[1279] | 1 | ! $Id: lmdz_cloud_optics_prop.f90 5268 2024-10-23 17:02:39Z ymeurdesoif $ |
---|
[4683] | 2 | MODULE lmdz_cloud_optics_prop |
---|
[1523] | 3 | |
---|
[4683] | 4 | CONTAINS |
---|
| 5 | |
---|
[4704] | 6 | SUBROUTINE cloud_optics_prop(klon, klev, paprs, pplay, temp, radocond, picefra, pclc, & |
---|
| 7 | pcltau, pclemi, pch, pcl, pcm, pct, radocondwp, xflwp, xfiwp, xflwc, xfiwc, & |
---|
[4692] | 8 | mass_solu_aero, mass_solu_aero_pi, pcldtaupi, distcltop, temp_cltop, re, fl, reliq, reice, & |
---|
| 9 | reliq_pi, reice_pi, scdnc, cldncl, reffclwtop, lcc, reffclws, & |
---|
| 10 | reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra, icc3dcon, icc3dstra, & |
---|
[4704] | 11 | icefrac_optics, dNovrN, ptconv,rnebcon, ccwcon) |
---|
[524] | 12 | |
---|
[4692] | 13 | USE lmdz_cloud_optics_prop_ini , ONLY : flag_aerosol, ok_cdnc |
---|
| 14 | USE lmdz_cloud_optics_prop_ini , ONLY : lunout |
---|
| 15 | USE lmdz_cloud_optics_prop_ini , ONLY : bl95_b0, bl95_b1 |
---|
| 16 | USE lmdz_cloud_optics_prop_ini , ONLY : latitude_deg |
---|
| 17 | USE lmdz_cloud_optics_prop_ini , ONLY : iflag_t_glace |
---|
| 18 | USE lmdz_cloud_optics_prop_ini , ONLY : cdnc_max, cdnc_max_m3 |
---|
| 19 | USE lmdz_cloud_optics_prop_ini , ONLY : cdnc_min, cdnc_min_m3 |
---|
[4707] | 20 | USE lmdz_cloud_optics_prop_ini , ONLY : thres_tau, thres_neb |
---|
| 21 | USE lmdz_cloud_optics_prop_ini , ONLY : prmhc, prlmc |
---|
| 22 | USE lmdz_cloud_optics_prop_ini , ONLY : coef_froi, coef_chau |
---|
| 23 | USE lmdz_cloud_optics_prop_ini , ONLY : seuil_neb |
---|
| 24 | USE lmdz_cloud_optics_prop_ini , ONLY : t_glace_min_old, t_glace_max_old |
---|
| 25 | USE lmdz_cloud_optics_prop_ini , ONLY : k_ice0, df |
---|
| 26 | USE lmdz_cloud_optics_prop_ini , ONLY : rg, rd, rpi |
---|
| 27 | USE lmdz_cloud_optics_prop_ini , ONLY : rad_chau1, rad_chau2, rad_froid, iflag_rei |
---|
| 28 | USE lmdz_cloud_optics_prop_ini , ONLY : ok_icefra_lscp, rei_max, rei_min |
---|
| 29 | USE lmdz_cloud_optics_prop_ini , ONLY : zepsec, novlp, iflag_ice_thermo, ok_new_lscp |
---|
| 30 | |
---|
[3245] | 31 | |
---|
[3265] | 32 | |
---|
[3999] | 33 | |
---|
[1992] | 34 | IMPLICIT NONE |
---|
| 35 | ! ====================================================================== |
---|
[4704] | 36 | ! Authors: Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 37 | ! O.Boucher (LMD/CNRS) mise a jour en 201212 |
---|
| 38 | ! I. Musat (LMD/CNRS) : prise en compte de la meme hypothese |
---|
| 39 | ! de recouvrement pour les nuages que pour |
---|
| 40 | ! le rayonnement rrtm via le parametre |
---|
| 41 | ! novlp de radopt.h : 20160721 |
---|
| 42 | ! L.Fairheard, E.Vignon, JB Madeleine, L. Raillard, A. Idelkadi |
---|
| 43 | ! M. Coulon-Decorzens: replayisation of the routine + cleaning |
---|
| 44 | ! and commentaries |
---|
| 45 | ! |
---|
| 46 | ! Aim: compute condensate optical properties, |
---|
| 47 | ! cloud optical depth and emissivity |
---|
[1992] | 48 | ! ====================================================================== |
---|
[4704] | 49 | |
---|
| 50 | ! List of arguments |
---|
| 51 | !------------------ |
---|
[1992] | 52 | |
---|
[4704] | 53 | ! input: |
---|
| 54 | INTEGER, INTENT(IN) :: klon, klev ! number of horizontal and vertical grid points |
---|
| 55 | REAL, INTENT(IN) :: paprs(klon, klev+1)! pressure at bottom interfaces [Pa] |
---|
| 56 | REAL, INTENT(IN) :: pplay(klon, klev) ! pressure at the middle of layers [Pa] |
---|
| 57 | REAL, INTENT(IN) :: temp(klon, klev) ! temperature [K] |
---|
| 58 | REAL, INTENT(IN) :: radocond(klon, klev) ! cloud condensed water seen by radiation [kg/kg] |
---|
| 59 | REAL, INTENT(IN) :: picefra(klon,klev) ! ice fraction in clouds from large scale condensation scheme [-] |
---|
| 60 | REAL, INTENT(IN) :: rnebcon(klon,klev) ! convection cloud fraction [-] |
---|
| 61 | REAL, INTENT(IN) :: ccwcon(klon,klev) ! condensed water from deep convection [kg/kg] |
---|
| 62 | ! jq for the aerosol indirect effect |
---|
| 63 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 64 | REAL, INTENT(IN) :: mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
| 65 | REAL, INTENT(IN) :: mass_solu_aero_pi(klon, klev) ! - (pre-industrial value) |
---|
| 66 | REAL, INTENT(IN) :: dNovrN(klon) ! enhancement factor for cdnc |
---|
| 67 | REAL, INTENT(OUT) :: distcltop(klon,klev) ! distance from large scale cloud top [m] |
---|
| 68 | REAL, INTENT(OUT) :: temp_cltop(klon,klev)!temperature at large scale cloud top [K] |
---|
[1992] | 69 | |
---|
[4704] | 70 | LOGICAL, INTENT(IN) :: ptconv(klon, klev) ! flag for grid points affected by deep convection |
---|
[1992] | 71 | |
---|
[4704] | 72 | ! inout: |
---|
| 73 | REAL, INTENT(INOUT) :: pclc(klon, klev) ! cloud fraction for radiation [-] |
---|
[1992] | 74 | |
---|
[4704] | 75 | ! out: |
---|
| 76 | REAL, INTENT(OUT) :: pct(klon) ! 2D total cloud cover [-] |
---|
| 77 | REAL, INTENT(OUT) :: pcl(klon) ! 2D low cloud cover [-] |
---|
| 78 | REAL, INTENT(OUT) :: pcm(klon) ! 2D mid cloud cover [-] |
---|
| 79 | REAL, INTENT(OUT) :: pch(klon) ! 2D high cloud cover [-] |
---|
| 80 | REAL, INTENT(OUT) :: radocondwp(klon) ! total condensed water path (seen by radiation) [kg/m2] |
---|
| 81 | REAL, INTENT(OUT) :: xflwp(klon) ! liquid water path (seen by radiation) [kg/m2] |
---|
| 82 | REAL, INTENT(OUT) :: xfiwp(klon) ! ice water path (seen by radiation) [kg/m2] |
---|
| 83 | REAL, INTENT(OUT) :: xflwc(klon, klev) ! liquid water content seen by radiation [kg/kg] |
---|
| 84 | REAL, INTENT(OUT) :: xfiwc(klon, klev) ! ice water content seen by radiation [kg/kg] |
---|
| 85 | REAL, INTENT(OUT) :: re(klon, klev) ! cloud droplet effective radius multiplied by fl |
---|
| 86 | REAL, INTENT(OUT) :: fl(klon, klev) ! xliq * rneb, denominator to re; fraction of liquid water clouds |
---|
| 87 | ! introduced to avoid problems in the averaging of the output |
---|
| 88 | ! water clouds within a grid cell |
---|
[4692] | 89 | |
---|
[4704] | 90 | REAL, INTENT(OUT) :: pcltau(klon, klev) ! cloud optical depth [m] |
---|
| 91 | REAL, INTENT(OUT) :: pclemi(klon, klev) ! cloud emissivity [-] |
---|
| 92 | REAL, INTENT(OUT) :: pcldtaupi(klon, klev) ! pre-industrial value of cloud optical thickness, ie. |
---|
| 93 | ! values of optical thickness that does not account |
---|
| 94 | ! for aerosol effects on cloud droplet radius [m] |
---|
[1992] | 95 | |
---|
[4704] | 96 | REAL, INTENT(OUT) :: reliq(klon, klev) ! liquid droplet effective radius [m] |
---|
| 97 | REAL, INTENT(OUT) :: reice(klon, klev) ! ice effective radius [m] |
---|
| 98 | REAL, INTENT(OUT) :: reliq_pi(klon, klev)! liquid droplet effective radius [m], pre-industrial |
---|
| 99 | REAL, INTENT(OUT) :: reice_pi(klon, klev)! ice effective radius [m], pre-industrial |
---|
| 100 | REAL, INTENT(OUT) :: scdnc(klon, klev) ! cloud droplet number concentration, mean over the whole mesh [m-3] |
---|
| 101 | REAL, INTENT(OUT) :: cldncl(klon) ! cloud droplet number concentration at top of cloud [m-3] |
---|
| 102 | REAL, INTENT(OUT) :: reffclwtop(klon) ! effective radius of cloud droplet at top of cloud [m] |
---|
| 103 | REAL, INTENT(OUT) :: lcc(klon) ! liquid Cloud Content at top of cloud [kg/kg] |
---|
| 104 | REAL, INTENT(OUT) :: reffclws(klon, klev)! stratiform cloud droplet effective radius |
---|
| 105 | REAL, INTENT(OUT) :: reffclwc(klon, klev)! convective cloud droplet effective radius |
---|
| 106 | REAL, INTENT(OUT) :: cldnvi(klon) ! column Integrated cloud droplet Number [/m2] |
---|
| 107 | REAL, INTENT(OUT) :: lcc3d(klon, klev) ! cloud fraction for liquid part only [-] |
---|
| 108 | REAL, INTENT(OUT) :: lcc3dcon(klon, klev)! cloud fraction for liquid part only, convective clouds [-] |
---|
| 109 | REAL, INTENT(OUT) :: lcc3dstra(klon, klev)!cloud fraction for liquid part only, stratiform clouds [-] |
---|
| 110 | REAL, INTENT(OUT) :: icc3dcon(klon, klev)! cloud fraction for liquid part only, convective clouds [-] |
---|
| 111 | REAL, INTENT(OUT) :: icc3dstra(klon, klev)! cloud fraction for ice part only, stratiform clouds [-] |
---|
[4715] | 112 | REAL, INTENT(INOUT) :: icefrac_optics(klon, klev)! ice fraction in clouds seen by radiation [-] |
---|
[1992] | 113 | |
---|
[4704] | 114 | ! Local variables |
---|
| 115 | !---------------- |
---|
| 116 | |
---|
[1992] | 117 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 118 | !$OMP THREADPRIVATE(FIRST) |
---|
| 119 | INTEGER flag_max |
---|
| 120 | |
---|
| 121 | ! threshold PARAMETERs |
---|
| 122 | REAL phase3d(klon, klev) |
---|
| 123 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
---|
| 124 | LOGICAL lo |
---|
| 125 | INTEGER i, k |
---|
| 126 | REAL radius |
---|
| 127 | |
---|
| 128 | |
---|
[4114] | 129 | REAL rel, tc, rei, iwc, dei, deimin, deimax |
---|
[4707] | 130 | REAL k_ice |
---|
[1992] | 131 | |
---|
| 132 | ! jq for the aerosol indirect effect |
---|
| 133 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 134 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 135 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 136 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 137 | |
---|
| 138 | ! IM cf. CR:parametres supplementaires |
---|
[3999] | 139 | REAL dzfice(klon,klev) |
---|
[1992] | 140 | REAL zclear(klon) |
---|
| 141 | REAL zcloud(klon) |
---|
| 142 | REAL zcloudh(klon) |
---|
| 143 | REAL zcloudm(klon) |
---|
| 144 | REAL zcloudl(klon) |
---|
| 145 | REAL rhodz(klon, klev) !--rho*dz pour la couche |
---|
| 146 | REAL zrho(klon, klev) !--rho pour la couche |
---|
| 147 | REAL dh(klon, klev) !--dz pour la couche |
---|
| 148 | REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds |
---|
| 149 | REAL rad_chaud_pi(klon, klev) !--rayon pour les nuages chauds pre-industriels |
---|
| 150 | REAL zflwp_var, zfiwp_var |
---|
| 151 | REAL d_rei_dt |
---|
| 152 | |
---|
| 153 | |
---|
| 154 | ! FH : 2011/05/24 |
---|
| 155 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max |
---|
| 156 | ! to be used for a temperature in celcius T(°C) < 0 |
---|
| 157 | ! rei=rei_min for T(°C) < -81.4 |
---|
| 158 | ! Calcul de la pente de la relation entre rayon effective des cristaux |
---|
[4704] | 159 | ! et la température Pour retrouver les résultats numériques de la version d'origine, |
---|
[1992] | 160 | ! on impose 0.71 quand on est proche de 0.71 |
---|
| 161 | d_rei_dt = (rei_max-rei_min)/81.4 |
---|
| 162 | IF (abs(d_rei_dt-0.71)<1.E-4) d_rei_dt = 0.71 |
---|
| 163 | |
---|
| 164 | ! Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 165 | ! IM inversion des DO |
---|
| 166 | |
---|
| 167 | xflwp = 0.D0 |
---|
| 168 | xfiwp = 0.D0 |
---|
| 169 | xflwc = 0.D0 |
---|
| 170 | xfiwc = 0.D0 |
---|
| 171 | |
---|
| 172 | reliq = 0. |
---|
| 173 | reice = 0. |
---|
| 174 | reliq_pi = 0. |
---|
| 175 | reice_pi = 0. |
---|
| 176 | |
---|
[2006] | 177 | IF (iflag_t_glace.EQ.0) THEN |
---|
| 178 | DO k = 1, klev |
---|
| 179 | DO i = 1, klon |
---|
| 180 | ! -layer calculation |
---|
| 181 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
---|
[4704] | 182 | zrho(i, k) = pplay(i, k)/temp(i, k)/rd ! kg/m3 |
---|
[2006] | 183 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
---|
| 184 | ! -Fraction of ice in cloud using a linear transition |
---|
[4704] | 185 | icefrac_optics(i, k) = 1.0 - (temp(i,k)-t_glace_min_old)/(t_glace_max_old-t_glace_min_old) |
---|
| 186 | icefrac_optics(i, k) = min(max(icefrac_optics(i,k),0.0), 1.0) |
---|
[2006] | 187 | ! -IM Total Liquid/Ice water content |
---|
[4704] | 188 | xflwc(i, k) = (1.-icefrac_optics(i,k))*radocond(i, k) |
---|
| 189 | xfiwc(i, k) = icefrac_optics(i, k)*radocond(i, k) |
---|
[3274] | 190 | ENDDO |
---|
| 191 | ENDDO |
---|
[2006] | 192 | ELSE ! of IF (iflag_t_glace.EQ.0) |
---|
| 193 | DO k = 1, klev |
---|
[2077] | 194 | |
---|
[3999] | 195 | |
---|
[4715] | 196 | !!$ IF (ok_new_lscp) THEN |
---|
| 197 | !!$ CALL icefrac_lscp(klon,temp(:,k),iflag_ice_thermo,distcltop(:,k),temp_cltop(:,k),icefrac_optics(:,k),dzfice(:,k)) |
---|
| 198 | !!$ ELSE |
---|
| 199 | !!$ CALL icefrac_lsc(klon,temp(:,k),pplay(:,k)/paprs(:,1),icefrac_optics(:,k)) |
---|
| 200 | !!$ ENDIF |
---|
[3999] | 201 | |
---|
[2006] | 202 | DO i = 1, klon |
---|
[3999] | 203 | |
---|
| 204 | IF ((.NOT. ptconv(i,k)) .AND. ok_new_lscp .AND. ok_icefra_lscp) THEN |
---|
| 205 | ! EV: take the ice fraction directly from the lscp code |
---|
| 206 | ! consistent only for non convective grid points |
---|
| 207 | ! critical for mixed phase clouds |
---|
[4704] | 208 | icefrac_optics(i,k)=picefra(i,k) |
---|
[3999] | 209 | ENDIF |
---|
| 210 | |
---|
[2006] | 211 | ! -layer calculation |
---|
| 212 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
---|
[4704] | 213 | zrho(i, k) = pplay(i, k)/temp(i, k)/rd ! kg/m3 |
---|
[2006] | 214 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
---|
| 215 | ! -IM Total Liquid/Ice water content |
---|
[4704] | 216 | xflwc(i, k) = (1.-icefrac_optics(i,k))*radocond(i, k) |
---|
| 217 | xfiwc(i, k) = icefrac_optics(i, k)*radocond(i, k) |
---|
[3274] | 218 | ENDDO |
---|
| 219 | ENDDO |
---|
[2006] | 220 | ENDIF |
---|
[1992] | 221 | |
---|
[4704] | 222 | |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | |
---|
| 226 | |
---|
[1992] | 227 | IF (ok_cdnc) THEN |
---|
| 228 | |
---|
| 229 | ! --we compute cloud properties as a function of the aerosol load |
---|
| 230 | |
---|
| 231 | DO k = 1, klev |
---|
| 232 | DO i = 1, klon |
---|
| 233 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 234 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 235 | ! to be within [20, 1000 cm^3] |
---|
| 236 | |
---|
| 237 | ! --pre-industrial case |
---|
| 238 | cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
---|
| 239 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
[3281] | 240 | cdnc_pi(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc_pi(i,k))) |
---|
[1992] | 241 | |
---|
[3274] | 242 | ENDDO |
---|
| 243 | ENDDO |
---|
| 244 | |
---|
| 245 | !--flag_aerosol=7 => MACv2SP climatology |
---|
| 246 | !--in this case there is an enhancement factor |
---|
| 247 | IF (flag_aerosol .EQ. 7) THEN |
---|
| 248 | |
---|
| 249 | !--present-day |
---|
| 250 | DO k = 1, klev |
---|
| 251 | DO i = 1, klon |
---|
| 252 | cdnc(i, k) = cdnc_pi(i,k)*dNovrN(i) |
---|
| 253 | ENDDO |
---|
| 254 | ENDDO |
---|
| 255 | |
---|
| 256 | !--standard case |
---|
| 257 | ELSE |
---|
| 258 | |
---|
| 259 | DO k = 1, klev |
---|
| 260 | DO i = 1, klon |
---|
| 261 | |
---|
| 262 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 263 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 264 | ! to be within [20, 1000 cm^3] |
---|
| 265 | |
---|
| 266 | ! --present-day case |
---|
| 267 | cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
---|
| 268 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
[3281] | 269 | cdnc(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc(i,k))) |
---|
[3274] | 270 | |
---|
| 271 | ENDDO |
---|
| 272 | ENDDO |
---|
| 273 | |
---|
| 274 | ENDIF !--flag_aerosol |
---|
| 275 | |
---|
| 276 | !--computing cloud droplet size |
---|
| 277 | DO k = 1, klev |
---|
| 278 | DO i = 1, klon |
---|
| 279 | |
---|
[1992] | 280 | ! --present-day case |
---|
[4704] | 281 | rad_chaud(i, k) = 1.1*((radocond(i,k)*pplay(i, & |
---|
| 282 | k)/(rd*temp(i,k)))/(4./3*rpi*1000.*cdnc(i,k)))**(1./3.) |
---|
[1992] | 283 | rad_chaud(i, k) = max(rad_chaud(i,k)*1.E6, 5.) |
---|
| 284 | |
---|
| 285 | ! --pre-industrial case |
---|
[4704] | 286 | rad_chaud_pi(i, k) = 1.1*((radocond(i,k)*pplay(i, & |
---|
| 287 | k)/(rd*temp(i,k)))/(4./3.*rpi*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
[1992] | 288 | rad_chaud_pi(i, k) = max(rad_chaud_pi(i,k)*1.E6, 5.) |
---|
| 289 | |
---|
| 290 | ! --pre-industrial case |
---|
| 291 | ! --liquid/ice cloud water paths: |
---|
| 292 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
| 293 | |
---|
| 294 | pcldtaupi(i, k) = 0.0 |
---|
| 295 | |
---|
| 296 | ELSE |
---|
| 297 | |
---|
[4704] | 298 | zflwp_var = 1000.*(1.-icefrac_optics(i,k))*radocond(i, k)/pclc(i, k)* & |
---|
[1992] | 299 | rhodz(i, k) |
---|
[4704] | 300 | zfiwp_var = 1000.*icefrac_optics(i, k)*radocond(i, k)/pclc(i, k)*rhodz(i, k) |
---|
[4114] | 301 | ! Calculation of ice cloud effective radius in micron |
---|
| 302 | IF (iflag_rei .EQ. 1) THEN |
---|
| 303 | ! when we account for precipitation in the radiation scheme, |
---|
| 304 | ! It is recommended to use the rei formula from Sun and Rikkus 1999 with a revision |
---|
| 305 | ! from Sun 2001 (as in the IFS model) |
---|
[4704] | 306 | iwc=icefrac_optics(i, k)*radocond(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 |
---|
| 307 | dei=(1.2351+0.0105*(temp(i,k)-273.15))*(45.8966*(iwc**0.2214) + & |
---|
| 308 | & 0.7957*(iwc**0.2535)*(temp(i,k)-83.15)) |
---|
[4114] | 309 | !deimax=155.0 |
---|
| 310 | !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
| 311 | !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def |
---|
| 312 | deimax=rei_max*2.0 |
---|
| 313 | deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
| 314 | dei=min(dei,deimax) |
---|
| 315 | dei=max(dei,deimin) |
---|
| 316 | rei=3.*sqrt(3.)/8.*dei |
---|
| 317 | ELSE |
---|
| 318 | ! Default |
---|
| 319 | ! for ice clouds: as a function of the ambiant temperature |
---|
| 320 | ! [formula used by Iacobellis and Somerville (2000), with an |
---|
| 321 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 322 | ! consistent with observations of Heymsfield et al. 1986]: |
---|
| 323 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
---|
| 324 | ! rei_max=61.29 |
---|
[4704] | 325 | tc = temp(i, k) - 273.15 |
---|
[4114] | 326 | rei = d_rei_dt*tc + rei_max |
---|
| 327 | IF (tc<=-81.4) rei = rei_min |
---|
| 328 | ENDIF |
---|
[1992] | 329 | |
---|
| 330 | ! -- cloud optical thickness : |
---|
| 331 | ! [for liquid clouds, traditional formula, |
---|
| 332 | ! for ice clouds, Ebert & Curry (1992)] |
---|
| 333 | |
---|
| 334 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
| 335 | pcldtaupi(i, k) = 3.0/2.0*zflwp_var/rad_chaud_pi(i, k) + & |
---|
| 336 | zfiwp_var*(3.448E-03+2.431/rei) |
---|
| 337 | |
---|
[3274] | 338 | ENDIF |
---|
[1992] | 339 | |
---|
[3274] | 340 | ENDDO |
---|
| 341 | ENDDO |
---|
[1992] | 342 | |
---|
| 343 | ELSE !--not ok_cdnc |
---|
| 344 | |
---|
| 345 | ! -prescribed cloud droplet radius |
---|
| 346 | |
---|
| 347 | DO k = 1, min(3, klev) |
---|
| 348 | DO i = 1, klon |
---|
| 349 | rad_chaud(i, k) = rad_chau2 |
---|
| 350 | rad_chaud_pi(i, k) = rad_chau2 |
---|
[3274] | 351 | ENDDO |
---|
| 352 | ENDDO |
---|
[1992] | 353 | DO k = min(3, klev) + 1, klev |
---|
| 354 | DO i = 1, klon |
---|
| 355 | rad_chaud(i, k) = rad_chau1 |
---|
| 356 | rad_chaud_pi(i, k) = rad_chau1 |
---|
[3274] | 357 | ENDDO |
---|
| 358 | ENDDO |
---|
[1992] | 359 | |
---|
[3274] | 360 | ENDIF !--ok_cdnc |
---|
[1992] | 361 | |
---|
| 362 | ! --computation of cloud optical depth and emissivity |
---|
| 363 | ! --in the general case |
---|
| 364 | |
---|
| 365 | DO k = 1, klev |
---|
| 366 | DO i = 1, klon |
---|
| 367 | |
---|
| 368 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
| 369 | |
---|
| 370 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
| 371 | ! For output diagnostics cloud droplet effective radius [um] |
---|
| 372 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 373 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
| 374 | ! output. |
---|
| 375 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
| 376 | ! effective radius as re/fl |
---|
| 377 | |
---|
[4704] | 378 | fl(i, k) = seuil_neb*(1.-icefrac_optics(i,k)) |
---|
[1992] | 379 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
| 380 | rel = 0. |
---|
| 381 | rei = 0. |
---|
| 382 | pclc(i, k) = 0.0 |
---|
| 383 | pcltau(i, k) = 0.0 |
---|
| 384 | pclemi(i, k) = 0.0 |
---|
| 385 | |
---|
| 386 | ELSE |
---|
| 387 | |
---|
| 388 | ! -- liquid/ice cloud water paths: |
---|
| 389 | |
---|
[4704] | 390 | zflwp_var = 1000.*(1.-icefrac_optics(i,k))*radocond(i, k)/pclc(i, k)*rhodz(i, k) |
---|
| 391 | zfiwp_var = 1000.*icefrac_optics(i, k)*radocond(i, k)/pclc(i, k)*rhodz(i, k) |
---|
[1992] | 392 | |
---|
| 393 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
| 394 | ! For output diagnostics cloud droplet effective radius [um] |
---|
[4704] | 395 | ! we multiply here with f Effective radius of cloud droplet at top of cloud (m)* xl (fraction of liquid water |
---|
[1992] | 396 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
| 397 | ! output. |
---|
| 398 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
| 399 | ! effective radius as re/fl |
---|
| 400 | |
---|
[4704] | 401 | fl(i, k) = pclc(i, k)*(1.-icefrac_optics(i,k)) |
---|
[1992] | 402 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
| 403 | |
---|
| 404 | rel = rad_chaud(i, k) |
---|
| 405 | |
---|
[4114] | 406 | ! Calculation of ice cloud effective radius in micron |
---|
[1992] | 407 | |
---|
| 408 | |
---|
[4114] | 409 | IF (iflag_rei .GT. 0) THEN |
---|
| 410 | |
---|
| 411 | ! when we account for precipitation in the radiation scheme, |
---|
| 412 | ! we use the rei formula from Sun and Rikkus 1999 with a revision |
---|
| 413 | ! from Sun 2001 (as in the IFS model) |
---|
[4704] | 414 | iwc=icefrac_optics(i, k)*radocond(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 |
---|
| 415 | dei=(1.2351+0.0105*(temp(i,k)-273.15))*(45.8966*(iwc**0.2214) + & |
---|
| 416 | &0.7957*(iwc**0.2535)*(temp(i,k)-83.15)) |
---|
[4119] | 417 | !deimax=155.0 |
---|
| 418 | !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
| 419 | !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def |
---|
| 420 | deimax=rei_max*2.0 |
---|
| 421 | deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
[4114] | 422 | dei=min(dei,deimax) |
---|
| 423 | dei=max(dei,deimin) |
---|
| 424 | rei=3.*sqrt(3.)/8.*dei |
---|
| 425 | |
---|
| 426 | ELSE |
---|
| 427 | ! Default |
---|
| 428 | ! for ice clouds: as a function of the ambiant temperature |
---|
| 429 | ! [formula used by Iacobellis and Somerville (2000), with an |
---|
| 430 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 431 | ! consistent with observations of Heymsfield et al. 1986]: |
---|
| 432 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
---|
| 433 | ! rei_max=61.29 |
---|
[4704] | 434 | tc = temp(i, k) - 273.15 |
---|
[4114] | 435 | rei = d_rei_dt*tc + rei_max |
---|
| 436 | IF (tc<=-81.4) rei = rei_min |
---|
| 437 | ENDIF |
---|
[1992] | 438 | ! -- cloud optical thickness : |
---|
| 439 | ! [for liquid clouds, traditional formula, |
---|
| 440 | ! for ice clouds, Ebert & Curry (1992)] |
---|
| 441 | |
---|
| 442 | IF (zflwp_var==0.) rel = 1. |
---|
| 443 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
| 444 | pcltau(i, k) = 3.0/2.0*(zflwp_var/rel) + zfiwp_var*(3.448E-03+2.431/ & |
---|
| 445 | rei) |
---|
| 446 | |
---|
| 447 | ! -- cloud infrared emissivity: |
---|
| 448 | ! [the broadband infrared absorption coefficient is PARAMETERized |
---|
| 449 | ! as a function of the effective cld droplet radius] |
---|
| 450 | ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
| 451 | |
---|
| 452 | k_ice = k_ice0 + 1.0/rei |
---|
| 453 | |
---|
| 454 | pclemi(i, k) = 1.0 - exp(-coef_chau*zflwp_var-df*k_ice*zfiwp_var) |
---|
| 455 | |
---|
[3274] | 456 | ENDIF |
---|
[1992] | 457 | |
---|
| 458 | reice(i, k) = rei |
---|
| 459 | |
---|
| 460 | xflwp(i) = xflwp(i) + xflwc(i, k)*rhodz(i, k) |
---|
| 461 | xfiwp(i) = xfiwp(i) + xfiwc(i, k)*rhodz(i, k) |
---|
| 462 | |
---|
[3274] | 463 | ENDDO |
---|
| 464 | ENDDO |
---|
[1992] | 465 | |
---|
| 466 | ! --if cloud droplet radius is fixed, then pcldtaupi=pcltau |
---|
| 467 | |
---|
| 468 | IF (.NOT. ok_cdnc) THEN |
---|
| 469 | DO k = 1, klev |
---|
| 470 | DO i = 1, klon |
---|
| 471 | pcldtaupi(i, k) = pcltau(i, k) |
---|
| 472 | reice_pi(i, k) = reice(i, k) |
---|
[3274] | 473 | ENDDO |
---|
| 474 | ENDDO |
---|
| 475 | ENDIF |
---|
[1992] | 476 | |
---|
| 477 | DO k = 1, klev |
---|
| 478 | DO i = 1, klon |
---|
| 479 | reliq(i, k) = rad_chaud(i, k) |
---|
| 480 | reliq_pi(i, k) = rad_chaud_pi(i, k) |
---|
| 481 | reice_pi(i, k) = reice(i, k) |
---|
[3274] | 482 | ENDDO |
---|
| 483 | ENDDO |
---|
[1992] | 484 | |
---|
| 485 | ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 486 | ! IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
| 487 | ! initialisations |
---|
| 488 | |
---|
| 489 | DO i = 1, klon |
---|
| 490 | zclear(i) = 1. |
---|
| 491 | zcloud(i) = 0. |
---|
| 492 | zcloudh(i) = 0. |
---|
| 493 | zcloudm(i) = 0. |
---|
| 494 | zcloudl(i) = 0. |
---|
| 495 | pch(i) = 1.0 |
---|
| 496 | pcm(i) = 1.0 |
---|
| 497 | pcl(i) = 1.0 |
---|
[4704] | 498 | radocondwp(i) = 0.0 |
---|
[3274] | 499 | ENDDO |
---|
[1992] | 500 | |
---|
| 501 | ! --calculation of liquid water path |
---|
| 502 | |
---|
| 503 | DO k = klev, 1, -1 |
---|
| 504 | DO i = 1, klon |
---|
[4704] | 505 | radocondwp(i) = radocondwp(i) + radocond(i, k)*rhodz(i, k) |
---|
[3274] | 506 | ENDDO |
---|
| 507 | ENDDO |
---|
[1992] | 508 | |
---|
| 509 | ! --calculation of cloud properties with cloud overlap |
---|
[4704] | 510 | ! choix de l'hypothese de recouvrement nuageuse via radopt.h (IM, 19.07.2016) |
---|
| 511 | ! !novlp=1: max-random |
---|
| 512 | ! !novlp=2: maximum |
---|
| 513 | ! !novlp=3: random |
---|
[1992] | 514 | |
---|
[4704] | 515 | |
---|
[1992] | 516 | IF (novlp==1) THEN |
---|
| 517 | DO k = klev, 1, -1 |
---|
| 518 | DO i = 1, klon |
---|
| 519 | zclear(i) = zclear(i)*(1.-max(pclc(i,k),zcloud(i)))/(1.-min(real( & |
---|
| 520 | zcloud(i),kind=8),1.-zepsec)) |
---|
| 521 | pct(i) = 1. - zclear(i) |
---|
| 522 | IF (paprs(i,k)<prmhc) THEN |
---|
| 523 | pch(i) = pch(i)*(1.-max(pclc(i,k),zcloudh(i)))/(1.-min(real(zcloudh & |
---|
| 524 | (i),kind=8),1.-zepsec)) |
---|
| 525 | zcloudh(i) = pclc(i, k) |
---|
| 526 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
| 527 | pcm(i) = pcm(i)*(1.-max(pclc(i,k),zcloudm(i)))/(1.-min(real(zcloudm & |
---|
| 528 | (i),kind=8),1.-zepsec)) |
---|
| 529 | zcloudm(i) = pclc(i, k) |
---|
| 530 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
| 531 | pcl(i) = pcl(i)*(1.-max(pclc(i,k),zcloudl(i)))/(1.-min(real(zcloudl & |
---|
| 532 | (i),kind=8),1.-zepsec)) |
---|
| 533 | zcloudl(i) = pclc(i, k) |
---|
[3274] | 534 | ENDIF |
---|
[1992] | 535 | zcloud(i) = pclc(i, k) |
---|
[3274] | 536 | ENDDO |
---|
| 537 | ENDDO |
---|
[1992] | 538 | ELSE IF (novlp==2) THEN |
---|
| 539 | DO k = klev, 1, -1 |
---|
| 540 | DO i = 1, klon |
---|
| 541 | zcloud(i) = max(pclc(i,k), zcloud(i)) |
---|
| 542 | pct(i) = zcloud(i) |
---|
| 543 | IF (paprs(i,k)<prmhc) THEN |
---|
| 544 | pch(i) = min(pclc(i,k), pch(i)) |
---|
| 545 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
| 546 | pcm(i) = min(pclc(i,k), pcm(i)) |
---|
| 547 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
| 548 | pcl(i) = min(pclc(i,k), pcl(i)) |
---|
[3274] | 549 | ENDIF |
---|
| 550 | ENDDO |
---|
| 551 | ENDDO |
---|
[1992] | 552 | ELSE IF (novlp==3) THEN |
---|
| 553 | DO k = klev, 1, -1 |
---|
| 554 | DO i = 1, klon |
---|
| 555 | zclear(i) = zclear(i)*(1.-pclc(i,k)) |
---|
| 556 | pct(i) = 1 - zclear(i) |
---|
| 557 | IF (paprs(i,k)<prmhc) THEN |
---|
| 558 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 559 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
| 560 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 561 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
| 562 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
[3274] | 563 | ENDIF |
---|
| 564 | ENDDO |
---|
| 565 | ENDDO |
---|
| 566 | ENDIF |
---|
[1992] | 567 | |
---|
| 568 | DO i = 1, klon |
---|
| 569 | pch(i) = 1. - pch(i) |
---|
| 570 | pcm(i) = 1. - pcm(i) |
---|
| 571 | pcl(i) = 1. - pcl(i) |
---|
[3274] | 572 | ENDDO |
---|
[1992] | 573 | |
---|
| 574 | ! ======================================================== |
---|
| 575 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
---|
| 576 | ! ======================================================== |
---|
| 577 | ! change by Nicolas Yan (LSCE) |
---|
| 578 | ! Cloud Droplet Number Concentration (CDNC) : 3D variable |
---|
| 579 | ! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
---|
| 580 | ! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
---|
| 581 | ! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
---|
| 582 | ! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
---|
| 583 | |
---|
| 584 | IF (ok_cdnc) THEN |
---|
| 585 | |
---|
| 586 | DO k = 1, klev |
---|
| 587 | DO i = 1, klon |
---|
[4704] | 588 | phase3d(i, k) = 1 - icefrac_optics(i, k) |
---|
[1992] | 589 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
| 590 | lcc3d(i, k) = seuil_neb*phase3d(i, k) |
---|
| 591 | ELSE |
---|
| 592 | lcc3d(i, k) = pclc(i, k)*phase3d(i, k) |
---|
[3274] | 593 | ENDIF |
---|
[1992] | 594 | scdnc(i, k) = lcc3d(i, k)*cdnc(i, k) ! m-3 |
---|
[3274] | 595 | ENDDO |
---|
| 596 | ENDDO |
---|
[1992] | 597 | |
---|
| 598 | DO i = 1, klon |
---|
| 599 | lcc(i) = 0. |
---|
| 600 | reffclwtop(i) = 0. |
---|
| 601 | cldncl(i) = 0. |
---|
[2596] | 602 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. |
---|
| 603 | IF (novlp.EQ.2) tcc(i) = 0. |
---|
[3274] | 604 | ENDDO |
---|
[1992] | 605 | |
---|
| 606 | DO i = 1, klon |
---|
| 607 | DO k = klev - 1, 1, -1 !From TOA down |
---|
| 608 | |
---|
| 609 | ! Test, if the cloud optical depth exceeds the necessary |
---|
| 610 | ! threshold: |
---|
| 611 | |
---|
| 612 | IF (pcltau(i,k)>thres_tau .AND. pclc(i,k)>thres_neb) THEN |
---|
| 613 | |
---|
[2596] | 614 | IF (novlp.EQ.2) THEN |
---|
[1992] | 615 | IF (first) THEN |
---|
| 616 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM' |
---|
| 617 | first = .FALSE. |
---|
[3274] | 618 | ENDIF |
---|
[1992] | 619 | flag_max = -1. |
---|
| 620 | ftmp(i) = max(tcc(i), pclc(i,k)) |
---|
[3274] | 621 | ENDIF |
---|
[1992] | 622 | |
---|
[2596] | 623 | IF (novlp.EQ.3) THEN |
---|
[1992] | 624 | IF (first) THEN |
---|
| 625 | WRITE (*, *) 'Hypothese de recouvrement: RANDOM' |
---|
| 626 | first = .FALSE. |
---|
[3274] | 627 | ENDIF |
---|
[1992] | 628 | flag_max = 1. |
---|
| 629 | ftmp(i) = tcc(i)*(1-pclc(i,k)) |
---|
[3274] | 630 | ENDIF |
---|
[1992] | 631 | |
---|
[2596] | 632 | IF (novlp.EQ.1) THEN |
---|
[1992] | 633 | IF (first) THEN |
---|
| 634 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM_ & |
---|
| 635 | & & |
---|
| 636 | & RANDOM' |
---|
| 637 | first = .FALSE. |
---|
[3274] | 638 | ENDIF |
---|
[1992] | 639 | flag_max = 1. |
---|
| 640 | ftmp(i) = tcc(i)*(1.-max(pclc(i,k),pclc(i,k+1)))/(1.-min(pclc(i, & |
---|
| 641 | k+1),1.-thres_neb)) |
---|
[3274] | 642 | ENDIF |
---|
[1992] | 643 | ! Effective radius of cloud droplet at top of cloud (m) |
---|
| 644 | reffclwtop(i) = reffclwtop(i) + rad_chaud(i, k)*1.0E-06*phase3d(i, & |
---|
| 645 | k)*(tcc(i)-ftmp(i))*flag_max |
---|
| 646 | ! CDNC at top of cloud (m-3) |
---|
| 647 | cldncl(i) = cldncl(i) + cdnc(i, k)*phase3d(i, k)*(tcc(i)-ftmp(i))* & |
---|
| 648 | flag_max |
---|
| 649 | ! Liquid Cloud Content at top of cloud |
---|
| 650 | lcc(i) = lcc(i) + phase3d(i, k)*(tcc(i)-ftmp(i))*flag_max |
---|
| 651 | ! Total Cloud Content at top of cloud |
---|
| 652 | tcc(i) = ftmp(i) |
---|
| 653 | |
---|
[3274] | 654 | ENDIF ! is there a visible, not-too-small cloud? |
---|
| 655 | ENDDO ! loop over k |
---|
[1992] | 656 | |
---|
[2596] | 657 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. - tcc(i) |
---|
[1992] | 658 | |
---|
[3274] | 659 | ENDDO ! loop over i |
---|
[1992] | 660 | |
---|
| 661 | ! ! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC |
---|
| 662 | ! REFFCLWS) |
---|
| 663 | DO i = 1, klon |
---|
[524] | 664 | DO k = 1, klev |
---|
[1992] | 665 | ! Weight to be used for outputs: eau_liquide*couverture nuageuse |
---|
[4704] | 666 | lcc3dcon(i, k) = rnebcon(i, k)*phase3d(i, k)*ccwcon(i, k) ! eau liquide convective |
---|
| 667 | lcc3dstra(i, k) = pclc(i, k)*radocond(i, k)*phase3d(i, k) |
---|
[1992] | 668 | lcc3dstra(i, k) = lcc3dstra(i, k) - lcc3dcon(i, k) ! eau liquide stratiforme |
---|
| 669 | lcc3dstra(i, k) = max(lcc3dstra(i,k), 0.0) |
---|
[3121] | 670 | !FC pour la glace (CAUSES) |
---|
[4704] | 671 | icc3dcon(i, k) = rnebcon(i, k)*(1-phase3d(i, k))*ccwcon(i, k) ! glace convective |
---|
| 672 | icc3dstra(i, k)= pclc(i, k)*radocond(i, k)*(1-phase3d(i, k)) |
---|
[3121] | 673 | icc3dstra(i, k) = icc3dstra(i, k) - icc3dcon(i, k) ! glace stratiforme |
---|
| 674 | icc3dstra(i, k) = max( icc3dstra(i, k), 0.0) |
---|
| 675 | !FC (CAUSES) |
---|
| 676 | |
---|
[1992] | 677 | ! Compute cloud droplet radius as above in meter |
---|
[4704] | 678 | radius = 1.1*((radocond(i,k)*pplay(i,k)/(rd*temp(i,k)))/(4./3*rpi*1000.* & |
---|
[1992] | 679 | cdnc(i,k)))**(1./3.) |
---|
| 680 | radius = max(radius, 5.E-6) |
---|
| 681 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
---|
| 682 | reffclwc(i, k) = radius |
---|
| 683 | reffclwc(i, k) = reffclwc(i, k)*lcc3dcon(i, k) |
---|
| 684 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
---|
| 685 | reffclws(i, k) = radius |
---|
| 686 | reffclws(i, k) = reffclws(i, k)*lcc3dstra(i, k) |
---|
[3274] | 687 | ENDDO !klev |
---|
| 688 | ENDDO !klon |
---|
[524] | 689 | |
---|
[1992] | 690 | ! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
---|
[524] | 691 | |
---|
[1992] | 692 | DO i = 1, klon |
---|
| 693 | cldnvi(i) = 0. |
---|
| 694 | lcc_integrat(i) = 0. |
---|
| 695 | height(i) = 0. |
---|
[1989] | 696 | DO k = 1, klev |
---|
[1992] | 697 | cldnvi(i) = cldnvi(i) + cdnc(i, k)*lcc3d(i, k)*dh(i, k) |
---|
| 698 | lcc_integrat(i) = lcc_integrat(i) + lcc3d(i, k)*dh(i, k) |
---|
| 699 | height(i) = height(i) + dh(i, k) |
---|
[3274] | 700 | ENDDO ! klev |
---|
[1992] | 701 | lcc_integrat(i) = lcc_integrat(i)/height(i) |
---|
| 702 | IF (lcc_integrat(i)<=1.0E-03) THEN |
---|
| 703 | cldnvi(i) = cldnvi(i)*lcc(i)/seuil_neb |
---|
| 704 | ELSE |
---|
| 705 | cldnvi(i) = cldnvi(i)*lcc(i)/lcc_integrat(i) |
---|
[3274] | 706 | ENDIF |
---|
| 707 | ENDDO ! klon |
---|
[1337] | 708 | |
---|
[1992] | 709 | DO i = 1, klon |
---|
| 710 | DO k = 1, klev |
---|
| 711 | IF (scdnc(i,k)<=0.0) scdnc(i, k) = 0.0 |
---|
| 712 | IF (reffclws(i,k)<=0.0) reffclws(i, k) = 0.0 |
---|
| 713 | IF (reffclwc(i,k)<=0.0) reffclwc(i, k) = 0.0 |
---|
| 714 | IF (lcc3d(i,k)<=0.0) lcc3d(i, k) = 0.0 |
---|
| 715 | IF (lcc3dcon(i,k)<=0.0) lcc3dcon(i, k) = 0.0 |
---|
| 716 | IF (lcc3dstra(i,k)<=0.0) lcc3dstra(i, k) = 0.0 |
---|
[3121] | 717 | !FC (CAUSES) |
---|
| 718 | IF (icc3dcon(i,k)<=0.0) icc3dcon(i, k) = 0.0 |
---|
| 719 | IF (icc3dstra(i,k)<=0.0) icc3dstra(i, k) = 0.0 |
---|
| 720 | !FC (CAUSES) |
---|
[3274] | 721 | ENDDO |
---|
[1992] | 722 | IF (reffclwtop(i)<=0.0) reffclwtop(i) = 0.0 |
---|
| 723 | IF (cldncl(i)<=0.0) cldncl(i) = 0.0 |
---|
| 724 | IF (cldnvi(i)<=0.0) cldnvi(i) = 0.0 |
---|
| 725 | IF (lcc(i)<=0.0) lcc(i) = 0.0 |
---|
[3274] | 726 | ENDDO |
---|
[1337] | 727 | |
---|
[3274] | 728 | ENDIF !ok_cdnc |
---|
[1337] | 729 | |
---|
[3245] | 730 | first=.false. !to be sure |
---|
| 731 | |
---|
[1992] | 732 | RETURN |
---|
[1337] | 733 | |
---|
[4683] | 734 | END SUBROUTINE cloud_optics_prop |
---|
| 735 | |
---|
| 736 | END MODULE lmdz_cloud_optics_prop |
---|