[4651] | 1 | MODULE lmdz_cloudth |
---|
[2686] | 2 | |
---|
[4535] | 3 | |
---|
[2686] | 4 | IMPLICIT NONE |
---|
| 5 | |
---|
| 6 | CONTAINS |
---|
| 7 | |
---|
| 8 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
---|
| 9 | & ztv,po,zqta,fraca, & |
---|
[3493] | 10 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[4651] | 11 | & ratqs,zqs,t, & |
---|
| 12 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[2686] | 13 | |
---|
| 14 | |
---|
[4651] | 15 | use lmdz_cloudth_ini, only: iflag_cloudth_vert,iflag_ratqs |
---|
[4535] | 16 | |
---|
[5285] | 17 | USE yomcst_mod_h |
---|
[5284] | 18 | USE yoethf_mod_h |
---|
[5274] | 19 | IMPLICIT NONE |
---|
[2686] | 20 | |
---|
| 21 | |
---|
| 22 | !=========================================================================== |
---|
| 23 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 24 | ! Date : 25 Mai 2010 |
---|
| 25 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 26 | !=========================================================================== |
---|
| 27 | |
---|
[4593] | 28 | INCLUDE "FCTTRE.h" |
---|
[2686] | 29 | |
---|
| 30 | INTEGER itap,ind1,ind2 |
---|
| 31 | INTEGER ngrid,klev,klon,l,ig |
---|
[4651] | 32 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
[2686] | 33 | |
---|
| 34 | REAL ztv(ngrid,klev) |
---|
| 35 | REAL po(ngrid) |
---|
| 36 | REAL zqenv(ngrid) |
---|
| 37 | REAL zqta(ngrid,klev) |
---|
| 38 | |
---|
| 39 | REAL fraca(ngrid,klev+1) |
---|
| 40 | REAL zpspsk(ngrid,klev) |
---|
| 41 | REAL paprs(ngrid,klev+1) |
---|
[3493] | 42 | REAL pplay(ngrid,klev) |
---|
[2686] | 43 | REAL ztla(ngrid,klev) |
---|
| 44 | REAL zthl(ngrid,klev) |
---|
| 45 | |
---|
| 46 | REAL zqsatth(ngrid,klev) |
---|
| 47 | REAL zqsatenv(ngrid,klev) |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | REAL sigma1(ngrid,klev) |
---|
| 51 | REAL sigma2(ngrid,klev) |
---|
| 52 | REAL qlth(ngrid,klev) |
---|
| 53 | REAL qlenv(ngrid,klev) |
---|
| 54 | REAL qltot(ngrid,klev) |
---|
| 55 | REAL cth(ngrid,klev) |
---|
| 56 | REAL cenv(ngrid,klev) |
---|
| 57 | REAL ctot(ngrid,klev) |
---|
| 58 | REAL rneb(ngrid,klev) |
---|
| 59 | REAL t(ngrid,klev) |
---|
| 60 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
| 61 | REAL rdd,cppd,Lv |
---|
| 62 | REAL alth,alenv,ath,aenv |
---|
| 63 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
| 64 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 65 | REAL qlbef |
---|
| 66 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
| 67 | |
---|
| 68 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 69 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 70 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | |
---|
| 74 | |
---|
| 75 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 76 | ! Gestion de deux versions de cloudth |
---|
| 77 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 78 | |
---|
| 79 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
| 80 | CALL cloudth_vert(ngrid,klev,ind2, & |
---|
| 81 | & ztv,po,zqta,fraca, & |
---|
[3493] | 82 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[2686] | 83 | & ratqs,zqs,t) |
---|
| 84 | RETURN |
---|
| 85 | ENDIF |
---|
| 86 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | !------------------------------------------------------------------------------- |
---|
| 90 | ! Initialisation des variables r?elles |
---|
| 91 | !------------------------------------------------------------------------------- |
---|
[5479] | 92 | sigma1(:,ind2)=0. |
---|
| 93 | sigma2(:,ind2)=0. |
---|
| 94 | qlth(:,ind2)=0. |
---|
| 95 | qlenv(:,ind2)=0. |
---|
| 96 | qltot(:,ind2)=0. |
---|
| 97 | rneb(:,ind2)=0. |
---|
[2686] | 98 | qcloud(:)=0. |
---|
[5479] | 99 | cth(:,ind2)=0. |
---|
| 100 | cenv(:,ind2)=0. |
---|
| 101 | ctot(:,ind2)=0. |
---|
[2686] | 102 | qsatmmussig1=0. |
---|
| 103 | qsatmmussig2=0. |
---|
| 104 | rdd=287.04 |
---|
| 105 | cppd=1005.7 |
---|
| 106 | pi=3.14159 |
---|
| 107 | Lv=2.5e6 |
---|
| 108 | sqrt2pi=sqrt(2.*pi) |
---|
| 109 | |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | !------------------------------------------------------------------------------- |
---|
| 113 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
| 114 | !------------------------------------------------------------------------------- |
---|
| 115 | do ind1=1,ngrid |
---|
| 116 | |
---|
| 117 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
| 118 | |
---|
| 119 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | ! zqenv(ind1)=po(ind1) |
---|
| 123 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 124 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 125 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 126 | qsatbef=MIN(0.5,qsatbef) |
---|
| 127 | zcor=1./(1.-retv*qsatbef) |
---|
| 128 | qsatbef=qsatbef*zcor |
---|
| 129 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | |
---|
| 134 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 135 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 136 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | |
---|
| 140 | |
---|
| 141 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 142 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 143 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 144 | qsatbef=MIN(0.5,qsatbef) |
---|
| 145 | zcor=1./(1.-retv*qsatbef) |
---|
| 146 | qsatbef=qsatbef*zcor |
---|
| 147 | zqsatth(ind1,ind2)=qsatbef |
---|
| 148 | |
---|
| 149 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
| 150 | ath=1./(1.+(alth*Lv/cppd)) |
---|
| 151 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
| 152 | |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | !------------------------------------------------------------------------------ |
---|
| 156 | ! Calcul des ?cart-types pour s |
---|
| 157 | !------------------------------------------------------------------------------ |
---|
| 158 | |
---|
| 159 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 160 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
---|
| 161 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
| 162 | ! ratqs(ind1,ind2)=0.002 |
---|
| 163 | ! else |
---|
| 164 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 165 | ! endif |
---|
| 166 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 167 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 168 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 169 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
| 170 | |
---|
| 171 | !------------------------------------------------------------------------------ |
---|
| 172 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
| 173 | !------------------------------------------------------------------------------ |
---|
| 174 | sqrt2pi=sqrt(2.*pi) |
---|
| 175 | xth=sth/(sqrt(2.)*sigma2s) |
---|
| 176 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 177 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 178 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 179 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 180 | |
---|
| 181 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
| 182 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 183 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 184 | |
---|
| 185 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 186 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
| 187 | ctot(ind1,ind2)=0. |
---|
| 188 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 189 | |
---|
| 190 | else |
---|
| 191 | |
---|
| 192 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 193 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 194 | |
---|
| 195 | endif |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | else ! gaussienne environnement seule |
---|
| 202 | |
---|
| 203 | zqenv(ind1)=po(ind1) |
---|
| 204 | Tbef=t(ind1,ind2) |
---|
| 205 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 206 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 207 | qsatbef=MIN(0.5,qsatbef) |
---|
| 208 | zcor=1./(1.-retv*qsatbef) |
---|
| 209 | qsatbef=qsatbef*zcor |
---|
| 210 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 214 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 215 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 216 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 217 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 218 | |
---|
| 219 | |
---|
| 220 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 221 | |
---|
| 222 | sqrt2pi=sqrt(2.*pi) |
---|
| 223 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 224 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 225 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 226 | |
---|
| 227 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 228 | ctot(ind1,ind2)=0. |
---|
| 229 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 230 | |
---|
| 231 | else |
---|
| 232 | |
---|
| 233 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 234 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 235 | |
---|
| 236 | endif |
---|
| 237 | |
---|
| 238 | |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | endif |
---|
| 244 | enddo |
---|
| 245 | |
---|
| 246 | return |
---|
| 247 | ! end |
---|
| 248 | END SUBROUTINE cloudth |
---|
| 249 | |
---|
| 250 | |
---|
| 251 | |
---|
| 252 | !=========================================================================== |
---|
| 253 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
---|
| 254 | & ztv,po,zqta,fraca, & |
---|
[3493] | 255 | & qcloud,ctot,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[2686] | 256 | & ratqs,zqs,t) |
---|
| 257 | |
---|
| 258 | !=========================================================================== |
---|
| 259 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 260 | ! Date : 25 Mai 2010 |
---|
| 261 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 262 | !=========================================================================== |
---|
| 263 | |
---|
| 264 | |
---|
[5284] | 265 | USE yoethf_mod_h |
---|
| 266 | use lmdz_cloudth_ini, only: iflag_cloudth_vert, vert_alpha |
---|
[2686] | 267 | |
---|
[5285] | 268 | USE yomcst_mod_h |
---|
[5274] | 269 | IMPLICIT NONE |
---|
[2686] | 270 | |
---|
[5274] | 271 | |
---|
[4593] | 272 | INCLUDE "FCTTRE.h" |
---|
[2686] | 273 | |
---|
| 274 | INTEGER itap,ind1,ind2 |
---|
| 275 | INTEGER ngrid,klev,klon,l,ig |
---|
| 276 | |
---|
| 277 | REAL ztv(ngrid,klev) |
---|
| 278 | REAL po(ngrid) |
---|
| 279 | REAL zqenv(ngrid) |
---|
| 280 | REAL zqta(ngrid,klev) |
---|
| 281 | |
---|
| 282 | REAL fraca(ngrid,klev+1) |
---|
| 283 | REAL zpspsk(ngrid,klev) |
---|
| 284 | REAL paprs(ngrid,klev+1) |
---|
[3493] | 285 | REAL pplay(ngrid,klev) |
---|
[2686] | 286 | REAL ztla(ngrid,klev) |
---|
| 287 | REAL zthl(ngrid,klev) |
---|
| 288 | |
---|
| 289 | REAL zqsatth(ngrid,klev) |
---|
| 290 | REAL zqsatenv(ngrid,klev) |
---|
| 291 | |
---|
| 292 | |
---|
| 293 | REAL sigma1(ngrid,klev) |
---|
| 294 | REAL sigma2(ngrid,klev) |
---|
| 295 | REAL qlth(ngrid,klev) |
---|
| 296 | REAL qlenv(ngrid,klev) |
---|
| 297 | REAL qltot(ngrid,klev) |
---|
| 298 | REAL cth(ngrid,klev) |
---|
| 299 | REAL cenv(ngrid,klev) |
---|
| 300 | REAL ctot(ngrid,klev) |
---|
| 301 | REAL rneb(ngrid,klev) |
---|
| 302 | REAL t(ngrid,klev) |
---|
| 303 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
| 304 | REAL rdd,cppd,Lv,sqrt2,sqrtpi |
---|
| 305 | REAL alth,alenv,ath,aenv |
---|
| 306 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
| 307 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
| 308 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
---|
| 309 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 310 | REAL qlbef |
---|
| 311 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
| 312 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
| 313 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
| 314 | |
---|
| 315 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 316 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 317 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 318 | |
---|
| 319 | !------------------------------------------------------------------------------ |
---|
| 320 | ! Initialisation des variables r?elles |
---|
| 321 | !------------------------------------------------------------------------------ |
---|
[5479] | 322 | sigma1(:,ind2)=0. |
---|
| 323 | sigma2(:,ind2)=0. |
---|
| 324 | qlth(:,ind2)=0. |
---|
| 325 | qlenv(:,ind2)=0. |
---|
| 326 | qltot(:,ind2)=0. |
---|
| 327 | rneb(:,ind2)=0. |
---|
[2686] | 328 | qcloud(:)=0. |
---|
[5479] | 329 | cth(:,ind2)=0. |
---|
| 330 | cenv(:,ind2)=0. |
---|
| 331 | ctot(:,ind2)=0. |
---|
[2686] | 332 | qsatmmussig1=0. |
---|
| 333 | qsatmmussig2=0. |
---|
| 334 | rdd=287.04 |
---|
| 335 | cppd=1005.7 |
---|
| 336 | pi=3.14159 |
---|
| 337 | Lv=2.5e6 |
---|
| 338 | sqrt2pi=sqrt(2.*pi) |
---|
| 339 | sqrt2=sqrt(2.) |
---|
| 340 | sqrtpi=sqrt(pi) |
---|
| 341 | |
---|
| 342 | !------------------------------------------------------------------------------- |
---|
| 343 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
| 344 | !------------------------------------------------------------------------------- |
---|
| 345 | do ind1=1,ngrid |
---|
| 346 | |
---|
| 347 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
| 348 | |
---|
| 349 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
| 350 | |
---|
| 351 | |
---|
| 352 | ! zqenv(ind1)=po(ind1) |
---|
| 353 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 354 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 355 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 356 | qsatbef=MIN(0.5,qsatbef) |
---|
| 357 | zcor=1./(1.-retv*qsatbef) |
---|
| 358 | qsatbef=qsatbef*zcor |
---|
| 359 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | |
---|
| 363 | |
---|
| 364 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 365 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 366 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 372 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 373 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 374 | qsatbef=MIN(0.5,qsatbef) |
---|
| 375 | zcor=1./(1.-retv*qsatbef) |
---|
| 376 | qsatbef=qsatbef*zcor |
---|
| 377 | zqsatth(ind1,ind2)=qsatbef |
---|
| 378 | |
---|
| 379 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
| 380 | ath=1./(1.+(alth*Lv/cppd)) |
---|
| 381 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | !------------------------------------------------------------------------------ |
---|
| 386 | ! Calcul des ?cart-types pour s |
---|
| 387 | !------------------------------------------------------------------------------ |
---|
| 388 | |
---|
| 389 | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 390 | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
| 391 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
| 392 | ! ratqs(ind1,ind2)=0.002 |
---|
| 393 | ! else |
---|
| 394 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 395 | ! endif |
---|
| 396 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 397 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 398 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 399 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
| 400 | |
---|
| 401 | !------------------------------------------------------------------------------ |
---|
| 402 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
| 403 | !------------------------------------------------------------------------------ |
---|
| 404 | sqrt2pi=sqrt(2.*pi) |
---|
| 405 | xth=sth/(sqrt(2.)*sigma2s) |
---|
| 406 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 407 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 408 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 409 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 410 | |
---|
| 411 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
| 412 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 413 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 414 | |
---|
| 415 | IF (iflag_cloudth_vert == 1) THEN |
---|
| 416 | !------------------------------------------------------------------------------- |
---|
| 417 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
---|
| 418 | !------------------------------------------------------------------------------- |
---|
| 419 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 420 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 421 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 422 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 423 | ! deltasenv=aenv*0.01*po(ind1) |
---|
| 424 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
---|
| 425 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 426 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 427 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 428 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 429 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 430 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
| 431 | |
---|
| 432 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
| 433 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
| 434 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 435 | |
---|
| 436 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
| 437 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 438 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 439 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
| 440 | |
---|
| 441 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 442 | ! qlenv(ind1,ind2)=IntJ |
---|
| 443 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
| 444 | |
---|
| 445 | |
---|
| 446 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
| 447 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
---|
| 448 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
---|
| 449 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
| 450 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
| 451 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
| 452 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 453 | ! qlth(ind1,ind2)=IntJ |
---|
| 454 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
| 455 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 456 | |
---|
| 457 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
| 458 | |
---|
| 459 | !------------------------------------------------------------------------------- |
---|
| 460 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
---|
| 461 | !------------------------------------------------------------------------------- |
---|
| 462 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 463 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 464 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 465 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 466 | deltasenv=aenv*vert_alpha*sigma1s |
---|
| 467 | deltasth=ath*vert_alpha*sigma2s |
---|
| 468 | |
---|
| 469 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 470 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 471 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 472 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 473 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 474 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
| 475 | |
---|
| 476 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
| 477 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
| 478 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 479 | |
---|
| 480 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) |
---|
| 481 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
| 482 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 483 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) |
---|
| 484 | |
---|
| 485 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 486 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 487 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
| 488 | |
---|
| 489 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 490 | ! qlenv(ind1,ind2)=IntJ |
---|
| 491 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
| 492 | |
---|
| 493 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) |
---|
| 494 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 495 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
| 496 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) |
---|
| 497 | |
---|
| 498 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 499 | ! qlth(ind1,ind2)=IntJ |
---|
| 500 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
| 501 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 502 | |
---|
| 503 | |
---|
| 504 | |
---|
| 505 | |
---|
| 506 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
| 507 | |
---|
| 508 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 509 | |
---|
| 510 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
| 511 | ctot(ind1,ind2)=0. |
---|
| 512 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 513 | |
---|
| 514 | else |
---|
| 515 | |
---|
| 516 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 517 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 518 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
| 519 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
| 520 | |
---|
| 521 | endif |
---|
| 522 | |
---|
| 523 | |
---|
| 524 | |
---|
| 525 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
| 526 | |
---|
| 527 | |
---|
| 528 | else ! gaussienne environnement seule |
---|
| 529 | |
---|
| 530 | zqenv(ind1)=po(ind1) |
---|
| 531 | Tbef=t(ind1,ind2) |
---|
| 532 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 533 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 534 | qsatbef=MIN(0.5,qsatbef) |
---|
| 535 | zcor=1./(1.-retv*qsatbef) |
---|
| 536 | qsatbef=qsatbef*zcor |
---|
| 537 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 541 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 542 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 543 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 544 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 545 | |
---|
| 546 | |
---|
| 547 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 548 | |
---|
| 549 | sqrt2pi=sqrt(2.*pi) |
---|
| 550 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 551 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 552 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 553 | |
---|
| 554 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 555 | ctot(ind1,ind2)=0. |
---|
| 556 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 557 | |
---|
| 558 | else |
---|
| 559 | |
---|
| 560 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 561 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 562 | |
---|
| 563 | endif |
---|
| 564 | |
---|
| 565 | |
---|
| 566 | |
---|
| 567 | |
---|
| 568 | |
---|
| 569 | |
---|
| 570 | endif |
---|
| 571 | enddo |
---|
| 572 | |
---|
| 573 | return |
---|
| 574 | ! end |
---|
| 575 | END SUBROUTINE cloudth_vert |
---|
| 576 | |
---|
[3493] | 577 | |
---|
| 578 | |
---|
| 579 | |
---|
[2686] | 580 | SUBROUTINE cloudth_v3(ngrid,klev,ind2, & |
---|
| 581 | & ztv,po,zqta,fraca, & |
---|
[3493] | 582 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[5208] | 583 | & ratqs,sigma_qtherm,zqs,t, & |
---|
[4651] | 584 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[2686] | 585 | |
---|
[4651] | 586 | use lmdz_cloudth_ini, only: iflag_cloudth_vert |
---|
[2686] | 587 | |
---|
[5285] | 588 | USE yomcst_mod_h |
---|
[5284] | 589 | USE yoethf_mod_h |
---|
[5274] | 590 | IMPLICIT NONE |
---|
[2686] | 591 | |
---|
| 592 | |
---|
| 593 | !=========================================================================== |
---|
| 594 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 595 | ! Date : 25 Mai 2010 |
---|
| 596 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 597 | !=========================================================================== |
---|
[4593] | 598 | INCLUDE "FCTTRE.h" |
---|
[2686] | 599 | |
---|
[4674] | 600 | integer, intent(in) :: ind2 |
---|
| 601 | integer, intent(in) :: ngrid,klev |
---|
| 602 | |
---|
| 603 | real, dimension(ngrid,klev), intent(in) :: ztv |
---|
| 604 | real, dimension(ngrid), intent(in) :: po |
---|
| 605 | real, dimension(ngrid,klev), intent(in) :: zqta |
---|
| 606 | real, dimension(ngrid,klev+1), intent(in) :: fraca |
---|
| 607 | real, dimension(ngrid), intent(out) :: qcloud |
---|
| 608 | real, dimension(ngrid,klev), intent(out) :: ctot |
---|
| 609 | real, dimension(ngrid,klev), intent(out) :: ctot_vol |
---|
| 610 | real, dimension(ngrid,klev), intent(in) :: zpspsk |
---|
| 611 | real, dimension(ngrid,klev+1), intent(in) :: paprs |
---|
| 612 | real, dimension(ngrid,klev), intent(in) :: pplay |
---|
| 613 | real, dimension(ngrid,klev), intent(in) :: ztla |
---|
| 614 | real, dimension(ngrid,klev), intent(inout) :: zthl |
---|
[5208] | 615 | real, dimension(ngrid,klev), intent(in) :: ratqs,sigma_qtherm |
---|
[4674] | 616 | real, dimension(ngrid), intent(in) :: zqs |
---|
| 617 | real, dimension(ngrid,klev), intent(in) :: t |
---|
[4651] | 618 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
[4674] | 619 | |
---|
| 620 | |
---|
[2686] | 621 | REAL zqenv(ngrid) |
---|
| 622 | REAL zqsatth(ngrid,klev) |
---|
| 623 | REAL zqsatenv(ngrid,klev) |
---|
| 624 | |
---|
[2945] | 625 | REAL sigma1(ngrid,klev) |
---|
[2686] | 626 | REAL sigma2(ngrid,klev) |
---|
| 627 | REAL qlth(ngrid,klev) |
---|
| 628 | REAL qlenv(ngrid,klev) |
---|
| 629 | REAL qltot(ngrid,klev) |
---|
[2945] | 630 | REAL cth(ngrid,klev) |
---|
[2686] | 631 | REAL cenv(ngrid,klev) |
---|
[2945] | 632 | REAL cth_vol(ngrid,klev) |
---|
| 633 | REAL cenv_vol(ngrid,klev) |
---|
| 634 | REAL rneb(ngrid,klev) |
---|
[2686] | 635 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi |
---|
| 636 | REAL rdd,cppd,Lv |
---|
| 637 | REAL alth,alenv,ath,aenv |
---|
| 638 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 |
---|
[3493] | 639 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
[2686] | 640 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 641 | REAL qlbef |
---|
| 642 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 643 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 644 | |
---|
| 645 | |
---|
[4674] | 646 | INTEGER :: ind1,l, ig |
---|
| 647 | |
---|
[2686] | 648 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
| 649 | CALL cloudth_vert_v3(ngrid,klev,ind2, & |
---|
| 650 | & ztv,po,zqta,fraca, & |
---|
[3493] | 651 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[5208] | 652 | & ratqs,sigma_qtherm,zqs,t, & |
---|
[4651] | 653 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[2686] | 654 | RETURN |
---|
| 655 | ENDIF |
---|
| 656 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 657 | |
---|
| 658 | |
---|
| 659 | !------------------------------------------------------------------------------- |
---|
| 660 | ! Initialisation des variables r?elles |
---|
| 661 | !------------------------------------------------------------------------------- |
---|
[5479] | 662 | sigma1(:,ind2)=0. |
---|
| 663 | sigma2(:,ind2)=0. |
---|
| 664 | qlth(:,ind2)=0. |
---|
| 665 | qlenv(:,ind2)=0. |
---|
| 666 | qltot(:,ind2)=0. |
---|
| 667 | rneb(:,ind2)=0. |
---|
[2686] | 668 | qcloud(:)=0. |
---|
[5479] | 669 | cth(:,ind2)=0. |
---|
| 670 | cenv(:,ind2)=0. |
---|
| 671 | ctot(:,ind2)=0. |
---|
| 672 | cth_vol(:,ind2)=0. |
---|
| 673 | cenv_vol(:,ind2)=0. |
---|
| 674 | ctot_vol(:,ind2)=0. |
---|
[2686] | 675 | qsatmmussig1=0. |
---|
| 676 | qsatmmussig2=0. |
---|
| 677 | rdd=287.04 |
---|
| 678 | cppd=1005.7 |
---|
| 679 | pi=3.14159 |
---|
| 680 | Lv=2.5e6 |
---|
| 681 | sqrt2pi=sqrt(2.*pi) |
---|
| 682 | sqrt2=sqrt(2.) |
---|
| 683 | sqrtpi=sqrt(pi) |
---|
| 684 | |
---|
| 685 | |
---|
| 686 | !------------------------------------------------------------------------------- |
---|
| 687 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
---|
| 688 | !------------------------------------------------------------------------------- |
---|
| 689 | do ind1=1,ngrid |
---|
| 690 | |
---|
| 691 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
| 692 | |
---|
| 693 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
| 694 | |
---|
| 695 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 696 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 697 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 698 | qsatbef=MIN(0.5,qsatbef) |
---|
| 699 | zcor=1./(1.-retv*qsatbef) |
---|
| 700 | qsatbef=qsatbef*zcor |
---|
| 701 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 702 | |
---|
| 703 | |
---|
| 704 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
| 705 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
| 706 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
| 707 | |
---|
| 708 | !po = qt de l'environnement ET des thermique |
---|
| 709 | !zqenv = qt environnement |
---|
| 710 | !zqsatenv = qsat environnement |
---|
| 711 | !zthl = Tl environnement |
---|
| 712 | |
---|
| 713 | |
---|
| 714 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 715 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 716 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 717 | qsatbef=MIN(0.5,qsatbef) |
---|
| 718 | zcor=1./(1.-retv*qsatbef) |
---|
| 719 | qsatbef=qsatbef*zcor |
---|
| 720 | zqsatth(ind1,ind2)=qsatbef |
---|
| 721 | |
---|
| 722 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
| 723 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
| 724 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
| 725 | |
---|
| 726 | !zqta = qt thermals |
---|
| 727 | !zqsatth = qsat thermals |
---|
| 728 | !ztla = Tl thermals |
---|
| 729 | |
---|
| 730 | !------------------------------------------------------------------------------ |
---|
| 731 | ! s standard deviations |
---|
| 732 | !------------------------------------------------------------------------------ |
---|
| 733 | |
---|
| 734 | ! tests |
---|
| 735 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 736 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
---|
| 737 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
| 738 | ! final option |
---|
| 739 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 740 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 741 | |
---|
| 742 | !------------------------------------------------------------------------------ |
---|
| 743 | ! Condensed water and cloud cover |
---|
| 744 | !------------------------------------------------------------------------------ |
---|
| 745 | xth=sth/(sqrt2*sigma2s) |
---|
| 746 | xenv=senv/(sqrt2*sigma1s) |
---|
| 747 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
| 748 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
| 749 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
[2945] | 750 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
[2686] | 751 | |
---|
| 752 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) |
---|
| 753 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
| 754 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 755 | |
---|
| 756 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
| 757 | ctot(ind1,ind2)=0. |
---|
| 758 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 759 | else |
---|
| 760 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 761 | endif |
---|
| 762 | |
---|
| 763 | else ! Environnement only, follow the if l.110 |
---|
| 764 | |
---|
| 765 | zqenv(ind1)=po(ind1) |
---|
| 766 | Tbef=t(ind1,ind2) |
---|
| 767 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 768 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 769 | qsatbef=MIN(0.5,qsatbef) |
---|
| 770 | zcor=1./(1.-retv*qsatbef) |
---|
| 771 | qsatbef=qsatbef*zcor |
---|
| 772 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 773 | |
---|
| 774 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 775 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 776 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 777 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 778 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 779 | |
---|
| 780 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 781 | |
---|
| 782 | xenv=senv/(sqrt2*sigma1s) |
---|
| 783 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
[2945] | 784 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
[2686] | 785 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
| 786 | |
---|
| 787 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 788 | ctot(ind1,ind2)=0. |
---|
| 789 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 790 | else |
---|
| 791 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 792 | endif |
---|
| 793 | |
---|
| 794 | |
---|
| 795 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
---|
| 796 | enddo ! from the loop on ngrid l.108 |
---|
| 797 | return |
---|
| 798 | ! end |
---|
| 799 | END SUBROUTINE cloudth_v3 |
---|
| 800 | |
---|
| 801 | |
---|
| 802 | |
---|
| 803 | !=========================================================================== |
---|
| 804 | SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2, & |
---|
| 805 | & ztv,po,zqta,fraca, & |
---|
[3493] | 806 | & qcloud,ctot,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[5208] | 807 | & ratqs,sigma_qtherm,zqs,t, & |
---|
[4651] | 808 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[2686] | 809 | |
---|
| 810 | !=========================================================================== |
---|
| 811 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 812 | ! Date : 25 Mai 2010 |
---|
| 813 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 814 | !=========================================================================== |
---|
| 815 | |
---|
[5284] | 816 | USE yoethf_mod_h |
---|
| 817 | use lmdz_cloudth_ini, only : iflag_cloudth_vert,iflag_ratqs |
---|
[4651] | 818 | use lmdz_cloudth_ini, only : vert_alpha,vert_alpha_th, sigma1s_factor, sigma1s_power , sigma2s_factor , sigma2s_power , cloudth_ratqsmin , iflag_cloudth_vert_noratqs |
---|
[2686] | 819 | |
---|
[5285] | 820 | USE yomcst_mod_h |
---|
[5274] | 821 | IMPLICIT NONE |
---|
[2686] | 822 | |
---|
[4651] | 823 | |
---|
| 824 | |
---|
[5274] | 825 | |
---|
[4593] | 826 | INCLUDE "FCTTRE.h" |
---|
[2686] | 827 | |
---|
| 828 | INTEGER itap,ind1,ind2 |
---|
| 829 | INTEGER ngrid,klev,klon,l,ig |
---|
[4651] | 830 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
[2686] | 831 | |
---|
| 832 | REAL ztv(ngrid,klev) |
---|
| 833 | REAL po(ngrid) |
---|
| 834 | REAL zqenv(ngrid) |
---|
| 835 | REAL zqta(ngrid,klev) |
---|
| 836 | |
---|
| 837 | REAL fraca(ngrid,klev+1) |
---|
| 838 | REAL zpspsk(ngrid,klev) |
---|
| 839 | REAL paprs(ngrid,klev+1) |
---|
[3493] | 840 | REAL pplay(ngrid,klev) |
---|
[2686] | 841 | REAL ztla(ngrid,klev) |
---|
| 842 | REAL zthl(ngrid,klev) |
---|
| 843 | |
---|
| 844 | REAL zqsatth(ngrid,klev) |
---|
| 845 | REAL zqsatenv(ngrid,klev) |
---|
| 846 | |
---|
| 847 | REAL sigma1(ngrid,klev) |
---|
| 848 | REAL sigma2(ngrid,klev) |
---|
| 849 | REAL qlth(ngrid,klev) |
---|
| 850 | REAL qlenv(ngrid,klev) |
---|
| 851 | REAL qltot(ngrid,klev) |
---|
[2945] | 852 | REAL cth(ngrid,klev) |
---|
[2686] | 853 | REAL cenv(ngrid,klev) |
---|
| 854 | REAL ctot(ngrid,klev) |
---|
[2945] | 855 | REAL cth_vol(ngrid,klev) |
---|
| 856 | REAL cenv_vol(ngrid,klev) |
---|
| 857 | REAL ctot_vol(ngrid,klev) |
---|
[2686] | 858 | REAL rneb(ngrid,klev) |
---|
| 859 | REAL t(ngrid,klev) |
---|
| 860 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
---|
| 861 | REAL rdd,cppd,Lv |
---|
| 862 | REAL alth,alenv,ath,aenv |
---|
[2957] | 863 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
---|
[3493] | 864 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
[2957] | 865 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
[2686] | 866 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
[2945] | 867 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
---|
[2686] | 868 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 869 | REAL qlbef |
---|
[5208] | 870 | REAL ratqs(ngrid,klev),sigma_qtherm(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
[2686] | 871 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
| 872 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
[2957] | 873 | |
---|
[2686] | 874 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 875 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 876 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 877 | |
---|
[3493] | 878 | REAL rhodz(ngrid,klev) |
---|
| 879 | REAL zrho(ngrid,klev) |
---|
| 880 | REAL dz(ngrid,klev) |
---|
| 881 | |
---|
| 882 | DO ind1 = 1, ngrid |
---|
| 883 | !Layer calculation |
---|
| 884 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg !kg/m2 |
---|
| 885 | zrho(ind1,ind2) = pplay(ind1,ind2)/t(ind1,ind2)/rd !kg/m3 |
---|
| 886 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) !m : epaisseur de la couche en metre |
---|
| 887 | END DO |
---|
| 888 | |
---|
[2686] | 889 | !------------------------------------------------------------------------------ |
---|
| 890 | ! Initialize |
---|
| 891 | !------------------------------------------------------------------------------ |
---|
[3999] | 892 | |
---|
[5479] | 893 | sigma1(:,ind2)=0. |
---|
| 894 | sigma2(:,ind2)=0. |
---|
| 895 | qlth(:,ind2)=0. |
---|
| 896 | qlenv(:,ind2)=0. |
---|
| 897 | qltot(:,ind2)=0. |
---|
| 898 | rneb(:,ind2)=0. |
---|
[2686] | 899 | qcloud(:)=0. |
---|
[5479] | 900 | cth(:,ind2)=0. |
---|
| 901 | cenv(:,ind2)=0. |
---|
| 902 | ctot(:,ind2)=0. |
---|
| 903 | cth_vol(:,ind2)=0. |
---|
| 904 | cenv_vol(:,ind2)=0. |
---|
| 905 | ctot_vol(:,ind2)=0. |
---|
[2686] | 906 | qsatmmussig1=0. |
---|
| 907 | qsatmmussig2=0. |
---|
| 908 | rdd=287.04 |
---|
| 909 | cppd=1005.7 |
---|
| 910 | pi=3.14159 |
---|
| 911 | Lv=2.5e6 |
---|
| 912 | sqrt2pi=sqrt(2.*pi) |
---|
| 913 | sqrt2=sqrt(2.) |
---|
| 914 | sqrtpi=sqrt(pi) |
---|
| 915 | |
---|
[2957] | 916 | |
---|
[2686] | 917 | |
---|
| 918 | !------------------------------------------------------------------------------- |
---|
| 919 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
---|
| 920 | !------------------------------------------------------------------------------- |
---|
| 921 | do ind1=1,ngrid |
---|
| 922 | |
---|
| 923 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement |
---|
| 924 | |
---|
| 925 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv |
---|
| 926 | |
---|
| 927 | |
---|
| 928 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 929 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 930 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 931 | qsatbef=MIN(0.5,qsatbef) |
---|
| 932 | zcor=1./(1.-retv*qsatbef) |
---|
| 933 | qsatbef=qsatbef*zcor |
---|
| 934 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 935 | |
---|
| 936 | |
---|
| 937 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
| 938 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
| 939 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
| 940 | |
---|
| 941 | !zqenv = qt environnement |
---|
| 942 | !zqsatenv = qsat environnement |
---|
| 943 | !zthl = Tl environnement |
---|
| 944 | |
---|
| 945 | |
---|
| 946 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 947 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 948 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 949 | qsatbef=MIN(0.5,qsatbef) |
---|
| 950 | zcor=1./(1.-retv*qsatbef) |
---|
| 951 | qsatbef=qsatbef*zcor |
---|
| 952 | zqsatth(ind1,ind2)=qsatbef |
---|
| 953 | |
---|
| 954 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
| 955 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
| 956 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
| 957 | |
---|
| 958 | |
---|
| 959 | !zqta = qt thermals |
---|
| 960 | !zqsatth = qsat thermals |
---|
| 961 | !ztla = Tl thermals |
---|
| 962 | !------------------------------------------------------------------------------ |
---|
| 963 | ! s standard deviation |
---|
| 964 | !------------------------------------------------------------------------------ |
---|
| 965 | |
---|
[2957] | 966 | sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
---|
| 967 | & (1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
| 968 | ! sigma1s_fraca = (1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5 |
---|
[2960] | 969 | IF (cloudth_ratqsmin>0.) THEN |
---|
| 970 | sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
---|
| 971 | ELSE |
---|
| 972 | sigma1s_ratqs = ratqs(ind1,ind2)*po(ind1) |
---|
| 973 | ENDIF |
---|
[2957] | 974 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
[5208] | 975 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
| 976 | IF (iflag_ratqs.eq.10.or.iflag_ratqs.eq.11) then |
---|
[4623] | 977 | sigma1s = ratqs(ind1,ind2)*po(ind1)*aenv |
---|
[5208] | 978 | IF (iflag_ratqs.eq.10.and.sigma_qtherm(ind1,ind2).ne.0) then |
---|
| 979 | sigma2s = sigma_qtherm(ind1,ind2)*ath |
---|
| 980 | ENDIF |
---|
[4623] | 981 | ENDIF |
---|
[5208] | 982 | |
---|
[2686] | 983 | ! tests |
---|
| 984 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 985 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
---|
| 986 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
| 987 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 988 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
| 989 | ! ratqs(ind1,ind2)=0.002 |
---|
| 990 | ! else |
---|
| 991 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 992 | ! endif |
---|
| 993 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 994 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 995 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 996 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
| 997 | |
---|
| 998 | IF (iflag_cloudth_vert == 1) THEN |
---|
| 999 | !------------------------------------------------------------------------------- |
---|
| 1000 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
---|
| 1001 | !------------------------------------------------------------------------------- |
---|
| 1002 | |
---|
| 1003 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 1004 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 1005 | |
---|
| 1006 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1007 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1008 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1009 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1010 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 1011 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
| 1012 | |
---|
| 1013 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
| 1014 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
| 1015 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 1016 | |
---|
| 1017 | ! Environment |
---|
| 1018 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
| 1019 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 1020 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 1021 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
| 1022 | |
---|
| 1023 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 1024 | |
---|
| 1025 | ! Thermal |
---|
| 1026 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
| 1027 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
| 1028 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
| 1029 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
| 1030 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 1031 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 1032 | |
---|
[2911] | 1033 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
---|
[3493] | 1034 | IF (iflag_cloudth_vert < 5) THEN |
---|
[2686] | 1035 | !------------------------------------------------------------------------------- |
---|
| 1036 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
---|
| 1037 | !------------------------------------------------------------------------------- |
---|
| 1038 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 1039 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 1040 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 1041 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
[2911] | 1042 | IF (iflag_cloudth_vert == 3) THEN |
---|
| 1043 | deltasenv=aenv*vert_alpha*sigma1s |
---|
| 1044 | deltasth=ath*vert_alpha_th*sigma2s |
---|
| 1045 | ELSE IF (iflag_cloudth_vert == 4) THEN |
---|
[2957] | 1046 | IF (iflag_cloudth_vert_noratqs == 1) THEN |
---|
[2959] | 1047 | deltasenv=vert_alpha*max(sigma1s_fraca,1e-10) |
---|
[2957] | 1048 | deltasth=vert_alpha_th*sigma2s |
---|
| 1049 | ELSE |
---|
| 1050 | deltasenv=vert_alpha*sigma1s |
---|
| 1051 | deltasth=vert_alpha_th*sigma2s |
---|
| 1052 | ENDIF |
---|
[2911] | 1053 | ENDIF |
---|
[2686] | 1054 | |
---|
| 1055 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1056 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1057 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
| 1058 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
| 1059 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1060 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1061 | exp_xth1 = exp(-1.*xth1**2) |
---|
| 1062 | exp_xth2 = exp(-1.*xth2**2) |
---|
| 1063 | |
---|
[2945] | 1064 | !CF_surfacique |
---|
[2686] | 1065 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
| 1066 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
[2945] | 1067 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
[2686] | 1068 | |
---|
[2945] | 1069 | |
---|
| 1070 | !CF_volumique & eau condense |
---|
[2686] | 1071 | !environnement |
---|
| 1072 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
[2945] | 1073 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
[2686] | 1074 | if (deltasenv .lt. 1.e-10) then |
---|
| 1075 | qlenv(ind1,ind2)=IntJ |
---|
[2945] | 1076 | cenv_vol(ind1,ind2)=IntJ_CF |
---|
[2686] | 1077 | else |
---|
| 1078 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
| 1079 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
| 1080 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
[2945] | 1081 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
| 1082 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
[2686] | 1083 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
[2945] | 1084 | cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
[2686] | 1085 | endif |
---|
| 1086 | |
---|
| 1087 | !thermique |
---|
| 1088 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
[2945] | 1089 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
| 1090 | if (deltasth .lt. 1.e-10) then |
---|
[2686] | 1091 | qlth(ind1,ind2)=IntJ |
---|
[2945] | 1092 | cth_vol(ind1,ind2)=IntJ_CF |
---|
[2686] | 1093 | else |
---|
| 1094 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 1095 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 1096 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
[2945] | 1097 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
| 1098 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
[2686] | 1099 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
[2945] | 1100 | cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
[2686] | 1101 | endif |
---|
| 1102 | |
---|
| 1103 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
[2945] | 1104 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
[2686] | 1105 | |
---|
[3493] | 1106 | ELSE IF (iflag_cloudth_vert == 5) THEN |
---|
[4260] | 1107 | sigma1s=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
---|
| 1108 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
---|
| 1109 | +ratqs(ind1,ind2)*po(ind1) !Environment |
---|
[3493] | 1110 | sigma2s=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.02)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) !Thermals |
---|
| 1111 | !sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 1112 | !sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 1113 | xth=sth/(sqrt(2.)*sigma2s) |
---|
| 1114 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 1115 | |
---|
| 1116 | !Volumique |
---|
| 1117 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 1118 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 1119 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
| 1120 | !print *,'jeanjean_CV=',ctot_vol(ind1,ind2) |
---|
| 1121 | |
---|
| 1122 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth_vol(ind1,ind2)) |
---|
| 1123 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv_vol(ind1,ind2)) |
---|
| 1124 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 1125 | |
---|
| 1126 | !Surfacique |
---|
| 1127 | !Neggers |
---|
| 1128 | !beta=0.0044 |
---|
| 1129 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
| 1130 | !print *,'jeanjean : beta=',beta |
---|
| 1131 | !cth(ind1,ind2)=cth_vol(ind1,ind2)*inverse_rho |
---|
| 1132 | !cenv(ind1,ind2)=cenv_vol(ind1,ind2)*inverse_rho |
---|
| 1133 | !ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 1134 | |
---|
| 1135 | !Brooks |
---|
| 1136 | a_Brooks=0.6694 |
---|
| 1137 | b_Brooks=0.1882 |
---|
| 1138 | A_Maj_Brooks=0.1635 !-- sans shear |
---|
| 1139 | !A_Maj_Brooks=0.17 !-- ARM LES |
---|
| 1140 | !A_Maj_Brooks=0.18 !-- RICO LES |
---|
| 1141 | !A_Maj_Brooks=0.19 !-- BOMEX LES |
---|
| 1142 | Dx_Brooks=200000. |
---|
| 1143 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
| 1144 | !print *,'jeanjean_f=',f_Brooks |
---|
| 1145 | |
---|
| 1146 | cth(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cth_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1147 | cenv(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(cenv_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1148 | ctot(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1149 | !print *,'JJ_ctot_1',ctot(ind1,ind2) |
---|
| 1150 | |
---|
| 1151 | |
---|
| 1152 | |
---|
| 1153 | |
---|
| 1154 | |
---|
| 1155 | ENDIF ! of if (iflag_cloudth_vert<5) |
---|
[2911] | 1156 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
---|
[2686] | 1157 | |
---|
[3495] | 1158 | ! if (ctot(ind1,ind2).lt.1.e-10) then |
---|
| 1159 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
[2686] | 1160 | ctot(ind1,ind2)=0. |
---|
[2945] | 1161 | ctot_vol(ind1,ind2)=0. |
---|
[3493] | 1162 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
[2686] | 1163 | |
---|
[3493] | 1164 | else |
---|
[2686] | 1165 | |
---|
| 1166 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 1167 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
| 1168 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
| 1169 | |
---|
| 1170 | endif |
---|
| 1171 | |
---|
[3493] | 1172 | else ! gaussienne environnement seule |
---|
[2686] | 1173 | |
---|
[3999] | 1174 | |
---|
[2686] | 1175 | zqenv(ind1)=po(ind1) |
---|
| 1176 | Tbef=t(ind1,ind2) |
---|
| 1177 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 1178 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 1179 | qsatbef=MIN(0.5,qsatbef) |
---|
| 1180 | zcor=1./(1.-retv*qsatbef) |
---|
| 1181 | qsatbef=qsatbef*zcor |
---|
| 1182 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 1183 | |
---|
| 1184 | |
---|
[3493] | 1185 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
[2686] | 1186 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
[3495] | 1187 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
[2686] | 1188 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
[3495] | 1189 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 1190 | sth=0. |
---|
[3493] | 1191 | |
---|
[2686] | 1192 | |
---|
| 1193 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
[3495] | 1194 | sigma2s=0. |
---|
[2686] | 1195 | |
---|
[3493] | 1196 | sqrt2pi=sqrt(2.*pi) |
---|
| 1197 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
[2686] | 1198 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
[3495] | 1199 | ctot_vol(ind1,ind2)=ctot(ind1,ind2) |
---|
[3493] | 1200 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
[2686] | 1201 | |
---|
| 1202 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 1203 | ctot(ind1,ind2)=0. |
---|
[3495] | 1204 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
[2686] | 1205 | |
---|
| 1206 | else |
---|
| 1207 | |
---|
[3495] | 1208 | ! ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
[2686] | 1209 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 1210 | |
---|
[3493] | 1211 | endif |
---|
[2686] | 1212 | |
---|
[3493] | 1213 | |
---|
| 1214 | |
---|
| 1215 | |
---|
[2686] | 1216 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
---|
[2958] | 1217 | ! Outputs used to check the PDFs |
---|
| 1218 | cloudth_senv(ind1,ind2) = senv |
---|
| 1219 | cloudth_sth(ind1,ind2) = sth |
---|
| 1220 | cloudth_sigmaenv(ind1,ind2) = sigma1s |
---|
| 1221 | cloudth_sigmath(ind1,ind2) = sigma2s |
---|
| 1222 | |
---|
[2686] | 1223 | enddo ! from the loop on ngrid l.333 |
---|
| 1224 | return |
---|
| 1225 | ! end |
---|
| 1226 | END SUBROUTINE cloudth_vert_v3 |
---|
| 1227 | ! |
---|
[3493] | 1228 | |
---|
| 1229 | |
---|
| 1230 | |
---|
| 1231 | |
---|
| 1232 | |
---|
| 1233 | |
---|
| 1234 | |
---|
| 1235 | |
---|
| 1236 | |
---|
| 1237 | |
---|
| 1238 | |
---|
| 1239 | SUBROUTINE cloudth_v6(ngrid,klev,ind2, & |
---|
| 1240 | & ztv,po,zqta,fraca, & |
---|
| 1241 | & qcloud,ctot_surf,ctot_vol,zpspsk,paprs,pplay,ztla,zthl, & |
---|
[4651] | 1242 | & ratqs,zqs,T, & |
---|
| 1243 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3493] | 1244 | |
---|
[5284] | 1245 | USE yoethf_mod_h |
---|
| 1246 | use lmdz_cloudth_ini, only: iflag_cloudth_vert |
---|
[3493] | 1247 | |
---|
[5285] | 1248 | USE yomcst_mod_h |
---|
[5274] | 1249 | IMPLICIT NONE |
---|
[3493] | 1250 | |
---|
[4651] | 1251 | |
---|
[5274] | 1252 | |
---|
[4593] | 1253 | INCLUDE "FCTTRE.h" |
---|
[3493] | 1254 | |
---|
| 1255 | |
---|
| 1256 | !Domain variables |
---|
| 1257 | INTEGER ngrid !indice Max lat-lon |
---|
| 1258 | INTEGER klev !indice Max alt |
---|
[4651] | 1259 | real, dimension(ngrid,klev), intent(out) :: cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv |
---|
[3493] | 1260 | INTEGER ind1 !indice in [1:ngrid] |
---|
| 1261 | INTEGER ind2 !indice in [1:klev] |
---|
| 1262 | !thermal plume fraction |
---|
| 1263 | REAL fraca(ngrid,klev+1) !thermal plumes fraction in the gridbox |
---|
| 1264 | !temperatures |
---|
| 1265 | REAL T(ngrid,klev) !temperature |
---|
| 1266 | REAL zpspsk(ngrid,klev) !factor (p/p0)**kappa (used for potential variables) |
---|
| 1267 | REAL ztv(ngrid,klev) !potential temperature (voir thermcell_env.F90) |
---|
| 1268 | REAL ztla(ngrid,klev) !liquid temperature in the thermals (Tl_th) |
---|
| 1269 | REAL zthl(ngrid,klev) !liquid temperature in the environment (Tl_env) |
---|
| 1270 | !pressure |
---|
| 1271 | REAL paprs(ngrid,klev+1) !pressure at the interface of levels |
---|
| 1272 | REAL pplay(ngrid,klev) !pressure at the middle of the level |
---|
| 1273 | !humidity |
---|
| 1274 | REAL ratqs(ngrid,klev) !width of the total water subgrid-scale distribution |
---|
| 1275 | REAL po(ngrid) !total water (qt) |
---|
| 1276 | REAL zqenv(ngrid) !total water in the environment (qt_env) |
---|
| 1277 | REAL zqta(ngrid,klev) !total water in the thermals (qt_th) |
---|
| 1278 | REAL zqsatth(ngrid,klev) !water saturation level in the thermals (q_sat_th) |
---|
| 1279 | REAL zqsatenv(ngrid,klev) !water saturation level in the environment (q_sat_env) |
---|
| 1280 | REAL qlth(ngrid,klev) !condensed water in the thermals |
---|
| 1281 | REAL qlenv(ngrid,klev) !condensed water in the environment |
---|
| 1282 | REAL qltot(ngrid,klev) !condensed water in the gridbox |
---|
| 1283 | !cloud fractions |
---|
| 1284 | REAL cth_vol(ngrid,klev) !cloud fraction by volume in the thermals |
---|
| 1285 | REAL cenv_vol(ngrid,klev) !cloud fraction by volume in the environment |
---|
| 1286 | REAL ctot_vol(ngrid,klev) !cloud fraction by volume in the gridbox |
---|
| 1287 | REAL cth_surf(ngrid,klev) !cloud fraction by surface in the thermals |
---|
| 1288 | REAL cenv_surf(ngrid,klev) !cloud fraction by surface in the environment |
---|
| 1289 | REAL ctot_surf(ngrid,klev) !cloud fraction by surface in the gridbox |
---|
| 1290 | !PDF of saturation deficit variables |
---|
| 1291 | REAL rdd,cppd,Lv |
---|
| 1292 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 1293 | REAL alth,alenv,ath,aenv |
---|
| 1294 | REAL sth,senv !saturation deficits in the thermals and environment |
---|
| 1295 | REAL sigma_env,sigma_th !standard deviations of the biGaussian PDF |
---|
| 1296 | !cloud fraction variables |
---|
| 1297 | REAL xth,xenv |
---|
| 1298 | REAL inverse_rho,beta !Neggers et al. (2011) method |
---|
| 1299 | REAL a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks !Brooks et al. (2005) method |
---|
| 1300 | !Incloud total water variables |
---|
| 1301 | REAL zqs(ngrid) !q_sat |
---|
| 1302 | REAL qcloud(ngrid) !eau totale dans le nuage |
---|
| 1303 | !Some arithmetic variables |
---|
[5479] | 1304 | REAL pi,sqrt2,sqrt2pi |
---|
[3493] | 1305 | !Depth of the layer |
---|
| 1306 | REAL dz(ngrid,klev) !epaisseur de la couche en metre |
---|
| 1307 | REAL rhodz(ngrid,klev) |
---|
| 1308 | REAL zrho(ngrid,klev) |
---|
| 1309 | DO ind1 = 1, ngrid |
---|
| 1310 | rhodz(ind1,ind2) = (paprs(ind1,ind2)-paprs(ind1,ind2+1))/rg ![kg/m2] |
---|
| 1311 | zrho(ind1,ind2) = pplay(ind1,ind2)/T(ind1,ind2)/rd ![kg/m3] |
---|
| 1312 | dz(ind1,ind2) = rhodz(ind1,ind2)/zrho(ind1,ind2) ![m] |
---|
| 1313 | END DO |
---|
| 1314 | |
---|
| 1315 | !------------------------------------------------------------------------------ |
---|
| 1316 | ! Initialization |
---|
| 1317 | !------------------------------------------------------------------------------ |
---|
[5479] | 1318 | qlth(:,ind2)=0. |
---|
| 1319 | qlenv(:,ind2)=0. |
---|
| 1320 | qltot(:,ind2)=0. |
---|
| 1321 | cth_vol(:,ind2)=0. |
---|
| 1322 | cenv_vol(:,ind2)=0. |
---|
| 1323 | ctot_vol(:,ind2)=0. |
---|
| 1324 | cth_surf(:,ind2)=0. |
---|
| 1325 | cenv_surf(:,ind2)=0. |
---|
| 1326 | ctot_surf(:,ind2)=0. |
---|
[3493] | 1327 | qcloud(:)=0. |
---|
| 1328 | rdd=287.04 |
---|
| 1329 | cppd=1005.7 |
---|
| 1330 | pi=3.14159 |
---|
| 1331 | Lv=2.5e6 |
---|
| 1332 | sqrt2=sqrt(2.) |
---|
| 1333 | sqrt2pi=sqrt(2.*pi) |
---|
| 1334 | |
---|
| 1335 | |
---|
| 1336 | DO ind1=1,ngrid |
---|
| 1337 | !------------------------------------------------------------------------------- |
---|
| 1338 | !Both thermal and environment in the gridbox |
---|
| 1339 | !------------------------------------------------------------------------------- |
---|
| 1340 | IF ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) THEN |
---|
| 1341 | !-------------------------------------------- |
---|
| 1342 | !calcul de qsat_env |
---|
| 1343 | !-------------------------------------------- |
---|
| 1344 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 1345 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 1346 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 1347 | qsatbef=MIN(0.5,qsatbef) |
---|
| 1348 | zcor=1./(1.-retv*qsatbef) |
---|
| 1349 | qsatbef=qsatbef*zcor |
---|
| 1350 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 1351 | !-------------------------------------------- |
---|
| 1352 | !calcul de s_env |
---|
| 1353 | !-------------------------------------------- |
---|
| 1354 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
| 1355 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
| 1356 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
| 1357 | !-------------------------------------------- |
---|
| 1358 | !calcul de qsat_th |
---|
| 1359 | !-------------------------------------------- |
---|
| 1360 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 1361 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 1362 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 1363 | qsatbef=MIN(0.5,qsatbef) |
---|
| 1364 | zcor=1./(1.-retv*qsatbef) |
---|
| 1365 | qsatbef=qsatbef*zcor |
---|
| 1366 | zqsatth(ind1,ind2)=qsatbef |
---|
| 1367 | !-------------------------------------------- |
---|
| 1368 | !calcul de s_th |
---|
| 1369 | !-------------------------------------------- |
---|
| 1370 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
| 1371 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
| 1372 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
| 1373 | !-------------------------------------------- |
---|
| 1374 | !calcul standard deviations bi-Gaussian PDF |
---|
| 1375 | !-------------------------------------------- |
---|
| 1376 | sigma_th=(0.03218+0.000092655*dz(ind1,ind2))/((fraca(ind1,ind2)+0.01)**0.5)*(((sth-senv)**2)**0.5)+0.002*zqta(ind1,ind2) |
---|
[4260] | 1377 | sigma_env=(0.71794+0.000498239*dz(ind1,ind2))*(fraca(ind1,ind2)**0.5) & |
---|
| 1378 | /(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5) & |
---|
| 1379 | +ratqs(ind1,ind2)*po(ind1) |
---|
[3493] | 1380 | xth=sth/(sqrt2*sigma_th) |
---|
| 1381 | xenv=senv/(sqrt2*sigma_env) |
---|
| 1382 | !-------------------------------------------- |
---|
| 1383 | !Cloud fraction by volume CF_vol |
---|
| 1384 | !-------------------------------------------- |
---|
| 1385 | cth_vol(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 1386 | cenv_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 1387 | ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
| 1388 | !-------------------------------------------- |
---|
| 1389 | !Condensed water qc |
---|
| 1390 | !-------------------------------------------- |
---|
| 1391 | qlth(ind1,ind2)=sigma_th*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth_vol(ind1,ind2)) |
---|
| 1392 | qlenv(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv_vol(ind1,ind2)) |
---|
| 1393 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 1394 | !-------------------------------------------- |
---|
| 1395 | !Cloud fraction by surface CF_surf |
---|
| 1396 | !-------------------------------------------- |
---|
| 1397 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
| 1398 | !beta=0.0044 (Jouhaud et al.2018) |
---|
| 1399 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
| 1400 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
| 1401 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
| 1402 | a_Brooks=0.6694 |
---|
| 1403 | b_Brooks=0.1882 |
---|
| 1404 | A_Maj_Brooks=0.1635 !-- sans dependence au cisaillement de vent |
---|
| 1405 | Dx_Brooks=200000. !-- si l'on considere des mailles de 200km de cote |
---|
| 1406 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
| 1407 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1408 | !-------------------------------------------- |
---|
| 1409 | !Incloud Condensed water qcloud |
---|
| 1410 | !-------------------------------------------- |
---|
| 1411 | if (ctot_surf(ind1,ind2) .lt. 1.e-10) then |
---|
| 1412 | ctot_vol(ind1,ind2)=0. |
---|
| 1413 | ctot_surf(ind1,ind2)=0. |
---|
| 1414 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 1415 | else |
---|
| 1416 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqs(ind1) |
---|
| 1417 | endif |
---|
| 1418 | |
---|
| 1419 | |
---|
| 1420 | |
---|
| 1421 | !------------------------------------------------------------------------------- |
---|
| 1422 | !Environment only in the gridbox |
---|
| 1423 | !------------------------------------------------------------------------------- |
---|
| 1424 | ELSE |
---|
| 1425 | !-------------------------------------------- |
---|
| 1426 | !calcul de qsat_env |
---|
| 1427 | !-------------------------------------------- |
---|
| 1428 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 1429 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 1430 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 1431 | qsatbef=MIN(0.5,qsatbef) |
---|
| 1432 | zcor=1./(1.-retv*qsatbef) |
---|
| 1433 | qsatbef=qsatbef*zcor |
---|
| 1434 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 1435 | !-------------------------------------------- |
---|
| 1436 | !calcul de s_env |
---|
| 1437 | !-------------------------------------------- |
---|
| 1438 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 these Arnaud Jam |
---|
| 1439 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 these Arnaud Jam |
---|
| 1440 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 these Arnaud Jam |
---|
| 1441 | !-------------------------------------------- |
---|
| 1442 | !calcul standard deviations Gaussian PDF |
---|
| 1443 | !-------------------------------------------- |
---|
| 1444 | zqenv(ind1)=po(ind1) |
---|
| 1445 | sigma_env=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 1446 | xenv=senv/(sqrt2*sigma_env) |
---|
| 1447 | !-------------------------------------------- |
---|
| 1448 | !Cloud fraction by volume CF_vol |
---|
| 1449 | !-------------------------------------------- |
---|
| 1450 | ctot_vol(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 1451 | !-------------------------------------------- |
---|
| 1452 | !Condensed water qc |
---|
| 1453 | !-------------------------------------------- |
---|
| 1454 | qltot(ind1,ind2)=sigma_env*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*ctot_vol(ind1,ind2)) |
---|
| 1455 | !-------------------------------------------- |
---|
| 1456 | !Cloud fraction by surface CF_surf |
---|
| 1457 | !-------------------------------------------- |
---|
| 1458 | !Method Neggers et al. (2011) : ok for cumulus clouds only |
---|
| 1459 | !beta=0.0044 (Jouhaud et al.2018) |
---|
| 1460 | !inverse_rho=1.+beta*dz(ind1,ind2) |
---|
| 1461 | !ctot_surf(ind1,ind2)=ctot_vol(ind1,ind2)*inverse_rho |
---|
| 1462 | !Method Brooks et al. (2005) : ok for all types of clouds |
---|
| 1463 | a_Brooks=0.6694 |
---|
| 1464 | b_Brooks=0.1882 |
---|
| 1465 | A_Maj_Brooks=0.1635 !-- sans dependence au shear |
---|
| 1466 | Dx_Brooks=200000. |
---|
| 1467 | f_Brooks=A_Maj_Brooks*(dz(ind1,ind2)**(a_Brooks))*(Dx_Brooks**(-b_Brooks)) |
---|
| 1468 | ctot_surf(ind1,ind2)=1./(1.+exp(-1.*f_Brooks)*((1./max(1.e-15,min(ctot_vol(ind1,ind2),1.)))- 1.)) |
---|
| 1469 | !-------------------------------------------- |
---|
| 1470 | !Incloud Condensed water qcloud |
---|
| 1471 | !-------------------------------------------- |
---|
| 1472 | if (ctot_surf(ind1,ind2) .lt. 1.e-8) then |
---|
| 1473 | ctot_vol(ind1,ind2)=0. |
---|
| 1474 | ctot_surf(ind1,ind2)=0. |
---|
| 1475 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 1476 | else |
---|
| 1477 | qcloud(ind1)=qltot(ind1,ind2)/ctot_vol(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 1478 | endif |
---|
| 1479 | |
---|
| 1480 | |
---|
| 1481 | END IF ! From the separation (thermal/envrionnement) et (environnement only) |
---|
| 1482 | |
---|
| 1483 | ! Outputs used to check the PDFs |
---|
| 1484 | cloudth_senv(ind1,ind2) = senv |
---|
| 1485 | cloudth_sth(ind1,ind2) = sth |
---|
| 1486 | cloudth_sigmaenv(ind1,ind2) = sigma_env |
---|
| 1487 | cloudth_sigmath(ind1,ind2) = sigma_th |
---|
| 1488 | |
---|
| 1489 | END DO ! From the loop on ngrid |
---|
| 1490 | return |
---|
| 1491 | |
---|
| 1492 | END SUBROUTINE cloudth_v6 |
---|
[3999] | 1493 | |
---|
| 1494 | |
---|
| 1495 | |
---|
| 1496 | |
---|
| 1497 | |
---|
| 1498 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4910] | 1499 | SUBROUTINE cloudth_mpc(klon,klev,ind2,mpc_bl_points, & |
---|
| 1500 | & temp,qt,qt_th,frac_th,zpspsk,paprsup, paprsdn,play,thetal_th, & |
---|
| 1501 | & ratqs,qcloud,qincloud,icefrac,ctot,ctot_vol, & |
---|
[4651] | 1502 | & cloudth_sth,cloudth_senv,cloudth_sigmath,cloudth_sigmaenv) |
---|
[3999] | 1503 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4910] | 1504 | ! Author : Etienne Vignon (LMDZ/CNRS) |
---|
| 1505 | ! Date: April 2024 |
---|
| 1506 | ! Date: Adapted from cloudth_vert_v3 in 2023 by Arnaud Otavio Jam |
---|
| 1507 | ! IMPORTANT NOTE: we assume iflag_cloudth_vert=7 |
---|
[3999] | 1508 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 1509 | |
---|
[4651] | 1510 | use lmdz_cloudth_ini, only: iflag_cloudth_vert,iflag_ratqs |
---|
[4910] | 1511 | use lmdz_cloudth_ini, only: C_mpc ,Ni,C_cap,Ei,d_top ,vert_alpha, vert_alpha_th ,sigma1s_factor,sigma1s_power,sigma2s_factor,sigma2s_power,cloudth_ratqsmin ,iflag_cloudth_vert_noratqs |
---|
| 1512 | use lmdz_lscp_tools, only: CALC_QSAT_ECMWF |
---|
| 1513 | use lmdz_lscp_ini, only: RTT, RG, RPI, RD, RCPD, RLVTT, RLSTT, temp_nowater, min_frac_th_cld, min_neb_th |
---|
[3999] | 1514 | |
---|
| 1515 | IMPLICIT NONE |
---|
| 1516 | |
---|
| 1517 | |
---|
| 1518 | !------------------------------------------------------------------------------ |
---|
| 1519 | ! Declaration |
---|
| 1520 | !------------------------------------------------------------------------------ |
---|
| 1521 | |
---|
| 1522 | ! INPUT/OUTPUT |
---|
| 1523 | |
---|
| 1524 | INTEGER, INTENT(IN) :: klon,klev,ind2 |
---|
[4072] | 1525 | |
---|
[3999] | 1526 | |
---|
[4910] | 1527 | REAL, DIMENSION(klon), INTENT(IN) :: temp ! Temperature (liquid temperature) in the mesh [K] : has seen evap of precip |
---|
| 1528 | REAL, DIMENSION(klon), INTENT(IN) :: qt ! total water specific humidity in the mesh [kg/kg]: has seen evap of precip |
---|
| 1529 | REAL, DIMENSION(klon), INTENT(IN) :: qt_th ! total water specific humidity in thermals [kg/kg]: has not seen evap of precip |
---|
| 1530 | REAL, DIMENSION(klon), INTENT(IN) :: thetal_th ! Liquid potential temperature in thermals [K]: has not seen the evap of precip |
---|
| 1531 | REAL, DIMENSION(klon), INTENT(IN) :: frac_th ! Fraction of the mesh covered by thermals [0-1] |
---|
| 1532 | REAL, DIMENSION(klon), INTENT(IN) :: zpspsk ! Exner potential |
---|
| 1533 | REAL, DIMENSION(klon), INTENT(IN) :: paprsup ! Pressure at top layer interface [Pa] |
---|
| 1534 | REAL, DIMENSION(klon), INTENT(IN) :: paprsdn ! Pressure at bottom layer interface [Pa] |
---|
| 1535 | REAL, DIMENSION(klon), INTENT(IN) :: play ! Pressure of layers [Pa] |
---|
| 1536 | REAL, DIMENSION(klon), INTENT(IN) :: ratqs ! Parameter that determines the width of the total water distrib. |
---|
[3999] | 1537 | |
---|
[4380] | 1538 | |
---|
[4072] | 1539 | INTEGER, DIMENSION(klon,klev), INTENT(INOUT) :: mpc_bl_points ! grid points with convective (thermals) mixed phase clouds |
---|
| 1540 | |
---|
[4910] | 1541 | REAL, DIMENSION(klon), INTENT(OUT) :: ctot ! Cloud fraction [0-1] |
---|
| 1542 | REAL, DIMENSION(klon), INTENT(OUT) :: ctot_vol ! Volume cloud fraction [0-1] |
---|
[3999] | 1543 | REAL, DIMENSION(klon), INTENT(OUT) :: qcloud ! In cloud total water content [kg/kg] |
---|
[4910] | 1544 | REAL, DIMENSION(klon), INTENT(OUT) :: qincloud ! In cloud condensed water content [kg/kg] |
---|
| 1545 | REAL, DIMENSION(klon), INTENT(OUT) :: icefrac ! Fraction of ice in clouds [0-1] |
---|
| 1546 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sth ! mean saturation deficit in thermals |
---|
| 1547 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_senv ! mean saturation deficit in environment |
---|
| 1548 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmath ! std of saturation deficit in thermals |
---|
| 1549 | REAL, DIMENSION(klon), INTENT(OUT) :: cloudth_sigmaenv ! std of saturation deficit in environment |
---|
[3999] | 1550 | |
---|
| 1551 | |
---|
| 1552 | ! LOCAL VARIABLES |
---|
| 1553 | |
---|
| 1554 | INTEGER itap,ind1,l,ig,iter,k |
---|
[4072] | 1555 | INTEGER iflag_topthermals, niter |
---|
[3999] | 1556 | |
---|
[4910] | 1557 | REAL qcth(klon) |
---|
| 1558 | REAL qcenv(klon) |
---|
| 1559 | REAL qctot(klon) |
---|
| 1560 | REAL cth(klon) |
---|
| 1561 | REAL cenv(klon) |
---|
| 1562 | REAL cth_vol(klon) |
---|
| 1563 | REAL cenv_vol(klon) |
---|
| 1564 | REAL qt_env(klon), thetal_env(klon) |
---|
| 1565 | REAL icefracenv(klon), icefracth(klon) |
---|
| 1566 | REAL sqrtpi,sqrt2,sqrt2pi |
---|
[3999] | 1567 | REAL alth,alenv,ath,aenv |
---|
| 1568 | REAL sth,senv,sigma1s,sigma2s,sigma1s_fraca,sigma1s_ratqs |
---|
| 1569 | REAL inverse_rho,beta,a_Brooks,b_Brooks,A_Maj_Brooks,Dx_Brooks,f_Brooks |
---|
| 1570 | REAL xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
| 1571 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
| 1572 | REAL IntJ,IntI1,IntI2,IntI3,IntJ_CF,IntI1_CF,IntI3_CF,coeffqlenv,coeffqlth |
---|
[4072] | 1573 | REAL zdelta,qsatbef,zcor |
---|
[4910] | 1574 | REAL Tbefth(klon), Tbefenv(klon), zrho(klon), rhoth(klon) |
---|
[4072] | 1575 | REAL qlbef |
---|
[4910] | 1576 | REAL dqsatenv(klon), dqsatth(klon) |
---|
[3999] | 1577 | REAL zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon) |
---|
| 1578 | REAL zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon) |
---|
[4910] | 1579 | REAL rhodz(klon) |
---|
| 1580 | REAL rho(klon) |
---|
| 1581 | REAL dz(klon) |
---|
| 1582 | REAL qslenv(klon), qslth(klon), qsienv(klon), qsith(klon) |
---|
[4072] | 1583 | REAL alenvl, aenvl |
---|
| 1584 | REAL sthi, sthl, sthil, althl, athl, althi, athi, sthlc, deltasthc, sigma2sc |
---|
[3999] | 1585 | REAL senvi, senvl, qbase, sbase, qliqth, qiceth |
---|
[4072] | 1586 | REAL qmax, ttarget, stmp, cout, coutref, fraci |
---|
[4910] | 1587 | REAL maxi, mini, pas |
---|
[3999] | 1588 | |
---|
| 1589 | ! Modifty the saturation deficit PDF in thermals |
---|
| 1590 | ! in the presence of ice crystals |
---|
| 1591 | CHARACTER (len = 80) :: abort_message |
---|
| 1592 | CHARACTER (len = 20) :: routname = 'cloudth_mpc' |
---|
| 1593 | |
---|
| 1594 | |
---|
| 1595 | !------------------------------------------------------------------------------ |
---|
| 1596 | ! Initialisation |
---|
| 1597 | !------------------------------------------------------------------------------ |
---|
| 1598 | |
---|
| 1599 | |
---|
| 1600 | ! Few initial checksS |
---|
| 1601 | |
---|
| 1602 | DO k = 1,klev |
---|
| 1603 | DO ind1 = 1, klon |
---|
[4910] | 1604 | rhodz(ind1) = (paprsdn(ind1)-paprsup(ind1))/rg !kg/m2 |
---|
| 1605 | zrho(ind1) = play(ind1)/temp(ind1)/rd !kg/m3 |
---|
| 1606 | dz(ind1) = rhodz(ind1)/zrho(ind1) !m : epaisseur de la couche en metre |
---|
[3999] | 1607 | END DO |
---|
| 1608 | END DO |
---|
| 1609 | |
---|
| 1610 | |
---|
[4910] | 1611 | icefracth(:)=0. |
---|
| 1612 | icefracenv(:)=0. |
---|
| 1613 | sqrt2pi=sqrt(2.*rpi) |
---|
[3999] | 1614 | sqrt2=sqrt(2.) |
---|
[4910] | 1615 | sqrtpi=sqrt(rpi) |
---|
| 1616 | icefrac(:)=0. |
---|
[3999] | 1617 | |
---|
| 1618 | !------------------------------------------------------------------------------- |
---|
| 1619 | ! Identify grid points with potential mixed-phase conditions |
---|
| 1620 | !------------------------------------------------------------------------------- |
---|
| 1621 | |
---|
| 1622 | |
---|
| 1623 | DO ind1=1,klon |
---|
[4910] | 1624 | IF ((temp(ind1) .LT. RTT) .AND. (temp(ind1) .GT. temp_nowater) & |
---|
| 1625 | .AND. (ind2<=klev-2) & |
---|
| 1626 | .AND. (frac_th(ind1).GT.min_frac_th_cld)) THEN |
---|
[3999] | 1627 | mpc_bl_points(ind1,ind2)=1 |
---|
| 1628 | ELSE |
---|
| 1629 | mpc_bl_points(ind1,ind2)=0 |
---|
| 1630 | ENDIF |
---|
| 1631 | ENDDO |
---|
| 1632 | |
---|
| 1633 | |
---|
| 1634 | !------------------------------------------------------------------------------- |
---|
| 1635 | ! Thermal fraction calculation and standard deviation of the distribution |
---|
| 1636 | !------------------------------------------------------------------------------- |
---|
| 1637 | |
---|
[4910] | 1638 | ! initialisations and calculation of temperature, humidity and saturation specific humidity |
---|
[3999] | 1639 | |
---|
[4910] | 1640 | DO ind1=1,klon |
---|
| 1641 | |
---|
| 1642 | rhodz(ind1) = (paprsdn(ind1)-paprsup(ind1))/rg ! kg/m2 |
---|
| 1643 | rho(ind1) = play(ind1)/temp(ind1)/rd ! kg/m3 |
---|
| 1644 | dz(ind1) = rhodz(ind1)/rho(ind1) ! m : epaisseur de la couche en metre |
---|
| 1645 | Tbefenv(ind1) = temp(ind1) |
---|
| 1646 | thetal_env(ind1) = Tbefenv(ind1)/zpspsk(ind1) |
---|
| 1647 | Tbefth(ind1) = thetal_th(ind1)*zpspsk(ind1) |
---|
| 1648 | rhoth(ind1) = play(ind1)/Tbefth(ind1)/RD |
---|
| 1649 | qt_env(ind1) = (qt(ind1)-frac_th(ind1)*qt_th(ind1))/(1.-frac_th(ind1)) !qt = a*qtth + (1-a)*qtenv |
---|
[3999] | 1650 | |
---|
[4910] | 1651 | ENDDO |
---|
[4072] | 1652 | |
---|
[4910] | 1653 | ! Calculation of saturation specific humidity |
---|
| 1654 | CALL CALC_QSAT_ECMWF(klon,Tbefenv,qt_env,play,RTT,1,.false.,qslenv,dqsatenv) |
---|
| 1655 | CALL CALC_QSAT_ECMWF(klon,Tbefenv,qt_env,play,RTT,2,.false.,qsienv,dqsatenv) |
---|
| 1656 | CALL CALC_QSAT_ECMWF(klon,Tbefth,qt_th,play,RTT,1,.false.,qslth,dqsatth) |
---|
[4072] | 1657 | |
---|
| 1658 | |
---|
[4910] | 1659 | DO ind1=1,klon |
---|
[4072] | 1660 | |
---|
| 1661 | |
---|
[4910] | 1662 | IF (frac_th(ind1).GT.min_frac_th_cld) THEN !Thermal and environnement |
---|
[4072] | 1663 | |
---|
[4910] | 1664 | ! unlike in the other cloudth routine, |
---|
| 1665 | ! We consider distributions of the saturation deficit WRT liquid |
---|
| 1666 | ! at positive AND negative celcius temperature |
---|
| 1667 | ! subsequently, cloud fraction corresponds to the part of the pdf corresponding |
---|
| 1668 | ! to superstauration with respect to liquid WHATEVER the temperature |
---|
[4072] | 1669 | |
---|
[3999] | 1670 | ! Environment: |
---|
| 1671 | |
---|
| 1672 | |
---|
[4910] | 1673 | alenv=(0.622*RLVTT*qslenv(ind1))/(rd*thetal_env(ind1)**2) |
---|
| 1674 | aenv=1./(1.+(alenv*RLVTT/rcpd)) |
---|
| 1675 | senv=aenv*(qt_env(ind1)-qslenv(ind1)) |
---|
[3999] | 1676 | |
---|
| 1677 | |
---|
| 1678 | ! Thermals: |
---|
| 1679 | |
---|
| 1680 | |
---|
[4910] | 1681 | alth=(0.622*RLVTT*qslth(ind1))/(rd*thetal_th(ind1)**2) |
---|
| 1682 | ath=1./(1.+(alth*RLVTT/rcpd)) |
---|
| 1683 | sth=ath*(qt_th(ind1)-qslth(ind1)) |
---|
[3999] | 1684 | |
---|
| 1685 | |
---|
[4910] | 1686 | ! IF (mpc_bl_points(ind1,ind2) .EQ. 0) THEN ! No BL MPC |
---|
[3999] | 1687 | |
---|
| 1688 | |
---|
[4910] | 1689 | ! Standard deviation of the distributions |
---|
[3999] | 1690 | |
---|
[4910] | 1691 | sigma1s_fraca = (sigma1s_factor**0.5)*(frac_th(ind1)**sigma1s_power) / & |
---|
| 1692 | & (1-frac_th(ind1))*((sth-senv)**2)**0.5 |
---|
[3999] | 1693 | |
---|
| 1694 | IF (cloudth_ratqsmin>0.) THEN |
---|
[4910] | 1695 | sigma1s_ratqs = cloudth_ratqsmin*qt(ind1) |
---|
[3999] | 1696 | ELSE |
---|
[4910] | 1697 | sigma1s_ratqs = ratqs(ind1)*qt(ind1) |
---|
[3999] | 1698 | ENDIF |
---|
| 1699 | |
---|
| 1700 | sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
[4623] | 1701 | IF (iflag_ratqs.eq.11) then |
---|
[4910] | 1702 | sigma1s = ratqs(ind1)*qt(ind1)*aenv |
---|
[4623] | 1703 | ENDIF |
---|
[4910] | 1704 | sigma2s=(sigma2s_factor*(((sth-senv)**2)**0.5)/((frac_th(ind1)+0.02)**sigma2s_power))+0.002*qt_th(ind1) |
---|
[3999] | 1705 | |
---|
| 1706 | |
---|
| 1707 | deltasenv=aenv*vert_alpha*sigma1s |
---|
| 1708 | deltasth=ath*vert_alpha_th*sigma2s |
---|
| 1709 | |
---|
| 1710 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1711 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 1712 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
| 1713 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
| 1714 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1715 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1716 | exp_xth1 = exp(-1.*xth1**2) |
---|
| 1717 | exp_xth2 = exp(-1.*xth2**2) |
---|
| 1718 | |
---|
[4910] | 1719 | !surface CF |
---|
[3999] | 1720 | |
---|
[4910] | 1721 | cth(ind1)=0.5*(1.-1.*erf(xth1)) |
---|
| 1722 | cenv(ind1)=0.5*(1.-1.*erf(xenv1)) |
---|
| 1723 | ctot(ind1)=frac_th(ind1)*cth(ind1)+(1.-1.*frac_th(ind1))*cenv(ind1) |
---|
[3999] | 1724 | |
---|
| 1725 | |
---|
[4910] | 1726 | !volume CF, condensed water and ice fraction |
---|
[3999] | 1727 | |
---|
| 1728 | !environnement |
---|
| 1729 | |
---|
| 1730 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
| 1731 | IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
| 1732 | |
---|
| 1733 | IF (deltasenv .LT. 1.e-10) THEN |
---|
[4910] | 1734 | qcenv(ind1)=IntJ |
---|
| 1735 | cenv_vol(ind1)=IntJ_CF |
---|
[3999] | 1736 | ELSE |
---|
| 1737 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
| 1738 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
| 1739 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
| 1740 | IntI1_CF=((senv+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
| 1741 | IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
[4910] | 1742 | qcenv(ind1)=IntJ+IntI1+IntI2+IntI3 |
---|
| 1743 | cenv_vol(ind1)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
| 1744 | IF (Tbefenv(ind1) .LT. temp_nowater) THEN |
---|
| 1745 | ! freeze all droplets in cirrus temperature regime |
---|
| 1746 | icefracenv(ind1)=1. |
---|
| 1747 | ENDIF |
---|
[3999] | 1748 | ENDIF |
---|
| 1749 | |
---|
| 1750 | |
---|
| 1751 | |
---|
| 1752 | !thermals |
---|
| 1753 | |
---|
| 1754 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
| 1755 | IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
| 1756 | |
---|
| 1757 | IF (deltasth .LT. 1.e-10) THEN |
---|
[4910] | 1758 | qcth(ind1)=IntJ |
---|
| 1759 | cth_vol(ind1)=IntJ_CF |
---|
[3999] | 1760 | ELSE |
---|
| 1761 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 1762 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 1763 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
| 1764 | IntI1_CF=((sth+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
| 1765 | IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
[4910] | 1766 | qcth(ind1)=IntJ+IntI1+IntI2+IntI3 |
---|
| 1767 | cth_vol(ind1)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
| 1768 | IF (Tbefth(ind1) .LT. temp_nowater) THEN |
---|
| 1769 | ! freeze all droplets in cirrus temperature regime |
---|
| 1770 | icefracth(ind1)=1. |
---|
| 1771 | ENDIF |
---|
| 1772 | |
---|
[3999] | 1773 | ENDIF |
---|
| 1774 | |
---|
[4910] | 1775 | qctot(ind1)=frac_th(ind1)*qcth(ind1)+(1.-1.*frac_th(ind1))*qcenv(ind1) |
---|
| 1776 | ctot_vol(ind1)=frac_th(ind1)*cth_vol(ind1)+(1.-1.*frac_th(ind1))*cenv_vol(ind1) |
---|
[3999] | 1777 | |
---|
[4910] | 1778 | IF (cenv(ind1).LT.min_neb_th.and.cth(ind1).LT.min_neb_th) THEN |
---|
| 1779 | ctot(ind1)=0. |
---|
| 1780 | ctot_vol(ind1)=0. |
---|
| 1781 | qcloud(ind1)=qslenv(ind1) |
---|
[3999] | 1782 | qincloud(ind1)=0. |
---|
[4910] | 1783 | icefrac(ind1)=0. |
---|
[3999] | 1784 | ELSE |
---|
[4910] | 1785 | qcloud(ind1)=qctot(ind1)/ctot(ind1)+qslenv(ind1) |
---|
| 1786 | qincloud(ind1)=qctot(ind1)/ctot(ind1) |
---|
| 1787 | IF (qctot(ind1) .GT. 0) THEN |
---|
| 1788 | icefrac(ind1)=(frac_th(ind1)*qcth(ind1)*icefracth(ind1)+(1.-1.*frac_th(ind1))*qcenv(ind1)*icefracenv(ind1))/qctot(ind1) |
---|
| 1789 | icefrac(ind1)=max(min(1.,icefrac(ind1)), 0.) |
---|
[3999] | 1790 | ENDIF |
---|
| 1791 | ENDIF |
---|
| 1792 | |
---|
| 1793 | |
---|
[4910] | 1794 | ! ELSE ! mpc_bl_points>0 |
---|
[3999] | 1795 | |
---|
| 1796 | ELSE ! gaussian for environment only |
---|
| 1797 | |
---|
| 1798 | |
---|
[4910] | 1799 | alenv=(0.622*RLVTT*qslenv(ind1))/(rd*thetal_env(ind1)**2) |
---|
| 1800 | aenv=1./(1.+(alenv*RLVTT/rcpd)) |
---|
| 1801 | senv=aenv*(qt_env(ind1)-qslenv(ind1)) |
---|
[3999] | 1802 | sth=0. |
---|
[4910] | 1803 | sigma1s=ratqs(ind1)*qt_env(ind1) |
---|
[3999] | 1804 | sigma2s=0. |
---|
| 1805 | |
---|
| 1806 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
[4910] | 1807 | cenv(ind1)=0.5*(1.-1.*erf(xenv)) |
---|
| 1808 | ctot(ind1)=0.5*(1.+1.*erf(xenv)) |
---|
| 1809 | ctot_vol(ind1)=ctot(ind1) |
---|
| 1810 | qctot(ind1)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1)) |
---|
| 1811 | |
---|
| 1812 | |
---|
| 1813 | IF (ctot(ind1).LT.min_neb_th) THEN |
---|
| 1814 | ctot(ind1)=0. |
---|
| 1815 | qcloud(ind1)=qslenv(ind1) |
---|
[3999] | 1816 | qincloud(ind1)=0. |
---|
| 1817 | ELSE |
---|
[4910] | 1818 | qcloud(ind1)=qctot(ind1)/ctot(ind1)+qslenv(ind1) |
---|
| 1819 | qincloud(ind1)=MAX(qctot(ind1)/ctot(ind1),0.) |
---|
[3999] | 1820 | ENDIF |
---|
| 1821 | |
---|
| 1822 | |
---|
| 1823 | ENDIF ! From the separation (thermal/envrionnement) and (environnement only,) l.335 et l.492 |
---|
| 1824 | |
---|
| 1825 | ! Outputs used to check the PDFs |
---|
[4910] | 1826 | cloudth_senv(ind1) = senv |
---|
| 1827 | cloudth_sth(ind1) = sth |
---|
| 1828 | cloudth_sigmaenv(ind1) = sigma1s |
---|
| 1829 | cloudth_sigmath(ind1) = sigma2s |
---|
[3999] | 1830 | |
---|
| 1831 | |
---|
[4114] | 1832 | ENDDO !loop on klon |
---|
[3999] | 1833 | |
---|
[4114] | 1834 | |
---|
[3999] | 1835 | RETURN |
---|
| 1836 | |
---|
| 1837 | |
---|
| 1838 | END SUBROUTINE cloudth_mpc |
---|
| 1839 | |
---|
[4910] | 1840 | |
---|
| 1841 | |
---|
| 1842 | ! ELSE ! mpc_bl_points>0 |
---|
| 1843 | ! |
---|
| 1844 | ! ! Treat boundary layer mixed phase clouds |
---|
| 1845 | ! |
---|
| 1846 | ! ! thermals |
---|
| 1847 | ! !========= |
---|
| 1848 | ! |
---|
| 1849 | ! ! ice phase |
---|
| 1850 | ! !........... |
---|
| 1851 | ! |
---|
| 1852 | ! qiceth=0. |
---|
| 1853 | ! deltazlev_mpc=dz(ind1,:) |
---|
| 1854 | ! temp_mpc=ztla(ind1,:)*zpspsk(ind1,:) |
---|
| 1855 | ! pres_mpc=pplay(ind1,:) |
---|
| 1856 | ! fraca_mpc=fraca(ind1,:) |
---|
| 1857 | ! snowf_mpc=snowflux(ind1,:) |
---|
| 1858 | ! iflag_topthermals=0 |
---|
| 1859 | ! IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 0)) THEN |
---|
| 1860 | ! iflag_topthermals = 1 |
---|
| 1861 | ! ELSE IF ((mpc_bl_points(ind1,ind2) .EQ. 1) .AND. (mpc_bl_points(ind1,ind2+1) .EQ. 1) & |
---|
| 1862 | ! .AND. (mpc_bl_points(ind1,ind2+2) .EQ. 0) ) THEN |
---|
| 1863 | ! iflag_topthermals = 2 |
---|
| 1864 | ! ELSE |
---|
| 1865 | ! iflag_topthermals = 0 |
---|
| 1866 | ! ENDIF |
---|
| 1867 | ! |
---|
| 1868 | ! CALL ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp_mpc,pres_mpc,zqta(ind1,:), & |
---|
| 1869 | ! qsith(ind1,:),qlth(ind1,:),deltazlev_mpc,wiceth(ind1,:),fraca_mpc,qith(ind1,:)) |
---|
| 1870 | ! |
---|
| 1871 | ! ! qmax calculation |
---|
| 1872 | ! sigma2s=(sigma2s_factor*((MAX((sthl-senvl),0.)**2)**0.5)/((fraca(ind1,ind2)+0.02)**sigma2s_power))+0.002*zqta(ind1,ind2) |
---|
| 1873 | ! deltasth=athl*vert_alpha_th*sigma2s |
---|
| 1874 | ! xth1=-(sthl+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1875 | ! xth2=-(sthl-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 1876 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
| 1877 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
| 1878 | ! IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
| 1879 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
| 1880 | ! IntI1=(((sthl+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 1881 | ! IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 1882 | ! IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
| 1883 | ! IntI1_CF=((sthl+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
| 1884 | ! IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
| 1885 | ! qmax=MAX(IntJ+IntI1+IntI2+IntI3,0.) |
---|
| 1886 | ! |
---|
| 1887 | ! |
---|
| 1888 | ! ! Liquid phase |
---|
| 1889 | ! !................ |
---|
| 1890 | ! ! We account for the effect of ice crystals in thermals on sthl |
---|
| 1891 | ! ! and on the width of the distribution |
---|
| 1892 | ! |
---|
| 1893 | ! sthlc=sthl*1./(1.+C_mpc*qith(ind1,ind2)) & |
---|
| 1894 | ! + (1.-1./(1.+C_mpc*qith(ind1,ind2))) * athl*(qsith(ind1,ind2)-qslth(ind1)) |
---|
| 1895 | ! |
---|
| 1896 | ! sigma2sc=(sigma2s_factor*((MAX((sthlc-senvl),0.)**2)**0.5) & |
---|
| 1897 | ! /((fraca(ind1,ind2)+0.02)**sigma2s_power)) & |
---|
| 1898 | ! +0.002*zqta(ind1,ind2) |
---|
| 1899 | ! deltasthc=athl*vert_alpha_th*sigma2sc |
---|
| 1900 | ! |
---|
| 1901 | ! |
---|
| 1902 | ! xth1=-(sthlc+deltasthc)/(sqrt(2.)*sigma2sc) |
---|
| 1903 | ! xth2=-(sthlc-deltasthc)/(sqrt(2.)*sigma2sc) |
---|
| 1904 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
| 1905 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
| 1906 | ! IntJ=0.5*sthlc*(1-erf(xth2))+(sigma2sc/sqrt2pi)*exp_xth2 |
---|
| 1907 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
| 1908 | ! IntI1=(((sthlc+deltasthc)**2+(sigma2sc)**2)/(8*deltasthc))*(erf(xth2)-erf(xth1)) |
---|
| 1909 | ! IntI2=(sigma2sc**2/(4*deltasthc*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 1910 | ! IntI3=((sqrt2*sigma2sc*(sthlc+deltasthc))/(4*sqrtpi*deltasthc))*(exp_xth1-exp_xth2) |
---|
| 1911 | ! IntI1_CF=((sthlc+deltasthc)*(erf(xth2)-erf(xth1)))/(4*deltasthc) |
---|
| 1912 | ! IntI3_CF=(sqrt2*sigma2sc*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasthc) |
---|
| 1913 | ! qliqth=IntJ+IntI1+IntI2+IntI3 |
---|
| 1914 | ! |
---|
| 1915 | ! qlth(ind1,ind2)=MAX(0.,qliqth) |
---|
| 1916 | ! |
---|
| 1917 | ! ! Condensed water |
---|
| 1918 | ! |
---|
| 1919 | ! qcth(ind1,ind2)=qlth(ind1,ind2)+qith(ind1,ind2) |
---|
| 1920 | ! |
---|
| 1921 | ! |
---|
| 1922 | ! ! consistency with subgrid distribution |
---|
| 1923 | ! |
---|
| 1924 | ! IF ((qcth(ind1,ind2) .GT. qmax) .AND. (qcth(ind1,ind2) .GT. 0)) THEN |
---|
| 1925 | ! fraci=qith(ind1,ind2)/qcth(ind1,ind2) |
---|
| 1926 | ! qcth(ind1,ind2)=qmax |
---|
| 1927 | ! qith(ind1,ind2)=fraci*qmax |
---|
| 1928 | ! qlth(ind1,ind2)=(1.-fraci)*qmax |
---|
| 1929 | ! ENDIF |
---|
| 1930 | ! |
---|
| 1931 | ! ! Cloud Fraction |
---|
| 1932 | ! !............... |
---|
| 1933 | ! ! calculation of qbase which is the value of the water vapor within mixed phase clouds |
---|
| 1934 | ! ! such that the total water in cloud = qbase+qliqth+qiceth |
---|
| 1935 | ! ! sbase is the value of s such that int_sbase^\intfy s ds = cloud fraction |
---|
| 1936 | ! ! sbase and qbase calculation (note that sbase is wrt liq so negative) |
---|
| 1937 | ! ! look for an approximate solution with iteration |
---|
| 1938 | ! |
---|
| 1939 | ! ttarget=qcth(ind1,ind2) |
---|
| 1940 | ! mini= athl*(qsith(ind1,ind2)-qslth(ind1)) |
---|
| 1941 | ! maxi= 0. !athl*(3.*sqrt(sigma2s)) |
---|
| 1942 | ! niter=20 |
---|
| 1943 | ! pas=(maxi-mini)/niter |
---|
| 1944 | ! stmp=mini |
---|
| 1945 | ! sbase=stmp |
---|
| 1946 | ! coutref=1.E6 |
---|
| 1947 | ! DO iter=1,niter |
---|
| 1948 | ! cout=ABS(sigma2s/SQRT(2.*RPI)*EXP(-((sthl-stmp)/sigma2s)**2)+(sthl-stmp)/SQRT(2.)*(1.-erf(-(sthl-stmp)/sigma2s)) & |
---|
| 1949 | ! + stmp/2.*(1.-erf(-(sthl-stmp)/sigma2s)) -ttarget) |
---|
| 1950 | ! IF (cout .LT. coutref) THEN |
---|
| 1951 | ! sbase=stmp |
---|
| 1952 | ! coutref=cout |
---|
| 1953 | ! ELSE |
---|
| 1954 | ! stmp=stmp+pas |
---|
| 1955 | ! ENDIF |
---|
| 1956 | ! ENDDO |
---|
| 1957 | ! qbase=MAX(0., sbase/athl+qslth(ind1)) |
---|
| 1958 | ! |
---|
| 1959 | ! ! surface cloud fraction in thermals |
---|
| 1960 | ! cth(ind1,ind2)=0.5*(1.-erf((sbase-sthl)/sqrt(2.)/sigma2s)) |
---|
| 1961 | ! cth(ind1,ind2)=MIN(MAX(cth(ind1,ind2),0.),1.) |
---|
| 1962 | ! |
---|
| 1963 | ! |
---|
| 1964 | ! !volume cloud fraction in thermals |
---|
| 1965 | ! !to be checked |
---|
| 1966 | ! xth1=-(sthl+deltasth-sbase)/(sqrt(2.)*sigma2s) |
---|
| 1967 | ! xth2=-(sthl-deltasth-sbase)/(sqrt(2.)*sigma2s) |
---|
| 1968 | ! exp_xth1 = exp(-1.*xth1**2) |
---|
| 1969 | ! exp_xth2 = exp(-1.*xth2**2) |
---|
| 1970 | ! |
---|
| 1971 | ! IntJ=0.5*sthl*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
| 1972 | ! IntJ_CF=0.5*(1.-1.*erf(xth2)) |
---|
| 1973 | ! |
---|
| 1974 | ! IF (deltasth .LT. 1.e-10) THEN |
---|
| 1975 | ! cth_vol(ind1,ind2)=IntJ_CF |
---|
| 1976 | ! ELSE |
---|
| 1977 | ! IntI1=(((sthl+deltasth-sbase)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 1978 | ! IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 1979 | ! IntI3=((sqrt2*sigma2s*(sthl+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
| 1980 | ! IntI1_CF=((sthl-sbase+deltasth)*(erf(xth2)-erf(xth1)))/(4*deltasth) |
---|
| 1981 | ! IntI3_CF=(sqrt2*sigma2s*(exp_xth1-exp_xth2))/(4*sqrtpi*deltasth) |
---|
| 1982 | ! cth_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
| 1983 | ! ENDIF |
---|
| 1984 | ! cth_vol(ind1,ind2)=MIN(MAX(0.,cth_vol(ind1,ind2)),1.) |
---|
| 1985 | ! |
---|
| 1986 | ! |
---|
| 1987 | ! |
---|
| 1988 | ! ! Environment |
---|
| 1989 | ! !============= |
---|
| 1990 | ! ! In the environment/downdrafts, only liquid clouds |
---|
| 1991 | ! ! See Shupe et al. 2008, JAS |
---|
| 1992 | ! |
---|
| 1993 | ! ! standard deviation of the distribution in the environment |
---|
| 1994 | ! sth=sthl |
---|
| 1995 | ! senv=senvl |
---|
| 1996 | ! sigma1s_fraca = (sigma1s_factor**0.5)*(fraca(ind1,ind2)**sigma1s_power) / & |
---|
| 1997 | ! & (1-fraca(ind1,ind2))*(MAX((sth-senv),0.)**2)**0.5 |
---|
| 1998 | ! ! for mixed phase clouds, there is no contribution from large scale ratqs to the distribution |
---|
| 1999 | ! ! in the environement |
---|
| 2000 | ! |
---|
| 2001 | ! sigma1s_ratqs=1E-10 |
---|
| 2002 | ! IF (cloudth_ratqsmin>0.) THEN |
---|
| 2003 | ! sigma1s_ratqs = cloudth_ratqsmin*po(ind1) |
---|
| 2004 | ! ENDIF |
---|
| 2005 | ! |
---|
| 2006 | ! sigma1s = sigma1s_fraca + sigma1s_ratqs |
---|
| 2007 | ! IF (iflag_ratqs.eq.11) then |
---|
| 2008 | ! sigma1s = ratqs(ind1,ind2)*po(ind1)*aenv |
---|
| 2009 | ! ENDIF |
---|
| 2010 | ! IF (iflag_ratqs.eq.11) then |
---|
| 2011 | ! sigma1s = ratqs(ind1,ind2)*po(ind1)*aenvl |
---|
| 2012 | ! ENDIF |
---|
| 2013 | ! deltasenv=aenvl*vert_alpha*sigma1s |
---|
| 2014 | ! xenv1=-(senvl+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 2015 | ! xenv2=-(senvl-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 2016 | ! exp_xenv1 = exp(-1.*xenv1**2) |
---|
| 2017 | ! exp_xenv2 = exp(-1.*xenv2**2) |
---|
| 2018 | ! |
---|
| 2019 | ! !surface CF |
---|
| 2020 | ! cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
| 2021 | ! |
---|
| 2022 | ! !volume CF and condensed water |
---|
| 2023 | ! IntJ=0.5*senvl*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
| 2024 | ! IntJ_CF=0.5*(1.-1.*erf(xenv2)) |
---|
| 2025 | ! |
---|
| 2026 | ! IF (deltasenv .LT. 1.e-10) THEN |
---|
| 2027 | ! qcenv(ind1,ind2)=IntJ |
---|
| 2028 | ! cenv_vol(ind1,ind2)=IntJ_CF |
---|
| 2029 | ! ELSE |
---|
| 2030 | ! IntI1=(((senvl+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
| 2031 | ! IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
| 2032 | ! IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
| 2033 | ! IntI1_CF=((senvl+deltasenv)*(erf(xenv2)-erf(xenv1)))/(4*deltasenv) |
---|
| 2034 | ! IntI3_CF=(sqrt2*sigma1s*(exp_xenv1-exp_xenv2))/(4*sqrtpi*deltasenv) |
---|
| 2035 | ! qcenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 ! only liquid water in environment |
---|
| 2036 | ! cenv_vol(ind1,ind2)=IntJ_CF+IntI1_CF+IntI3_CF |
---|
| 2037 | ! ENDIF |
---|
| 2038 | ! |
---|
| 2039 | ! qcenv(ind1,ind2)=MAX(qcenv(ind1,ind2),0.) |
---|
| 2040 | ! cenv_vol(ind1,ind2)=MIN(MAX(cenv_vol(ind1,ind2),0.),1.) |
---|
| 2041 | ! |
---|
| 2042 | ! |
---|
| 2043 | ! |
---|
| 2044 | ! ! Thermals + environment |
---|
| 2045 | ! ! ======================= |
---|
| 2046 | ! ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 2047 | ! qctot(ind1,ind2)=fraca(ind1,ind2)*qcth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2) |
---|
| 2048 | ! ctot_vol(ind1,ind2)=fraca(ind1,ind2)*cth_vol(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv_vol(ind1,ind2) |
---|
| 2049 | ! IF (qcth(ind1,ind2) .GT. 0) THEN |
---|
| 2050 | ! icefrac(ind1,ind2)=fraca(ind1,ind2)*qith(ind1,ind2) & |
---|
| 2051 | ! /(fraca(ind1,ind2)*qcth(ind1,ind2) & |
---|
| 2052 | ! +(1.-1.*fraca(ind1,ind2))*qcenv(ind1,ind2)) |
---|
| 2053 | ! icefrac(ind1,ind2)=MAX(MIN(1.,icefrac(ind1,ind2)),0.) |
---|
| 2054 | ! ELSE |
---|
| 2055 | ! icefrac(ind1,ind2)=0. |
---|
| 2056 | ! ENDIF |
---|
| 2057 | ! |
---|
| 2058 | ! IF (cenv(ind1,ind2).LT.1.e-10.or.cth(ind1,ind2).LT.1.e-10) THEN |
---|
| 2059 | ! ctot(ind1,ind2)=0. |
---|
| 2060 | ! ctot_vol(ind1,ind2)=0. |
---|
| 2061 | ! qincloud(ind1)=0. |
---|
| 2062 | ! qcloud(ind1)=zqsatenv(ind1) |
---|
| 2063 | ! ELSE |
---|
| 2064 | ! qcloud(ind1)=fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)+qbase) & |
---|
| 2065 | ! +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)+qslenv(ind1)) |
---|
| 2066 | ! qincloud(ind1)=MAX(fraca(ind1,ind2)*(qcth(ind1,ind2)/cth(ind1,ind2)) & |
---|
| 2067 | ! +(1.-1.*fraca(ind1,ind2))*(qcenv(ind1,ind2)/cenv(ind1,ind2)),0.) |
---|
| 2068 | ! ENDIF |
---|
| 2069 | ! |
---|
| 2070 | ! ENDIF ! mpc_bl_points |
---|
| 2071 | |
---|
| 2072 | |
---|
| 2073 | |
---|
[3999] | 2074 | !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
[4118] | 2075 | SUBROUTINE ICE_MPC_BL_CLOUDS(ind1,ind2,klev,Ni,Ei,C_cap,d_top,iflag_topthermals,temp,pres,qth,qsith,qlth,deltazlev,vith,fraca,qith) |
---|
[3999] | 2076 | |
---|
| 2077 | ! parameterization of ice for boundary |
---|
| 2078 | ! layer mixed-phase clouds assuming a stationary system |
---|
| 2079 | ! |
---|
| 2080 | ! Note that vapor deposition on ice crystals and riming of liquid droplets |
---|
| 2081 | ! depend on the ice number concentration Ni |
---|
| 2082 | ! One could assume that Ni depends on qi, e.g., Ni=beta*(qi*rho)**xi |
---|
| 2083 | ! and use values from Hong et al. 2004, MWR for instance |
---|
| 2084 | ! One may also estimate Ni as a function of T, as in Meyers 1922 or Fletcher 1962 |
---|
| 2085 | ! One could also think of a more complex expression of Ni; |
---|
| 2086 | ! function of qi, T, the concentration in aerosols or INP .. |
---|
| 2087 | ! Here we prefer fixing Ni to a tuning parameter |
---|
| 2088 | ! By default we take 2.0L-1=2.0e3m-3, median value from measured vertical profiles near Svalbard |
---|
| 2089 | ! in Mioche et al. 2017 |
---|
| 2090 | ! |
---|
| 2091 | ! |
---|
| 2092 | ! References: |
---|
| 2093 | !------------ |
---|
| 2094 | ! This parameterization is thoroughly described in Vignon et al. |
---|
| 2095 | ! |
---|
| 2096 | ! More specifically |
---|
| 2097 | ! for the Water vapor deposition process: |
---|
| 2098 | ! |
---|
| 2099 | ! Rotstayn, L. D., 1997: A physically based scheme for the treat- |
---|
| 2100 | ! ment of stratiform cloudfs and precipitation in large-scale |
---|
| 2101 | ! models. I: Description and evaluation of the microphysical |
---|
| 2102 | ! processes. Quart. J. Roy. Meteor. Soc., 123, 1227–1282. |
---|
| 2103 | ! |
---|
| 2104 | ! Morrison, H., and A. Gettelman, 2008: A new two-moment bulk |
---|
| 2105 | ! stratiform cloud microphysics scheme in the NCAR Com- |
---|
| 2106 | ! munity Atmosphere Model (CAM3). Part I: Description and |
---|
| 2107 | ! numerical tests. J. Climate, 21, 3642–3659 |
---|
| 2108 | ! |
---|
| 2109 | ! for the Riming process: |
---|
| 2110 | ! |
---|
| 2111 | ! Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and micro- |
---|
| 2112 | ! scale structure and organization of clouds and precipitation in |
---|
| 2113 | ! midlatitude cyclones. VII: A model for the ‘‘seeder-feeder’’ |
---|
| 2114 | ! process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206 |
---|
| 2115 | ! |
---|
| 2116 | ! Thompson, G., R. M. Rasmussen, and K. Manning, 004: Explicit |
---|
| 2117 | ! forecasts of winter precipitation using an improved bulk |
---|
| 2118 | ! microphysics scheme. Part I: Description and sensitivityThompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit |
---|
| 2119 | ! forecasts of winter precipitation using an improved bulk |
---|
| 2120 | ! microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542 |
---|
| 2121 | ! |
---|
| 2122 | ! For the formation of clouds by thermals: |
---|
| 2123 | ! |
---|
| 2124 | ! Rio, C., & Hourdin, F. (2008). A thermal plume model for the convective boundary layer : Representation of cumulus clouds. Journal of |
---|
| 2125 | ! the Atmospheric Sciences, 65, 407–425. |
---|
| 2126 | ! |
---|
| 2127 | ! Jam, A., Hourdin, F., Rio, C., & Couvreux, F. (2013). Resolved versus parametrized boundary-layer plumes. Part III: Derivation of a |
---|
| 2128 | ! statistical scheme for cumulus clouds. Boundary-layer Meteorology, 147, 421–441. https://doi.org/10.1007/s10546-012-9789-3 |
---|
| 2129 | ! |
---|
| 2130 | ! |
---|
| 2131 | ! |
---|
| 2132 | ! Contact: Etienne Vignon, etienne.vignon@lmd.ipsl.fr |
---|
| 2133 | !============================================================================= |
---|
| 2134 | |
---|
[4651] | 2135 | use phys_state_var_mod, ONLY : fm_therm, detr_therm, entr_therm |
---|
[3999] | 2136 | |
---|
[5285] | 2137 | USE yomcst_mod_h |
---|
[5274] | 2138 | IMPLICIT none |
---|
[3999] | 2139 | |
---|
| 2140 | |
---|
[5274] | 2141 | |
---|
[4072] | 2142 | INTEGER, INTENT(IN) :: ind1,ind2, klev ! horizontal and vertical indices and dimensions |
---|
| 2143 | INTEGER, INTENT(IN) :: iflag_topthermals ! uppermost layer of thermals ? |
---|
| 2144 | REAL, INTENT(IN) :: Ni ! ice number concentration [m-3] |
---|
| 2145 | REAL, INTENT(IN) :: Ei ! ice-droplet collision efficiency |
---|
| 2146 | REAL, INTENT(IN) :: C_cap ! ice crystal capacitance |
---|
| 2147 | REAL, INTENT(IN) :: d_top ! cloud-top ice crystal mixing parameter |
---|
[3999] | 2148 | REAL, DIMENSION(klev), INTENT(IN) :: temp ! temperature [K] within thermals |
---|
| 2149 | REAL, DIMENSION(klev), INTENT(IN) :: pres ! pressure [Pa] |
---|
| 2150 | REAL, DIMENSION(klev), INTENT(IN) :: qth ! mean specific water content in thermals [kg/kg] |
---|
[4072] | 2151 | REAL, DIMENSION(klev), INTENT(IN) :: qsith ! saturation specific humidity wrt ice in thermals [kg/kg] |
---|
[3999] | 2152 | REAL, DIMENSION(klev), INTENT(IN) :: qlth ! condensed liquid water in thermals, approximated value [kg/kg] |
---|
| 2153 | REAL, DIMENSION(klev), INTENT(IN) :: deltazlev ! layer thickness [m] |
---|
[4118] | 2154 | REAL, DIMENSION(klev), INTENT(IN) :: vith ! ice crystal fall velocity [m/s] |
---|
[3999] | 2155 | REAL, DIMENSION(klev+1), INTENT(IN) :: fraca ! fraction of the mesh covered by thermals |
---|
[4072] | 2156 | REAL, DIMENSION(klev), INTENT(INOUT) :: qith ! condensed ice water , thermals [kg/kg] |
---|
[3999] | 2157 | |
---|
| 2158 | |
---|
| 2159 | INTEGER ind2p1,ind2p2 |
---|
| 2160 | REAL rho(klev) |
---|
| 2161 | REAL unsurtaudet, unsurtaustardep, unsurtaurim |
---|
[4072] | 2162 | REAL qi, AA, BB, Ka, Dv, rhoi |
---|
| 2163 | REAL p0, t0, fp1, fp2 |
---|
[3999] | 2164 | REAL alpha, flux_term |
---|
| 2165 | REAL det_term, precip_term, rim_term, dep_term |
---|
| 2166 | |
---|
| 2167 | |
---|
| 2168 | ind2p1=ind2+1 |
---|
| 2169 | ind2p2=ind2+2 |
---|
| 2170 | |
---|
| 2171 | rho=pres/temp/RD ! air density kg/m3 |
---|
| 2172 | |
---|
| 2173 | Ka=2.4e-2 ! thermal conductivity of the air, SI |
---|
| 2174 | p0=101325.0 ! ref pressure |
---|
| 2175 | T0=273.15 ! ref temp |
---|
| 2176 | rhoi=500.0 ! cloud ice density following Reisner et al. 1998 |
---|
| 2177 | alpha=700. ! fallvelocity param |
---|
| 2178 | |
---|
| 2179 | |
---|
[4072] | 2180 | IF (iflag_topthermals .GT. 0) THEN ! uppermost thermals levels |
---|
[3999] | 2181 | |
---|
| 2182 | Dv=0.0001*0.211*(p0/pres(ind2))*((temp(ind2)/T0)**1.94) ! water vapor diffusivity in air, SI |
---|
| 2183 | |
---|
| 2184 | ! Detrainment term: |
---|
[4072] | 2185 | |
---|
[3999] | 2186 | unsurtaudet=detr_therm(ind1,ind2)/rho(ind2)/deltazlev(ind2) |
---|
| 2187 | |
---|
| 2188 | |
---|
| 2189 | ! Deposition term |
---|
| 2190 | AA=RLSTT/Ka/temp(ind2)*(RLSTT/RV/temp(ind2)-1.) |
---|
[4072] | 2191 | BB=1./(rho(ind2)*Dv*qsith(ind2)) |
---|
| 2192 | unsurtaustardep=C_cap*(Ni**0.66)*(qth(ind2)-qsith(ind2))/qsith(ind2) & |
---|
| 2193 | *4.*RPI/(AA+BB)*(6.*rho(ind2)/rhoi/RPI/Gamma(4.))**(0.33) |
---|
[3999] | 2194 | |
---|
| 2195 | ! Riming term neglected at this level |
---|
| 2196 | !unsurtaurim=rho(ind2)*alpha*3./rhoi/2.*Ei*qlth(ind2)*((p0/pres(ind2))**0.4) |
---|
| 2197 | |
---|
[4072] | 2198 | qi=fraca(ind2)*unsurtaustardep/MAX((d_top*unsurtaudet),1E-12) |
---|
[3999] | 2199 | qi=MAX(qi,0.)**(3./2.) |
---|
| 2200 | |
---|
| 2201 | ELSE ! other levels, estimate qi(k) from variables at k+1 and k+2 |
---|
| 2202 | |
---|
| 2203 | Dv=0.0001*0.211*(p0/pres(ind2p1))*((temp(ind2p1)/T0)**1.94) ! water vapor diffusivity in air, SI |
---|
| 2204 | |
---|
| 2205 | ! Detrainment term: |
---|
| 2206 | |
---|
| 2207 | unsurtaudet=detr_therm(ind1,ind2p1)/rho(ind2p1)/deltazlev(ind2p1) |
---|
| 2208 | det_term=-unsurtaudet*qith(ind2p1)*rho(ind2p1) |
---|
| 2209 | |
---|
| 2210 | |
---|
| 2211 | ! Deposition term |
---|
| 2212 | |
---|
| 2213 | AA=RLSTT/Ka/temp(ind2p1)*(RLSTT/RV/temp(ind2p1)-1.) |
---|
[4072] | 2214 | BB=1./(rho(ind2p1)*Dv*qsith(ind2p1)) |
---|
[4260] | 2215 | unsurtaustardep=C_cap*(Ni**0.66)*(qth(ind2p1)-qsith(ind2p1)) & |
---|
| 2216 | /qsith(ind2p1)*4.*RPI/(AA+BB) & |
---|
| 2217 | *(6.*rho(ind2p1)/rhoi/RPI/Gamma(4.))**(0.33) |
---|
[4072] | 2218 | dep_term=rho(ind2p1)*fraca(ind2p1)*(qith(ind2p1)**0.33)*unsurtaustardep |
---|
[3999] | 2219 | |
---|
| 2220 | ! Riming term |
---|
| 2221 | |
---|
| 2222 | unsurtaurim=rho(ind2p1)*alpha*3./rhoi/2.*Ei*qlth(ind2p1)*((p0/pres(ind2p1))**0.4) |
---|
[4072] | 2223 | rim_term=rho(ind2p1)*fraca(ind2p1)*qith(ind2p1)*unsurtaurim |
---|
[3999] | 2224 | |
---|
| 2225 | ! Precip term |
---|
| 2226 | |
---|
[4072] | 2227 | ! We assume that there is no solid precipitation outside thermals |
---|
| 2228 | ! so the precipitation flux within thermals is equal to the precipitation flux |
---|
| 2229 | ! at mesh-scale divided by thermals fraction |
---|
| 2230 | |
---|
| 2231 | fp2=0. |
---|
| 2232 | fp1=0. |
---|
| 2233 | IF (fraca(ind2p1) .GT. 0.) THEN |
---|
[4118] | 2234 | fp2=-qith(ind2p2)*rho(ind2p2)*vith(ind2p2)*fraca(ind2p2)! flux defined positive upward |
---|
| 2235 | fp1=-qith(ind2p1)*rho(ind2p1)*vith(ind2p1)*fraca(ind2p1) |
---|
[4072] | 2236 | ENDIF |
---|
[3999] | 2237 | |
---|
[4072] | 2238 | precip_term=-1./deltazlev(ind2p1)*(fp2-fp1) |
---|
| 2239 | |
---|
[3999] | 2240 | ! Calculation in a top-to-bottom loop |
---|
| 2241 | |
---|
| 2242 | IF (fm_therm(ind1,ind2p1) .GT. 0.) THEN |
---|
[4072] | 2243 | qi= 1./fm_therm(ind1,ind2p1)* & |
---|
| 2244 | (deltazlev(ind2p1)*(-rim_term-dep_term-det_term-precip_term) + & |
---|
| 2245 | fm_therm(ind1,ind2p2)*(qith(ind2p1))) |
---|
| 2246 | END IF |
---|
[3999] | 2247 | |
---|
[4072] | 2248 | ENDIF ! top thermals |
---|
[3999] | 2249 | |
---|
[4072] | 2250 | qith(ind2)=MAX(0.,qi) |
---|
| 2251 | |
---|
[3999] | 2252 | RETURN |
---|
| 2253 | |
---|
| 2254 | END SUBROUTINE ICE_MPC_BL_CLOUDS |
---|
| 2255 | |
---|
[4651] | 2256 | END MODULE lmdz_cloudth |
---|