---|
[4654] | 279 | REAL :: num,denom |
---|
| 280 | REAL :: cste |
---|
[5007] | 281 | REAL, DIMENSION(klon) :: zpdf_sig,zpdf_k,zpdf_delta ! lognormal parameters |
---|
| 282 | REAL, DIMENSION(klon) :: Zpdf_a,zpdf_b,zpdf_e1,zpdf_e2 ! lognormal intermediate variables |
---|
[4654] | 283 | REAL :: erf |
---|
[4910] | 284 | REAL, DIMENSION(klon) :: zfice_th |
---|
[4654] | 285 | REAL, DIMENSION(klon) :: qcloud, qincloud_mpc |
---|
| 286 | REAL, DIMENSION(klon) :: zrfl, zrfln |
---|
| 287 | REAL :: zqev, zqevt |
---|
| 288 | REAL, DIMENSION(klon) :: zifl, zifln, ziflprev |
---|
| 289 | REAL :: zqev0,zqevi, zqevti |
---|
| 290 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn |
---|
| 291 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
---|
| 292 | REAL, DIMENSION(klon) :: zt |
---|
| 293 | REAL, DIMENSION(klon,klev) :: zrho |
---|
| 294 | REAL, DIMENSION(klon) :: zdz,iwc |
---|
| 295 | REAL :: zchau,zfroi |
---|
| 296 | REAL, DIMENSION(klon) :: zfice,zneb,znebprecip |
---|
| 297 | REAL :: zmelt,zrain,zsnow,zprecip |
---|
| 298 | REAL, DIMENSION(klon) :: dzfice |
---|
[5007] | 299 | REAL, DIMENSION(klon) :: zfice_turb, dzfice_turb |
---|
[4654] | 300 | REAL :: zsolid |
---|
| 301 | REAL, DIMENSION(klon) :: qtot, qzero |
---|
| 302 | REAL, DIMENSION(klon) :: dqsl,dqsi |
---|
| 303 | REAL :: smallestreal |
---|
[3999] | 304 | ! Variables for Bergeron process |
---|
[4654] | 305 | REAL :: zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
---|
| 306 | REAL, DIMENSION(klon) :: zqpreci, zqprecl |
---|
[3999] | 307 | ! Variables precipitation energy conservation |
---|
[4654] | 308 | REAL, DIMENSION(klon) :: zmqc |
---|
| 309 | REAL :: zalpha_tr |
---|
| 310 | REAL :: zfrac_lessi |
---|
| 311 | REAL, DIMENSION(klon) :: zprec_cond |
---|
[4803] | 312 | REAL :: zmair |
---|
[4654] | 313 | REAL :: zcpair, zcpeau |
---|
| 314 | REAL, DIMENSION(klon) :: zlh_solid |
---|
[4803] | 315 | REAL, DIMENSION(klon) :: ztupnew |
---|
[4913] | 316 | REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl |
---|
[4654] | 317 | REAL :: zm_solid ! for liquid -> solid conversion |
---|
| 318 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
---|
| 319 | REAL, DIMENSION(klon) :: d_zrfl_clr_cld, d_zifl_clr_cld |
---|
| 320 | REAL, DIMENSION(klon) :: d_zrfl_cld_clr, d_zifl_cld_clr |
---|
| 321 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
---|
| 322 | REAL, DIMENSION(klon) :: znebprecipclr, znebprecipcld |
---|
| 323 | REAL, DIMENSION(klon) :: tot_zneb, tot_znebn, d_tot_zneb |
---|
| 324 | REAL, DIMENSION(klon) :: d_znebprecip_clr_cld, d_znebprecip_cld_clr |
---|
| 325 | REAL, DIMENSION(klon,klev) :: velo |
---|
| 326 | REAL :: vr, ffallv |
---|
| 327 | REAL :: qlmpc, qimpc, rnebmpc |
---|
| 328 | REAL, DIMENSION(klon,klev) :: radocondi, radocondl |
---|
| 329 | REAL :: effective_zneb |
---|
[5007] | 330 | REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop |
---|
| 331 | REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl ! for icefrac_lscp_turb |
---|
[5204] | 332 | |
---|
| 333 | ! for condensation and ice supersaturation |
---|
| 334 | REAL, DIMENSION(klon) :: qvc, shear |
---|
| 335 | REAL :: delta_z |
---|
| 336 | !--Added for ice supersaturation (ok_ice_supersat) and contrails (ok_plane_contrails) |
---|
| 337 | ! Constants used for calculating ratios that are advected (using a parent-child |
---|
| 338 | ! formalism). This is not done in the dynamical core because at this moment, |
---|
| 339 | ! only isotopes can use this parent-child formalism. Note that the two constants |
---|
| 340 | ! are the same as the one use in the dynamical core, being also defined in |
---|
| 341 | ! dyn3d_common/infotrac.F90 |
---|
| 342 | REAL :: min_qParent, min_ratio |
---|
[3999] | 343 | |
---|
[4654] | 344 | INTEGER i, k, n, kk, iter |
---|
| 345 | INTEGER, DIMENSION(klon) :: n_i |
---|
[4226] | 346 | INTEGER ncoreczq |
---|
[4654] | 347 | INTEGER, DIMENSION(klon,klev) :: mpc_bl_points |
---|
[4803] | 348 | LOGICAL iftop |
---|
[3999] | 349 | |
---|
[4654] | 350 | LOGICAL, DIMENSION(klon) :: lognormale |
---|
| 351 | LOGICAL, DIMENSION(klon) :: keepgoing |
---|
[3999] | 352 | |
---|
| 353 | CHARACTER (len = 20) :: modname = 'lscp' |
---|
| 354 | CHARACTER (len = 80) :: abort_message |
---|
| 355 | |
---|
| 356 | |
---|
| 357 | !=============================================================================== |
---|
| 358 | ! INITIALISATION |
---|
| 359 | !=============================================================================== |
---|
| 360 | |
---|
[4226] | 361 | ! Few initial checks |
---|
[3999] | 362 | |
---|
[4654] | 363 | |
---|
[3999] | 364 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
---|
[4226] | 365 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
---|
| 366 | CALL abort_physic(modname,abort_message,1) |
---|
[3999] | 367 | ENDIF |
---|
| 368 | |
---|
| 369 | ! Few initialisations |
---|
| 370 | |
---|
[4226] | 371 | znebprecip(:)=0.0 |
---|
[3999] | 372 | ctot_vol(1:klon,1:klev)=0.0 |
---|
| 373 | rneblsvol(1:klon,1:klev)=0.0 |
---|
[4226] | 374 | smallestreal=1.e-9 |
---|
| 375 | znebprecipclr(:)=0.0 |
---|
| 376 | znebprecipcld(:)=0.0 |
---|
[3999] | 377 | mpc_bl_points(:,:)=0 |
---|
| 378 | |
---|
| 379 | IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' |
---|
| 380 | |
---|
| 381 | ! AA for 'safety' reasons |
---|
| 382 | zalpha_tr = 0. |
---|
| 383 | zfrac_lessi = 0. |
---|
[4380] | 384 | beta(:,:)= 0. |
---|
[3999] | 385 | |
---|
[4380] | 386 | ! Initialisation of variables: |
---|
| 387 | |
---|
[3999] | 388 | prfl(:,:) = 0.0 |
---|
| 389 | psfl(:,:) = 0.0 |
---|
| 390 | d_t(:,:) = 0.0 |
---|
| 391 | d_q(:,:) = 0.0 |
---|
| 392 | d_ql(:,:) = 0.0 |
---|
| 393 | d_qi(:,:) = 0.0 |
---|
| 394 | rneb(:,:) = 0.0 |
---|
[4530] | 395 | pfraclr(:,:)=0.0 |
---|
| 396 | pfracld(:,:)=0.0 |
---|
[5007] | 397 | cldfraliq(:,:)=0. |
---|
| 398 | sigma2_icefracturb(:,:)=0. |
---|
| 399 | mean_icefracturb(:,:)=0. |
---|
[4412] | 400 | radocond(:,:) = 0.0 |
---|
[3999] | 401 | radicefrac(:,:) = 0.0 |
---|
[4226] | 402 | frac_nucl(:,:) = 1.0 |
---|
| 403 | frac_impa(:,:) = 1.0 |
---|
[3999] | 404 | rain(:) = 0.0 |
---|
| 405 | snow(:) = 0.0 |
---|
[4114] | 406 | zoliq(:)=0.0 |
---|
| 407 | zfice(:)=0.0 |
---|
| 408 | dzfice(:)=0.0 |
---|
[5007] | 409 | zfice_turb(:)=0.0 |
---|
| 410 | dzfice_turb(:)=0.0 |
---|
[4114] | 411 | zqprecl(:)=0.0 |
---|
| 412 | zqpreci(:)=0.0 |
---|
[3999] | 413 | zrfl(:) = 0.0 |
---|
| 414 | zifl(:) = 0.0 |
---|
[4114] | 415 | ziflprev(:)=0.0 |
---|
[3999] | 416 | zneb(:) = seuil_neb |
---|
[4226] | 417 | zrflclr(:) = 0.0 |
---|
| 418 | ziflclr(:) = 0.0 |
---|
| 419 | zrflcld(:) = 0.0 |
---|
| 420 | ziflcld(:) = 0.0 |
---|
| 421 | tot_zneb(:) = 0.0 |
---|
| 422 | tot_znebn(:) = 0.0 |
---|
| 423 | d_tot_zneb(:) = 0.0 |
---|
| 424 | qzero(:) = 0.0 |
---|
[5007] | 425 | zdistcltop(:)=0.0 |
---|
| 426 | ztemp_cltop(:) = 0.0 |
---|
[4803] | 427 | ztupnew(:)=0.0 |
---|
[5204] | 428 | |
---|
[4654] | 429 | distcltop(:,:)=0. |
---|
| 430 | temp_cltop(:,:)=0. |
---|
[5007] | 431 | |
---|
[5204] | 432 | !--Ice supersaturation |
---|
| 433 | gamma_cond(:,:) = 1. |
---|
| 434 | qissr(:,:) = 0. |
---|
| 435 | issrfra(:,:) = 0. |
---|
| 436 | dcf_sub(:,:) = 0. |
---|
| 437 | dcf_con(:,:) = 0. |
---|
| 438 | dcf_mix(:,:) = 0. |
---|
| 439 | dqi_adj(:,:) = 0. |
---|
| 440 | dqi_sub(:,:) = 0. |
---|
| 441 | dqi_con(:,:) = 0. |
---|
| 442 | dqi_mix(:,:) = 0. |
---|
| 443 | dqvc_adj(:,:) = 0. |
---|
| 444 | dqvc_sub(:,:) = 0. |
---|
| 445 | dqvc_con(:,:) = 0. |
---|
| 446 | dqvc_mix(:,:) = 0. |
---|
| 447 | fcontrN(:,:) = 0. |
---|
| 448 | fcontrP(:,:) = 0. |
---|
| 449 | Tcontr(:,:) = missing_val |
---|
| 450 | qcontr(:,:) = missing_val |
---|
| 451 | qcontr2(:,:) = missing_val |
---|
| 452 | dcf_avi(:,:) = 0. |
---|
| 453 | dqi_avi(:,:) = 0. |
---|
| 454 | dqvc_avi(:,:) = 0. |
---|
| 455 | qvc(:) = 0. |
---|
| 456 | shear(:) = 0. |
---|
| 457 | min_qParent = 1.e-30 |
---|
| 458 | min_ratio = 1.e-16 |
---|
| 459 | |
---|
[4803] | 460 | !-- poprecip |
---|
[4830] | 461 | qraindiag(:,:)= 0. |
---|
| 462 | qsnowdiag(:,:)= 0. |
---|
[4819] | 463 | dqreva(:,:) = 0. |
---|
| 464 | dqrauto(:,:) = 0. |
---|
| 465 | dqrmelt(:,:) = 0. |
---|
| 466 | dqrfreez(:,:) = 0. |
---|
| 467 | dqrcol(:,:) = 0. |
---|
| 468 | dqssub(:,:) = 0. |
---|
| 469 | dqsauto(:,:) = 0. |
---|
| 470 | dqsrim(:,:) = 0. |
---|
| 471 | dqsagg(:,:) = 0. |
---|
| 472 | dqsfreez(:,:) = 0. |
---|
| 473 | dqsmelt(:,:) = 0. |
---|
[4913] | 474 | zqupnew(:) = 0. |
---|
| 475 | zqvapclr(:) = 0. |
---|
[3999] | 476 | |
---|
[4803] | 477 | |
---|
| 478 | |
---|
[4392] | 479 | !c_iso: variable initialisation for iso |
---|
| 480 | |
---|
| 481 | |
---|
[3999] | 482 | !=============================================================================== |
---|
| 483 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
---|
| 484 | !=============================================================================== |
---|
| 485 | |
---|
| 486 | ncoreczq=0 |
---|
| 487 | |
---|
| 488 | DO k = klev, 1, -1 |
---|
| 489 | |
---|
[4803] | 490 | IF (k.LE.klev-1) THEN |
---|
| 491 | iftop=.false. |
---|
| 492 | ELSE |
---|
| 493 | iftop=.true. |
---|
| 494 | ENDIF |
---|
| 495 | |
---|
[3999] | 496 | ! Initialisation temperature and specific humidity |
---|
[5007] | 497 | ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt |
---|
| 498 | ! at the end of the klon loop, a temperature incremtent d_t due to all processes |
---|
| 499 | ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated |
---|
| 500 | ! d_t = temperature tendency due to lscp |
---|
| 501 | ! The temperature of the overlying layer is updated here because needed for thermalization |
---|
[3999] | 502 | DO i = 1, klon |
---|
[4654] | 503 | zt(i)=temp(i,k) |
---|
[4686] | 504 | zq(i)=qt(i,k) |
---|
[4803] | 505 | IF (.not. iftop) THEN |
---|
[4913] | 506 | ztupnew(i) = temp(i,k+1) + d_t(i,k+1) |
---|
| 507 | zqupnew(i) = qt(i,k+1) + d_q(i,k+1) + d_ql(i,k+1) + d_qi(i,k+1) |
---|
| 508 | !--zqs(i) is the saturation specific humidity in the layer above |
---|
| 509 | zqvapclr(i) = MAX(0., qt(i,k+1) + d_q(i,k+1) - rneb(i,k+1) * zqs(i)) |
---|
[4803] | 510 | ENDIF |
---|
[4392] | 511 | !c_iso init of iso |
---|
[3999] | 512 | ENDDO |
---|
[4803] | 513 | |
---|
| 514 | !================================================================ |
---|
| 515 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
---|
| 516 | IF (ok_poprecip) THEN |
---|
| 517 | |
---|
[4879] | 518 | CALL poprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
---|
[4803] | 519 | zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & |
---|
[4913] | 520 | zqvapclr, zqupnew, & |
---|
[4803] | 521 | zrfl, zrflclr, zrflcld, & |
---|
| 522 | zifl, ziflclr, ziflcld, & |
---|
| 523 | dqreva(:,k),dqssub(:,k) & |
---|
| 524 | ) |
---|
| 525 | |
---|
| 526 | !================================================================ |
---|
| 527 | ELSE |
---|
| 528 | |
---|
[3999] | 529 | ! -------------------------------------------------------------------- |
---|
[4803] | 530 | ! P1> Thermalization of precipitation falling from the overlying layer |
---|
[3999] | 531 | ! -------------------------------------------------------------------- |
---|
[4412] | 532 | ! Computes air temperature variation due to enthalpy transported by |
---|
[3999] | 533 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
| 534 | ! layer. |
---|
| 535 | ! The precipitation should remain thermalized throughout the different |
---|
[4412] | 536 | ! thermodynamical transformations. |
---|
| 537 | ! The corresponding water mass should |
---|
[3999] | 538 | ! be added when calculating the layer's enthalpy change with |
---|
| 539 | ! temperature |
---|
[4412] | 540 | ! See lmdzpedia page todoan |
---|
| 541 | ! todoan: check consistency with ice phase |
---|
| 542 | ! todoan: understand why several steps |
---|
[3999] | 543 | ! --------------------------------------------------------------------- |
---|
| 544 | |
---|
[4803] | 545 | IF (iftop) THEN |
---|
[3999] | 546 | |
---|
| 547 | DO i = 1, klon |
---|
[4803] | 548 | zmqc(i) = 0. |
---|
| 549 | ENDDO |
---|
| 550 | |
---|
| 551 | ELSE |
---|
| 552 | |
---|
| 553 | DO i = 1, klon |
---|
[3999] | 554 | |
---|
[4803] | 555 | zmair=(paprs(i,k)-paprs(i,k+1))/RG |
---|
[3999] | 556 | ! no condensed water so cp=cp(vapor+dry air) |
---|
| 557 | ! RVTMP2=rcpv/rcpd-1 |
---|
| 558 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
---|
[4226] | 559 | zcpeau=RCPD*RVTMP2 |
---|
| 560 | |
---|
[3999] | 561 | ! zmqc: precipitation mass that has to be thermalized with |
---|
| 562 | ! layer's air so that precipitation at the ground has the |
---|
| 563 | ! same temperature as the lowermost layer |
---|
[4803] | 564 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair |
---|
[3999] | 565 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
[4803] | 566 | zt(i) = ( ztupnew(i)*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
---|
[3999] | 567 | / (zcpair + zmqc(i)*zcpeau) |
---|
[4226] | 568 | |
---|
[3999] | 569 | ENDDO |
---|
| 570 | |
---|
| 571 | ENDIF |
---|
| 572 | |
---|
[5396] | 573 | qice_ini = qi_seri(:,k) |
---|
[3999] | 574 | ! -------------------------------------------------------------------- |
---|
[4803] | 575 | ! P2> Precipitation evaporation/sublimation/melting |
---|
[3999] | 576 | ! -------------------------------------------------------------------- |
---|
[4803] | 577 | ! A part of the precipitation coming from above is evaporated/sublimated/melted. |
---|
[3999] | 578 | ! -------------------------------------------------------------------- |
---|
[4803] | 579 | |
---|
[4397] | 580 | IF (iflag_evap_prec.GE.1) THEN |
---|
[3999] | 581 | |
---|
[4072] | 582 | ! Calculation of saturation specific humidity |
---|
| 583 | ! depending on temperature: |
---|
[5383] | 584 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,0,.false.,zqs,zdqs) |
---|
[4072] | 585 | ! wrt liquid water |
---|
[5383] | 586 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,1,.false.,qsl,dqsl) |
---|
[4072] | 587 | ! wrt ice |
---|
[5383] | 588 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,2,.false.,qsi,dqsi) |
---|
[3999] | 589 | |
---|
| 590 | DO i = 1, klon |
---|
[4226] | 591 | |
---|
[3999] | 592 | ! if precipitation |
---|
| 593 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
[4226] | 594 | |
---|
[4563] | 595 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec>=4). |
---|
[4392] | 596 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
---|
| 597 | |
---|
[4563] | 598 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4226] | 599 | zrfl(i) = zrflclr(i) |
---|
| 600 | zifl(i) = ziflclr(i) |
---|
| 601 | ENDIF |
---|
[3999] | 602 | |
---|
| 603 | IF (iflag_evap_prec.EQ.1) THEN |
---|
| 604 | znebprecip(i)=zneb(i) |
---|
| 605 | ELSE |
---|
| 606 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
---|
| 607 | ENDIF |
---|
| 608 | |
---|
[4563] | 609 | IF (iflag_evap_prec.GT.4) THEN |
---|
| 610 | ! Max evaporation not to saturate the clear sky precip fraction |
---|
| 611 | ! i.e. the fraction where evaporation occurs |
---|
| 612 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecipclr(i)) |
---|
| 613 | ELSEIF (iflag_evap_prec .EQ. 4) THEN |
---|
[4226] | 614 | ! Max evaporation not to saturate the whole mesh |
---|
[4563] | 615 | ! Pay attention -> lead to unrealistic and excessive evaporation |
---|
[4226] | 616 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
---|
| 617 | ELSE |
---|
| 618 | ! Max evap not to saturate the fraction below the cloud |
---|
| 619 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
---|
| 620 | ENDIF |
---|
[3999] | 621 | |
---|
| 622 | ! Evaporation of liquid precipitation coming from above |
---|
| 623 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
| 624 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
[4563] | 625 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec>=4) |
---|
[3999] | 626 | |
---|
| 627 | IF (iflag_evap_prec.EQ.3) THEN |
---|
[4072] | 628 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
[3999] | 629 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
---|
| 630 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
[4563] | 631 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
[4072] | 632 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
[3999] | 633 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
| 634 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 635 | ELSE |
---|
[4072] | 636 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl(i))*SQRT(zrfl(i)) & |
---|
[3999] | 637 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 638 | ENDIF |
---|
| 639 | |
---|
[4226] | 640 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) & |
---|
| 641 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
[3999] | 642 | |
---|
| 643 | ! sublimation of the solid precipitation coming from above |
---|
| 644 | IF (iflag_evap_prec.EQ.3) THEN |
---|
[4830] | 645 | zqevti = znebprecip(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
[3999] | 646 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
---|
| 647 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
[4563] | 648 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
[4830] | 649 | zqevti = znebprecipclr(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
[3999] | 650 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
| 651 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 652 | ELSE |
---|
[4830] | 653 | zqevti = 1.*coef_sub*(1.0-zq(i)/qsi(i))*SQRT(zifl(i)) & |
---|
[3999] | 654 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 655 | ENDIF |
---|
[4226] | 656 | |
---|
[3999] | 657 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) & |
---|
[4226] | 658 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
[3999] | 659 | |
---|
| 660 | ! A. JAM |
---|
| 661 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
| 662 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
| 663 | ! does not reach saturation. In this case, we |
---|
| 664 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
[4226] | 665 | |
---|
[3999] | 666 | IF (zqevt+zqevti.GT.zqev0) THEN |
---|
| 667 | zqev=zqev0*zqevt/(zqevt+zqevti) |
---|
| 668 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
---|
| 669 | ELSE |
---|
| 670 | zqev=zqevt |
---|
| 671 | zqevi=zqevti |
---|
| 672 | ENDIF |
---|
| 673 | |
---|
[5384] | 674 | !--Diagnostics |
---|
| 675 | dqreva(i,k) = - zqev / dtime |
---|
| 676 | dqssub(i,k) = - zqevti / dtime |
---|
[3999] | 677 | |
---|
[4392] | 678 | ! New solid and liquid precipitation fluxes after evap and sublimation |
---|
[3999] | 679 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 680 | /RG/dtime) |
---|
| 681 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 682 | /RG/dtime) |
---|
[5384] | 683 | |
---|
[3999] | 684 | |
---|
| 685 | ! vapor, temperature, precip fluxes update |
---|
[4803] | 686 | ! vapor is updated after evaporation/sublimation (it is increased) |
---|
[3999] | 687 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
| 688 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
[4803] | 689 | ! zmqc is the total condensed water in the precip flux (it is decreased) |
---|
[3999] | 690 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
| 691 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
[4803] | 692 | ! air and precip temperature (i.e., gridbox temperature) |
---|
| 693 | ! is updated due to latent heat cooling |
---|
[3999] | 694 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
| 695 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
| 696 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
---|
| 697 | + (zifln(i)-zifl(i)) & |
---|
| 698 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
| 699 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
| 700 | |
---|
| 701 | ! New values of liquid and solid precipitation |
---|
| 702 | zrfl(i) = zrfln(i) |
---|
| 703 | zifl(i) = zifln(i) |
---|
| 704 | |
---|
[4392] | 705 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
---|
| 706 | ! due to evap + sublim |
---|
| 707 | |
---|
| 708 | |
---|
[4563] | 709 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4226] | 710 | zrflclr(i) = zrfl(i) |
---|
| 711 | ziflclr(i) = zifl(i) |
---|
| 712 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
---|
| 713 | znebprecipclr(i) = 0.0 |
---|
| 714 | ENDIF |
---|
| 715 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
| 716 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
| 717 | ENDIF |
---|
[3999] | 718 | |
---|
[4392] | 719 | ! c_iso duplicate for isotopes or loop on isotopes |
---|
[3999] | 720 | |
---|
[4392] | 721 | ! Melting: |
---|
[4412] | 722 | zmelt = ((zt(i)-RTT)/(ztfondue-RTT)) ! JYG |
---|
[3999] | 723 | ! precip fraction that is melted |
---|
| 724 | zmelt = MIN(MAX(zmelt,0.),1.) |
---|
[4392] | 725 | |
---|
[4412] | 726 | ! update of rainfall and snowfall due to melting |
---|
[4563] | 727 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4226] | 728 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
---|
| 729 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
---|
| 730 | zrfl(i)=zrflclr(i)+zrflcld(i) |
---|
| 731 | ELSE |
---|
| 732 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
| 733 | ENDIF |
---|
[4412] | 734 | |
---|
| 735 | |
---|
[4392] | 736 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
---|
[3999] | 737 | |
---|
[4803] | 738 | ! Latent heat of melting because of precipitation melting |
---|
| 739 | ! NB: the air + precip temperature is simultaneously updated |
---|
[3999] | 740 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
---|
| 741 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
[4869] | 742 | |
---|
| 743 | IF (iflag_evap_prec.GE.4) THEN |
---|
| 744 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
---|
| 745 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
---|
| 746 | zifl(i)=ziflclr(i)+ziflcld(i) |
---|
| 747 | ELSE |
---|
| 748 | zifl(i)=zifl(i)*(1.-zmelt) |
---|
| 749 | ENDIF |
---|
[3999] | 750 | |
---|
| 751 | ELSE |
---|
| 752 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
| 753 | znebprecip(i)=0. |
---|
| 754 | |
---|
| 755 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
| 756 | |
---|
[4803] | 757 | ENDDO ! loop on klon |
---|
[4226] | 758 | |
---|
[3999] | 759 | ENDIF ! (iflag_evap_prec>=1) |
---|
| 760 | |
---|
[4803] | 761 | ENDIF ! (ok_poprecip) |
---|
| 762 | |
---|
[3999] | 763 | ! -------------------------------------------------------------------- |
---|
| 764 | ! End precip evaporation |
---|
| 765 | ! -------------------------------------------------------------------- |
---|
| 766 | |
---|
| 767 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
---|
| 768 | !------------------------------------------------------- |
---|
[4226] | 769 | |
---|
[4072] | 770 | qtot(:)=zq(:)+zmqc(:) |
---|
[5383] | 771 | CALL calc_qsat_ecmwf(klon,zt,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs) |
---|
[4072] | 772 | DO i = 1, klon |
---|
[3999] | 773 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
---|
[4059] | 774 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
---|
[3999] | 775 | IF (zq(i) .LT. 1.e-15) THEN |
---|
| 776 | ncoreczq=ncoreczq+1 |
---|
| 777 | zq(i)=1.e-15 |
---|
| 778 | ENDIF |
---|
[4392] | 779 | ! c_iso: do something similar for isotopes |
---|
[3999] | 780 | |
---|
[4072] | 781 | ENDDO |
---|
[3999] | 782 | |
---|
| 783 | ! -------------------------------------------------------------------- |
---|
| 784 | ! P2> Cloud formation |
---|
| 785 | !--------------------------------------------------------------------- |
---|
| 786 | ! |
---|
| 787 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
---|
| 788 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
---|
| 789 | ! is prescribed and depends on large scale variables and boundary layer |
---|
| 790 | ! properties) |
---|
| 791 | ! The decrease in condensed part due tu latent heating is taken into |
---|
| 792 | ! account |
---|
| 793 | ! ------------------------------------------------------------------- |
---|
| 794 | |
---|
| 795 | ! P2.1> With the PDFs (log-normal, bigaussian) |
---|
[4424] | 796 | ! cloud properties calculation with the initial values of t and q |
---|
[3999] | 797 | ! ---------------------------------------------------------------- |
---|
| 798 | |
---|
| 799 | ! initialise gammasat and qincloud_mpc |
---|
| 800 | gammasat(:)=1. |
---|
| 801 | qincloud_mpc(:)=0. |
---|
| 802 | |
---|
| 803 | IF (iflag_cld_th.GE.5) THEN |
---|
[4910] | 804 | ! Cloud cover and content in meshes affected by shallow convection, |
---|
| 805 | ! are retrieved from a bi-gaussian distribution of the saturation deficit |
---|
| 806 | ! following Jam et al. 2013 |
---|
[3999] | 807 | |
---|
[4910] | 808 | IF (iflag_cloudth_vert.LE.2) THEN |
---|
| 809 | ! Old version of Arnaud Jam |
---|
[3999] | 810 | |
---|
[4910] | 811 | CALL cloudth(klon,klev,k,tv, & |
---|
| 812 | zq,qta,fraca, & |
---|
| 813 | qcloud,ctot,pspsk,paprs,pplay,tla,thl, & |
---|
[4654] | 814 | ratqs,zqs,temp, & |
---|
[4651] | 815 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 816 | |
---|
[4651] | 817 | |
---|
[3999] | 818 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
---|
[4910] | 819 | ! Default version of Arnaud Jam |
---|
| 820 | |
---|
| 821 | CALL cloudth_v3(klon,klev,k,tv, & |
---|
| 822 | zq,qta,fraca, & |
---|
| 823 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
---|
[5208] | 824 | ratqs,sigma_qtherm,zqs,temp, & |
---|
[4651] | 825 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 826 | |
---|
| 827 | |
---|
| 828 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
---|
[4910] | 829 | ! Jean Jouhaud's version, with specific separation between surface and volume |
---|
| 830 | ! cloud fraction Decembre 2018 |
---|
[3999] | 831 | |
---|
[4910] | 832 | CALL cloudth_v6(klon,klev,k,tv, & |
---|
| 833 | zq,qta,fraca, & |
---|
| 834 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
---|
[4654] | 835 | ratqs,zqs,temp, & |
---|
[4651] | 836 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 837 | |
---|
[4910] | 838 | ELSEIF (iflag_cloudth_vert .EQ. 7) THEN |
---|
| 839 | ! Updated version of Arnaud Jam (correction by E. Vignon) + adapted treatment |
---|
[5007] | 840 | ! for boundary-layer mixed phase clouds |
---|
[4910] | 841 | CALL cloudth_mpc(klon,klev,k,mpc_bl_points,zt,zq,qta(:,k),fraca(:,k), & |
---|
| 842 | pspsk(:,k),paprs(:,k+1),paprs(:,k),pplay(:,k), tla(:,k), & |
---|
| 843 | ratqs(:,k),qcloud,qincloud_mpc,zfice_th,ctot(:,k),ctot_vol(:,k), & |
---|
| 844 | cloudth_sth(:,k),cloudth_senv(:,k),cloudth_sigmath(:,k),cloudth_sigmaenv(:,k)) |
---|
| 845 | |
---|
[3999] | 846 | ENDIF |
---|
| 847 | |
---|
| 848 | |
---|
| 849 | DO i=1,klon |
---|
| 850 | rneb(i,k)=ctot(i,k) |
---|
| 851 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
| 852 | zqn(i)=qcloud(i) |
---|
[5204] | 853 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
| 854 | qvc(i) = rneb(i,k) * zqs(i) |
---|
[3999] | 855 | ENDDO |
---|
| 856 | |
---|
| 857 | ENDIF |
---|
| 858 | |
---|
| 859 | IF (iflag_cld_th .LE. 4) THEN |
---|
| 860 | |
---|
| 861 | ! lognormal |
---|
[5007] | 862 | lognormale(:) = .TRUE. |
---|
[3999] | 863 | |
---|
| 864 | ELSEIF (iflag_cld_th .GE. 6) THEN |
---|
| 865 | |
---|
| 866 | ! lognormal distribution when no thermals |
---|
[5007] | 867 | lognormale(:) = fraca(:,k) < min_frac_th_cld |
---|
[3999] | 868 | |
---|
| 869 | ELSE |
---|
[4226] | 870 | ! When iflag_cld_th=5, we always assume |
---|
[3999] | 871 | ! bi-gaussian distribution |
---|
[5007] | 872 | lognormale(:) = .FALSE. |
---|
[3999] | 873 | |
---|
| 874 | ENDIF |
---|
| 875 | |
---|
| 876 | DT(:) = 0. |
---|
| 877 | n_i(:)=0 |
---|
| 878 | Tbef(:)=zt(:) |
---|
| 879 | qlbef(:)=0. |
---|
| 880 | |
---|
| 881 | ! Treatment of non-boundary layer clouds (lognormale) |
---|
[5383] | 882 | ! We iterate here to take into account the change in qsat(T) and ice fraction |
---|
| 883 | ! during the condensation process |
---|
| 884 | ! the increment in temperature is calculated using the first principle of |
---|
| 885 | ! thermodynamics (enthalpy conservation equation in a mesh composed of a cloud fraction |
---|
| 886 | ! and a clear sky fraction) |
---|
| 887 | ! note that we assume that the vapor in the cloud is at saturation for this calculation |
---|
[4226] | 888 | |
---|
[3999] | 889 | DO iter=1,iflag_fisrtilp_qsat+1 |
---|
[4226] | 890 | |
---|
[5204] | 891 | keepgoing(:) = .FALSE. |
---|
| 892 | |
---|
[3999] | 893 | DO i=1,klon |
---|
| 894 | |
---|
[4424] | 895 | ! keepgoing = .true. while convergence is not satisfied |
---|
[4226] | 896 | |
---|
[5204] | 897 | IF (((ABS(DT(i)).GT.DDT0) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
---|
[4226] | 898 | |
---|
[3999] | 899 | ! if not convergence: |
---|
[5204] | 900 | ! we calculate a new iteration |
---|
| 901 | keepgoing(i) = .TRUE. |
---|
[3999] | 902 | |
---|
| 903 | ! P2.2.1> cloud fraction and condensed water mass calculation |
---|
| 904 | ! Calculated variables: |
---|
| 905 | ! rneb : cloud fraction |
---|
| 906 | ! zqn : total water within the cloud |
---|
| 907 | ! zcond: mean condensed water within the mesh |
---|
| 908 | ! rhcl: clear-sky relative humidity |
---|
| 909 | !--------------------------------------------------------------- |
---|
| 910 | |
---|
[4424] | 911 | ! new temperature that only serves in the iteration process: |
---|
[3999] | 912 | Tbef(i)=Tbef(i)+DT(i) |
---|
| 913 | |
---|
| 914 | ! Rneb, qzn and zcond for lognormal PDFs |
---|
[4072] | 915 | qtot(i)=zq(i)+zmqc(i) |
---|
[4226] | 916 | |
---|
[4072] | 917 | ENDIF |
---|
[3999] | 918 | |
---|
[4072] | 919 | ENDDO |
---|
| 920 | |
---|
[4380] | 921 | ! Calculation of saturation specific humidity and ice fraction |
---|
[5383] | 922 | CALL calc_qsat_ecmwf(klon,Tbef,qtot,pplay(:,k),RTT,0,.false.,zqs,zdqs) |
---|
| 923 | CALL calc_gammasat(klon,Tbef,qtot,pplay(:,k),gammasat,dgammasatdt) |
---|
[4072] | 924 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
---|
| 925 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
---|
[4562] | 926 | ! cloud phase determination |
---|
| 927 | IF (iflag_t_glace.GE.4) THEN |
---|
| 928 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
[5007] | 929 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
---|
[4562] | 930 | ENDIF |
---|
[4072] | 931 | |
---|
[5383] | 932 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop,ztemp_cltop,zfice,dzfice) |
---|
[5007] | 933 | |
---|
[5204] | 934 | !--AB Activates a condensation scheme that allows for |
---|
| 935 | !--ice supersaturation and contrails evolution from aviation |
---|
| 936 | IF (ok_ice_supersat) THEN |
---|
| 937 | |
---|
| 938 | !--Calculate the shear value (input for condensation and ice supersat) |
---|
| 939 | DO i = 1, klon |
---|
| 940 | !--Cell thickness [m] |
---|
| 941 | delta_z = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * Tbef(i) * RD |
---|
| 942 | IF ( iftop ) THEN |
---|
| 943 | ! top |
---|
| 944 | shear(i) = SQRT( ( (u_seri(i,k) - u_seri(i,k-1)) / delta_z )**2. & |
---|
| 945 | + ( (v_seri(i,k) - v_seri(i,k-1)) / delta_z )**2. ) |
---|
| 946 | ELSEIF ( k .EQ. 1 ) THEN |
---|
| 947 | ! surface |
---|
| 948 | shear(i) = SQRT( ( (u_seri(i,k+1) - u_seri(i,k)) / delta_z )**2. & |
---|
| 949 | + ( (v_seri(i,k+1) - v_seri(i,k)) / delta_z )**2. ) |
---|
| 950 | ELSE |
---|
| 951 | ! other layers |
---|
| 952 | shear(i) = SQRT( ( ( (u_seri(i,k+1) + u_seri(i,k)) / 2. & |
---|
| 953 | - (u_seri(i,k) + u_seri(i,k-1)) / 2. ) / delta_z )**2. & |
---|
| 954 | + ( ( (v_seri(i,k+1) + v_seri(i,k)) / 2. & |
---|
| 955 | - (v_seri(i,k) + v_seri(i,k-1)) / 2. ) / delta_z )**2. ) |
---|
| 956 | ENDIF |
---|
| 957 | ENDDO |
---|
| 958 | |
---|
| 959 | !--------------------------------------------- |
---|
| 960 | !-- CONDENSATION AND ICE SUPERSATURATION -- |
---|
| 961 | !--------------------------------------------- |
---|
| 962 | |
---|
| 963 | CALL condensation_ice_supersat( & |
---|
| 964 | klon, dtime, missing_val, & |
---|
| 965 | pplay(:,k), paprs(:,k), paprs(:,k+1), & |
---|
[5396] | 966 | cf_seri(:,k), rvc_seri(:,k), ql_seri(:,k), qi_seri(:,k), & |
---|
[5204] | 967 | shear(:), tke_dissip(:,k), cell_area(:), & |
---|
| 968 | Tbef(:), zq(:), zqs(:), gammasat(:), ratqs(:,k), keepgoing(:), & |
---|
| 969 | rneb(:,k), zqn(:), qvc(:), issrfra(:,k), qissr(:,k), & |
---|
| 970 | dcf_sub(:,k), dcf_con(:,k), dcf_mix(:,k), & |
---|
| 971 | dqi_adj(:,k), dqi_sub(:,k), dqi_con(:,k), dqi_mix(:,k), & |
---|
| 972 | dqvc_adj(:,k), dqvc_sub(:,k), dqvc_con(:,k), dqvc_mix(:,k), & |
---|
| 973 | Tcontr(:,k), qcontr(:,k), qcontr2(:,k), fcontrN(:,k), fcontrP(:,k), & |
---|
| 974 | flight_dist(:,k), flight_h2o(:,k), & |
---|
| 975 | dcf_avi(:,k), dqi_avi(:,k), dqvc_avi(:,k)) |
---|
| 976 | |
---|
| 977 | |
---|
[5211] | 978 | ELSE |
---|
| 979 | !--generalised lognormal condensation scheme (Bony and Emanuel 2001) |
---|
| 980 | |
---|
[5241] | 981 | CALL condensation_lognormal( & |
---|
| 982 | klon, Tbef, zq, zqs, gammasat, ratqs(:,k), & |
---|
| 983 | keepgoing, rneb(:,k), zqn, qvc) |
---|
[5204] | 984 | |
---|
| 985 | |
---|
| 986 | ENDIF ! .NOT. ok_ice_supersat |
---|
[4226] | 987 | |
---|
[5204] | 988 | DO i=1,klon |
---|
| 989 | IF (keepgoing(i)) THEN |
---|
[3999] | 990 | |
---|
| 991 | ! If vertical heterogeneity, change fraction by volume as well |
---|
| 992 | IF (iflag_cloudth_vert.GE.3) THEN |
---|
| 993 | ctot_vol(i,k)=rneb(i,k) |
---|
| 994 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
| 995 | ENDIF |
---|
| 996 | |
---|
| 997 | |
---|
[4072] | 998 | ! P2.2.2> Approximative calculation of temperature variation DT |
---|
| 999 | ! due to condensation. |
---|
| 1000 | ! Calculated variables: |
---|
| 1001 | ! dT : temperature change due to condensation |
---|
| 1002 | !--------------------------------------------------------------- |
---|
[3999] | 1003 | |
---|
| 1004 | |
---|
| 1005 | IF (zfice(i).LT.1) THEN |
---|
| 1006 | cste=RLVTT |
---|
| 1007 | ELSE |
---|
| 1008 | cste=RLSTT |
---|
| 1009 | ENDIF |
---|
[5007] | 1010 | |
---|
| 1011 | ! LEA_R : check formule |
---|
[5204] | 1012 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 1013 | !--AB We relax the saturation adjustment assumption |
---|
| 1014 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
| 1015 | IF ( rneb(i,k) .GT. eps ) THEN |
---|
| 1016 | qlbef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i,k)) |
---|
| 1017 | ELSE |
---|
| 1018 | qlbef(i) = 0. |
---|
| 1019 | ENDIF |
---|
| 1020 | ELSE |
---|
| 1021 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
---|
| 1022 | ENDIF |
---|
| 1023 | |
---|
[3999] | 1024 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
---|
[4226] | 1025 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) |
---|
[3999] | 1026 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
---|
| 1027 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
---|
[4226] | 1028 | *qlbef(i)*dzfice(i) |
---|
[4424] | 1029 | ! here we update a provisory temperature variable that only serves in the iteration |
---|
| 1030 | ! process |
---|
[3999] | 1031 | DT(i)=num/denom |
---|
| 1032 | n_i(i)=n_i(i)+1 |
---|
| 1033 | |
---|
[4424] | 1034 | ENDIF ! end keepgoing |
---|
[3999] | 1035 | |
---|
| 1036 | ENDDO ! end loop on i |
---|
| 1037 | |
---|
| 1038 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
---|
| 1039 | |
---|
| 1040 | ! P2.3> Final quantities calculation |
---|
| 1041 | ! Calculated variables: |
---|
| 1042 | ! rneb : cloud fraction |
---|
| 1043 | ! zcond: mean condensed water in the mesh |
---|
| 1044 | ! zqn : mean water vapor in the mesh |
---|
[4562] | 1045 | ! zfice: ice fraction in clouds |
---|
[3999] | 1046 | ! zt : temperature |
---|
| 1047 | ! rhcl : clear-sky relative humidity |
---|
| 1048 | ! ---------------------------------------------------------------- |
---|
| 1049 | |
---|
| 1050 | |
---|
[4562] | 1051 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
| 1052 | IF (iflag_t_glace.GE.4) THEN |
---|
[5007] | 1053 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
---|
| 1054 | distcltop(:,k)=zdistcltop(:) |
---|
| 1055 | temp_cltop(:,k)=ztemp_cltop(:) |
---|
| 1056 | ENDIF |
---|
[3999] | 1057 | |
---|
[5007] | 1058 | ! Partition function depending on temperature |
---|
[5204] | 1059 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
---|
[4562] | 1060 | |
---|
[5007] | 1061 | ! Partition function depending on tke for non shallow-convective clouds |
---|
| 1062 | IF (iflag_icefrac .GE. 1) THEN |
---|
[5383] | 1063 | CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:,k), paprs(:,k), paprs(:,k+1), omega(:,k), qice_ini, ziflcld, zqn, & |
---|
[5007] | 1064 | rneb(:,k), tke(:,k), tke_dissip(:,k), zqliq, zqvapcl, zqice, zfice_turb, dzfice_turb, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k)) |
---|
| 1065 | ENDIF |
---|
| 1066 | |
---|
[4562] | 1067 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
---|
[3999] | 1068 | DO i=1, klon |
---|
[5007] | 1069 | ! Overwrite phase partitioning in boundary layer mixed phase clouds when the |
---|
| 1070 | ! iflag_cloudth_vert=7 and specific param is activated |
---|
[3999] | 1071 | IF (mpc_bl_points(i,k) .GT. 0) THEN |
---|
| 1072 | zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) |
---|
| 1073 | ! following line is very strange and probably wrong |
---|
| 1074 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
---|
| 1075 | ! water vapor update and partition function if thermals |
---|
| 1076 | zq(i) = zq(i) - zcond(i) |
---|
[4910] | 1077 | zfice(i)=zfice_th(i) |
---|
[3999] | 1078 | ELSE |
---|
| 1079 | ! Checks on rneb, rhcl and zqn |
---|
| 1080 | IF (rneb(i,k) .LE. 0.0) THEN |
---|
| 1081 | zqn(i) = 0.0 |
---|
| 1082 | rneb(i,k) = 0.0 |
---|
| 1083 | zcond(i) = 0.0 |
---|
| 1084 | rhcl(i,k)=zq(i)/zqs(i) |
---|
| 1085 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
---|
| 1086 | zqn(i) = zq(i) |
---|
| 1087 | rneb(i,k) = 1.0 |
---|
[5204] | 1088 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 1089 | !--AB We relax the saturation adjustment assumption |
---|
| 1090 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
| 1091 | zcond(i) = MAX(0., zqn(i) - qvc(i)) |
---|
| 1092 | ELSE |
---|
| 1093 | zcond(i) = MAX(0.0,zqn(i)-zqs(i)) |
---|
| 1094 | ENDIF |
---|
[3999] | 1095 | rhcl(i,k)=1.0 |
---|
| 1096 | ELSE |
---|
[5204] | 1097 | IF ( ok_unadjusted_clouds ) THEN |
---|
| 1098 | !--AB We relax the saturation adjustment assumption |
---|
| 1099 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
| 1100 | zcond(i) = MAX(0., zqn(i) * rneb(i,k) - qvc(i)) |
---|
| 1101 | ELSE |
---|
| 1102 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) |
---|
| 1103 | ENDIF |
---|
[3999] | 1104 | ! following line is very strange and probably wrong: |
---|
| 1105 | rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) |
---|
[5007] | 1106 | ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) |
---|
| 1107 | IF (iflag_icefrac .GE. 1) THEN |
---|
| 1108 | IF (lognormale(i)) THEN |
---|
| 1109 | zcond(i) = zqliq(i) + zqice(i) |
---|
| 1110 | zfice(i)=zfice_turb(i) |
---|
| 1111 | rhcl(i,k) = zqvapcl(i) * rneb(i,k) + (zq(i) - zqn(i)) * (1.-rneb(i,k)) |
---|
| 1112 | ENDIF |
---|
| 1113 | ENDIF |
---|
[3999] | 1114 | ENDIF |
---|
| 1115 | |
---|
[4226] | 1116 | ! water vapor update |
---|
| 1117 | zq(i) = zq(i) - zcond(i) |
---|
[3999] | 1118 | |
---|
| 1119 | ENDIF |
---|
| 1120 | |
---|
[4392] | 1121 | ! c_iso : routine that computes in-cloud supersaturation |
---|
| 1122 | ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input) |
---|
| 1123 | |
---|
[3999] | 1124 | ! temperature update due to phase change |
---|
| 1125 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
---|
| 1126 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
---|
| 1127 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
| 1128 | ENDDO |
---|
| 1129 | |
---|
| 1130 | ! If vertical heterogeneity, change volume fraction |
---|
| 1131 | IF (iflag_cloudth_vert .GE. 3) THEN |
---|
| 1132 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
---|
| 1133 | rneblsvol(1:klon,k)=ctot_vol(1:klon,k) |
---|
| 1134 | ENDIF |
---|
[5204] | 1135 | |
---|
| 1136 | !--AB Write diagnostics and tracers for ice supersaturation |
---|
| 1137 | IF ( ok_ice_supersat ) THEN |
---|
| 1138 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,1,.false.,qsatl(:,k),zdqs) |
---|
| 1139 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,2,.false.,qsati(:,k),zdqs) |
---|
[3999] | 1140 | |
---|
[5204] | 1141 | DO i = 1, klon |
---|
| 1142 | |
---|
| 1143 | cf_seri(i,k) = rneb(i,k) |
---|
| 1144 | |
---|
| 1145 | IF ( .NOT. ok_unadjusted_clouds ) THEN |
---|
| 1146 | qvc(i) = zqs(i) * rneb(i,k) |
---|
| 1147 | ENDIF |
---|
| 1148 | IF ( zq(i) .GT. min_qParent ) THEN |
---|
| 1149 | rvc_seri(i,k) = qvc(i) / zq(i) |
---|
| 1150 | ELSE |
---|
| 1151 | rvc_seri(i,k) = min_ratio |
---|
| 1152 | ENDIF |
---|
| 1153 | !--The MIN barrier is NEEDED because of: |
---|
| 1154 | !-- 1) very rare pathological cases of the lsc scheme (rvc = 1. + 1e-16 sometimes) |
---|
| 1155 | !-- 2) the thermal scheme does NOT guarantee that qvc <= qvap (or even qincld <= qtot) |
---|
| 1156 | !--The MAX barrier is a safeguard that should not be activated |
---|
| 1157 | rvc_seri(i,k) = MIN(MAX(rvc_seri(i,k), 0.), 1.) |
---|
| 1158 | |
---|
| 1159 | !--Diagnostics |
---|
| 1160 | gamma_cond(i,k) = gammasat(i) |
---|
| 1161 | IF ( issrfra(i,k) .LT. eps ) THEN |
---|
| 1162 | issrfra(i,k) = 0. |
---|
| 1163 | qissr(i,k) = 0. |
---|
| 1164 | ENDIF |
---|
| 1165 | subfra(i,k) = 1. - cf_seri(i,k) - issrfra(i,k) |
---|
| 1166 | qsub(i,k) = zq(i) - qvc(i) - qissr(i,k) |
---|
| 1167 | IF ( subfra(i,k) .LT. eps ) THEN |
---|
| 1168 | subfra(i,k) = 0. |
---|
| 1169 | qsub(i,k) = 0. |
---|
| 1170 | ENDIF |
---|
| 1171 | qcld(i,k) = qvc(i) + zcond(i) |
---|
| 1172 | IF ( cf_seri(i,k) .LT. eps ) THEN |
---|
| 1173 | qcld(i,k) = 0. |
---|
| 1174 | ENDIF |
---|
| 1175 | ENDDO |
---|
| 1176 | ENDIF |
---|
| 1177 | |
---|
| 1178 | |
---|
[3999] | 1179 | ! ---------------------------------------------------------------- |
---|
[4114] | 1180 | ! P3> Precipitation formation |
---|
[3999] | 1181 | ! ---------------------------------------------------------------- |
---|
[4226] | 1182 | |
---|
[4803] | 1183 | !================================================================ |
---|
| 1184 | IF (ok_poprecip) THEN |
---|
| 1185 | |
---|
| 1186 | DO i = 1, klon |
---|
| 1187 | zoliql(i) = zcond(i) * ( 1. - zfice(i) ) |
---|
| 1188 | zoliqi(i) = zcond(i) * zfice(i) |
---|
| 1189 | ENDDO |
---|
| 1190 | |
---|
| 1191 | CALL poprecip_postcld(klon, dtime, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
---|
| 1192 | ctot_vol(:,k), ptconv(:,k), & |
---|
| 1193 | zt, zq, zoliql, zoliqi, zfice, & |
---|
| 1194 | rneb(:,k), znebprecipclr, znebprecipcld, & |
---|
| 1195 | zrfl, zrflclr, zrflcld, & |
---|
| 1196 | zifl, ziflclr, ziflcld, & |
---|
[4830] | 1197 | qraindiag(:,k), qsnowdiag(:,k), dqrauto(:,k), & |
---|
[4819] | 1198 | dqrcol(:,k), dqrmelt(:,k), dqrfreez(:,k), & |
---|
| 1199 | dqsauto(:,k), dqsagg(:,k), dqsrim(:,k), & |
---|
| 1200 | dqsmelt(:,k), dqsfreez(:,k) & |
---|
[4803] | 1201 | ) |
---|
| 1202 | |
---|
| 1203 | DO i = 1, klon |
---|
| 1204 | zoliq(i) = zoliql(i) + zoliqi(i) |
---|
| 1205 | IF ( zoliq(i) .GT. 0. ) THEN |
---|
| 1206 | zfice(i) = zoliqi(i)/zoliq(i) |
---|
| 1207 | ELSE |
---|
| 1208 | zfice(i) = 0.0 |
---|
| 1209 | ENDIF |
---|
[4819] | 1210 | |
---|
| 1211 | ! calculation of specific content of condensates seen by radiative scheme |
---|
| 1212 | IF (ok_radocond_snow) THEN |
---|
| 1213 | radocond(i,k) = zoliq(i) |
---|
| 1214 | radocondl(i,k)= radocond(i,k)*(1.-zfice(i)) |
---|
[4830] | 1215 | radocondi(i,k)= radocond(i,k)*zfice(i)+qsnowdiag(i,k) |
---|
[4819] | 1216 | ELSE |
---|
| 1217 | radocond(i,k) = zoliq(i) |
---|
| 1218 | radocondl(i,k)= radocond(i,k)*(1.-zfice(i)) |
---|
| 1219 | radocondi(i,k)= radocond(i,k)*zfice(i) |
---|
| 1220 | ENDIF |
---|
[4803] | 1221 | ENDDO |
---|
| 1222 | |
---|
| 1223 | !================================================================ |
---|
| 1224 | ELSE |
---|
| 1225 | |
---|
[3999] | 1226 | ! LTP: |
---|
[4563] | 1227 | IF (iflag_evap_prec .GE. 4) THEN |
---|
[3999] | 1228 | |
---|
| 1229 | !Partitionning between precipitation coming from clouds and that coming from CS |
---|
| 1230 | |
---|
| 1231 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
---|
| 1232 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
---|
| 1233 | |
---|
| 1234 | DO i=1, klon |
---|
[4424] | 1235 | tot_znebn(i) = 1. - (1.-tot_zneb(i))*(1 - max(rneb(i,k),zneb(i))) & |
---|
| 1236 | /(1.-min(zneb(i),1.-smallestreal)) |
---|
[3999] | 1237 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
---|
| 1238 | tot_zneb(i) = tot_znebn(i) |
---|
| 1239 | |
---|
| 1240 | |
---|
| 1241 | !1) Cloudy to clear air |
---|
| 1242 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i,k),znebprecipcld(i)) |
---|
[4424] | 1243 | IF (znebprecipcld(i) .GT. 0.) THEN |
---|
[3999] | 1244 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*zrflcld(i) |
---|
| 1245 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*ziflcld(i) |
---|
| 1246 | ELSE |
---|
| 1247 | d_zrfl_cld_clr(i) = 0. |
---|
| 1248 | d_zifl_cld_clr(i) = 0. |
---|
| 1249 | ENDIF |
---|
| 1250 | |
---|
| 1251 | !2) Clear to cloudy air |
---|
[4226] | 1252 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i,k) - d_tot_zneb(i) - zneb(i))) |
---|
[3999] | 1253 | IF (znebprecipclr(i) .GT. 0) THEN |
---|
| 1254 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*zrflclr(i) |
---|
| 1255 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*ziflclr(i) |
---|
| 1256 | ELSE |
---|
| 1257 | d_zrfl_clr_cld(i) = 0. |
---|
| 1258 | d_zifl_clr_cld(i) = 0. |
---|
| 1259 | ENDIF |
---|
| 1260 | |
---|
| 1261 | !Update variables |
---|
[4226] | 1262 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
---|
[3999] | 1263 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
---|
| 1264 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
---|
| 1265 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
---|
| 1266 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
---|
| 1267 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
---|
| 1268 | |
---|
[4392] | 1269 | ! c_iso do the same thing for isotopes precip |
---|
[3999] | 1270 | ENDDO |
---|
| 1271 | ENDIF |
---|
| 1272 | |
---|
[4559] | 1273 | |
---|
| 1274 | ! Autoconversion |
---|
| 1275 | ! ------------------------------------------------------------------------------- |
---|
| 1276 | |
---|
| 1277 | |
---|
[4412] | 1278 | ! Initialisation of zoliq and radocond variables |
---|
[3999] | 1279 | |
---|
| 1280 | DO i = 1, klon |
---|
| 1281 | zoliq(i) = zcond(i) |
---|
[4072] | 1282 | zoliqi(i)= zoliq(i)*zfice(i) |
---|
| 1283 | zoliql(i)= zoliq(i)*(1.-zfice(i)) |
---|
[4392] | 1284 | ! c_iso : initialisation of zoliq* also for isotopes |
---|
[4114] | 1285 | zrho(i,k) = pplay(i,k) / zt(i) / RD |
---|
| 1286 | zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i,k)*RG) |
---|
[4072] | 1287 | iwc(i) = 0. |
---|
| 1288 | zneb(i) = MAX(rneb(i,k),seuil_neb) |
---|
[4559] | 1289 | radocond(i,k) = zoliq(i)/REAL(niter_lscp+1) |
---|
| 1290 | radocondi(i,k)=zoliq(i)*zfice(i)/REAL(niter_lscp+1) |
---|
| 1291 | radocondl(i,k)=zoliq(i)*(1.-zfice(i))/REAL(niter_lscp+1) |
---|
[3999] | 1292 | ENDDO |
---|
| 1293 | |
---|
[4559] | 1294 | |
---|
| 1295 | DO n = 1, niter_lscp |
---|
[3999] | 1296 | |
---|
| 1297 | DO i=1,klon |
---|
| 1298 | IF (rneb(i,k).GT.0.0) THEN |
---|
[4114] | 1299 | iwc(i) = zrho(i,k) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content |
---|
[3999] | 1300 | ENDIF |
---|
| 1301 | ENDDO |
---|
| 1302 | |
---|
[4226] | 1303 | CALL fallice_velocity(klon,iwc(:),zt(:),zrho(:,k),pplay(:,k),ptconv(:,k),velo(:,k)) |
---|
[3999] | 1304 | |
---|
| 1305 | DO i = 1, klon |
---|
| 1306 | |
---|
| 1307 | IF (rneb(i,k).GT.0.0) THEN |
---|
| 1308 | |
---|
[4072] | 1309 | ! Initialization of zrain, zsnow and zprecip: |
---|
| 1310 | zrain=0. |
---|
| 1311 | zsnow=0. |
---|
| 1312 | zprecip=0. |
---|
[4392] | 1313 | ! c_iso same init for isotopes. Externalisation? |
---|
[3999] | 1314 | |
---|
| 1315 | IF (zneb(i).EQ.seuil_neb) THEN |
---|
[4072] | 1316 | zprecip = 0.0 |
---|
| 1317 | zsnow = 0.0 |
---|
| 1318 | zrain= 0.0 |
---|
[3999] | 1319 | ELSE |
---|
[4420] | 1320 | |
---|
[3999] | 1321 | IF (ptconv(i,k)) THEN ! if convective point |
---|
| 1322 | zcl=cld_lc_con |
---|
| 1323 | zct=1./cld_tau_con |
---|
[4559] | 1324 | zexpo=cld_expo_con |
---|
| 1325 | ffallv=ffallv_con |
---|
[3999] | 1326 | ELSE |
---|
| 1327 | zcl=cld_lc_lsc |
---|
| 1328 | zct=1./cld_tau_lsc |
---|
[4559] | 1329 | zexpo=cld_expo_lsc |
---|
| 1330 | ffallv=ffallv_lsc |
---|
[3999] | 1331 | ENDIF |
---|
| 1332 | |
---|
[4559] | 1333 | |
---|
[3999] | 1334 | ! if vertical heterogeneity is taken into account, we use |
---|
| 1335 | ! the "true" volume fraction instead of a modified |
---|
| 1336 | ! surface fraction (which is larger and artificially |
---|
| 1337 | ! reduces the in-cloud water). |
---|
[4072] | 1338 | |
---|
[4559] | 1339 | ! Liquid water quantity to remove: zchau (Sundqvist, 1978) |
---|
| 1340 | ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
---|
| 1341 | !......................................................... |
---|
[3999] | 1342 | IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN |
---|
| 1343 | |
---|
[4420] | 1344 | ! if vertical heterogeneity is taken into account, we use |
---|
| 1345 | ! the "true" volume fraction instead of a modified |
---|
| 1346 | ! surface fraction (which is larger and artificially |
---|
| 1347 | ! reduces the in-cloud water). |
---|
[4559] | 1348 | effective_zneb=ctot_vol(i,k) |
---|
| 1349 | ELSE |
---|
| 1350 | effective_zneb=zneb(i) |
---|
| 1351 | ENDIF |
---|
[4420] | 1352 | |
---|
| 1353 | |
---|
[4559] | 1354 | IF (iflag_autoconversion .EQ. 2) THEN |
---|
| 1355 | ! two-steps resolution with niter_lscp=1 sufficient |
---|
| 1356 | ! we first treat the second term (with exponential) in an explicit way |
---|
| 1357 | ! and then treat the first term (-q/tau) in an exact way |
---|
| 1358 | zchau=zoliql(i)*(1.-exp(-dtime/REAL(niter_lscp)*zct & |
---|
| 1359 | *(1.-exp(-(zoliql(i)/effective_zneb/zcl)**zexpo)))) |
---|
[4420] | 1360 | ELSE |
---|
[4559] | 1361 | ! old explicit resolution with subtimesteps |
---|
| 1362 | zchau = zct*dtime/REAL(niter_lscp)*zoliql(i) & |
---|
| 1363 | *(1.0-EXP(-(zoliql(i)/effective_zneb/zcl)**zexpo)) |
---|
[4420] | 1364 | ENDIF |
---|
| 1365 | |
---|
| 1366 | |
---|
[4559] | 1367 | ! Ice water quantity to remove (Zender & Kiehl, 1997) |
---|
| 1368 | ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
---|
| 1369 | !.................................... |
---|
| 1370 | IF (iflag_autoconversion .EQ. 2) THEN |
---|
| 1371 | ! exact resolution, niter_lscp=1 is sufficient but works only |
---|
| 1372 | ! with iflag_vice=0 |
---|
| 1373 | IF (zoliqi(i) .GT. 0.) THEN |
---|
| 1374 | zfroi=(zoliqi(i)-((zoliqi(i)**(-dice_velo)) & |
---|
| 1375 | +dice_velo*dtime/REAL(niter_lscp)*cice_velo/zdz(i)*ffallv)**(-1./dice_velo)) |
---|
| 1376 | ELSE |
---|
| 1377 | zfroi=0. |
---|
| 1378 | ENDIF |
---|
| 1379 | ELSE |
---|
| 1380 | ! old explicit resolution with subtimesteps |
---|
| 1381 | zfroi = dtime/REAL(niter_lscp)/zdz(i)*zoliqi(i)*velo(i,k) |
---|
| 1382 | ENDIF |
---|
| 1383 | |
---|
[4397] | 1384 | zrain = MIN(MAX(zchau,0.0),zoliql(i)) |
---|
| 1385 | zsnow = MIN(MAX(zfroi,0.0),zoliqi(i)) |
---|
[4072] | 1386 | zprecip = MAX(zrain + zsnow,0.0) |
---|
[3999] | 1387 | |
---|
| 1388 | ENDIF |
---|
[4226] | 1389 | |
---|
[5384] | 1390 | |
---|
[4559] | 1391 | IF (iflag_autoconversion .GE. 1) THEN |
---|
| 1392 | ! debugged version with phase conservation through the autoconversion process |
---|
| 1393 | zoliql(i) = MAX(zoliql(i)-1.*zrain , 0.0) |
---|
| 1394 | zoliqi(i) = MAX(zoliqi(i)-1.*zsnow , 0.0) |
---|
| 1395 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
---|
| 1396 | ELSE |
---|
| 1397 | ! bugged version with phase resetting |
---|
| 1398 | zoliql(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zrain , 0.0) |
---|
| 1399 | zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zsnow , 0.0) |
---|
| 1400 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
---|
| 1401 | ENDIF |
---|
[3999] | 1402 | |
---|
[5384] | 1403 | !--Diagnostics |
---|
| 1404 | dqrauto(i,k) = dqrauto(i,k) + zrain / dtime |
---|
| 1405 | dqsauto(i,k) = dqsauto(i,k) + zsnow / dtime |
---|
| 1406 | |
---|
| 1407 | |
---|
[4392] | 1408 | ! c_iso: call isotope_conversion (for readibility) or duplicate |
---|
| 1409 | |
---|
[4559] | 1410 | radocond(i,k) = radocond(i,k) + zoliq(i)/REAL(niter_lscp+1) |
---|
| 1411 | radocondl(i,k) = radocondl(i,k) + zoliql(i)/REAL(niter_lscp+1) |
---|
| 1412 | radocondi(i,k) = radocondi(i,k) + zoliqi(i)/REAL(niter_lscp+1) |
---|
[4226] | 1413 | |
---|
[4072] | 1414 | ENDIF ! rneb >0 |
---|
[3999] | 1415 | |
---|
| 1416 | ENDDO ! i = 1,klon |
---|
| 1417 | |
---|
| 1418 | ENDDO ! n = 1,niter |
---|
| 1419 | |
---|
[4072] | 1420 | ! Precipitation flux calculation |
---|
[3999] | 1421 | |
---|
| 1422 | DO i = 1, klon |
---|
[4380] | 1423 | |
---|
[4563] | 1424 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4380] | 1425 | ziflprev(i)=ziflcld(i) |
---|
| 1426 | ELSE |
---|
| 1427 | ziflprev(i)=zifl(i)*zneb(i) |
---|
| 1428 | ENDIF |
---|
[3999] | 1429 | |
---|
| 1430 | IF (rneb(i,k) .GT. 0.0) THEN |
---|
| 1431 | |
---|
[4072] | 1432 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
---|
| 1433 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
---|
| 1434 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
---|
| 1435 | ! taken into account through a linearization of the equations and by approximating |
---|
| 1436 | ! the liquid precipitation process with a "threshold" process. We assume that |
---|
| 1437 | ! condensates are not modified during this operation. Liquid precipitation is |
---|
| 1438 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
---|
| 1439 | ! Water vapor increases as well |
---|
| 1440 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
---|
| 1441 | |
---|
| 1442 | zqpreci(i)=(zcond(i)-zoliq(i))*zfice(i) |
---|
| 1443 | zqprecl(i)=(zcond(i)-zoliq(i))*(1.-zfice(i)) |
---|
| 1444 | zcp=RCPD*(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
| 1445 | coef1 = rneb(i,k)*RLSTT/zcp*zdqsdT_raw(i) |
---|
| 1446 | ! Computation of DT if all the liquid precip freezes |
---|
| 1447 | DeltaT = RLMLT*zqprecl(i) / (zcp*(1.+coef1)) |
---|
| 1448 | ! T should not exceed the freezing point |
---|
| 1449 | ! that is Delta > RTT-zt(i) |
---|
| 1450 | DeltaT = max( min( RTT-zt(i), DeltaT) , 0. ) |
---|
| 1451 | zt(i) = zt(i) + DeltaT |
---|
| 1452 | ! water vaporization due to temp. increase |
---|
| 1453 | Deltaq = rneb(i,k)*zdqsdT_raw(i)*DeltaT |
---|
| 1454 | ! we add this vaporized water to the total vapor and we remove it from the precip |
---|
| 1455 | zq(i) = zq(i) + Deltaq |
---|
| 1456 | ! The three "max" lines herebelow protect from rounding errors |
---|
| 1457 | zcond(i) = max( zcond(i)- Deltaq, 0. ) |
---|
| 1458 | ! liquid precipitation converted to ice precip |
---|
| 1459 | Deltaqprecl = -zcp/RLMLT*(1.+coef1)*DeltaT |
---|
| 1460 | zqprecl(i) = max( zqprecl(i) + Deltaqprecl, 0. ) |
---|
| 1461 | ! iced water budget |
---|
| 1462 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
---|
[4226] | 1463 | |
---|
[4392] | 1464 | ! c_iso : mv here condensation of isotopes + redispatchage en precip |
---|
| 1465 | |
---|
[4563] | 1466 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4226] | 1467 | zrflcld(i) = zrflcld(i)+zqprecl(i) & |
---|
| 1468 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 1469 | ziflcld(i) = ziflcld(i)+ zqpreci(i) & |
---|
| 1470 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 1471 | znebprecipcld(i) = rneb(i,k) |
---|
| 1472 | zrfl(i) = zrflcld(i) + zrflclr(i) |
---|
| 1473 | zifl(i) = ziflcld(i) + ziflclr(i) |
---|
| 1474 | ELSE |
---|
[3999] | 1475 | zrfl(i) = zrfl(i)+ zqprecl(i) & |
---|
| 1476 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 1477 | zifl(i) = zifl(i)+ zqpreci(i) & |
---|
[4226] | 1478 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
[3999] | 1479 | ENDIF |
---|
[4392] | 1480 | ! c_iso : same for isotopes |
---|
[3999] | 1481 | |
---|
| 1482 | ENDIF ! rneb>0 |
---|
| 1483 | |
---|
| 1484 | ENDDO |
---|
| 1485 | |
---|
[4226] | 1486 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
---|
[4563] | 1487 | ! if iflag_evap_prec>=4 |
---|
| 1488 | IF (iflag_evap_prec.GE.4) THEN |
---|
[4114] | 1489 | |
---|
[4226] | 1490 | DO i=1,klon |
---|
[4114] | 1491 | |
---|
[4226] | 1492 | IF ((zrflclr(i) + ziflclr(i)) .GT. 0. ) THEN |
---|
[3999] | 1493 | znebprecipclr(i) = min(znebprecipclr(i),max(zrflclr(i)/ & |
---|
| 1494 | (MAX(znebprecipclr(i),seuil_neb)*rain_int_min), ziflclr(i)/(MAX(znebprecipclr(i),seuil_neb)*rain_int_min))) |
---|
| 1495 | ELSE |
---|
[4226] | 1496 | znebprecipclr(i)=0.0 |
---|
| 1497 | ENDIF |
---|
| 1498 | |
---|
| 1499 | IF ((zrflcld(i) + ziflcld(i)) .GT. 0.) THEN |
---|
[3999] | 1500 | znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i)/ & |
---|
| 1501 | (MAX(znebprecipcld(i),seuil_neb)*rain_int_min), ziflcld(i)/(MAX(znebprecipcld(i),seuil_neb)*rain_int_min))) |
---|
[4226] | 1502 | ELSE |
---|
| 1503 | znebprecipcld(i)=0.0 |
---|
| 1504 | ENDIF |
---|
| 1505 | ENDDO |
---|
[3999] | 1506 | |
---|
[4226] | 1507 | ENDIF |
---|
[3999] | 1508 | |
---|
[4910] | 1509 | |
---|
[4803] | 1510 | ENDIF ! ok_poprecip |
---|
| 1511 | |
---|
[3999] | 1512 | ! End of precipitation formation |
---|
| 1513 | ! -------------------------------- |
---|
| 1514 | |
---|
| 1515 | |
---|
[4803] | 1516 | ! Calculation of cloud condensates amount seen by radiative scheme |
---|
| 1517 | !----------------------------------------------------------------- |
---|
| 1518 | |
---|
[4114] | 1519 | ! Calculation of the concentration of condensates seen by the radiation scheme |
---|
[4412] | 1520 | ! for liquid phase, we take radocondl |
---|
| 1521 | ! for ice phase, we take radocondi if we neglect snowfall, otherwise (ok_radocond_snow=true) |
---|
[4803] | 1522 | ! we recalculate radocondi to account for contributions from the precipitation flux |
---|
| 1523 | ! TODO: for the moment, we deactivate this option when ok_poprecip=.true. |
---|
[3999] | 1524 | |
---|
[4803] | 1525 | IF ((ok_radocond_snow) .AND. (k .LT. klev) .AND. (.NOT. ok_poprecip)) THEN |
---|
[4114] | 1526 | ! for the solid phase (crystals + snowflakes) |
---|
[4412] | 1527 | ! we recalculate radocondi by summing |
---|
[4114] | 1528 | ! the ice content calculated in the mesh |
---|
| 1529 | ! + the contribution of the non-evaporated snowfall |
---|
| 1530 | ! from the overlying layer |
---|
| 1531 | DO i=1,klon |
---|
| 1532 | IF (ziflprev(i) .NE. 0.0) THEN |
---|
[4412] | 1533 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i)+ziflprev(i)/zrho(i,k+1)/velo(i,k+1) |
---|
[4114] | 1534 | ELSE |
---|
[4412] | 1535 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i) |
---|
[4114] | 1536 | ENDIF |
---|
[4412] | 1537 | radocond(i,k)=radocondl(i,k)+radocondi(i,k) |
---|
[4114] | 1538 | ENDDO |
---|
| 1539 | ENDIF |
---|
| 1540 | |
---|
[4412] | 1541 | ! caculate the percentage of ice in "radocond" so cloud+precip seen by the radiation scheme |
---|
[4114] | 1542 | DO i=1,klon |
---|
[4412] | 1543 | IF (radocond(i,k) .GT. 0.) THEN |
---|
| 1544 | radicefrac(i,k)=MIN(MAX(radocondi(i,k)/radocond(i,k),0.),1.) |
---|
[4114] | 1545 | ENDIF |
---|
| 1546 | ENDDO |
---|
| 1547 | |
---|
[3999] | 1548 | ! ---------------------------------------------------------------- |
---|
| 1549 | ! P4> Wet scavenging |
---|
| 1550 | ! ---------------------------------------------------------------- |
---|
| 1551 | |
---|
| 1552 | !Scavenging through nucleation in the layer |
---|
| 1553 | |
---|
| 1554 | DO i = 1,klon |
---|
| 1555 | |
---|
| 1556 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
---|
| 1557 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
---|
| 1558 | ELSE |
---|
| 1559 | beta(i,k) = 0. |
---|
| 1560 | ENDIF |
---|
| 1561 | |
---|
[4059] | 1562 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
[3999] | 1563 | |
---|
| 1564 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
| 1565 | |
---|
[4654] | 1566 | IF (temp(i,k) .GE. t_glace_min) THEN |
---|
[3999] | 1567 | zalpha_tr = a_tr_sca(3) |
---|
| 1568 | ELSE |
---|
| 1569 | zalpha_tr = a_tr_sca(4) |
---|
| 1570 | ENDIF |
---|
| 1571 | |
---|
| 1572 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 1573 | frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi |
---|
[4226] | 1574 | |
---|
[3999] | 1575 | ! Nucleation with a factor of -1 instead of -0.5 |
---|
| 1576 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) |
---|
| 1577 | |
---|
| 1578 | ENDIF |
---|
| 1579 | |
---|
[4226] | 1580 | ENDDO |
---|
| 1581 | |
---|
[3999] | 1582 | ! Scavenging through impaction in the underlying layer |
---|
| 1583 | |
---|
| 1584 | DO kk = k-1, 1, -1 |
---|
| 1585 | |
---|
| 1586 | DO i = 1, klon |
---|
| 1587 | |
---|
| 1588 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
| 1589 | |
---|
[4654] | 1590 | IF (temp(i,kk) .GE. t_glace_min) THEN |
---|
[3999] | 1591 | zalpha_tr = a_tr_sca(1) |
---|
| 1592 | ELSE |
---|
| 1593 | zalpha_tr = a_tr_sca(2) |
---|
| 1594 | ENDIF |
---|
| 1595 | |
---|
| 1596 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 1597 | frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi |
---|
| 1598 | |
---|
| 1599 | ENDIF |
---|
| 1600 | |
---|
| 1601 | ENDDO |
---|
| 1602 | |
---|
| 1603 | ENDDO |
---|
[4226] | 1604 | |
---|
[4803] | 1605 | ! Outputs: |
---|
| 1606 | !------------------------------- |
---|
| 1607 | ! Precipitation fluxes at layer interfaces |
---|
| 1608 | ! + precipitation fractions + |
---|
| 1609 | ! temperature and water species tendencies |
---|
| 1610 | DO i = 1, klon |
---|
| 1611 | psfl(i,k)=zifl(i) |
---|
| 1612 | prfl(i,k)=zrfl(i) |
---|
| 1613 | pfraclr(i,k)=znebprecipclr(i) |
---|
| 1614 | pfracld(i,k)=znebprecipcld(i) |
---|
| 1615 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
---|
| 1616 | d_qi(i,k) = zfice(i)*zoliq(i) |
---|
| 1617 | d_q(i,k) = zq(i) - qt(i,k) |
---|
| 1618 | ! c_iso: same for isotopes |
---|
| 1619 | d_t(i,k) = zt(i) - temp(i,k) |
---|
| 1620 | ENDDO |
---|
| 1621 | |
---|
| 1622 | |
---|
[4226] | 1623 | ENDDO |
---|
[4059] | 1624 | |
---|
[3999] | 1625 | |
---|
| 1626 | ! Rain or snow at the surface (depending on the first layer temperature) |
---|
| 1627 | DO i = 1, klon |
---|
| 1628 | snow(i) = zifl(i) |
---|
| 1629 | rain(i) = zrfl(i) |
---|
[4392] | 1630 | ! c_iso final output |
---|
[3999] | 1631 | ENDDO |
---|
| 1632 | |
---|
| 1633 | IF (ncoreczq>0) THEN |
---|
| 1634 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
---|
| 1635 | ENDIF |
---|
| 1636 | |
---|
[4654] | 1637 | |
---|
| 1638 | RETURN |
---|
| 1639 | |
---|
[4380] | 1640 | END SUBROUTINE lscp |
---|
[3999] | 1641 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1642 | |
---|
[4664] | 1643 | END MODULE lmdz_lscp |
---|