[1279] | 1 | ! $Id: lmdz_cloud_optics_prop.f90 5496 2025-01-20 21:37:37Z fhourdin $ |
---|
[4683] | 2 | MODULE lmdz_cloud_optics_prop |
---|
[1523] | 3 | |
---|
[4683] | 4 | CONTAINS |
---|
| 5 | |
---|
[4704] | 6 | SUBROUTINE cloud_optics_prop(klon, klev, paprs, pplay, temp, radocond, picefra, pclc, & |
---|
| 7 | pcltau, pclemi, pch, pcl, pcm, pct, radocondwp, xflwp, xfiwp, xflwc, xfiwc, & |
---|
[4692] | 8 | mass_solu_aero, mass_solu_aero_pi, pcldtaupi, distcltop, temp_cltop, re, fl, reliq, reice, & |
---|
| 9 | reliq_pi, reice_pi, scdnc, cldncl, reffclwtop, lcc, reffclws, & |
---|
| 10 | reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra, icc3dcon, icc3dstra, & |
---|
[4704] | 11 | icefrac_optics, dNovrN, ptconv,rnebcon, ccwcon) |
---|
[524] | 12 | |
---|
[4692] | 13 | USE lmdz_cloud_optics_prop_ini , ONLY : flag_aerosol, ok_cdnc |
---|
| 14 | USE lmdz_cloud_optics_prop_ini , ONLY : lunout |
---|
| 15 | USE lmdz_cloud_optics_prop_ini , ONLY : bl95_b0, bl95_b1 |
---|
| 16 | USE lmdz_cloud_optics_prop_ini , ONLY : latitude_deg |
---|
| 17 | USE lmdz_cloud_optics_prop_ini , ONLY : iflag_t_glace |
---|
| 18 | USE lmdz_cloud_optics_prop_ini , ONLY : cdnc_max, cdnc_max_m3 |
---|
| 19 | USE lmdz_cloud_optics_prop_ini , ONLY : cdnc_min, cdnc_min_m3 |
---|
[4707] | 20 | USE lmdz_cloud_optics_prop_ini , ONLY : thres_tau, thres_neb |
---|
| 21 | USE lmdz_cloud_optics_prop_ini , ONLY : prmhc, prlmc |
---|
| 22 | USE lmdz_cloud_optics_prop_ini , ONLY : coef_froi, coef_chau |
---|
| 23 | USE lmdz_cloud_optics_prop_ini , ONLY : seuil_neb |
---|
| 24 | USE lmdz_cloud_optics_prop_ini , ONLY : t_glace_min_old, t_glace_max_old |
---|
| 25 | USE lmdz_cloud_optics_prop_ini , ONLY : k_ice0, df |
---|
| 26 | USE lmdz_cloud_optics_prop_ini , ONLY : rg, rd, rpi |
---|
| 27 | USE lmdz_cloud_optics_prop_ini , ONLY : rad_chau1, rad_chau2, rad_froid, iflag_rei |
---|
| 28 | USE lmdz_cloud_optics_prop_ini , ONLY : ok_icefra_lscp, rei_max, rei_min |
---|
[5496] | 29 | USE lmdz_cloud_optics_prop_ini , ONLY : rei_coef, rei_min_temp |
---|
[4707] | 30 | USE lmdz_cloud_optics_prop_ini , ONLY : zepsec, novlp, iflag_ice_thermo, ok_new_lscp |
---|
| 31 | |
---|
[3245] | 32 | |
---|
[3265] | 33 | |
---|
[3999] | 34 | |
---|
[1992] | 35 | IMPLICIT NONE |
---|
| 36 | ! ====================================================================== |
---|
[4704] | 37 | ! Authors: Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 38 | ! O.Boucher (LMD/CNRS) mise a jour en 201212 |
---|
| 39 | ! I. Musat (LMD/CNRS) : prise en compte de la meme hypothese |
---|
| 40 | ! de recouvrement pour les nuages que pour |
---|
| 41 | ! le rayonnement rrtm via le parametre |
---|
| 42 | ! novlp de radopt.h : 20160721 |
---|
| 43 | ! L.Fairheard, E.Vignon, JB Madeleine, L. Raillard, A. Idelkadi |
---|
| 44 | ! M. Coulon-Decorzens: replayisation of the routine + cleaning |
---|
| 45 | ! and commentaries |
---|
| 46 | ! |
---|
| 47 | ! Aim: compute condensate optical properties, |
---|
| 48 | ! cloud optical depth and emissivity |
---|
[1992] | 49 | ! ====================================================================== |
---|
[4704] | 50 | |
---|
| 51 | ! List of arguments |
---|
| 52 | !------------------ |
---|
[1992] | 53 | |
---|
[4704] | 54 | ! input: |
---|
| 55 | INTEGER, INTENT(IN) :: klon, klev ! number of horizontal and vertical grid points |
---|
| 56 | REAL, INTENT(IN) :: paprs(klon, klev+1)! pressure at bottom interfaces [Pa] |
---|
| 57 | REAL, INTENT(IN) :: pplay(klon, klev) ! pressure at the middle of layers [Pa] |
---|
| 58 | REAL, INTENT(IN) :: temp(klon, klev) ! temperature [K] |
---|
| 59 | REAL, INTENT(IN) :: radocond(klon, klev) ! cloud condensed water seen by radiation [kg/kg] |
---|
| 60 | REAL, INTENT(IN) :: picefra(klon,klev) ! ice fraction in clouds from large scale condensation scheme [-] |
---|
| 61 | REAL, INTENT(IN) :: rnebcon(klon,klev) ! convection cloud fraction [-] |
---|
| 62 | REAL, INTENT(IN) :: ccwcon(klon,klev) ! condensed water from deep convection [kg/kg] |
---|
| 63 | ! jq for the aerosol indirect effect |
---|
| 64 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 65 | REAL, INTENT(IN) :: mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
| 66 | REAL, INTENT(IN) :: mass_solu_aero_pi(klon, klev) ! - (pre-industrial value) |
---|
| 67 | REAL, INTENT(IN) :: dNovrN(klon) ! enhancement factor for cdnc |
---|
| 68 | REAL, INTENT(OUT) :: distcltop(klon,klev) ! distance from large scale cloud top [m] |
---|
| 69 | REAL, INTENT(OUT) :: temp_cltop(klon,klev)!temperature at large scale cloud top [K] |
---|
[1992] | 70 | |
---|
[4704] | 71 | LOGICAL, INTENT(IN) :: ptconv(klon, klev) ! flag for grid points affected by deep convection |
---|
[1992] | 72 | |
---|
[4704] | 73 | ! inout: |
---|
| 74 | REAL, INTENT(INOUT) :: pclc(klon, klev) ! cloud fraction for radiation [-] |
---|
[1992] | 75 | |
---|
[4704] | 76 | ! out: |
---|
| 77 | REAL, INTENT(OUT) :: pct(klon) ! 2D total cloud cover [-] |
---|
| 78 | REAL, INTENT(OUT) :: pcl(klon) ! 2D low cloud cover [-] |
---|
| 79 | REAL, INTENT(OUT) :: pcm(klon) ! 2D mid cloud cover [-] |
---|
| 80 | REAL, INTENT(OUT) :: pch(klon) ! 2D high cloud cover [-] |
---|
| 81 | REAL, INTENT(OUT) :: radocondwp(klon) ! total condensed water path (seen by radiation) [kg/m2] |
---|
| 82 | REAL, INTENT(OUT) :: xflwp(klon) ! liquid water path (seen by radiation) [kg/m2] |
---|
| 83 | REAL, INTENT(OUT) :: xfiwp(klon) ! ice water path (seen by radiation) [kg/m2] |
---|
| 84 | REAL, INTENT(OUT) :: xflwc(klon, klev) ! liquid water content seen by radiation [kg/kg] |
---|
| 85 | REAL, INTENT(OUT) :: xfiwc(klon, klev) ! ice water content seen by radiation [kg/kg] |
---|
| 86 | REAL, INTENT(OUT) :: re(klon, klev) ! cloud droplet effective radius multiplied by fl |
---|
| 87 | REAL, INTENT(OUT) :: fl(klon, klev) ! xliq * rneb, denominator to re; fraction of liquid water clouds |
---|
| 88 | ! introduced to avoid problems in the averaging of the output |
---|
| 89 | ! water clouds within a grid cell |
---|
[4692] | 90 | |
---|
[4704] | 91 | REAL, INTENT(OUT) :: pcltau(klon, klev) ! cloud optical depth [m] |
---|
| 92 | REAL, INTENT(OUT) :: pclemi(klon, klev) ! cloud emissivity [-] |
---|
| 93 | REAL, INTENT(OUT) :: pcldtaupi(klon, klev) ! pre-industrial value of cloud optical thickness, ie. |
---|
| 94 | ! values of optical thickness that does not account |
---|
| 95 | ! for aerosol effects on cloud droplet radius [m] |
---|
[1992] | 96 | |
---|
[4704] | 97 | REAL, INTENT(OUT) :: reliq(klon, klev) ! liquid droplet effective radius [m] |
---|
| 98 | REAL, INTENT(OUT) :: reice(klon, klev) ! ice effective radius [m] |
---|
| 99 | REAL, INTENT(OUT) :: reliq_pi(klon, klev)! liquid droplet effective radius [m], pre-industrial |
---|
| 100 | REAL, INTENT(OUT) :: reice_pi(klon, klev)! ice effective radius [m], pre-industrial |
---|
| 101 | REAL, INTENT(OUT) :: scdnc(klon, klev) ! cloud droplet number concentration, mean over the whole mesh [m-3] |
---|
| 102 | REAL, INTENT(OUT) :: cldncl(klon) ! cloud droplet number concentration at top of cloud [m-3] |
---|
| 103 | REAL, INTENT(OUT) :: reffclwtop(klon) ! effective radius of cloud droplet at top of cloud [m] |
---|
| 104 | REAL, INTENT(OUT) :: lcc(klon) ! liquid Cloud Content at top of cloud [kg/kg] |
---|
| 105 | REAL, INTENT(OUT) :: reffclws(klon, klev)! stratiform cloud droplet effective radius |
---|
| 106 | REAL, INTENT(OUT) :: reffclwc(klon, klev)! convective cloud droplet effective radius |
---|
| 107 | REAL, INTENT(OUT) :: cldnvi(klon) ! column Integrated cloud droplet Number [/m2] |
---|
| 108 | REAL, INTENT(OUT) :: lcc3d(klon, klev) ! cloud fraction for liquid part only [-] |
---|
| 109 | REAL, INTENT(OUT) :: lcc3dcon(klon, klev)! cloud fraction for liquid part only, convective clouds [-] |
---|
| 110 | REAL, INTENT(OUT) :: lcc3dstra(klon, klev)!cloud fraction for liquid part only, stratiform clouds [-] |
---|
| 111 | REAL, INTENT(OUT) :: icc3dcon(klon, klev)! cloud fraction for liquid part only, convective clouds [-] |
---|
| 112 | REAL, INTENT(OUT) :: icc3dstra(klon, klev)! cloud fraction for ice part only, stratiform clouds [-] |
---|
[4715] | 113 | REAL, INTENT(INOUT) :: icefrac_optics(klon, klev)! ice fraction in clouds seen by radiation [-] |
---|
[1992] | 114 | |
---|
[4704] | 115 | ! Local variables |
---|
| 116 | !---------------- |
---|
| 117 | |
---|
[1992] | 118 | LOGICAL, SAVE :: first = .TRUE. |
---|
[5400] | 119 | !$OMP THREADPRIVATE(first) |
---|
[1992] | 120 | INTEGER flag_max |
---|
| 121 | |
---|
| 122 | ! threshold PARAMETERs |
---|
| 123 | REAL phase3d(klon, klev) |
---|
| 124 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
---|
| 125 | LOGICAL lo |
---|
| 126 | INTEGER i, k |
---|
| 127 | REAL radius |
---|
| 128 | |
---|
| 129 | |
---|
[4114] | 130 | REAL rel, tc, rei, iwc, dei, deimin, deimax |
---|
[4707] | 131 | REAL k_ice |
---|
[1992] | 132 | |
---|
| 133 | ! jq for the aerosol indirect effect |
---|
| 134 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 135 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 136 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 137 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 138 | |
---|
| 139 | ! IM cf. CR:parametres supplementaires |
---|
[3999] | 140 | REAL dzfice(klon,klev) |
---|
[1992] | 141 | REAL zclear(klon) |
---|
| 142 | REAL zcloud(klon) |
---|
| 143 | REAL zcloudh(klon) |
---|
| 144 | REAL zcloudm(klon) |
---|
| 145 | REAL zcloudl(klon) |
---|
| 146 | REAL rhodz(klon, klev) !--rho*dz pour la couche |
---|
| 147 | REAL zrho(klon, klev) !--rho pour la couche |
---|
| 148 | REAL dh(klon, klev) !--dz pour la couche |
---|
| 149 | REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds |
---|
| 150 | REAL rad_chaud_pi(klon, klev) !--rayon pour les nuages chauds pre-industriels |
---|
| 151 | REAL zflwp_var, zfiwp_var |
---|
| 152 | REAL d_rei_dt |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | ! FH : 2011/05/24 |
---|
| 156 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max |
---|
| 157 | ! to be used for a temperature in celcius T(°C) < 0 |
---|
| 158 | ! rei=rei_min for T(°C) < -81.4 |
---|
| 159 | ! Calcul de la pente de la relation entre rayon effective des cristaux |
---|
[4704] | 160 | ! et la température Pour retrouver les résultats numériques de la version d'origine, |
---|
[1992] | 161 | ! on impose 0.71 quand on est proche de 0.71 |
---|
| 162 | d_rei_dt = (rei_max-rei_min)/81.4 |
---|
| 163 | IF (abs(d_rei_dt-0.71)<1.E-4) d_rei_dt = 0.71 |
---|
| 164 | |
---|
| 165 | ! Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 166 | ! IM inversion des DO |
---|
| 167 | |
---|
| 168 | xflwp = 0.D0 |
---|
| 169 | xfiwp = 0.D0 |
---|
| 170 | xflwc = 0.D0 |
---|
| 171 | xfiwc = 0.D0 |
---|
| 172 | |
---|
| 173 | reliq = 0. |
---|
| 174 | reice = 0. |
---|
| 175 | reliq_pi = 0. |
---|
| 176 | reice_pi = 0. |
---|
| 177 | |
---|
[2006] | 178 | IF (iflag_t_glace.EQ.0) THEN |
---|
| 179 | DO k = 1, klev |
---|
| 180 | DO i = 1, klon |
---|
| 181 | ! -layer calculation |
---|
| 182 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
---|
[4704] | 183 | zrho(i, k) = pplay(i, k)/temp(i, k)/rd ! kg/m3 |
---|
[2006] | 184 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
---|
| 185 | ! -Fraction of ice in cloud using a linear transition |
---|
[4704] | 186 | icefrac_optics(i, k) = 1.0 - (temp(i,k)-t_glace_min_old)/(t_glace_max_old-t_glace_min_old) |
---|
| 187 | icefrac_optics(i, k) = min(max(icefrac_optics(i,k),0.0), 1.0) |
---|
[2006] | 188 | ! -IM Total Liquid/Ice water content |
---|
[4704] | 189 | xflwc(i, k) = (1.-icefrac_optics(i,k))*radocond(i, k) |
---|
| 190 | xfiwc(i, k) = icefrac_optics(i, k)*radocond(i, k) |
---|
[3274] | 191 | ENDDO |
---|
| 192 | ENDDO |
---|
[2006] | 193 | ELSE ! of IF (iflag_t_glace.EQ.0) |
---|
| 194 | DO k = 1, klev |
---|
[2077] | 195 | |
---|
[3999] | 196 | |
---|
[4715] | 197 | !!$ IF (ok_new_lscp) THEN |
---|
| 198 | !!$ CALL icefrac_lscp(klon,temp(:,k),iflag_ice_thermo,distcltop(:,k),temp_cltop(:,k),icefrac_optics(:,k),dzfice(:,k)) |
---|
| 199 | !!$ ELSE |
---|
| 200 | !!$ CALL icefrac_lsc(klon,temp(:,k),pplay(:,k)/paprs(:,1),icefrac_optics(:,k)) |
---|
| 201 | !!$ ENDIF |
---|
[3999] | 202 | |
---|
[2006] | 203 | DO i = 1, klon |
---|
[3999] | 204 | |
---|
| 205 | IF ((.NOT. ptconv(i,k)) .AND. ok_new_lscp .AND. ok_icefra_lscp) THEN |
---|
| 206 | ! EV: take the ice fraction directly from the lscp code |
---|
| 207 | ! consistent only for non convective grid points |
---|
| 208 | ! critical for mixed phase clouds |
---|
[4704] | 209 | icefrac_optics(i,k)=picefra(i,k) |
---|
[3999] | 210 | ENDIF |
---|
| 211 | |
---|
[2006] | 212 | ! -layer calculation |
---|
| 213 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
---|
[4704] | 214 | zrho(i, k) = pplay(i, k)/temp(i, k)/rd ! kg/m3 |
---|
[2006] | 215 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
---|
| 216 | ! -IM Total Liquid/Ice water content |
---|
[4704] | 217 | xflwc(i, k) = (1.-icefrac_optics(i,k))*radocond(i, k) |
---|
| 218 | xfiwc(i, k) = icefrac_optics(i, k)*radocond(i, k) |
---|
[3274] | 219 | ENDDO |
---|
| 220 | ENDDO |
---|
[2006] | 221 | ENDIF |
---|
[1992] | 222 | |
---|
[4704] | 223 | |
---|
| 224 | |
---|
| 225 | |
---|
| 226 | |
---|
| 227 | |
---|
[1992] | 228 | IF (ok_cdnc) THEN |
---|
| 229 | |
---|
| 230 | ! --we compute cloud properties as a function of the aerosol load |
---|
| 231 | |
---|
| 232 | DO k = 1, klev |
---|
| 233 | DO i = 1, klon |
---|
| 234 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 235 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 236 | ! to be within [20, 1000 cm^3] |
---|
| 237 | |
---|
| 238 | ! --pre-industrial case |
---|
| 239 | cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
---|
| 240 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
[3281] | 241 | cdnc_pi(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc_pi(i,k))) |
---|
[1992] | 242 | |
---|
[3274] | 243 | ENDDO |
---|
| 244 | ENDDO |
---|
| 245 | |
---|
| 246 | !--flag_aerosol=7 => MACv2SP climatology |
---|
| 247 | !--in this case there is an enhancement factor |
---|
| 248 | IF (flag_aerosol .EQ. 7) THEN |
---|
| 249 | |
---|
| 250 | !--present-day |
---|
| 251 | DO k = 1, klev |
---|
| 252 | DO i = 1, klon |
---|
| 253 | cdnc(i, k) = cdnc_pi(i,k)*dNovrN(i) |
---|
| 254 | ENDDO |
---|
| 255 | ENDDO |
---|
| 256 | |
---|
| 257 | !--standard case |
---|
| 258 | ELSE |
---|
| 259 | |
---|
| 260 | DO k = 1, klev |
---|
| 261 | DO i = 1, klon |
---|
| 262 | |
---|
| 263 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 264 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 265 | ! to be within [20, 1000 cm^3] |
---|
| 266 | |
---|
| 267 | ! --present-day case |
---|
| 268 | cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
---|
| 269 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
[3281] | 270 | cdnc(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc(i,k))) |
---|
[3274] | 271 | |
---|
| 272 | ENDDO |
---|
| 273 | ENDDO |
---|
| 274 | |
---|
| 275 | ENDIF !--flag_aerosol |
---|
| 276 | |
---|
| 277 | !--computing cloud droplet size |
---|
| 278 | DO k = 1, klev |
---|
| 279 | DO i = 1, klon |
---|
| 280 | |
---|
[1992] | 281 | ! --present-day case |
---|
[4704] | 282 | rad_chaud(i, k) = 1.1*((radocond(i,k)*pplay(i, & |
---|
| 283 | k)/(rd*temp(i,k)))/(4./3*rpi*1000.*cdnc(i,k)))**(1./3.) |
---|
[1992] | 284 | rad_chaud(i, k) = max(rad_chaud(i,k)*1.E6, 5.) |
---|
| 285 | |
---|
| 286 | ! --pre-industrial case |
---|
[4704] | 287 | rad_chaud_pi(i, k) = 1.1*((radocond(i,k)*pplay(i, & |
---|
| 288 | k)/(rd*temp(i,k)))/(4./3.*rpi*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
[1992] | 289 | rad_chaud_pi(i, k) = max(rad_chaud_pi(i,k)*1.E6, 5.) |
---|
| 290 | |
---|
| 291 | ! --pre-industrial case |
---|
| 292 | ! --liquid/ice cloud water paths: |
---|
| 293 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
| 294 | |
---|
| 295 | pcldtaupi(i, k) = 0.0 |
---|
| 296 | |
---|
| 297 | ELSE |
---|
| 298 | |
---|
[4704] | 299 | zflwp_var = 1000.*(1.-icefrac_optics(i,k))*radocond(i, k)/pclc(i, k)* & |
---|
[1992] | 300 | rhodz(i, k) |
---|
[4704] | 301 | zfiwp_var = 1000.*icefrac_optics(i, k)*radocond(i, k)/pclc(i, k)*rhodz(i, k) |
---|
[4114] | 302 | ! Calculation of ice cloud effective radius in micron |
---|
[5496] | 303 | IF (iflag_rei .EQ. 2) THEN |
---|
| 304 | ! in-cloud ice water content in g/m3 |
---|
| 305 | iwc = icefrac_optics(i,k) * radocond(i,k) / pclc(i,k) * zrho(i,k) * 1000. |
---|
| 306 | ! this formula is a simplified version of the Sun 2001 one (as in the IFS model, |
---|
| 307 | ! and which is activated for iflag_rei = 1). |
---|
| 308 | ! In particular, the term in temperature**2 has been simplified. |
---|
| 309 | ! The new coefs are tunable, and are by default set so that the results fit well |
---|
| 310 | ! to the Sun 2001 formula |
---|
| 311 | ! By default, rei_coef = 2.4 and rei_min_temp = 175. |
---|
| 312 | ! The ranges of these parameters are determined so that the RMSE between this |
---|
| 313 | ! formula and the one from Sun 2001 is less than 4 times the minimum RMSE |
---|
| 314 | ! The ranges are [1.9, 2.9] for rei_coef and [160., 185.] for rei_min_temp |
---|
| 315 | dei = rei_coef * (iwc**0.2445) * ( temp(i,k) - rei_min_temp ) |
---|
| 316 | ! we clip the results |
---|
| 317 | deimax = 20. |
---|
| 318 | deimin = 155. |
---|
| 319 | dei = MIN(MAX(dei, deimin), deimax) |
---|
| 320 | ! formula to convert effective diameter in effective radius |
---|
| 321 | rei = 3. * SQRT(3.) / 8. * dei |
---|
| 322 | ELSEIF (iflag_rei .EQ. 1) THEN |
---|
[4114] | 323 | ! when we account for precipitation in the radiation scheme, |
---|
| 324 | ! It is recommended to use the rei formula from Sun and Rikkus 1999 with a revision |
---|
| 325 | ! from Sun 2001 (as in the IFS model) |
---|
[4704] | 326 | iwc=icefrac_optics(i, k)*radocond(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 |
---|
| 327 | dei=(1.2351+0.0105*(temp(i,k)-273.15))*(45.8966*(iwc**0.2214) + & |
---|
| 328 | & 0.7957*(iwc**0.2535)*(temp(i,k)-83.15)) |
---|
[4114] | 329 | !deimax=155.0 |
---|
| 330 | !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
| 331 | !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def |
---|
| 332 | deimax=rei_max*2.0 |
---|
| 333 | deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
| 334 | dei=min(dei,deimax) |
---|
| 335 | dei=max(dei,deimin) |
---|
| 336 | rei=3.*sqrt(3.)/8.*dei |
---|
| 337 | ELSE |
---|
| 338 | ! Default |
---|
| 339 | ! for ice clouds: as a function of the ambiant temperature |
---|
| 340 | ! [formula used by Iacobellis and Somerville (2000), with an |
---|
| 341 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 342 | ! consistent with observations of Heymsfield et al. 1986]: |
---|
| 343 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
---|
| 344 | ! rei_max=61.29 |
---|
[4704] | 345 | tc = temp(i, k) - 273.15 |
---|
[4114] | 346 | rei = d_rei_dt*tc + rei_max |
---|
| 347 | IF (tc<=-81.4) rei = rei_min |
---|
| 348 | ENDIF |
---|
[1992] | 349 | |
---|
| 350 | ! -- cloud optical thickness : |
---|
| 351 | ! [for liquid clouds, traditional formula, |
---|
| 352 | ! for ice clouds, Ebert & Curry (1992)] |
---|
| 353 | |
---|
| 354 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
| 355 | pcldtaupi(i, k) = 3.0/2.0*zflwp_var/rad_chaud_pi(i, k) + & |
---|
| 356 | zfiwp_var*(3.448E-03+2.431/rei) |
---|
| 357 | |
---|
[3274] | 358 | ENDIF |
---|
[1992] | 359 | |
---|
[3274] | 360 | ENDDO |
---|
| 361 | ENDDO |
---|
[1992] | 362 | |
---|
| 363 | ELSE !--not ok_cdnc |
---|
| 364 | |
---|
| 365 | ! -prescribed cloud droplet radius |
---|
| 366 | |
---|
| 367 | DO k = 1, min(3, klev) |
---|
| 368 | DO i = 1, klon |
---|
| 369 | rad_chaud(i, k) = rad_chau2 |
---|
| 370 | rad_chaud_pi(i, k) = rad_chau2 |
---|
[3274] | 371 | ENDDO |
---|
| 372 | ENDDO |
---|
[1992] | 373 | DO k = min(3, klev) + 1, klev |
---|
| 374 | DO i = 1, klon |
---|
| 375 | rad_chaud(i, k) = rad_chau1 |
---|
| 376 | rad_chaud_pi(i, k) = rad_chau1 |
---|
[3274] | 377 | ENDDO |
---|
| 378 | ENDDO |
---|
[1992] | 379 | |
---|
[3274] | 380 | ENDIF !--ok_cdnc |
---|
[1992] | 381 | |
---|
| 382 | ! --computation of cloud optical depth and emissivity |
---|
| 383 | ! --in the general case |
---|
| 384 | |
---|
| 385 | DO k = 1, klev |
---|
| 386 | DO i = 1, klon |
---|
| 387 | |
---|
| 388 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
| 389 | |
---|
| 390 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
| 391 | ! For output diagnostics cloud droplet effective radius [um] |
---|
| 392 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 393 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
| 394 | ! output. |
---|
| 395 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
| 396 | ! effective radius as re/fl |
---|
| 397 | |
---|
[4704] | 398 | fl(i, k) = seuil_neb*(1.-icefrac_optics(i,k)) |
---|
[1992] | 399 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
| 400 | rel = 0. |
---|
| 401 | rei = 0. |
---|
| 402 | pclc(i, k) = 0.0 |
---|
| 403 | pcltau(i, k) = 0.0 |
---|
| 404 | pclemi(i, k) = 0.0 |
---|
| 405 | |
---|
| 406 | ELSE |
---|
| 407 | |
---|
| 408 | ! -- liquid/ice cloud water paths: |
---|
| 409 | |
---|
[4704] | 410 | zflwp_var = 1000.*(1.-icefrac_optics(i,k))*radocond(i, k)/pclc(i, k)*rhodz(i, k) |
---|
| 411 | zfiwp_var = 1000.*icefrac_optics(i, k)*radocond(i, k)/pclc(i, k)*rhodz(i, k) |
---|
[1992] | 412 | |
---|
| 413 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
| 414 | ! For output diagnostics cloud droplet effective radius [um] |
---|
[4704] | 415 | ! we multiply here with f Effective radius of cloud droplet at top of cloud (m)* xl (fraction of liquid water |
---|
[1992] | 416 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
| 417 | ! output. |
---|
| 418 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
| 419 | ! effective radius as re/fl |
---|
| 420 | |
---|
[4704] | 421 | fl(i, k) = pclc(i, k)*(1.-icefrac_optics(i,k)) |
---|
[1992] | 422 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
| 423 | |
---|
| 424 | rel = rad_chaud(i, k) |
---|
| 425 | |
---|
[4114] | 426 | ! Calculation of ice cloud effective radius in micron |
---|
[1992] | 427 | |
---|
| 428 | |
---|
[5496] | 429 | IF (iflag_rei .EQ. 2) THEN |
---|
| 430 | ! in-cloud ice water content in g/m3 |
---|
| 431 | iwc = icefrac_optics(i,k) * radocond(i,k) / pclc(i,k) * zrho(i,k) * 1000. |
---|
| 432 | ! this formula is a simplified version of the Sun 2001 one (as in the IFS model, |
---|
| 433 | ! and which is activated for iflag_rei = 1). |
---|
| 434 | ! In particular, the term in temperature**2 has been simplified. |
---|
| 435 | ! The new coefs are tunable, and are by default set so that the results fit well |
---|
| 436 | ! to the Sun 2001 formula |
---|
| 437 | ! By default, rei_coef = 2.4 and rei_min_temp = 175. |
---|
| 438 | ! The ranges of these parameters are determined so that the RMSE between this |
---|
| 439 | ! formula and the one from Sun 2001 is less than 4 times the minimum RMSE |
---|
| 440 | ! The ranges are [1.9, 2.9] for rei_coef and [160., 185.] for rei_min_temp |
---|
| 441 | dei = rei_coef * (iwc**0.2445) * ( temp(i,k) - rei_min_temp ) |
---|
| 442 | ! we clip the results |
---|
| 443 | deimin = 20. |
---|
| 444 | deimin = 155. |
---|
| 445 | dei = MIN(MAX(dei, deimin), deimax) |
---|
| 446 | ! formula to convert effective diameter to effective radius |
---|
| 447 | rei = 3. * SQRT(3.) / 8. * dei |
---|
[4114] | 448 | |
---|
[5496] | 449 | ELSEIF (iflag_rei .EQ. 1) THEN |
---|
[4114] | 450 | ! when we account for precipitation in the radiation scheme, |
---|
| 451 | ! we use the rei formula from Sun and Rikkus 1999 with a revision |
---|
| 452 | ! from Sun 2001 (as in the IFS model) |
---|
[4704] | 453 | iwc=icefrac_optics(i, k)*radocond(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 |
---|
| 454 | dei=(1.2351+0.0105*(temp(i,k)-273.15))*(45.8966*(iwc**0.2214) + & |
---|
| 455 | &0.7957*(iwc**0.2535)*(temp(i,k)-83.15)) |
---|
[4119] | 456 | !deimax=155.0 |
---|
| 457 | !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
| 458 | !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def |
---|
| 459 | deimax=rei_max*2.0 |
---|
| 460 | deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
[4114] | 461 | dei=min(dei,deimax) |
---|
| 462 | dei=max(dei,deimin) |
---|
| 463 | rei=3.*sqrt(3.)/8.*dei |
---|
| 464 | |
---|
| 465 | ELSE |
---|
| 466 | ! Default |
---|
| 467 | ! for ice clouds: as a function of the ambiant temperature |
---|
| 468 | ! [formula used by Iacobellis and Somerville (2000), with an |
---|
| 469 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 470 | ! consistent with observations of Heymsfield et al. 1986]: |
---|
| 471 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
---|
| 472 | ! rei_max=61.29 |
---|
[4704] | 473 | tc = temp(i, k) - 273.15 |
---|
[4114] | 474 | rei = d_rei_dt*tc + rei_max |
---|
| 475 | IF (tc<=-81.4) rei = rei_min |
---|
| 476 | ENDIF |
---|
[1992] | 477 | ! -- cloud optical thickness : |
---|
| 478 | ! [for liquid clouds, traditional formula, |
---|
| 479 | ! for ice clouds, Ebert & Curry (1992)] |
---|
| 480 | |
---|
| 481 | IF (zflwp_var==0.) rel = 1. |
---|
| 482 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
| 483 | pcltau(i, k) = 3.0/2.0*(zflwp_var/rel) + zfiwp_var*(3.448E-03+2.431/ & |
---|
| 484 | rei) |
---|
| 485 | |
---|
| 486 | ! -- cloud infrared emissivity: |
---|
| 487 | ! [the broadband infrared absorption coefficient is PARAMETERized |
---|
| 488 | ! as a function of the effective cld droplet radius] |
---|
| 489 | ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
| 490 | |
---|
| 491 | k_ice = k_ice0 + 1.0/rei |
---|
| 492 | |
---|
| 493 | pclemi(i, k) = 1.0 - exp(-coef_chau*zflwp_var-df*k_ice*zfiwp_var) |
---|
| 494 | |
---|
[3274] | 495 | ENDIF |
---|
[1992] | 496 | |
---|
| 497 | reice(i, k) = rei |
---|
| 498 | |
---|
| 499 | xflwp(i) = xflwp(i) + xflwc(i, k)*rhodz(i, k) |
---|
| 500 | xfiwp(i) = xfiwp(i) + xfiwc(i, k)*rhodz(i, k) |
---|
| 501 | |
---|
[3274] | 502 | ENDDO |
---|
| 503 | ENDDO |
---|
[1992] | 504 | |
---|
| 505 | ! --if cloud droplet radius is fixed, then pcldtaupi=pcltau |
---|
| 506 | |
---|
| 507 | IF (.NOT. ok_cdnc) THEN |
---|
| 508 | DO k = 1, klev |
---|
| 509 | DO i = 1, klon |
---|
| 510 | pcldtaupi(i, k) = pcltau(i, k) |
---|
| 511 | reice_pi(i, k) = reice(i, k) |
---|
[3274] | 512 | ENDDO |
---|
| 513 | ENDDO |
---|
| 514 | ENDIF |
---|
[1992] | 515 | |
---|
| 516 | DO k = 1, klev |
---|
| 517 | DO i = 1, klon |
---|
| 518 | reliq(i, k) = rad_chaud(i, k) |
---|
| 519 | reliq_pi(i, k) = rad_chaud_pi(i, k) |
---|
| 520 | reice_pi(i, k) = reice(i, k) |
---|
[3274] | 521 | ENDDO |
---|
| 522 | ENDDO |
---|
[1992] | 523 | |
---|
| 524 | ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 525 | ! IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
| 526 | ! initialisations |
---|
| 527 | |
---|
| 528 | DO i = 1, klon |
---|
| 529 | zclear(i) = 1. |
---|
| 530 | zcloud(i) = 0. |
---|
| 531 | zcloudh(i) = 0. |
---|
| 532 | zcloudm(i) = 0. |
---|
| 533 | zcloudl(i) = 0. |
---|
| 534 | pch(i) = 1.0 |
---|
| 535 | pcm(i) = 1.0 |
---|
| 536 | pcl(i) = 1.0 |
---|
[4704] | 537 | radocondwp(i) = 0.0 |
---|
[3274] | 538 | ENDDO |
---|
[1992] | 539 | |
---|
| 540 | ! --calculation of liquid water path |
---|
| 541 | |
---|
| 542 | DO k = klev, 1, -1 |
---|
| 543 | DO i = 1, klon |
---|
[4704] | 544 | radocondwp(i) = radocondwp(i) + radocond(i, k)*rhodz(i, k) |
---|
[3274] | 545 | ENDDO |
---|
| 546 | ENDDO |
---|
[1992] | 547 | |
---|
| 548 | ! --calculation of cloud properties with cloud overlap |
---|
[4704] | 549 | ! choix de l'hypothese de recouvrement nuageuse via radopt.h (IM, 19.07.2016) |
---|
| 550 | ! !novlp=1: max-random |
---|
| 551 | ! !novlp=2: maximum |
---|
| 552 | ! !novlp=3: random |
---|
[1992] | 553 | |
---|
[4704] | 554 | |
---|
[1992] | 555 | IF (novlp==1) THEN |
---|
| 556 | DO k = klev, 1, -1 |
---|
| 557 | DO i = 1, klon |
---|
| 558 | zclear(i) = zclear(i)*(1.-max(pclc(i,k),zcloud(i)))/(1.-min(real( & |
---|
| 559 | zcloud(i),kind=8),1.-zepsec)) |
---|
| 560 | pct(i) = 1. - zclear(i) |
---|
| 561 | IF (paprs(i,k)<prmhc) THEN |
---|
| 562 | pch(i) = pch(i)*(1.-max(pclc(i,k),zcloudh(i)))/(1.-min(real(zcloudh & |
---|
| 563 | (i),kind=8),1.-zepsec)) |
---|
| 564 | zcloudh(i) = pclc(i, k) |
---|
| 565 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
| 566 | pcm(i) = pcm(i)*(1.-max(pclc(i,k),zcloudm(i)))/(1.-min(real(zcloudm & |
---|
| 567 | (i),kind=8),1.-zepsec)) |
---|
| 568 | zcloudm(i) = pclc(i, k) |
---|
| 569 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
| 570 | pcl(i) = pcl(i)*(1.-max(pclc(i,k),zcloudl(i)))/(1.-min(real(zcloudl & |
---|
| 571 | (i),kind=8),1.-zepsec)) |
---|
| 572 | zcloudl(i) = pclc(i, k) |
---|
[3274] | 573 | ENDIF |
---|
[1992] | 574 | zcloud(i) = pclc(i, k) |
---|
[3274] | 575 | ENDDO |
---|
| 576 | ENDDO |
---|
[1992] | 577 | ELSE IF (novlp==2) THEN |
---|
| 578 | DO k = klev, 1, -1 |
---|
| 579 | DO i = 1, klon |
---|
| 580 | zcloud(i) = max(pclc(i,k), zcloud(i)) |
---|
| 581 | pct(i) = zcloud(i) |
---|
| 582 | IF (paprs(i,k)<prmhc) THEN |
---|
| 583 | pch(i) = min(pclc(i,k), pch(i)) |
---|
| 584 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
| 585 | pcm(i) = min(pclc(i,k), pcm(i)) |
---|
| 586 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
| 587 | pcl(i) = min(pclc(i,k), pcl(i)) |
---|
[3274] | 588 | ENDIF |
---|
| 589 | ENDDO |
---|
| 590 | ENDDO |
---|
[1992] | 591 | ELSE IF (novlp==3) THEN |
---|
| 592 | DO k = klev, 1, -1 |
---|
| 593 | DO i = 1, klon |
---|
| 594 | zclear(i) = zclear(i)*(1.-pclc(i,k)) |
---|
| 595 | pct(i) = 1 - zclear(i) |
---|
| 596 | IF (paprs(i,k)<prmhc) THEN |
---|
| 597 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 598 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
| 599 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 600 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
| 601 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
[3274] | 602 | ENDIF |
---|
| 603 | ENDDO |
---|
| 604 | ENDDO |
---|
| 605 | ENDIF |
---|
[1992] | 606 | |
---|
| 607 | DO i = 1, klon |
---|
| 608 | pch(i) = 1. - pch(i) |
---|
| 609 | pcm(i) = 1. - pcm(i) |
---|
| 610 | pcl(i) = 1. - pcl(i) |
---|
[3274] | 611 | ENDDO |
---|
[1992] | 612 | |
---|
| 613 | ! ======================================================== |
---|
| 614 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
---|
| 615 | ! ======================================================== |
---|
| 616 | ! change by Nicolas Yan (LSCE) |
---|
| 617 | ! Cloud Droplet Number Concentration (CDNC) : 3D variable |
---|
| 618 | ! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
---|
| 619 | ! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
---|
| 620 | ! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
---|
| 621 | ! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
---|
| 622 | |
---|
| 623 | IF (ok_cdnc) THEN |
---|
| 624 | |
---|
| 625 | DO k = 1, klev |
---|
| 626 | DO i = 1, klon |
---|
[4704] | 627 | phase3d(i, k) = 1 - icefrac_optics(i, k) |
---|
[1992] | 628 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
| 629 | lcc3d(i, k) = seuil_neb*phase3d(i, k) |
---|
| 630 | ELSE |
---|
| 631 | lcc3d(i, k) = pclc(i, k)*phase3d(i, k) |
---|
[3274] | 632 | ENDIF |
---|
[1992] | 633 | scdnc(i, k) = lcc3d(i, k)*cdnc(i, k) ! m-3 |
---|
[3274] | 634 | ENDDO |
---|
| 635 | ENDDO |
---|
[1992] | 636 | |
---|
| 637 | DO i = 1, klon |
---|
| 638 | lcc(i) = 0. |
---|
| 639 | reffclwtop(i) = 0. |
---|
| 640 | cldncl(i) = 0. |
---|
[2596] | 641 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. |
---|
| 642 | IF (novlp.EQ.2) tcc(i) = 0. |
---|
[3274] | 643 | ENDDO |
---|
[1992] | 644 | |
---|
| 645 | DO i = 1, klon |
---|
| 646 | DO k = klev - 1, 1, -1 !From TOA down |
---|
| 647 | |
---|
| 648 | ! Test, if the cloud optical depth exceeds the necessary |
---|
| 649 | ! threshold: |
---|
| 650 | |
---|
| 651 | IF (pcltau(i,k)>thres_tau .AND. pclc(i,k)>thres_neb) THEN |
---|
| 652 | |
---|
[2596] | 653 | IF (novlp.EQ.2) THEN |
---|
[1992] | 654 | IF (first) THEN |
---|
| 655 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM' |
---|
| 656 | first = .FALSE. |
---|
[3274] | 657 | ENDIF |
---|
[1992] | 658 | flag_max = -1. |
---|
| 659 | ftmp(i) = max(tcc(i), pclc(i,k)) |
---|
[3274] | 660 | ENDIF |
---|
[1992] | 661 | |
---|
[2596] | 662 | IF (novlp.EQ.3) THEN |
---|
[1992] | 663 | IF (first) THEN |
---|
| 664 | WRITE (*, *) 'Hypothese de recouvrement: RANDOM' |
---|
| 665 | first = .FALSE. |
---|
[3274] | 666 | ENDIF |
---|
[1992] | 667 | flag_max = 1. |
---|
| 668 | ftmp(i) = tcc(i)*(1-pclc(i,k)) |
---|
[3274] | 669 | ENDIF |
---|
[1992] | 670 | |
---|
[2596] | 671 | IF (novlp.EQ.1) THEN |
---|
[1992] | 672 | IF (first) THEN |
---|
| 673 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM_ & |
---|
| 674 | & & |
---|
| 675 | & RANDOM' |
---|
| 676 | first = .FALSE. |
---|
[3274] | 677 | ENDIF |
---|
[1992] | 678 | flag_max = 1. |
---|
| 679 | ftmp(i) = tcc(i)*(1.-max(pclc(i,k),pclc(i,k+1)))/(1.-min(pclc(i, & |
---|
| 680 | k+1),1.-thres_neb)) |
---|
[3274] | 681 | ENDIF |
---|
[1992] | 682 | ! Effective radius of cloud droplet at top of cloud (m) |
---|
| 683 | reffclwtop(i) = reffclwtop(i) + rad_chaud(i, k)*1.0E-06*phase3d(i, & |
---|
| 684 | k)*(tcc(i)-ftmp(i))*flag_max |
---|
| 685 | ! CDNC at top of cloud (m-3) |
---|
| 686 | cldncl(i) = cldncl(i) + cdnc(i, k)*phase3d(i, k)*(tcc(i)-ftmp(i))* & |
---|
| 687 | flag_max |
---|
| 688 | ! Liquid Cloud Content at top of cloud |
---|
| 689 | lcc(i) = lcc(i) + phase3d(i, k)*(tcc(i)-ftmp(i))*flag_max |
---|
| 690 | ! Total Cloud Content at top of cloud |
---|
| 691 | tcc(i) = ftmp(i) |
---|
| 692 | |
---|
[3274] | 693 | ENDIF ! is there a visible, not-too-small cloud? |
---|
| 694 | ENDDO ! loop over k |
---|
[1992] | 695 | |
---|
[2596] | 696 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. - tcc(i) |
---|
[1992] | 697 | |
---|
[3274] | 698 | ENDDO ! loop over i |
---|
[1992] | 699 | |
---|
| 700 | ! ! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC |
---|
| 701 | ! REFFCLWS) |
---|
| 702 | DO i = 1, klon |
---|
[524] | 703 | DO k = 1, klev |
---|
[1992] | 704 | ! Weight to be used for outputs: eau_liquide*couverture nuageuse |
---|
[4704] | 705 | lcc3dcon(i, k) = rnebcon(i, k)*phase3d(i, k)*ccwcon(i, k) ! eau liquide convective |
---|
| 706 | lcc3dstra(i, k) = pclc(i, k)*radocond(i, k)*phase3d(i, k) |
---|
[1992] | 707 | lcc3dstra(i, k) = lcc3dstra(i, k) - lcc3dcon(i, k) ! eau liquide stratiforme |
---|
| 708 | lcc3dstra(i, k) = max(lcc3dstra(i,k), 0.0) |
---|
[3121] | 709 | !FC pour la glace (CAUSES) |
---|
[4704] | 710 | icc3dcon(i, k) = rnebcon(i, k)*(1-phase3d(i, k))*ccwcon(i, k) ! glace convective |
---|
| 711 | icc3dstra(i, k)= pclc(i, k)*radocond(i, k)*(1-phase3d(i, k)) |
---|
[3121] | 712 | icc3dstra(i, k) = icc3dstra(i, k) - icc3dcon(i, k) ! glace stratiforme |
---|
| 713 | icc3dstra(i, k) = max( icc3dstra(i, k), 0.0) |
---|
| 714 | !FC (CAUSES) |
---|
| 715 | |
---|
[1992] | 716 | ! Compute cloud droplet radius as above in meter |
---|
[4704] | 717 | radius = 1.1*((radocond(i,k)*pplay(i,k)/(rd*temp(i,k)))/(4./3*rpi*1000.* & |
---|
[1992] | 718 | cdnc(i,k)))**(1./3.) |
---|
| 719 | radius = max(radius, 5.E-6) |
---|
| 720 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
---|
| 721 | reffclwc(i, k) = radius |
---|
| 722 | reffclwc(i, k) = reffclwc(i, k)*lcc3dcon(i, k) |
---|
| 723 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
---|
| 724 | reffclws(i, k) = radius |
---|
| 725 | reffclws(i, k) = reffclws(i, k)*lcc3dstra(i, k) |
---|
[3274] | 726 | ENDDO !klev |
---|
| 727 | ENDDO !klon |
---|
[524] | 728 | |
---|
[1992] | 729 | ! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
---|
[524] | 730 | |
---|
[1992] | 731 | DO i = 1, klon |
---|
| 732 | cldnvi(i) = 0. |
---|
| 733 | lcc_integrat(i) = 0. |
---|
| 734 | height(i) = 0. |
---|
[1989] | 735 | DO k = 1, klev |
---|
[1992] | 736 | cldnvi(i) = cldnvi(i) + cdnc(i, k)*lcc3d(i, k)*dh(i, k) |
---|
| 737 | lcc_integrat(i) = lcc_integrat(i) + lcc3d(i, k)*dh(i, k) |
---|
| 738 | height(i) = height(i) + dh(i, k) |
---|
[3274] | 739 | ENDDO ! klev |
---|
[1992] | 740 | lcc_integrat(i) = lcc_integrat(i)/height(i) |
---|
| 741 | IF (lcc_integrat(i)<=1.0E-03) THEN |
---|
| 742 | cldnvi(i) = cldnvi(i)*lcc(i)/seuil_neb |
---|
| 743 | ELSE |
---|
| 744 | cldnvi(i) = cldnvi(i)*lcc(i)/lcc_integrat(i) |
---|
[3274] | 745 | ENDIF |
---|
| 746 | ENDDO ! klon |
---|
[1337] | 747 | |
---|
[1992] | 748 | DO i = 1, klon |
---|
| 749 | DO k = 1, klev |
---|
| 750 | IF (scdnc(i,k)<=0.0) scdnc(i, k) = 0.0 |
---|
| 751 | IF (reffclws(i,k)<=0.0) reffclws(i, k) = 0.0 |
---|
| 752 | IF (reffclwc(i,k)<=0.0) reffclwc(i, k) = 0.0 |
---|
| 753 | IF (lcc3d(i,k)<=0.0) lcc3d(i, k) = 0.0 |
---|
| 754 | IF (lcc3dcon(i,k)<=0.0) lcc3dcon(i, k) = 0.0 |
---|
| 755 | IF (lcc3dstra(i,k)<=0.0) lcc3dstra(i, k) = 0.0 |
---|
[3121] | 756 | !FC (CAUSES) |
---|
| 757 | IF (icc3dcon(i,k)<=0.0) icc3dcon(i, k) = 0.0 |
---|
| 758 | IF (icc3dstra(i,k)<=0.0) icc3dstra(i, k) = 0.0 |
---|
| 759 | !FC (CAUSES) |
---|
[3274] | 760 | ENDDO |
---|
[1992] | 761 | IF (reffclwtop(i)<=0.0) reffclwtop(i) = 0.0 |
---|
| 762 | IF (cldncl(i)<=0.0) cldncl(i) = 0.0 |
---|
| 763 | IF (cldnvi(i)<=0.0) cldnvi(i) = 0.0 |
---|
| 764 | IF (lcc(i)<=0.0) lcc(i) = 0.0 |
---|
[3274] | 765 | ENDDO |
---|
[1337] | 766 | |
---|
[3274] | 767 | ENDIF !ok_cdnc |
---|
[1337] | 768 | |
---|
[3245] | 769 | first=.false. !to be sure |
---|
| 770 | |
---|
[1992] | 771 | RETURN |
---|
[1337] | 772 | |
---|
[4683] | 773 | END SUBROUTINE cloud_optics_prop |
---|
| 774 | |
---|
| 775 | END MODULE lmdz_cloud_optics_prop |
---|