1 | MODULE lmdz_lscp |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
8 | SUBROUTINE lscp(klon,klev,dtime,missing_val, & |
---|
9 | paprs,pplay,temp,qt,qice_save,ptconv,ratqs,sigma_qtherm, & |
---|
10 | d_t, d_q, d_ql, d_qi, rneb, rneblsvol, & |
---|
11 | pfraclr, pfracld, & |
---|
12 | cldfraliq, sigma2_icefracturb,mean_icefracturb, & |
---|
13 | radocond, radicefrac, rain, snow, & |
---|
14 | frac_impa, frac_nucl, beta, & |
---|
15 | prfl, psfl, rhcl, qta, fraca, & |
---|
16 | tv, pspsk, tla, thl, iflag_cld_th, & |
---|
17 | iflag_ice_thermo, distcltop, temp_cltop, & |
---|
18 | tke, tke_dissip, & |
---|
19 | cell_area, & |
---|
20 | cf_seri, rvc_seri, u_seri, v_seri, & |
---|
21 | qsub, qissr, qcld, subfra, issrfra, gamma_cond, & |
---|
22 | ratio_qi_qtot, dcf_sub, dcf_con, dcf_mix, & |
---|
23 | dqi_adj, dqi_sub, dqi_con, dqi_mix, dqvc_adj, & |
---|
24 | dqvc_sub, dqvc_con, dqvc_mix, qsatl, qsati, & |
---|
25 | Tcontr, qcontr, qcontr2, fcontrN, fcontrP, dcf_avi,& |
---|
26 | dqi_avi, dqvc_avi, flight_dist, flight_h2o, & |
---|
27 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv, & |
---|
28 | qraindiag, qsnowdiag, dqreva, dqssub, dqrauto, & |
---|
29 | dqrcol, dqrmelt, dqrfreez, dqsauto, dqsagg, dqsrim,& |
---|
30 | dqsmelt, dqsfreez) |
---|
31 | |
---|
32 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
33 | ! Authors: Z.X. Li (LMD), J-L Dufresne (LMD), C. Rio (LMD), J-Y Grandpeix (LMD) |
---|
34 | ! A. JAM (LMD), J-B Madeleine (LMD), E. Vignon (LMD), L. Touzze-Peiffert (LMD) |
---|
35 | !-------------------------------------------------------------------------------- |
---|
36 | ! Date: 01/2021 |
---|
37 | !-------------------------------------------------------------------------------- |
---|
38 | ! Aim: Large Scale Clouds and Precipitation (LSCP) |
---|
39 | ! |
---|
40 | ! This code is a new version of the fisrtilp.F90 routine, which is itself a |
---|
41 | ! merge of 'first' (superrsaturation physics, P. LeVan K. Laval) |
---|
42 | ! and 'ilp' (il pleut, L. Li) |
---|
43 | ! |
---|
44 | ! Compared to the original fisrtilp code, lscp |
---|
45 | ! -> assumes thermcep = .TRUE. all the time (fisrtilp inconsistent when .FALSE.) |
---|
46 | ! -> consider always precipitation thermalisation (fl_cor_ebil>0) |
---|
47 | ! -> option iflag_fisrtilp_qsat<0 no longer possible (qsat does not evolve with T) |
---|
48 | ! -> option "oldbug" by JYG has been removed |
---|
49 | ! -> iflag_t_glace >0 always |
---|
50 | ! -> the 'all or nothing' cloud approach is no longer available (cpartiel=T always) |
---|
51 | ! -> rectangular distribution from L. Li no longer available |
---|
52 | ! -> We always account for the Wegener-Findeisen-Bergeron process (iflag_bergeron = 2 in fisrt) |
---|
53 | !-------------------------------------------------------------------------------- |
---|
54 | ! References: |
---|
55 | ! |
---|
56 | ! - Bony, S., & Emanuel, K. A. 2001, JAS, doi: 10.1175/1520-0469(2001)058<3158:APOTCA>2.0.CO;2 |
---|
57 | ! - Hourdin et al. 2013, Clim Dyn, doi:10.1007/s00382-012-1343-y |
---|
58 | ! - Jam et al. 2013, Boundary-Layer Meteorol, doi:10.1007/s10546-012-9789-3 |
---|
59 | ! - Jouhaud, et al. 2018. JAMES, doi:10.1029/2018MS001379 |
---|
60 | ! - Madeleine et al. 2020, JAMES, doi:10.1029/2020MS002046 |
---|
61 | ! - Touzze-Peifert Ludo, PhD thesis, p117-124 |
---|
62 | ! ------------------------------------------------------------------------------- |
---|
63 | ! Code structure: |
---|
64 | ! |
---|
65 | ! P0> Thermalization of the precipitation coming from the overlying layer |
---|
66 | ! P1> Evaporation of the precipitation (falling from the k+1 level) |
---|
67 | ! P2> Cloud formation (at the k level) |
---|
68 | ! P2.A.1> With the PDFs, calculation of cloud properties using the inital |
---|
69 | ! values of T and Q |
---|
70 | ! P2.A.2> Coupling between condensed water and temperature |
---|
71 | ! P2.A.3> Calculation of final quantities associated with cloud formation |
---|
72 | ! P2.B> Release of Latent heat after cloud formation |
---|
73 | ! P3> Autoconversion to precipitation (k-level) |
---|
74 | ! P4> Wet scavenging |
---|
75 | !------------------------------------------------------------------------------ |
---|
76 | ! Some preliminary comments (JBM) : |
---|
77 | ! |
---|
78 | ! The cloud water that the radiation scheme sees is not the same that the cloud |
---|
79 | ! water used in the physics and the dynamics |
---|
80 | ! |
---|
81 | ! During the autoconversion to precipitation (P3 step), radocond (cloud water used |
---|
82 | ! by the radiation scheme) is calculated as an average of the water that remains |
---|
83 | ! in the cloud during the precipitation and not the water remaining at the end |
---|
84 | ! of the time step. The latter is used in the rest of the physics and advected |
---|
85 | ! by the dynamics. |
---|
86 | ! |
---|
87 | ! In summary: |
---|
88 | ! |
---|
89 | ! Radiation: |
---|
90 | ! xflwc(newmicro)+xfiwc(newmicro) = |
---|
91 | ! radocond=lwcon(nc)+iwcon(nc) |
---|
92 | ! |
---|
93 | ! Notetheless, be aware of: |
---|
94 | ! |
---|
95 | ! radocond .NE. ocond(nc) |
---|
96 | ! i.e.: |
---|
97 | ! lwcon(nc)+iwcon(nc) .NE. ocond(nc) |
---|
98 | ! but oliq+(ocond-oliq) .EQ. ocond |
---|
99 | ! (which is not trivial) |
---|
100 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
101 | ! |
---|
102 | |
---|
103 | ! USE de modules contenant des fonctions. |
---|
104 | USE lmdz_cloudth, ONLY : cloudth, cloudth_v3, cloudth_v6, cloudth_mpc |
---|
105 | USE lmdz_lscp_tools, ONLY : calc_qsat_ecmwf, calc_gammasat |
---|
106 | USE lmdz_lscp_tools, ONLY : icefrac_lscp, icefrac_lscp_turb |
---|
107 | USE lmdz_lscp_tools, ONLY : fallice_velocity, distance_to_cloud_top |
---|
108 | USE lmdz_lscp_condensation, ONLY : condensation_lognormal, condensation_ice_supersat |
---|
109 | USE lmdz_lscp_poprecip, ONLY : poprecip_precld, poprecip_postcld |
---|
110 | |
---|
111 | ! Use du module lmdz_lscp_ini contenant les constantes |
---|
112 | USE lmdz_lscp_ini, ONLY : prt_level, lunout, eps |
---|
113 | USE lmdz_lscp_ini, ONLY : seuil_neb, niter_lscp, iflag_evap_prec, t_coup, DDT0, ztfondue, rain_int_min |
---|
114 | USE lmdz_lscp_ini, ONLY : ok_radocond_snow, a_tr_sca, cld_expo_con, cld_expo_lsc |
---|
115 | USE lmdz_lscp_ini, ONLY : iflag_cloudth_vert, iflag_rain_incloud_vol, iflag_t_glace, t_glace_min |
---|
116 | USE lmdz_lscp_ini, ONLY : coef_eva, coef_sub,cld_tau_lsc, cld_tau_con, cld_lc_lsc, cld_lc_con |
---|
117 | USE lmdz_lscp_ini, ONLY : iflag_bergeron, iflag_fisrtilp_qsat, iflag_vice, cice_velo, dice_velo |
---|
118 | USE lmdz_lscp_ini, ONLY : iflag_autoconversion, ffallv_con, ffallv_lsc, min_frac_th_cld |
---|
119 | USE lmdz_lscp_ini, ONLY : RCPD, RLSTT, RLVTT, RLMLT, RVTMP2, RTT, RD, RG |
---|
120 | USE lmdz_lscp_ini, ONLY : ok_poprecip |
---|
121 | USE lmdz_lscp_ini, ONLY : ok_ice_supersat, ok_unadjusted_clouds, iflag_icefrac |
---|
122 | |
---|
123 | IMPLICIT NONE |
---|
124 | |
---|
125 | !=============================================================================== |
---|
126 | ! VARIABLES DECLARATION |
---|
127 | !=============================================================================== |
---|
128 | |
---|
129 | ! INPUT VARIABLES: |
---|
130 | !----------------- |
---|
131 | |
---|
132 | INTEGER, INTENT(IN) :: klon,klev ! number of horizontal grid points and vertical levels |
---|
133 | REAL, INTENT(IN) :: dtime ! time step [s] |
---|
134 | REAL, INTENT(IN) :: missing_val ! missing value for output |
---|
135 | |
---|
136 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! inter-layer pressure [Pa] |
---|
137 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pressure [Pa] |
---|
138 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature (K) |
---|
139 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qt ! total specific humidity (in vapor phase in input) [kg/kg] |
---|
140 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qice_save ! ice specific from previous time step [kg/kg] |
---|
141 | INTEGER, INTENT(IN) :: iflag_cld_th ! flag that determines the distribution of convective clouds |
---|
142 | INTEGER, INTENT(IN) :: iflag_ice_thermo! flag to activate the ice thermodynamics |
---|
143 | ! CR: if iflag_ice_thermo=2, only convection is active |
---|
144 | LOGICAL, DIMENSION(klon,klev), INTENT(IN) :: ptconv ! grid points where deep convection scheme is active |
---|
145 | |
---|
146 | !Inputs associated with thermal plumes |
---|
147 | |
---|
148 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tv ! virtual potential temperature [K] |
---|
149 | REAL, DIMENSION(klon,klev), INTENT(IN) :: qta ! specific humidity within thermals [kg/kg] |
---|
150 | REAL, DIMENSION(klon,klev), INTENT(IN) :: fraca ! fraction of thermals within the mesh [-] |
---|
151 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pspsk ! exner potential (p/100000)**(R/cp) |
---|
152 | REAL, DIMENSION(klon,klev), INTENT(IN) :: tla ! liquid temperature within thermals [K] |
---|
153 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke !--turbulent kinetic energy [m2/s2] |
---|
154 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: tke_dissip !--TKE dissipation [m2/s3] |
---|
155 | |
---|
156 | ! INPUT/OUTPUT variables |
---|
157 | !------------------------ |
---|
158 | |
---|
159 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: thl ! liquid potential temperature [K] |
---|
160 | REAL, DIMENSION(klon,klev), INTENT(INOUT) :: ratqs,sigma_qtherm ! function of pressure that sets the large-scale |
---|
161 | |
---|
162 | |
---|
163 | ! INPUT/OUTPUT condensation and ice supersaturation |
---|
164 | !-------------------------------------------------- |
---|
165 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: cf_seri ! cloud fraction [-] |
---|
166 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: ratio_qi_qtot ! solid specific water to total specific water ratio [-] |
---|
167 | REAL, DIMENSION(klon,klev), INTENT(INOUT):: rvc_seri ! cloudy water vapor to total water vapor ratio [-] |
---|
168 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_seri ! eastward wind [m/s] |
---|
169 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_seri ! northward wind [m/s] |
---|
170 | REAL, DIMENSION(klon), INTENT(IN) :: cell_area ! area of each cell [m2] |
---|
171 | |
---|
172 | ! INPUT/OUTPUT aviation |
---|
173 | !-------------------------------------------------- |
---|
174 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_dist ! Aviation distance flown within the mesh [m/s/mesh] |
---|
175 | REAL, DIMENSION(klon,klev), INTENT(IN) :: flight_h2o ! Aviation H2O emitted within the mesh [kg H2O/s/mesh] |
---|
176 | |
---|
177 | ! OUTPUT variables |
---|
178 | !----------------- |
---|
179 | |
---|
180 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t ! temperature increment [K] |
---|
181 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_q ! specific humidity increment [kg/kg] |
---|
182 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_ql ! liquid water increment [kg/kg] |
---|
183 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_qi ! cloud ice mass increment [kg/kg] |
---|
184 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneb ! cloud fraction [-] |
---|
185 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rneblsvol ! cloud fraction per unit volume [-] |
---|
186 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfraclr ! precip fraction clear-sky part [-] |
---|
187 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: pfracld ! precip fraction cloudy part [-] |
---|
188 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cldfraliq ! liquid fraction of cloud [-] |
---|
189 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: sigma2_icefracturb ! Variance of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
190 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: mean_icefracturb ! Mean of the diagnostic supersaturation distribution (icefrac_turb) [-] |
---|
191 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radocond ! condensed water used in the radiation scheme [kg/kg] |
---|
192 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: radicefrac ! ice fraction of condensed water for radiation scheme |
---|
193 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: rhcl ! clear-sky relative humidity [-] |
---|
194 | REAL, DIMENSION(klon), INTENT(OUT) :: rain ! surface large-scale rainfall [kg/s/m2] |
---|
195 | REAL, DIMENSION(klon), INTENT(OUT) :: snow ! surface large-scale snowfall [kg/s/m2] |
---|
196 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: prfl ! large-scale rainfall flux in the column [kg/s/m2] |
---|
197 | REAL, DIMENSION(klon,klev+1), INTENT(OUT) :: psfl ! large-scale snowfall flux in the column [kg/s/m2] |
---|
198 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: distcltop ! distance to cloud top [m] |
---|
199 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: temp_cltop ! temperature of cloud top [K] |
---|
200 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: beta ! conversion rate of condensed water |
---|
201 | |
---|
202 | ! fraction of aerosol scavenging through impaction and nucleation (for on-line) |
---|
203 | |
---|
204 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_impa ! scavenging fraction due tu impaction [-] |
---|
205 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: frac_nucl ! scavenging fraction due tu nucleation [-] |
---|
206 | |
---|
207 | ! for condensation and ice supersaturation |
---|
208 | |
---|
209 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsub !--specific total water content in sub-saturated clear sky region [kg/kg] |
---|
210 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qissr !--specific total water content in supersat region [kg/kg] |
---|
211 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcld !--specific total water content in cloudy region [kg/kg] |
---|
212 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: subfra !--mesh fraction of subsaturated clear sky [-] |
---|
213 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: issrfra !--mesh fraction of ISSR [-] |
---|
214 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: gamma_cond !--coefficient governing the ice nucleation RHi threshold [-] |
---|
215 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_sub !--cloud fraction tendency because of sublimation [s-1] |
---|
216 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_con !--cloud fraction tendency because of condensation [s-1] |
---|
217 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_mix !--cloud fraction tendency because of cloud mixing [s-1] |
---|
218 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_adj !--specific ice content tendency because of temperature adjustment [kg/kg/s] |
---|
219 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_sub !--specific ice content tendency because of sublimation [kg/kg/s] |
---|
220 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_con !--specific ice content tendency because of condensation [kg/kg/s] |
---|
221 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_mix !--specific ice content tendency because of cloud mixing [kg/kg/s] |
---|
222 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_adj !--specific cloud water vapor tendency because of temperature adjustment [kg/kg/s] |
---|
223 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_sub !--specific cloud water vapor tendency because of sublimation [kg/kg/s] |
---|
224 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_con !--specific cloud water vapor tendency because of condensation [kg/kg/s] |
---|
225 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_mix !--specific cloud water vapor tendency because of cloud mixing [kg/kg/s] |
---|
226 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsatl !--saturation specific humidity wrt liquid [kg/kg] |
---|
227 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsati !--saturation specific humidity wrt ice [kg/kg] |
---|
228 | |
---|
229 | ! for contrails and aviation |
---|
230 | |
---|
231 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Tcontr !--threshold temperature for contrail formation [K] |
---|
232 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr !--threshold humidity for contrail formation [kg/kg] |
---|
233 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qcontr2 !--// (2nd expression more consistent with LMDZ expression of q) |
---|
234 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrN !--fraction of grid favourable to non-persistent contrails |
---|
235 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: fcontrP !--fraction of grid favourable to persistent contrails |
---|
236 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dcf_avi !--cloud fraction tendency because of aviation [s-1] |
---|
237 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqi_avi !--specific ice content tendency because of aviation [kg/kg/s] |
---|
238 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqvc_avi !--specific cloud water vapor tendency because of aviation [kg/kg/s] |
---|
239 | |
---|
240 | |
---|
241 | ! for POPRECIP |
---|
242 | |
---|
243 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qraindiag !--DIAGNOSTIC specific rain content [kg/kg] |
---|
244 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: qsnowdiag !--DIAGNOSTIC specific snow content [kg/kg] |
---|
245 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqreva !--rain tendendy due to evaporation [kg/kg/s] |
---|
246 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqssub !--snow tendency due to sublimation [kg/kg/s] |
---|
247 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrcol !--rain tendendy due to collection by rain of liquid cloud droplets [kg/kg/s] |
---|
248 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsagg !--snow tendency due to collection of lcoud ice by aggregation [kg/kg/s] |
---|
249 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrauto !--rain tendency due to autoconversion of cloud liquid [kg/kg/s] |
---|
250 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsauto !--snow tendency due to autoconversion of cloud ice [kg/kg/s] |
---|
251 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsrim !--snow tendency due to riming [kg/kg/s] |
---|
252 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsmelt !--snow tendency due to melting [kg/kg/s] |
---|
253 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrmelt !--rain tendency due to melting [kg/kg/s] |
---|
254 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqsfreez !--snow tendency due to freezing [kg/kg/s] |
---|
255 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: dqrfreez !--rain tendency due to freezing [kg/kg/s] |
---|
256 | |
---|
257 | ! for thermals |
---|
258 | |
---|
259 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sth !--mean saturation deficit in thermals |
---|
260 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_senv !--mean saturation deficit in environment |
---|
261 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmath !--std of saturation deficit in thermals |
---|
262 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: cloudth_sigmaenv !--std of saturation deficit in environment |
---|
263 | |
---|
264 | |
---|
265 | ! LOCAL VARIABLES: |
---|
266 | !---------------- |
---|
267 | REAL,DIMENSION(klon) :: qsl, qsi ! saturation threshold at current vertical level |
---|
268 | REAL :: zct, zcl,zexpo |
---|
269 | REAL, DIMENSION(klon,klev) :: ctot |
---|
270 | REAL, DIMENSION(klon,klev) :: ctot_vol |
---|
271 | REAL, DIMENSION(klon) :: zqs, zdqs |
---|
272 | REAL :: zdelta, zcor, zcvm5 |
---|
273 | REAL, DIMENSION(klon) :: zdqsdT_raw |
---|
274 | REAL, DIMENSION(klon) :: gammasat,dgammasatdt ! coefficient to make cold condensation at the correct RH and derivative wrt T |
---|
275 | REAL, DIMENSION(klon) :: Tbef,qlbef,DT ! temperature, humidity and temp. variation during lognormal iteration |
---|
276 | REAL :: num,denom |
---|
277 | REAL :: cste |
---|
278 | REAL, DIMENSION(klon) :: zpdf_sig,zpdf_k,zpdf_delta ! lognormal parameters |
---|
279 | REAL, DIMENSION(klon) :: Zpdf_a,zpdf_b,zpdf_e1,zpdf_e2 ! lognormal intermediate variables |
---|
280 | REAL :: erf |
---|
281 | REAL, DIMENSION(klon) :: zfice_th |
---|
282 | REAL, DIMENSION(klon) :: qcloud, qincloud_mpc |
---|
283 | REAL, DIMENSION(klon) :: zrfl, zrfln |
---|
284 | REAL :: zqev, zqevt |
---|
285 | REAL, DIMENSION(klon) :: zifl, zifln, ziflprev |
---|
286 | REAL :: zqev0,zqevi, zqevti |
---|
287 | REAL, DIMENSION(klon) :: zoliq, zcond, zq, zqn |
---|
288 | REAL, DIMENSION(klon) :: zoliql, zoliqi |
---|
289 | REAL, DIMENSION(klon) :: zt |
---|
290 | REAL, DIMENSION(klon,klev) :: zrho |
---|
291 | REAL, DIMENSION(klon) :: zdz,iwc |
---|
292 | REAL :: zchau,zfroi |
---|
293 | REAL, DIMENSION(klon) :: zfice,zneb,znebprecip |
---|
294 | REAL :: zmelt,zrain,zsnow,zprecip |
---|
295 | REAL, DIMENSION(klon) :: dzfice |
---|
296 | REAL, DIMENSION(klon) :: zfice_turb, dzfice_turb |
---|
297 | REAL :: zsolid |
---|
298 | REAL, DIMENSION(klon) :: qtot, qzero |
---|
299 | REAL, DIMENSION(klon) :: dqsl,dqsi |
---|
300 | REAL :: smallestreal |
---|
301 | ! Variables for Bergeron process |
---|
302 | REAL :: zcp, coef1, DeltaT, Deltaq, Deltaqprecl |
---|
303 | REAL, DIMENSION(klon) :: zqpreci, zqprecl |
---|
304 | ! Variables precipitation energy conservation |
---|
305 | REAL, DIMENSION(klon) :: zmqc |
---|
306 | REAL :: zalpha_tr |
---|
307 | REAL :: zfrac_lessi |
---|
308 | REAL, DIMENSION(klon) :: zprec_cond |
---|
309 | REAL :: zmair |
---|
310 | REAL :: zcpair, zcpeau |
---|
311 | REAL, DIMENSION(klon) :: zlh_solid |
---|
312 | REAL, DIMENSION(klon) :: ztupnew |
---|
313 | REAL, DIMENSION(klon) :: zqvapclr, zqupnew ! for poprecip evap / subl |
---|
314 | REAL :: zm_solid ! for liquid -> solid conversion |
---|
315 | REAL, DIMENSION(klon) :: zrflclr, zrflcld |
---|
316 | REAL, DIMENSION(klon) :: d_zrfl_clr_cld, d_zifl_clr_cld |
---|
317 | REAL, DIMENSION(klon) :: d_zrfl_cld_clr, d_zifl_cld_clr |
---|
318 | REAL, DIMENSION(klon) :: ziflclr, ziflcld |
---|
319 | REAL, DIMENSION(klon) :: znebprecipclr, znebprecipcld |
---|
320 | REAL, DIMENSION(klon) :: tot_zneb, tot_znebn, d_tot_zneb |
---|
321 | REAL, DIMENSION(klon) :: d_znebprecip_clr_cld, d_znebprecip_cld_clr |
---|
322 | REAL, DIMENSION(klon,klev) :: velo |
---|
323 | REAL :: vr, ffallv |
---|
324 | REAL :: qlmpc, qimpc, rnebmpc |
---|
325 | REAL, DIMENSION(klon,klev) :: radocondi, radocondl |
---|
326 | REAL :: effective_zneb |
---|
327 | REAL, DIMENSION(klon) :: zdistcltop, ztemp_cltop |
---|
328 | REAL, DIMENSION(klon) :: zqliq, zqice, zqvapcl ! for icefrac_lscp_turb |
---|
329 | |
---|
330 | ! for condensation and ice supersaturation |
---|
331 | REAL, DIMENSION(klon) :: qvc, shear |
---|
332 | REAL :: delta_z |
---|
333 | !--Added for ice supersaturation (ok_ice_supersat) and contrails (ok_plane_contrails) |
---|
334 | ! Constants used for calculating ratios that are advected (using a parent-child |
---|
335 | ! formalism). This is not done in the dynamical core because at this moment, |
---|
336 | ! only isotopes can use this parent-child formalism. Note that the two constants |
---|
337 | ! are the same as the one use in the dynamical core, being also defined in |
---|
338 | ! dyn3d_common/infotrac.F90 |
---|
339 | REAL :: min_qParent, min_ratio |
---|
340 | |
---|
341 | INTEGER i, k, n, kk, iter |
---|
342 | INTEGER, DIMENSION(klon) :: n_i |
---|
343 | INTEGER ncoreczq |
---|
344 | INTEGER, DIMENSION(klon,klev) :: mpc_bl_points |
---|
345 | LOGICAL iftop |
---|
346 | |
---|
347 | LOGICAL, DIMENSION(klon) :: lognormale |
---|
348 | LOGICAL, DIMENSION(klon) :: keepgoing |
---|
349 | |
---|
350 | CHARACTER (len = 20) :: modname = 'lscp' |
---|
351 | CHARACTER (len = 80) :: abort_message |
---|
352 | |
---|
353 | |
---|
354 | !=============================================================================== |
---|
355 | ! INITIALISATION |
---|
356 | !=============================================================================== |
---|
357 | |
---|
358 | ! Few initial checks |
---|
359 | |
---|
360 | |
---|
361 | IF (iflag_fisrtilp_qsat .LT. 0) THEN |
---|
362 | abort_message = 'lscp cannot be used with iflag_fisrtilp<0' |
---|
363 | CALL abort_physic(modname,abort_message,1) |
---|
364 | ENDIF |
---|
365 | |
---|
366 | ! Few initialisations |
---|
367 | |
---|
368 | znebprecip(:)=0.0 |
---|
369 | ctot_vol(1:klon,1:klev)=0.0 |
---|
370 | rneblsvol(1:klon,1:klev)=0.0 |
---|
371 | smallestreal=1.e-9 |
---|
372 | znebprecipclr(:)=0.0 |
---|
373 | znebprecipcld(:)=0.0 |
---|
374 | mpc_bl_points(:,:)=0 |
---|
375 | |
---|
376 | IF (prt_level>9) WRITE(lunout,*) 'NUAGES4 A. JAM' |
---|
377 | |
---|
378 | ! AA for 'safety' reasons |
---|
379 | zalpha_tr = 0. |
---|
380 | zfrac_lessi = 0. |
---|
381 | beta(:,:)= 0. |
---|
382 | |
---|
383 | ! Initialisation of variables: |
---|
384 | |
---|
385 | prfl(:,:) = 0.0 |
---|
386 | psfl(:,:) = 0.0 |
---|
387 | d_t(:,:) = 0.0 |
---|
388 | d_q(:,:) = 0.0 |
---|
389 | d_ql(:,:) = 0.0 |
---|
390 | d_qi(:,:) = 0.0 |
---|
391 | rneb(:,:) = 0.0 |
---|
392 | pfraclr(:,:)=0.0 |
---|
393 | pfracld(:,:)=0.0 |
---|
394 | cldfraliq(:,:)=0. |
---|
395 | sigma2_icefracturb(:,:)=0. |
---|
396 | mean_icefracturb(:,:)=0. |
---|
397 | radocond(:,:) = 0.0 |
---|
398 | radicefrac(:,:) = 0.0 |
---|
399 | frac_nucl(:,:) = 1.0 |
---|
400 | frac_impa(:,:) = 1.0 |
---|
401 | rain(:) = 0.0 |
---|
402 | snow(:) = 0.0 |
---|
403 | zoliq(:)=0.0 |
---|
404 | zfice(:)=0.0 |
---|
405 | dzfice(:)=0.0 |
---|
406 | zfice_turb(:)=0.0 |
---|
407 | dzfice_turb(:)=0.0 |
---|
408 | zqprecl(:)=0.0 |
---|
409 | zqpreci(:)=0.0 |
---|
410 | zrfl(:) = 0.0 |
---|
411 | zifl(:) = 0.0 |
---|
412 | ziflprev(:)=0.0 |
---|
413 | zneb(:) = seuil_neb |
---|
414 | zrflclr(:) = 0.0 |
---|
415 | ziflclr(:) = 0.0 |
---|
416 | zrflcld(:) = 0.0 |
---|
417 | ziflcld(:) = 0.0 |
---|
418 | tot_zneb(:) = 0.0 |
---|
419 | tot_znebn(:) = 0.0 |
---|
420 | d_tot_zneb(:) = 0.0 |
---|
421 | qzero(:) = 0.0 |
---|
422 | zdistcltop(:)=0.0 |
---|
423 | ztemp_cltop(:) = 0.0 |
---|
424 | ztupnew(:)=0.0 |
---|
425 | |
---|
426 | distcltop(:,:)=0. |
---|
427 | temp_cltop(:,:)=0. |
---|
428 | |
---|
429 | !--Ice supersaturation |
---|
430 | gamma_cond(:,:) = 1. |
---|
431 | qissr(:,:) = 0. |
---|
432 | issrfra(:,:) = 0. |
---|
433 | dcf_sub(:,:) = 0. |
---|
434 | dcf_con(:,:) = 0. |
---|
435 | dcf_mix(:,:) = 0. |
---|
436 | dqi_adj(:,:) = 0. |
---|
437 | dqi_sub(:,:) = 0. |
---|
438 | dqi_con(:,:) = 0. |
---|
439 | dqi_mix(:,:) = 0. |
---|
440 | dqvc_adj(:,:) = 0. |
---|
441 | dqvc_sub(:,:) = 0. |
---|
442 | dqvc_con(:,:) = 0. |
---|
443 | dqvc_mix(:,:) = 0. |
---|
444 | fcontrN(:,:) = 0. |
---|
445 | fcontrP(:,:) = 0. |
---|
446 | Tcontr(:,:) = missing_val |
---|
447 | qcontr(:,:) = missing_val |
---|
448 | qcontr2(:,:) = missing_val |
---|
449 | dcf_avi(:,:) = 0. |
---|
450 | dqi_avi(:,:) = 0. |
---|
451 | dqvc_avi(:,:) = 0. |
---|
452 | qvc(:) = 0. |
---|
453 | shear(:) = 0. |
---|
454 | min_qParent = 1.e-30 |
---|
455 | min_ratio = 1.e-16 |
---|
456 | |
---|
457 | !-- poprecip |
---|
458 | qraindiag(:,:)= 0. |
---|
459 | qsnowdiag(:,:)= 0. |
---|
460 | dqreva(:,:) = 0. |
---|
461 | dqrauto(:,:) = 0. |
---|
462 | dqrmelt(:,:) = 0. |
---|
463 | dqrfreez(:,:) = 0. |
---|
464 | dqrcol(:,:) = 0. |
---|
465 | dqssub(:,:) = 0. |
---|
466 | dqsauto(:,:) = 0. |
---|
467 | dqsrim(:,:) = 0. |
---|
468 | dqsagg(:,:) = 0. |
---|
469 | dqsfreez(:,:) = 0. |
---|
470 | dqsmelt(:,:) = 0. |
---|
471 | zqupnew(:) = 0. |
---|
472 | zqvapclr(:) = 0. |
---|
473 | |
---|
474 | |
---|
475 | |
---|
476 | !c_iso: variable initialisation for iso |
---|
477 | |
---|
478 | |
---|
479 | !=============================================================================== |
---|
480 | ! BEGINNING OF VERTICAL LOOP FROM TOP TO BOTTOM |
---|
481 | !=============================================================================== |
---|
482 | |
---|
483 | ncoreczq=0 |
---|
484 | |
---|
485 | DO k = klev, 1, -1 |
---|
486 | |
---|
487 | IF (k.LE.klev-1) THEN |
---|
488 | iftop=.false. |
---|
489 | ELSE |
---|
490 | iftop=.true. |
---|
491 | ENDIF |
---|
492 | |
---|
493 | ! Initialisation temperature and specific humidity |
---|
494 | ! temp(klon,klev) is not modified by the routine, instead all changes in temperature are made on zt |
---|
495 | ! at the end of the klon loop, a temperature incremtent d_t due to all processes |
---|
496 | ! (thermalization, evap/sub incoming precip, cloud formation, precipitation processes) is calculated |
---|
497 | ! d_t = temperature tendency due to lscp |
---|
498 | ! The temperature of the overlying layer is updated here because needed for thermalization |
---|
499 | DO i = 1, klon |
---|
500 | zt(i)=temp(i,k) |
---|
501 | zq(i)=qt(i,k) |
---|
502 | IF (.not. iftop) THEN |
---|
503 | ztupnew(i) = temp(i,k+1) + d_t(i,k+1) |
---|
504 | zqupnew(i) = qt(i,k+1) + d_q(i,k+1) + d_ql(i,k+1) + d_qi(i,k+1) |
---|
505 | !--zqs(i) is the saturation specific humidity in the layer above |
---|
506 | zqvapclr(i) = MAX(0., qt(i,k+1) + d_q(i,k+1) - rneb(i,k+1) * zqs(i)) |
---|
507 | ENDIF |
---|
508 | !c_iso init of iso |
---|
509 | ENDDO |
---|
510 | |
---|
511 | !================================================================ |
---|
512 | ! Flag for the new and more microphysical treatment of precipitation from Atelier Nuage (R) |
---|
513 | IF (ok_poprecip) THEN |
---|
514 | |
---|
515 | CALL poprecip_precld(klon, dtime, iftop, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
---|
516 | zt, ztupnew, zq, zmqc, znebprecipclr, znebprecipcld, & |
---|
517 | zqvapclr, zqupnew, & |
---|
518 | zrfl, zrflclr, zrflcld, & |
---|
519 | zifl, ziflclr, ziflcld, & |
---|
520 | dqreva(:,k),dqssub(:,k) & |
---|
521 | ) |
---|
522 | |
---|
523 | !================================================================ |
---|
524 | ELSE |
---|
525 | |
---|
526 | ! -------------------------------------------------------------------- |
---|
527 | ! P1> Thermalization of precipitation falling from the overlying layer |
---|
528 | ! -------------------------------------------------------------------- |
---|
529 | ! Computes air temperature variation due to enthalpy transported by |
---|
530 | ! precipitation. Precipitation is then thermalized with the air in the |
---|
531 | ! layer. |
---|
532 | ! The precipitation should remain thermalized throughout the different |
---|
533 | ! thermodynamical transformations. |
---|
534 | ! The corresponding water mass should |
---|
535 | ! be added when calculating the layer's enthalpy change with |
---|
536 | ! temperature |
---|
537 | ! See lmdzpedia page todoan |
---|
538 | ! todoan: check consistency with ice phase |
---|
539 | ! todoan: understand why several steps |
---|
540 | ! --------------------------------------------------------------------- |
---|
541 | |
---|
542 | IF (iftop) THEN |
---|
543 | |
---|
544 | DO i = 1, klon |
---|
545 | zmqc(i) = 0. |
---|
546 | ENDDO |
---|
547 | |
---|
548 | ELSE |
---|
549 | |
---|
550 | DO i = 1, klon |
---|
551 | |
---|
552 | zmair=(paprs(i,k)-paprs(i,k+1))/RG |
---|
553 | ! no condensed water so cp=cp(vapor+dry air) |
---|
554 | ! RVTMP2=rcpv/rcpd-1 |
---|
555 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
---|
556 | zcpeau=RCPD*RVTMP2 |
---|
557 | |
---|
558 | ! zmqc: precipitation mass that has to be thermalized with |
---|
559 | ! layer's air so that precipitation at the ground has the |
---|
560 | ! same temperature as the lowermost layer |
---|
561 | zmqc(i) = (zrfl(i)+zifl(i))*dtime/zmair |
---|
562 | ! t(i,k+1)+d_t(i,k+1): new temperature of the overlying layer |
---|
563 | zt(i) = ( ztupnew(i)*zmqc(i)*zcpeau + zcpair*zt(i) ) & |
---|
564 | / (zcpair + zmqc(i)*zcpeau) |
---|
565 | |
---|
566 | ENDDO |
---|
567 | |
---|
568 | ENDIF |
---|
569 | |
---|
570 | ! -------------------------------------------------------------------- |
---|
571 | ! P2> Precipitation evaporation/sublimation/melting |
---|
572 | ! -------------------------------------------------------------------- |
---|
573 | ! A part of the precipitation coming from above is evaporated/sublimated/melted. |
---|
574 | ! -------------------------------------------------------------------- |
---|
575 | |
---|
576 | IF (iflag_evap_prec.GE.1) THEN |
---|
577 | |
---|
578 | ! Calculation of saturation specific humidity |
---|
579 | ! depending on temperature: |
---|
580 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
---|
581 | ! wrt liquid water |
---|
582 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,1,.false.,qsl(:),dqsl(:)) |
---|
583 | ! wrt ice |
---|
584 | CALL calc_qsat_ecmwf(klon,zt(:),qzero(:),pplay(:,k),RTT,2,.false.,qsi(:),dqsi(:)) |
---|
585 | |
---|
586 | DO i = 1, klon |
---|
587 | |
---|
588 | ! if precipitation |
---|
589 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
590 | |
---|
591 | ! LudoTP: we only account for precipitation evaporation in the clear-sky (iflag_evap_prec>=4). |
---|
592 | ! c_iso: likely important to distinguish cs from neb isotope precipitation |
---|
593 | |
---|
594 | IF (iflag_evap_prec.GE.4) THEN |
---|
595 | zrfl(i) = zrflclr(i) |
---|
596 | zifl(i) = ziflclr(i) |
---|
597 | ENDIF |
---|
598 | |
---|
599 | IF (iflag_evap_prec.EQ.1) THEN |
---|
600 | znebprecip(i)=zneb(i) |
---|
601 | ELSE |
---|
602 | znebprecip(i)=MAX(zneb(i),znebprecip(i)) |
---|
603 | ENDIF |
---|
604 | |
---|
605 | IF (iflag_evap_prec.GT.4) THEN |
---|
606 | ! Max evaporation not to saturate the clear sky precip fraction |
---|
607 | ! i.e. the fraction where evaporation occurs |
---|
608 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecipclr(i)) |
---|
609 | ELSEIF (iflag_evap_prec .EQ. 4) THEN |
---|
610 | ! Max evaporation not to saturate the whole mesh |
---|
611 | ! Pay attention -> lead to unrealistic and excessive evaporation |
---|
612 | zqev0 = MAX(0.0, zqs(i)-zq(i)) |
---|
613 | ELSE |
---|
614 | ! Max evap not to saturate the fraction below the cloud |
---|
615 | zqev0 = MAX(0.0, (zqs(i)-zq(i))*znebprecip(i)) |
---|
616 | ENDIF |
---|
617 | |
---|
618 | ! Evaporation of liquid precipitation coming from above |
---|
619 | ! dP/dz=beta*(1-q/qsat)*sqrt(P) |
---|
620 | ! formula from Sundquist 1988, Klemp & Wilhemson 1978 |
---|
621 | ! LTP: evaporation only in the clear sky part (iflag_evap_prec>=4) |
---|
622 | |
---|
623 | IF (iflag_evap_prec.EQ.3) THEN |
---|
624 | zqevt = znebprecip(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
625 | *SQRT(zrfl(i)/max(1.e-4,znebprecip(i))) & |
---|
626 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
627 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
628 | zqevt = znebprecipclr(i)*coef_eva*(1.0-zq(i)/qsl(i)) & |
---|
629 | *SQRT(zrfl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
630 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
631 | ELSE |
---|
632 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl(i))*SQRT(zrfl(i)) & |
---|
633 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
634 | ENDIF |
---|
635 | |
---|
636 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) & |
---|
637 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
638 | |
---|
639 | ! sublimation of the solid precipitation coming from above |
---|
640 | IF (iflag_evap_prec.EQ.3) THEN |
---|
641 | zqevti = znebprecip(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
642 | *SQRT(zifl(i)/max(1.e-4,znebprecip(i))) & |
---|
643 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
644 | ELSE IF (iflag_evap_prec.GE.4) THEN |
---|
645 | zqevti = znebprecipclr(i)*coef_sub*(1.0-zq(i)/qsi(i)) & |
---|
646 | *SQRT(zifl(i)/max(1.e-8,znebprecipclr(i))) & |
---|
647 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
648 | ELSE |
---|
649 | zqevti = 1.*coef_sub*(1.0-zq(i)/qsi(i))*SQRT(zifl(i)) & |
---|
650 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
651 | ENDIF |
---|
652 | |
---|
653 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) & |
---|
654 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
655 | |
---|
656 | ! A. JAM |
---|
657 | ! Evaporation limit: we ensure that the layer's fraction below |
---|
658 | ! the cloud or the whole mesh (depending on iflag_evap_prec) |
---|
659 | ! does not reach saturation. In this case, we |
---|
660 | ! redistribute zqev0 conserving the ratio liquid/ice |
---|
661 | |
---|
662 | IF (zqevt+zqevti.GT.zqev0) THEN |
---|
663 | zqev=zqev0*zqevt/(zqevt+zqevti) |
---|
664 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
---|
665 | ELSE |
---|
666 | zqev=zqevt |
---|
667 | zqevi=zqevti |
---|
668 | ENDIF |
---|
669 | |
---|
670 | |
---|
671 | ! New solid and liquid precipitation fluxes after evap and sublimation |
---|
672 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) & |
---|
673 | /RG/dtime) |
---|
674 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprs(i,k)-paprs(i,k+1)) & |
---|
675 | /RG/dtime) |
---|
676 | |
---|
677 | |
---|
678 | ! vapor, temperature, precip fluxes update |
---|
679 | ! vapor is updated after evaporation/sublimation (it is increased) |
---|
680 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
681 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
682 | ! zmqc is the total condensed water in the precip flux (it is decreased) |
---|
683 | zmqc(i) = zmqc(i) + (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
684 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
685 | ! air and precip temperature (i.e., gridbox temperature) |
---|
686 | ! is updated due to latent heat cooling |
---|
687 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
688 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
689 | * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) & |
---|
690 | + (zifln(i)-zifl(i)) & |
---|
691 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
692 | * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
693 | |
---|
694 | ! New values of liquid and solid precipitation |
---|
695 | zrfl(i) = zrfln(i) |
---|
696 | zifl(i) = zifln(i) |
---|
697 | |
---|
698 | ! c_iso here call_reevap that updates isotopic zrfl, zifl (in inout) |
---|
699 | ! due to evap + sublim |
---|
700 | |
---|
701 | |
---|
702 | IF (iflag_evap_prec.GE.4) THEN |
---|
703 | zrflclr(i) = zrfl(i) |
---|
704 | ziflclr(i) = zifl(i) |
---|
705 | IF(zrflclr(i) + ziflclr(i).LE.0) THEN |
---|
706 | znebprecipclr(i) = 0.0 |
---|
707 | ENDIF |
---|
708 | zrfl(i) = zrflclr(i) + zrflcld(i) |
---|
709 | zifl(i) = ziflclr(i) + ziflcld(i) |
---|
710 | ENDIF |
---|
711 | |
---|
712 | ! c_iso duplicate for isotopes or loop on isotopes |
---|
713 | |
---|
714 | ! Melting: |
---|
715 | zmelt = ((zt(i)-RTT)/(ztfondue-RTT)) ! JYG |
---|
716 | ! precip fraction that is melted |
---|
717 | zmelt = MIN(MAX(zmelt,0.),1.) |
---|
718 | |
---|
719 | ! update of rainfall and snowfall due to melting |
---|
720 | IF (iflag_evap_prec.GE.4) THEN |
---|
721 | zrflclr(i)=zrflclr(i)+zmelt*ziflclr(i) |
---|
722 | zrflcld(i)=zrflcld(i)+zmelt*ziflcld(i) |
---|
723 | zrfl(i)=zrflclr(i)+zrflcld(i) |
---|
724 | ELSE |
---|
725 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
726 | ENDIF |
---|
727 | |
---|
728 | |
---|
729 | ! c_iso: melting of isotopic precipi with zmelt (no fractionation) |
---|
730 | |
---|
731 | ! Latent heat of melting because of precipitation melting |
---|
732 | ! NB: the air + precip temperature is simultaneously updated |
---|
733 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
---|
734 | *RLMLT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i))) |
---|
735 | |
---|
736 | IF (iflag_evap_prec.GE.4) THEN |
---|
737 | ziflclr(i)=ziflclr(i)*(1.-zmelt) |
---|
738 | ziflcld(i)=ziflcld(i)*(1.-zmelt) |
---|
739 | zifl(i)=ziflclr(i)+ziflcld(i) |
---|
740 | ELSE |
---|
741 | zifl(i)=zifl(i)*(1.-zmelt) |
---|
742 | ENDIF |
---|
743 | |
---|
744 | ELSE |
---|
745 | ! if no precip, we reinitialize the cloud fraction used for the precip to 0 |
---|
746 | znebprecip(i)=0. |
---|
747 | |
---|
748 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
749 | |
---|
750 | ENDDO ! loop on klon |
---|
751 | |
---|
752 | ENDIF ! (iflag_evap_prec>=1) |
---|
753 | |
---|
754 | ENDIF ! (ok_poprecip) |
---|
755 | |
---|
756 | ! -------------------------------------------------------------------- |
---|
757 | ! End precip evaporation |
---|
758 | ! -------------------------------------------------------------------- |
---|
759 | |
---|
760 | ! Calculation of qsat, L/Cp*dqsat/dT and ncoreczq counter |
---|
761 | !------------------------------------------------------- |
---|
762 | |
---|
763 | qtot(:)=zq(:)+zmqc(:) |
---|
764 | CALL calc_qsat_ecmwf(klon,zt(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
---|
765 | DO i = 1, klon |
---|
766 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
---|
767 | zdqsdT_raw(i) = zdqs(i)*RCPD*(1.0+RVTMP2*zq(i)) / (RLVTT*(1.-zdelta) + RLSTT*zdelta) |
---|
768 | IF (zq(i) .LT. 1.e-15) THEN |
---|
769 | ncoreczq=ncoreczq+1 |
---|
770 | zq(i)=1.e-15 |
---|
771 | ENDIF |
---|
772 | ! c_iso: do something similar for isotopes |
---|
773 | |
---|
774 | ENDDO |
---|
775 | |
---|
776 | ! -------------------------------------------------------------------- |
---|
777 | ! P2> Cloud formation |
---|
778 | !--------------------------------------------------------------------- |
---|
779 | ! |
---|
780 | ! Unlike fisrtilp, we always assume a 'fractional cloud' approach |
---|
781 | ! i.e. clouds occupy only a fraction of the mesh (the subgrid distribution |
---|
782 | ! is prescribed and depends on large scale variables and boundary layer |
---|
783 | ! properties) |
---|
784 | ! The decrease in condensed part due tu latent heating is taken into |
---|
785 | ! account |
---|
786 | ! ------------------------------------------------------------------- |
---|
787 | |
---|
788 | ! P2.1> With the PDFs (log-normal, bigaussian) |
---|
789 | ! cloud properties calculation with the initial values of t and q |
---|
790 | ! ---------------------------------------------------------------- |
---|
791 | |
---|
792 | ! initialise gammasat and qincloud_mpc |
---|
793 | gammasat(:)=1. |
---|
794 | qincloud_mpc(:)=0. |
---|
795 | |
---|
796 | IF (iflag_cld_th.GE.5) THEN |
---|
797 | ! Cloud cover and content in meshes affected by shallow convection, |
---|
798 | ! are retrieved from a bi-gaussian distribution of the saturation deficit |
---|
799 | ! following Jam et al. 2013 |
---|
800 | |
---|
801 | IF (iflag_cloudth_vert.LE.2) THEN |
---|
802 | ! Old version of Arnaud Jam |
---|
803 | |
---|
804 | CALL cloudth(klon,klev,k,tv, & |
---|
805 | zq,qta,fraca, & |
---|
806 | qcloud,ctot,pspsk,paprs,pplay,tla,thl, & |
---|
807 | ratqs,zqs,temp, & |
---|
808 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
809 | |
---|
810 | |
---|
811 | ELSEIF (iflag_cloudth_vert.GE.3 .AND. iflag_cloudth_vert.LE.5) THEN |
---|
812 | ! Default version of Arnaud Jam |
---|
813 | |
---|
814 | CALL cloudth_v3(klon,klev,k,tv, & |
---|
815 | zq,qta,fraca, & |
---|
816 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
---|
817 | ratqs,sigma_qtherm,zqs,temp, & |
---|
818 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
819 | |
---|
820 | |
---|
821 | ELSEIF (iflag_cloudth_vert.EQ.6) THEN |
---|
822 | ! Jean Jouhaud's version, with specific separation between surface and volume |
---|
823 | ! cloud fraction Decembre 2018 |
---|
824 | |
---|
825 | CALL cloudth_v6(klon,klev,k,tv, & |
---|
826 | zq,qta,fraca, & |
---|
827 | qcloud,ctot,ctot_vol,pspsk,paprs,pplay,tla,thl, & |
---|
828 | ratqs,zqs,temp, & |
---|
829 | cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
830 | |
---|
831 | ELSEIF (iflag_cloudth_vert .EQ. 7) THEN |
---|
832 | ! Updated version of Arnaud Jam (correction by E. Vignon) + adapted treatment |
---|
833 | ! for boundary-layer mixed phase clouds |
---|
834 | CALL cloudth_mpc(klon,klev,k,mpc_bl_points,zt,zq,qta(:,k),fraca(:,k), & |
---|
835 | pspsk(:,k),paprs(:,k+1),paprs(:,k),pplay(:,k), tla(:,k), & |
---|
836 | ratqs(:,k),qcloud,qincloud_mpc,zfice_th,ctot(:,k),ctot_vol(:,k), & |
---|
837 | cloudth_sth(:,k),cloudth_senv(:,k),cloudth_sigmath(:,k),cloudth_sigmaenv(:,k)) |
---|
838 | |
---|
839 | ENDIF |
---|
840 | |
---|
841 | |
---|
842 | DO i=1,klon |
---|
843 | rneb(i,k)=ctot(i,k) |
---|
844 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
845 | zqn(i)=qcloud(i) |
---|
846 | !--AB grid-mean vapor in the cloud - we assume saturation adjustment |
---|
847 | qvc(i) = rneb(i,k) * zqs(i) |
---|
848 | ENDDO |
---|
849 | |
---|
850 | ENDIF |
---|
851 | |
---|
852 | IF (iflag_cld_th .LE. 4) THEN |
---|
853 | |
---|
854 | ! lognormal |
---|
855 | lognormale(:) = .TRUE. |
---|
856 | |
---|
857 | ELSEIF (iflag_cld_th .GE. 6) THEN |
---|
858 | |
---|
859 | ! lognormal distribution when no thermals |
---|
860 | lognormale(:) = fraca(:,k) < min_frac_th_cld |
---|
861 | |
---|
862 | ELSE |
---|
863 | ! When iflag_cld_th=5, we always assume |
---|
864 | ! bi-gaussian distribution |
---|
865 | lognormale(:) = .FALSE. |
---|
866 | |
---|
867 | ENDIF |
---|
868 | |
---|
869 | DT(:) = 0. |
---|
870 | n_i(:)=0 |
---|
871 | Tbef(:)=zt(:) |
---|
872 | qlbef(:)=0. |
---|
873 | |
---|
874 | ! Treatment of non-boundary layer clouds (lognormale) |
---|
875 | ! condensation with qsat(T) variation (adaptation) |
---|
876 | ! Iterative resolution to converge towards qsat |
---|
877 | ! with update of temperature, ice fraction and qsat at |
---|
878 | ! each iteration |
---|
879 | |
---|
880 | ! todoan -> sensitivity to iflag_fisrtilp_qsat |
---|
881 | DO iter=1,iflag_fisrtilp_qsat+1 |
---|
882 | |
---|
883 | keepgoing(:) = .FALSE. |
---|
884 | |
---|
885 | DO i=1,klon |
---|
886 | |
---|
887 | ! keepgoing = .true. while convergence is not satisfied |
---|
888 | |
---|
889 | IF (((ABS(DT(i)).GT.DDT0) .OR. (n_i(i) .EQ. 0)) .AND. lognormale(i)) THEN |
---|
890 | |
---|
891 | ! if not convergence: |
---|
892 | ! we calculate a new iteration |
---|
893 | keepgoing(i) = .TRUE. |
---|
894 | |
---|
895 | ! P2.2.1> cloud fraction and condensed water mass calculation |
---|
896 | ! Calculated variables: |
---|
897 | ! rneb : cloud fraction |
---|
898 | ! zqn : total water within the cloud |
---|
899 | ! zcond: mean condensed water within the mesh |
---|
900 | ! rhcl: clear-sky relative humidity |
---|
901 | !--------------------------------------------------------------- |
---|
902 | |
---|
903 | ! new temperature that only serves in the iteration process: |
---|
904 | Tbef(i)=Tbef(i)+DT(i) |
---|
905 | |
---|
906 | ! Rneb, qzn and zcond for lognormal PDFs |
---|
907 | qtot(i)=zq(i)+zmqc(i) |
---|
908 | |
---|
909 | ENDIF |
---|
910 | |
---|
911 | ENDDO |
---|
912 | |
---|
913 | ! Calculation of saturation specific humidity and ice fraction |
---|
914 | CALL calc_qsat_ecmwf(klon,Tbef(:),qtot(:),pplay(:,k),RTT,0,.false.,zqs(:),zdqs(:)) |
---|
915 | CALL calc_gammasat(klon,Tbef(:),qtot(:),pplay(:,k),gammasat(:),dgammasatdt(:)) |
---|
916 | ! saturation may occur at a humidity different from qsat (gamma qsat), so gamma correction for dqs |
---|
917 | zdqs(:) = gammasat(:)*zdqs(:)+zqs(:)*dgammasatdt(:) |
---|
918 | ! cloud phase determination |
---|
919 | IF (iflag_t_glace.GE.4) THEN |
---|
920 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
921 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
---|
922 | ENDIF |
---|
923 | |
---|
924 | CALL icefrac_lscp(klon, zt(:), iflag_ice_thermo, zdistcltop(:),ztemp_cltop(:),zfice(:),dzfice(:)) |
---|
925 | |
---|
926 | !--AB Activates a condensation scheme that allows for |
---|
927 | !--ice supersaturation and contrails evolution from aviation |
---|
928 | IF (ok_ice_supersat) THEN |
---|
929 | |
---|
930 | !--Calculate the shear value (input for condensation and ice supersat) |
---|
931 | DO i = 1, klon |
---|
932 | !--Cell thickness [m] |
---|
933 | delta_z = ( paprs(i,k) - paprs(i,k+1) ) / RG / pplay(i,k) * Tbef(i) * RD |
---|
934 | IF ( iftop ) THEN |
---|
935 | ! top |
---|
936 | shear(i) = SQRT( ( (u_seri(i,k) - u_seri(i,k-1)) / delta_z )**2. & |
---|
937 | + ( (v_seri(i,k) - v_seri(i,k-1)) / delta_z )**2. ) |
---|
938 | ELSEIF ( k .EQ. 1 ) THEN |
---|
939 | ! surface |
---|
940 | shear(i) = SQRT( ( (u_seri(i,k+1) - u_seri(i,k)) / delta_z )**2. & |
---|
941 | + ( (v_seri(i,k+1) - v_seri(i,k)) / delta_z )**2. ) |
---|
942 | ELSE |
---|
943 | ! other layers |
---|
944 | shear(i) = SQRT( ( ( (u_seri(i,k+1) + u_seri(i,k)) / 2. & |
---|
945 | - (u_seri(i,k) + u_seri(i,k-1)) / 2. ) / delta_z )**2. & |
---|
946 | + ( ( (v_seri(i,k+1) + v_seri(i,k)) / 2. & |
---|
947 | - (v_seri(i,k) + v_seri(i,k-1)) / 2. ) / delta_z )**2. ) |
---|
948 | ENDIF |
---|
949 | ENDDO |
---|
950 | |
---|
951 | !--------------------------------------------- |
---|
952 | !-- CONDENSATION AND ICE SUPERSATURATION -- |
---|
953 | !--------------------------------------------- |
---|
954 | |
---|
955 | CALL condensation_ice_supersat( & |
---|
956 | klon, dtime, missing_val, & |
---|
957 | pplay(:,k), paprs(:,k), paprs(:,k+1), & |
---|
958 | cf_seri(:,k), rvc_seri(:,k), ratio_qi_qtot(:,k), & |
---|
959 | shear(:), tke_dissip(:,k), cell_area(:), & |
---|
960 | Tbef(:), zq(:), zqs(:), gammasat(:), ratqs(:,k), keepgoing(:), & |
---|
961 | rneb(:,k), zqn(:), qvc(:), issrfra(:,k), qissr(:,k), & |
---|
962 | dcf_sub(:,k), dcf_con(:,k), dcf_mix(:,k), & |
---|
963 | dqi_adj(:,k), dqi_sub(:,k), dqi_con(:,k), dqi_mix(:,k), & |
---|
964 | dqvc_adj(:,k), dqvc_sub(:,k), dqvc_con(:,k), dqvc_mix(:,k), & |
---|
965 | Tcontr(:,k), qcontr(:,k), qcontr2(:,k), fcontrN(:,k), fcontrP(:,k), & |
---|
966 | flight_dist(:,k), flight_h2o(:,k), & |
---|
967 | dcf_avi(:,k), dqi_avi(:,k), dqvc_avi(:,k)) |
---|
968 | |
---|
969 | |
---|
970 | ELSE |
---|
971 | !--generalised lognormal condensation scheme (Bony and Emanuel 2001) |
---|
972 | |
---|
973 | CALL condensation_lognormal( & |
---|
974 | klon, Tbef, zq, zqs, gammasat, ratqs(:,k), & |
---|
975 | keepgoing, rneb(:,k), zqn, qvc) |
---|
976 | |
---|
977 | |
---|
978 | ENDIF ! .NOT. ok_ice_supersat |
---|
979 | |
---|
980 | DO i=1,klon |
---|
981 | IF (keepgoing(i)) THEN |
---|
982 | |
---|
983 | ! If vertical heterogeneity, change fraction by volume as well |
---|
984 | IF (iflag_cloudth_vert.GE.3) THEN |
---|
985 | ctot_vol(i,k)=rneb(i,k) |
---|
986 | rneblsvol(i,k)=ctot_vol(i,k) |
---|
987 | ENDIF |
---|
988 | |
---|
989 | |
---|
990 | ! P2.2.2> Approximative calculation of temperature variation DT |
---|
991 | ! due to condensation. |
---|
992 | ! Calculated variables: |
---|
993 | ! dT : temperature change due to condensation |
---|
994 | !--------------------------------------------------------------- |
---|
995 | |
---|
996 | |
---|
997 | IF (zfice(i).LT.1) THEN |
---|
998 | cste=RLVTT |
---|
999 | ELSE |
---|
1000 | cste=RLSTT |
---|
1001 | ENDIF |
---|
1002 | |
---|
1003 | ! LEA_R : check formule |
---|
1004 | IF ( ok_unadjusted_clouds ) THEN |
---|
1005 | !--AB We relax the saturation adjustment assumption |
---|
1006 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
1007 | IF ( rneb(i,k) .GT. eps ) THEN |
---|
1008 | qlbef(i) = MAX(0., zqn(i) - qvc(i) / rneb(i,k)) |
---|
1009 | ELSE |
---|
1010 | qlbef(i) = 0. |
---|
1011 | ENDIF |
---|
1012 | ELSE |
---|
1013 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
---|
1014 | ENDIF |
---|
1015 | |
---|
1016 | num = -Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT & |
---|
1017 | +zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*qlbef(i) |
---|
1018 | denom = 1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
---|
1019 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)))*rneb(i,k) & |
---|
1020 | *qlbef(i)*dzfice(i) |
---|
1021 | ! here we update a provisory temperature variable that only serves in the iteration |
---|
1022 | ! process |
---|
1023 | DT(i)=num/denom |
---|
1024 | n_i(i)=n_i(i)+1 |
---|
1025 | |
---|
1026 | ENDIF ! end keepgoing |
---|
1027 | |
---|
1028 | ENDDO ! end loop on i |
---|
1029 | |
---|
1030 | ENDDO ! iter=1,iflag_fisrtilp_qsat+1 |
---|
1031 | |
---|
1032 | ! P2.3> Final quantities calculation |
---|
1033 | ! Calculated variables: |
---|
1034 | ! rneb : cloud fraction |
---|
1035 | ! zcond: mean condensed water in the mesh |
---|
1036 | ! zqn : mean water vapor in the mesh |
---|
1037 | ! zfice: ice fraction in clouds |
---|
1038 | ! zt : temperature |
---|
1039 | ! rhcl : clear-sky relative humidity |
---|
1040 | ! ---------------------------------------------------------------- |
---|
1041 | |
---|
1042 | |
---|
1043 | ! For iflag_t_glace GE 4 the phase partition function dependends on temperature AND distance to cloud top |
---|
1044 | IF (iflag_t_glace.GE.4) THEN |
---|
1045 | CALL distance_to_cloud_top(klon,klev,k,temp,pplay,paprs,rneb,zdistcltop,ztemp_cltop) |
---|
1046 | distcltop(:,k)=zdistcltop(:) |
---|
1047 | temp_cltop(:,k)=ztemp_cltop(:) |
---|
1048 | ENDIF |
---|
1049 | |
---|
1050 | ! Partition function depending on temperature |
---|
1051 | CALL icefrac_lscp(klon, zt, iflag_ice_thermo, zdistcltop, ztemp_cltop, zfice, dzfice) |
---|
1052 | |
---|
1053 | ! Partition function depending on tke for non shallow-convective clouds |
---|
1054 | IF (iflag_icefrac .GE. 1) THEN |
---|
1055 | |
---|
1056 | CALL icefrac_lscp_turb(klon, dtime, Tbef, pplay(:,k), paprs(:,k), paprs(:,k+1), qice_save(:,k), ziflcld, zqn, & |
---|
1057 | rneb(:,k), tke(:,k), tke_dissip(:,k), zqliq, zqvapcl, zqice, zfice_turb, dzfice_turb, cldfraliq(:,k),sigma2_icefracturb(:,k), mean_icefracturb(:,k)) |
---|
1058 | |
---|
1059 | ENDIF |
---|
1060 | |
---|
1061 | ! Water vapor update, Phase determination and subsequent latent heat exchange |
---|
1062 | DO i=1, klon |
---|
1063 | ! Overwrite phase partitioning in boundary layer mixed phase clouds when the |
---|
1064 | ! iflag_cloudth_vert=7 and specific param is activated |
---|
1065 | IF (mpc_bl_points(i,k) .GT. 0) THEN |
---|
1066 | zcond(i) = MAX(0.0,qincloud_mpc(i))*rneb(i,k) |
---|
1067 | ! following line is very strange and probably wrong |
---|
1068 | rhcl(i,k)= (zqs(i)+zq(i))/2./zqs(i) |
---|
1069 | ! water vapor update and partition function if thermals |
---|
1070 | zq(i) = zq(i) - zcond(i) |
---|
1071 | zfice(i)=zfice_th(i) |
---|
1072 | ELSE |
---|
1073 | ! Checks on rneb, rhcl and zqn |
---|
1074 | IF (rneb(i,k) .LE. 0.0) THEN |
---|
1075 | zqn(i) = 0.0 |
---|
1076 | rneb(i,k) = 0.0 |
---|
1077 | zcond(i) = 0.0 |
---|
1078 | rhcl(i,k)=zq(i)/zqs(i) |
---|
1079 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
---|
1080 | zqn(i) = zq(i) |
---|
1081 | rneb(i,k) = 1.0 |
---|
1082 | IF ( ok_unadjusted_clouds ) THEN |
---|
1083 | !--AB We relax the saturation adjustment assumption |
---|
1084 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
1085 | zcond(i) = MAX(0., zqn(i) - qvc(i)) |
---|
1086 | ELSE |
---|
1087 | zcond(i) = MAX(0.0,zqn(i)-zqs(i)) |
---|
1088 | ENDIF |
---|
1089 | rhcl(i,k)=1.0 |
---|
1090 | ELSE |
---|
1091 | IF ( ok_unadjusted_clouds ) THEN |
---|
1092 | !--AB We relax the saturation adjustment assumption |
---|
1093 | !-- qvc (grid-mean vapor in cloud) is calculated by the condensation scheme |
---|
1094 | zcond(i) = MAX(0., zqn(i) * rneb(i,k) - qvc(i)) |
---|
1095 | ELSE |
---|
1096 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) |
---|
1097 | ENDIF |
---|
1098 | ! following line is very strange and probably wrong: |
---|
1099 | rhcl(i,k)=(zqs(i)+zq(i))/2./zqs(i) |
---|
1100 | ! Overwrite partitioning for non shallow-convective clouds if iflag_icefrac>1 (icefrac turb param) |
---|
1101 | IF (iflag_icefrac .GE. 1) THEN |
---|
1102 | IF (lognormale(i)) THEN |
---|
1103 | zcond(i) = zqliq(i) + zqice(i) |
---|
1104 | zfice(i)=zfice_turb(i) |
---|
1105 | rhcl(i,k) = zqvapcl(i) * rneb(i,k) + (zq(i) - zqn(i)) * (1.-rneb(i,k)) |
---|
1106 | ENDIF |
---|
1107 | ENDIF |
---|
1108 | ENDIF |
---|
1109 | |
---|
1110 | ! water vapor update |
---|
1111 | zq(i) = zq(i) - zcond(i) |
---|
1112 | |
---|
1113 | ENDIF |
---|
1114 | |
---|
1115 | ! c_iso : routine that computes in-cloud supersaturation |
---|
1116 | ! c_iso condensation of isotopes (zcond, zsursat, zfice, zq in input) |
---|
1117 | |
---|
1118 | ! temperature update due to phase change |
---|
1119 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) & |
---|
1120 | & * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) & |
---|
1121 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
1122 | ENDDO |
---|
1123 | |
---|
1124 | ! If vertical heterogeneity, change volume fraction |
---|
1125 | IF (iflag_cloudth_vert .GE. 3) THEN |
---|
1126 | ctot_vol(1:klon,k)=min(max(ctot_vol(1:klon,k),0.),1.) |
---|
1127 | rneblsvol(1:klon,k)=ctot_vol(1:klon,k) |
---|
1128 | ENDIF |
---|
1129 | |
---|
1130 | !--AB Write diagnostics and tracers for ice supersaturation |
---|
1131 | IF ( ok_ice_supersat ) THEN |
---|
1132 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,1,.false.,qsatl(:,k),zdqs) |
---|
1133 | CALL calc_qsat_ecmwf(klon,zt,qzero,pplay(:,k),RTT,2,.false.,qsati(:,k),zdqs) |
---|
1134 | |
---|
1135 | DO i = 1, klon |
---|
1136 | |
---|
1137 | cf_seri(i,k) = rneb(i,k) |
---|
1138 | |
---|
1139 | IF ( .NOT. ok_unadjusted_clouds ) THEN |
---|
1140 | qvc(i) = zqs(i) * rneb(i,k) |
---|
1141 | ENDIF |
---|
1142 | IF ( zq(i) .GT. min_qParent ) THEN |
---|
1143 | rvc_seri(i,k) = qvc(i) / zq(i) |
---|
1144 | ELSE |
---|
1145 | rvc_seri(i,k) = min_ratio |
---|
1146 | ENDIF |
---|
1147 | !--The MIN barrier is NEEDED because of: |
---|
1148 | !-- 1) very rare pathological cases of the lsc scheme (rvc = 1. + 1e-16 sometimes) |
---|
1149 | !-- 2) the thermal scheme does NOT guarantee that qvc <= qvap (or even qincld <= qtot) |
---|
1150 | !--The MAX barrier is a safeguard that should not be activated |
---|
1151 | rvc_seri(i,k) = MIN(MAX(rvc_seri(i,k), 0.), 1.) |
---|
1152 | |
---|
1153 | !--Diagnostics |
---|
1154 | gamma_cond(i,k) = gammasat(i) |
---|
1155 | IF ( issrfra(i,k) .LT. eps ) THEN |
---|
1156 | issrfra(i,k) = 0. |
---|
1157 | qissr(i,k) = 0. |
---|
1158 | ENDIF |
---|
1159 | subfra(i,k) = 1. - cf_seri(i,k) - issrfra(i,k) |
---|
1160 | qsub(i,k) = zq(i) - qvc(i) - qissr(i,k) |
---|
1161 | IF ( subfra(i,k) .LT. eps ) THEN |
---|
1162 | subfra(i,k) = 0. |
---|
1163 | qsub(i,k) = 0. |
---|
1164 | ENDIF |
---|
1165 | qcld(i,k) = qvc(i) + zcond(i) |
---|
1166 | IF ( cf_seri(i,k) .LT. eps ) THEN |
---|
1167 | qcld(i,k) = 0. |
---|
1168 | ENDIF |
---|
1169 | ENDDO |
---|
1170 | ENDIF |
---|
1171 | |
---|
1172 | |
---|
1173 | ! ---------------------------------------------------------------- |
---|
1174 | ! P3> Precipitation formation |
---|
1175 | ! ---------------------------------------------------------------- |
---|
1176 | |
---|
1177 | !================================================================ |
---|
1178 | IF (ok_poprecip) THEN |
---|
1179 | |
---|
1180 | DO i = 1, klon |
---|
1181 | zoliql(i) = zcond(i) * ( 1. - zfice(i) ) |
---|
1182 | zoliqi(i) = zcond(i) * zfice(i) |
---|
1183 | ENDDO |
---|
1184 | |
---|
1185 | CALL poprecip_postcld(klon, dtime, paprs(:,k), paprs(:,k+1), pplay(:,k), & |
---|
1186 | ctot_vol(:,k), ptconv(:,k), & |
---|
1187 | zt, zq, zoliql, zoliqi, zfice, & |
---|
1188 | rneb(:,k), znebprecipclr, znebprecipcld, & |
---|
1189 | zrfl, zrflclr, zrflcld, & |
---|
1190 | zifl, ziflclr, ziflcld, & |
---|
1191 | qraindiag(:,k), qsnowdiag(:,k), dqrauto(:,k), & |
---|
1192 | dqrcol(:,k), dqrmelt(:,k), dqrfreez(:,k), & |
---|
1193 | dqsauto(:,k), dqsagg(:,k), dqsrim(:,k), & |
---|
1194 | dqsmelt(:,k), dqsfreez(:,k) & |
---|
1195 | ) |
---|
1196 | |
---|
1197 | DO i = 1, klon |
---|
1198 | zoliq(i) = zoliql(i) + zoliqi(i) |
---|
1199 | IF ( zoliq(i) .GT. 0. ) THEN |
---|
1200 | zfice(i) = zoliqi(i)/zoliq(i) |
---|
1201 | ELSE |
---|
1202 | zfice(i) = 0.0 |
---|
1203 | ENDIF |
---|
1204 | |
---|
1205 | ! calculation of specific content of condensates seen by radiative scheme |
---|
1206 | IF (ok_radocond_snow) THEN |
---|
1207 | radocond(i,k) = zoliq(i) |
---|
1208 | radocondl(i,k)= radocond(i,k)*(1.-zfice(i)) |
---|
1209 | radocondi(i,k)= radocond(i,k)*zfice(i)+qsnowdiag(i,k) |
---|
1210 | ELSE |
---|
1211 | radocond(i,k) = zoliq(i) |
---|
1212 | radocondl(i,k)= radocond(i,k)*(1.-zfice(i)) |
---|
1213 | radocondi(i,k)= radocond(i,k)*zfice(i) |
---|
1214 | ENDIF |
---|
1215 | ENDDO |
---|
1216 | |
---|
1217 | !================================================================ |
---|
1218 | ELSE |
---|
1219 | |
---|
1220 | ! LTP: |
---|
1221 | IF (iflag_evap_prec .GE. 4) THEN |
---|
1222 | |
---|
1223 | !Partitionning between precipitation coming from clouds and that coming from CS |
---|
1224 | |
---|
1225 | !0) Calculate tot_zneb, total cloud fraction above the cloud |
---|
1226 | !assuming a maximum-random overlap (voir Jakob and Klein, 2000) |
---|
1227 | |
---|
1228 | DO i=1, klon |
---|
1229 | tot_znebn(i) = 1. - (1.-tot_zneb(i))*(1 - max(rneb(i,k),zneb(i))) & |
---|
1230 | /(1.-min(zneb(i),1.-smallestreal)) |
---|
1231 | d_tot_zneb(i) = tot_znebn(i) - tot_zneb(i) |
---|
1232 | tot_zneb(i) = tot_znebn(i) |
---|
1233 | |
---|
1234 | |
---|
1235 | !1) Cloudy to clear air |
---|
1236 | d_znebprecip_cld_clr(i) = znebprecipcld(i) - min(rneb(i,k),znebprecipcld(i)) |
---|
1237 | IF (znebprecipcld(i) .GT. 0.) THEN |
---|
1238 | d_zrfl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*zrflcld(i) |
---|
1239 | d_zifl_cld_clr(i) = d_znebprecip_cld_clr(i)/znebprecipcld(i)*ziflcld(i) |
---|
1240 | ELSE |
---|
1241 | d_zrfl_cld_clr(i) = 0. |
---|
1242 | d_zifl_cld_clr(i) = 0. |
---|
1243 | ENDIF |
---|
1244 | |
---|
1245 | !2) Clear to cloudy air |
---|
1246 | d_znebprecip_clr_cld(i) = max(0., min(znebprecipclr(i), rneb(i,k) - d_tot_zneb(i) - zneb(i))) |
---|
1247 | IF (znebprecipclr(i) .GT. 0) THEN |
---|
1248 | d_zrfl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*zrflclr(i) |
---|
1249 | d_zifl_clr_cld(i) = d_znebprecip_clr_cld(i)/znebprecipclr(i)*ziflclr(i) |
---|
1250 | ELSE |
---|
1251 | d_zrfl_clr_cld(i) = 0. |
---|
1252 | d_zifl_clr_cld(i) = 0. |
---|
1253 | ENDIF |
---|
1254 | |
---|
1255 | !Update variables |
---|
1256 | znebprecipcld(i) = znebprecipcld(i) + d_znebprecip_clr_cld(i) - d_znebprecip_cld_clr(i) |
---|
1257 | znebprecipclr(i) = znebprecipclr(i) + d_znebprecip_cld_clr(i) - d_znebprecip_clr_cld(i) |
---|
1258 | zrflcld(i) = zrflcld(i) + d_zrfl_clr_cld(i) - d_zrfl_cld_clr(i) |
---|
1259 | ziflcld(i) = ziflcld(i) + d_zifl_clr_cld(i) - d_zifl_cld_clr(i) |
---|
1260 | zrflclr(i) = zrflclr(i) + d_zrfl_cld_clr(i) - d_zrfl_clr_cld(i) |
---|
1261 | ziflclr(i) = ziflclr(i) + d_zifl_cld_clr(i) - d_zifl_clr_cld(i) |
---|
1262 | |
---|
1263 | ! c_iso do the same thing for isotopes precip |
---|
1264 | ENDDO |
---|
1265 | ENDIF |
---|
1266 | |
---|
1267 | |
---|
1268 | ! Autoconversion |
---|
1269 | ! ------------------------------------------------------------------------------- |
---|
1270 | |
---|
1271 | |
---|
1272 | ! Initialisation of zoliq and radocond variables |
---|
1273 | |
---|
1274 | DO i = 1, klon |
---|
1275 | zoliq(i) = zcond(i) |
---|
1276 | zoliqi(i)= zoliq(i)*zfice(i) |
---|
1277 | zoliql(i)= zoliq(i)*(1.-zfice(i)) |
---|
1278 | ! c_iso : initialisation of zoliq* also for isotopes |
---|
1279 | zrho(i,k) = pplay(i,k) / zt(i) / RD |
---|
1280 | zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i,k)*RG) |
---|
1281 | iwc(i) = 0. |
---|
1282 | zneb(i) = MAX(rneb(i,k),seuil_neb) |
---|
1283 | radocond(i,k) = zoliq(i)/REAL(niter_lscp+1) |
---|
1284 | radocondi(i,k)=zoliq(i)*zfice(i)/REAL(niter_lscp+1) |
---|
1285 | radocondl(i,k)=zoliq(i)*(1.-zfice(i))/REAL(niter_lscp+1) |
---|
1286 | ENDDO |
---|
1287 | |
---|
1288 | |
---|
1289 | DO n = 1, niter_lscp |
---|
1290 | |
---|
1291 | DO i=1,klon |
---|
1292 | IF (rneb(i,k).GT.0.0) THEN |
---|
1293 | iwc(i) = zrho(i,k) * zoliqi(i) / zneb(i) ! in-cloud ice condensate content |
---|
1294 | ENDIF |
---|
1295 | ENDDO |
---|
1296 | |
---|
1297 | CALL fallice_velocity(klon,iwc(:),zt(:),zrho(:,k),pplay(:,k),ptconv(:,k),velo(:,k)) |
---|
1298 | |
---|
1299 | DO i = 1, klon |
---|
1300 | |
---|
1301 | IF (rneb(i,k).GT.0.0) THEN |
---|
1302 | |
---|
1303 | ! Initialization of zrain, zsnow and zprecip: |
---|
1304 | zrain=0. |
---|
1305 | zsnow=0. |
---|
1306 | zprecip=0. |
---|
1307 | ! c_iso same init for isotopes. Externalisation? |
---|
1308 | |
---|
1309 | IF (zneb(i).EQ.seuil_neb) THEN |
---|
1310 | zprecip = 0.0 |
---|
1311 | zsnow = 0.0 |
---|
1312 | zrain= 0.0 |
---|
1313 | ELSE |
---|
1314 | |
---|
1315 | IF (ptconv(i,k)) THEN ! if convective point |
---|
1316 | zcl=cld_lc_con |
---|
1317 | zct=1./cld_tau_con |
---|
1318 | zexpo=cld_expo_con |
---|
1319 | ffallv=ffallv_con |
---|
1320 | ELSE |
---|
1321 | zcl=cld_lc_lsc |
---|
1322 | zct=1./cld_tau_lsc |
---|
1323 | zexpo=cld_expo_lsc |
---|
1324 | ffallv=ffallv_lsc |
---|
1325 | ENDIF |
---|
1326 | |
---|
1327 | |
---|
1328 | ! if vertical heterogeneity is taken into account, we use |
---|
1329 | ! the "true" volume fraction instead of a modified |
---|
1330 | ! surface fraction (which is larger and artificially |
---|
1331 | ! reduces the in-cloud water). |
---|
1332 | |
---|
1333 | ! Liquid water quantity to remove: zchau (Sundqvist, 1978) |
---|
1334 | ! dqliq/dt=-qliq/tau*(1-exp(-qcin/clw)**2) |
---|
1335 | !......................................................... |
---|
1336 | IF ((iflag_cloudth_vert.GE.3).AND.(iflag_rain_incloud_vol.EQ.1)) THEN |
---|
1337 | |
---|
1338 | ! if vertical heterogeneity is taken into account, we use |
---|
1339 | ! the "true" volume fraction instead of a modified |
---|
1340 | ! surface fraction (which is larger and artificially |
---|
1341 | ! reduces the in-cloud water). |
---|
1342 | effective_zneb=ctot_vol(i,k) |
---|
1343 | ELSE |
---|
1344 | effective_zneb=zneb(i) |
---|
1345 | ENDIF |
---|
1346 | |
---|
1347 | |
---|
1348 | IF (iflag_autoconversion .EQ. 2) THEN |
---|
1349 | ! two-steps resolution with niter_lscp=1 sufficient |
---|
1350 | ! we first treat the second term (with exponential) in an explicit way |
---|
1351 | ! and then treat the first term (-q/tau) in an exact way |
---|
1352 | zchau=zoliql(i)*(1.-exp(-dtime/REAL(niter_lscp)*zct & |
---|
1353 | *(1.-exp(-(zoliql(i)/effective_zneb/zcl)**zexpo)))) |
---|
1354 | ELSE |
---|
1355 | ! old explicit resolution with subtimesteps |
---|
1356 | zchau = zct*dtime/REAL(niter_lscp)*zoliql(i) & |
---|
1357 | *(1.0-EXP(-(zoliql(i)/effective_zneb/zcl)**zexpo)) |
---|
1358 | ENDIF |
---|
1359 | |
---|
1360 | |
---|
1361 | ! Ice water quantity to remove (Zender & Kiehl, 1997) |
---|
1362 | ! dqice/dt=1/rho*d(rho*wice*qice)/dz |
---|
1363 | !.................................... |
---|
1364 | IF (iflag_autoconversion .EQ. 2) THEN |
---|
1365 | ! exact resolution, niter_lscp=1 is sufficient but works only |
---|
1366 | ! with iflag_vice=0 |
---|
1367 | IF (zoliqi(i) .GT. 0.) THEN |
---|
1368 | zfroi=(zoliqi(i)-((zoliqi(i)**(-dice_velo)) & |
---|
1369 | +dice_velo*dtime/REAL(niter_lscp)*cice_velo/zdz(i)*ffallv)**(-1./dice_velo)) |
---|
1370 | ELSE |
---|
1371 | zfroi=0. |
---|
1372 | ENDIF |
---|
1373 | ELSE |
---|
1374 | ! old explicit resolution with subtimesteps |
---|
1375 | zfroi = dtime/REAL(niter_lscp)/zdz(i)*zoliqi(i)*velo(i,k) |
---|
1376 | ENDIF |
---|
1377 | |
---|
1378 | zrain = MIN(MAX(zchau,0.0),zoliql(i)) |
---|
1379 | zsnow = MIN(MAX(zfroi,0.0),zoliqi(i)) |
---|
1380 | zprecip = MAX(zrain + zsnow,0.0) |
---|
1381 | |
---|
1382 | ENDIF |
---|
1383 | |
---|
1384 | IF (iflag_autoconversion .GE. 1) THEN |
---|
1385 | ! debugged version with phase conservation through the autoconversion process |
---|
1386 | zoliql(i) = MAX(zoliql(i)-1.*zrain , 0.0) |
---|
1387 | zoliqi(i) = MAX(zoliqi(i)-1.*zsnow , 0.0) |
---|
1388 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
---|
1389 | ELSE |
---|
1390 | ! bugged version with phase resetting |
---|
1391 | zoliql(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zrain , 0.0) |
---|
1392 | zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zsnow , 0.0) |
---|
1393 | zoliq(i) = MAX(zoliq(i)-zprecip , 0.0) |
---|
1394 | ENDIF |
---|
1395 | |
---|
1396 | ! c_iso: call isotope_conversion (for readibility) or duplicate |
---|
1397 | |
---|
1398 | radocond(i,k) = radocond(i,k) + zoliq(i)/REAL(niter_lscp+1) |
---|
1399 | radocondl(i,k) = radocondl(i,k) + zoliql(i)/REAL(niter_lscp+1) |
---|
1400 | radocondi(i,k) = radocondi(i,k) + zoliqi(i)/REAL(niter_lscp+1) |
---|
1401 | |
---|
1402 | ENDIF ! rneb >0 |
---|
1403 | |
---|
1404 | ENDDO ! i = 1,klon |
---|
1405 | |
---|
1406 | ENDDO ! n = 1,niter |
---|
1407 | |
---|
1408 | ! Precipitation flux calculation |
---|
1409 | |
---|
1410 | DO i = 1, klon |
---|
1411 | |
---|
1412 | IF (iflag_evap_prec.GE.4) THEN |
---|
1413 | ziflprev(i)=ziflcld(i) |
---|
1414 | ELSE |
---|
1415 | ziflprev(i)=zifl(i)*zneb(i) |
---|
1416 | ENDIF |
---|
1417 | |
---|
1418 | IF (rneb(i,k) .GT. 0.0) THEN |
---|
1419 | |
---|
1420 | ! CR&JYG: We account for the Wegener-Findeisen-Bergeron process in the precipitation flux: |
---|
1421 | ! If T<0C, liquid precip are converted into ice, which leads to an increase in |
---|
1422 | ! temperature DeltaT. The effect of DeltaT on condensates and precipitation is roughly |
---|
1423 | ! taken into account through a linearization of the equations and by approximating |
---|
1424 | ! the liquid precipitation process with a "threshold" process. We assume that |
---|
1425 | ! condensates are not modified during this operation. Liquid precipitation is |
---|
1426 | ! removed (in the limit DeltaT<273.15-T). Solid precipitation increases. |
---|
1427 | ! Water vapor increases as well |
---|
1428 | ! Note that compared to fisrtilp, we always assume iflag_bergeron=2 |
---|
1429 | |
---|
1430 | zqpreci(i)=(zcond(i)-zoliq(i))*zfice(i) |
---|
1431 | zqprecl(i)=(zcond(i)-zoliq(i))*(1.-zfice(i)) |
---|
1432 | zcp=RCPD*(1.0+RVTMP2*(zq(i)+zmqc(i)+zcond(i))) |
---|
1433 | coef1 = rneb(i,k)*RLSTT/zcp*zdqsdT_raw(i) |
---|
1434 | ! Computation of DT if all the liquid precip freezes |
---|
1435 | DeltaT = RLMLT*zqprecl(i) / (zcp*(1.+coef1)) |
---|
1436 | ! T should not exceed the freezing point |
---|
1437 | ! that is Delta > RTT-zt(i) |
---|
1438 | DeltaT = max( min( RTT-zt(i), DeltaT) , 0. ) |
---|
1439 | zt(i) = zt(i) + DeltaT |
---|
1440 | ! water vaporization due to temp. increase |
---|
1441 | Deltaq = rneb(i,k)*zdqsdT_raw(i)*DeltaT |
---|
1442 | ! we add this vaporized water to the total vapor and we remove it from the precip |
---|
1443 | zq(i) = zq(i) + Deltaq |
---|
1444 | ! The three "max" lines herebelow protect from rounding errors |
---|
1445 | zcond(i) = max( zcond(i)- Deltaq, 0. ) |
---|
1446 | ! liquid precipitation converted to ice precip |
---|
1447 | Deltaqprecl = -zcp/RLMLT*(1.+coef1)*DeltaT |
---|
1448 | zqprecl(i) = max( zqprecl(i) + Deltaqprecl, 0. ) |
---|
1449 | ! iced water budget |
---|
1450 | zqpreci(i) = max (zqpreci(i) - Deltaqprecl - Deltaq, 0.) |
---|
1451 | |
---|
1452 | ! c_iso : mv here condensation of isotopes + redispatchage en precip |
---|
1453 | |
---|
1454 | IF (iflag_evap_prec.GE.4) THEN |
---|
1455 | zrflcld(i) = zrflcld(i)+zqprecl(i) & |
---|
1456 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
1457 | ziflcld(i) = ziflcld(i)+ zqpreci(i) & |
---|
1458 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
1459 | znebprecipcld(i) = rneb(i,k) |
---|
1460 | zrfl(i) = zrflcld(i) + zrflclr(i) |
---|
1461 | zifl(i) = ziflcld(i) + ziflclr(i) |
---|
1462 | ELSE |
---|
1463 | zrfl(i) = zrfl(i)+ zqprecl(i) & |
---|
1464 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
1465 | zifl(i) = zifl(i)+ zqpreci(i) & |
---|
1466 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
1467 | ENDIF |
---|
1468 | ! c_iso : same for isotopes |
---|
1469 | |
---|
1470 | ENDIF ! rneb>0 |
---|
1471 | |
---|
1472 | ENDDO |
---|
1473 | |
---|
1474 | ! LTP: limit of surface cloud fraction covered by precipitation when the local intensity of the flux is below rain_int_min |
---|
1475 | ! if iflag_evap_prec>=4 |
---|
1476 | IF (iflag_evap_prec.GE.4) THEN |
---|
1477 | |
---|
1478 | DO i=1,klon |
---|
1479 | |
---|
1480 | IF ((zrflclr(i) + ziflclr(i)) .GT. 0. ) THEN |
---|
1481 | znebprecipclr(i) = min(znebprecipclr(i),max(zrflclr(i)/ & |
---|
1482 | (MAX(znebprecipclr(i),seuil_neb)*rain_int_min), ziflclr(i)/(MAX(znebprecipclr(i),seuil_neb)*rain_int_min))) |
---|
1483 | ELSE |
---|
1484 | znebprecipclr(i)=0.0 |
---|
1485 | ENDIF |
---|
1486 | |
---|
1487 | IF ((zrflcld(i) + ziflcld(i)) .GT. 0.) THEN |
---|
1488 | znebprecipcld(i) = min(znebprecipcld(i), max(zrflcld(i)/ & |
---|
1489 | (MAX(znebprecipcld(i),seuil_neb)*rain_int_min), ziflcld(i)/(MAX(znebprecipcld(i),seuil_neb)*rain_int_min))) |
---|
1490 | ELSE |
---|
1491 | znebprecipcld(i)=0.0 |
---|
1492 | ENDIF |
---|
1493 | ENDDO |
---|
1494 | |
---|
1495 | ENDIF |
---|
1496 | |
---|
1497 | |
---|
1498 | ENDIF ! ok_poprecip |
---|
1499 | |
---|
1500 | ! End of precipitation formation |
---|
1501 | ! -------------------------------- |
---|
1502 | |
---|
1503 | |
---|
1504 | ! Calculation of cloud condensates amount seen by radiative scheme |
---|
1505 | !----------------------------------------------------------------- |
---|
1506 | |
---|
1507 | ! Calculation of the concentration of condensates seen by the radiation scheme |
---|
1508 | ! for liquid phase, we take radocondl |
---|
1509 | ! for ice phase, we take radocondi if we neglect snowfall, otherwise (ok_radocond_snow=true) |
---|
1510 | ! we recalculate radocondi to account for contributions from the precipitation flux |
---|
1511 | ! TODO: for the moment, we deactivate this option when ok_poprecip=.true. |
---|
1512 | |
---|
1513 | IF ((ok_radocond_snow) .AND. (k .LT. klev) .AND. (.NOT. ok_poprecip)) THEN |
---|
1514 | ! for the solid phase (crystals + snowflakes) |
---|
1515 | ! we recalculate radocondi by summing |
---|
1516 | ! the ice content calculated in the mesh |
---|
1517 | ! + the contribution of the non-evaporated snowfall |
---|
1518 | ! from the overlying layer |
---|
1519 | DO i=1,klon |
---|
1520 | IF (ziflprev(i) .NE. 0.0) THEN |
---|
1521 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i)+ziflprev(i)/zrho(i,k+1)/velo(i,k+1) |
---|
1522 | ELSE |
---|
1523 | radocondi(i,k)=zoliq(i)*zfice(i)+zqpreci(i) |
---|
1524 | ENDIF |
---|
1525 | radocond(i,k)=radocondl(i,k)+radocondi(i,k) |
---|
1526 | ENDDO |
---|
1527 | ENDIF |
---|
1528 | |
---|
1529 | ! caculate the percentage of ice in "radocond" so cloud+precip seen by the radiation scheme |
---|
1530 | DO i=1,klon |
---|
1531 | IF (radocond(i,k) .GT. 0.) THEN |
---|
1532 | radicefrac(i,k)=MIN(MAX(radocondi(i,k)/radocond(i,k),0.),1.) |
---|
1533 | ENDIF |
---|
1534 | ENDDO |
---|
1535 | |
---|
1536 | ! ---------------------------------------------------------------- |
---|
1537 | ! P4> Wet scavenging |
---|
1538 | ! ---------------------------------------------------------------- |
---|
1539 | |
---|
1540 | !Scavenging through nucleation in the layer |
---|
1541 | |
---|
1542 | DO i = 1,klon |
---|
1543 | |
---|
1544 | IF(zcond(i).GT.zoliq(i)+1.e-10) THEN |
---|
1545 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
---|
1546 | ELSE |
---|
1547 | beta(i,k) = 0. |
---|
1548 | ENDIF |
---|
1549 | |
---|
1550 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
1551 | |
---|
1552 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
1553 | |
---|
1554 | IF (temp(i,k) .GE. t_glace_min) THEN |
---|
1555 | zalpha_tr = a_tr_sca(3) |
---|
1556 | ELSE |
---|
1557 | zalpha_tr = a_tr_sca(4) |
---|
1558 | ENDIF |
---|
1559 | |
---|
1560 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
1561 | frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi |
---|
1562 | |
---|
1563 | ! Nucleation with a factor of -1 instead of -0.5 |
---|
1564 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) |
---|
1565 | |
---|
1566 | ENDIF |
---|
1567 | |
---|
1568 | ENDDO |
---|
1569 | |
---|
1570 | ! Scavenging through impaction in the underlying layer |
---|
1571 | |
---|
1572 | DO kk = k-1, 1, -1 |
---|
1573 | |
---|
1574 | DO i = 1, klon |
---|
1575 | |
---|
1576 | IF (rneb(i,k).GT.0.0.AND.zprec_cond(i).GT.0.) THEN |
---|
1577 | |
---|
1578 | IF (temp(i,kk) .GE. t_glace_min) THEN |
---|
1579 | zalpha_tr = a_tr_sca(1) |
---|
1580 | ELSE |
---|
1581 | zalpha_tr = a_tr_sca(2) |
---|
1582 | ENDIF |
---|
1583 | |
---|
1584 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
1585 | frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi |
---|
1586 | |
---|
1587 | ENDIF |
---|
1588 | |
---|
1589 | ENDDO |
---|
1590 | |
---|
1591 | ENDDO |
---|
1592 | |
---|
1593 | ! Outputs: |
---|
1594 | !------------------------------- |
---|
1595 | ! Precipitation fluxes at layer interfaces |
---|
1596 | ! + precipitation fractions + |
---|
1597 | ! temperature and water species tendencies |
---|
1598 | DO i = 1, klon |
---|
1599 | psfl(i,k)=zifl(i) |
---|
1600 | prfl(i,k)=zrfl(i) |
---|
1601 | pfraclr(i,k)=znebprecipclr(i) |
---|
1602 | pfracld(i,k)=znebprecipcld(i) |
---|
1603 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
---|
1604 | d_qi(i,k) = zfice(i)*zoliq(i) |
---|
1605 | d_q(i,k) = zq(i) - qt(i,k) |
---|
1606 | ! c_iso: same for isotopes |
---|
1607 | d_t(i,k) = zt(i) - temp(i,k) |
---|
1608 | ENDDO |
---|
1609 | |
---|
1610 | |
---|
1611 | ENDDO |
---|
1612 | |
---|
1613 | |
---|
1614 | ! Rain or snow at the surface (depending on the first layer temperature) |
---|
1615 | DO i = 1, klon |
---|
1616 | snow(i) = zifl(i) |
---|
1617 | rain(i) = zrfl(i) |
---|
1618 | ! c_iso final output |
---|
1619 | ENDDO |
---|
1620 | |
---|
1621 | IF (ncoreczq>0) THEN |
---|
1622 | WRITE(lunout,*)'WARNING : ZQ in LSCP ',ncoreczq,' val < 1.e-15.' |
---|
1623 | ENDIF |
---|
1624 | |
---|
1625 | |
---|
1626 | RETURN |
---|
1627 | |
---|
1628 | END SUBROUTINE lscp |
---|
1629 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
1630 | |
---|
1631 | END MODULE lmdz_lscp |
---|