1 | ! $Id: lmdz_cloud_optics_prop.F90 4715 2023-10-05 14:14:22Z lebasn $ |
---|
2 | MODULE lmdz_cloud_optics_prop |
---|
3 | |
---|
4 | CONTAINS |
---|
5 | |
---|
6 | SUBROUTINE cloud_optics_prop(klon, klev, paprs, pplay, temp, radocond, picefra, pclc, & |
---|
7 | pcltau, pclemi, pch, pcl, pcm, pct, radocondwp, xflwp, xfiwp, xflwc, xfiwc, & |
---|
8 | mass_solu_aero, mass_solu_aero_pi, pcldtaupi, distcltop, temp_cltop, re, fl, reliq, reice, & |
---|
9 | reliq_pi, reice_pi, scdnc, cldncl, reffclwtop, lcc, reffclws, & |
---|
10 | reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra, icc3dcon, icc3dstra, & |
---|
11 | icefrac_optics, dNovrN, ptconv,rnebcon, ccwcon) |
---|
12 | |
---|
13 | USE lmdz_cloud_optics_prop_ini , ONLY : flag_aerosol, ok_cdnc |
---|
14 | USE lmdz_cloud_optics_prop_ini , ONLY : lunout |
---|
15 | USE lmdz_cloud_optics_prop_ini , ONLY : bl95_b0, bl95_b1 |
---|
16 | USE lmdz_cloud_optics_prop_ini , ONLY : latitude_deg |
---|
17 | USE lmdz_cloud_optics_prop_ini , ONLY : iflag_t_glace |
---|
18 | USE lmdz_cloud_optics_prop_ini , ONLY : cdnc_max, cdnc_max_m3 |
---|
19 | USE lmdz_cloud_optics_prop_ini , ONLY : cdnc_min, cdnc_min_m3 |
---|
20 | USE lmdz_cloud_optics_prop_ini , ONLY : thres_tau, thres_neb |
---|
21 | USE lmdz_cloud_optics_prop_ini , ONLY : prmhc, prlmc |
---|
22 | USE lmdz_cloud_optics_prop_ini , ONLY : coef_froi, coef_chau |
---|
23 | USE lmdz_cloud_optics_prop_ini , ONLY : seuil_neb |
---|
24 | USE lmdz_cloud_optics_prop_ini , ONLY : t_glace_min_old, t_glace_max_old |
---|
25 | USE lmdz_cloud_optics_prop_ini , ONLY : k_ice0, df |
---|
26 | USE lmdz_cloud_optics_prop_ini , ONLY : rg, rd, rpi |
---|
27 | USE lmdz_cloud_optics_prop_ini , ONLY : rad_chau1, rad_chau2, rad_froid, iflag_rei |
---|
28 | USE lmdz_cloud_optics_prop_ini , ONLY : ok_icefra_lscp, rei_max, rei_min |
---|
29 | USE lmdz_cloud_optics_prop_ini , ONLY : zepsec, novlp, iflag_ice_thermo, ok_new_lscp |
---|
30 | |
---|
31 | |
---|
32 | |
---|
33 | |
---|
34 | IMPLICIT NONE |
---|
35 | ! ====================================================================== |
---|
36 | ! Authors: Z.X. Li (LMD/CNRS) date: 19930910 |
---|
37 | ! O.Boucher (LMD/CNRS) mise a jour en 201212 |
---|
38 | ! I. Musat (LMD/CNRS) : prise en compte de la meme hypothese |
---|
39 | ! de recouvrement pour les nuages que pour |
---|
40 | ! le rayonnement rrtm via le parametre |
---|
41 | ! novlp de radopt.h : 20160721 |
---|
42 | ! L.Fairheard, E.Vignon, JB Madeleine, L. Raillard, A. Idelkadi |
---|
43 | ! M. Coulon-Decorzens: replayisation of the routine + cleaning |
---|
44 | ! and commentaries |
---|
45 | ! |
---|
46 | ! Aim: compute condensate optical properties, |
---|
47 | ! cloud optical depth and emissivity |
---|
48 | ! ====================================================================== |
---|
49 | |
---|
50 | ! List of arguments |
---|
51 | !------------------ |
---|
52 | |
---|
53 | ! input: |
---|
54 | INTEGER, INTENT(IN) :: klon, klev ! number of horizontal and vertical grid points |
---|
55 | REAL, INTENT(IN) :: paprs(klon, klev+1)! pressure at bottom interfaces [Pa] |
---|
56 | REAL, INTENT(IN) :: pplay(klon, klev) ! pressure at the middle of layers [Pa] |
---|
57 | REAL, INTENT(IN) :: temp(klon, klev) ! temperature [K] |
---|
58 | REAL, INTENT(IN) :: radocond(klon, klev) ! cloud condensed water seen by radiation [kg/kg] |
---|
59 | REAL, INTENT(IN) :: picefra(klon,klev) ! ice fraction in clouds from large scale condensation scheme [-] |
---|
60 | REAL, INTENT(IN) :: rnebcon(klon,klev) ! convection cloud fraction [-] |
---|
61 | REAL, INTENT(IN) :: ccwcon(klon,klev) ! condensed water from deep convection [kg/kg] |
---|
62 | ! jq for the aerosol indirect effect |
---|
63 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
64 | REAL, INTENT(IN) :: mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
65 | REAL, INTENT(IN) :: mass_solu_aero_pi(klon, klev) ! - (pre-industrial value) |
---|
66 | REAL, INTENT(IN) :: dNovrN(klon) ! enhancement factor for cdnc |
---|
67 | REAL, INTENT(OUT) :: distcltop(klon,klev) ! distance from large scale cloud top [m] |
---|
68 | REAL, INTENT(OUT) :: temp_cltop(klon,klev)!temperature at large scale cloud top [K] |
---|
69 | |
---|
70 | LOGICAL, INTENT(IN) :: ptconv(klon, klev) ! flag for grid points affected by deep convection |
---|
71 | |
---|
72 | ! inout: |
---|
73 | REAL, INTENT(INOUT) :: pclc(klon, klev) ! cloud fraction for radiation [-] |
---|
74 | |
---|
75 | ! out: |
---|
76 | REAL, INTENT(OUT) :: pct(klon) ! 2D total cloud cover [-] |
---|
77 | REAL, INTENT(OUT) :: pcl(klon) ! 2D low cloud cover [-] |
---|
78 | REAL, INTENT(OUT) :: pcm(klon) ! 2D mid cloud cover [-] |
---|
79 | REAL, INTENT(OUT) :: pch(klon) ! 2D high cloud cover [-] |
---|
80 | REAL, INTENT(OUT) :: radocondwp(klon) ! total condensed water path (seen by radiation) [kg/m2] |
---|
81 | REAL, INTENT(OUT) :: xflwp(klon) ! liquid water path (seen by radiation) [kg/m2] |
---|
82 | REAL, INTENT(OUT) :: xfiwp(klon) ! ice water path (seen by radiation) [kg/m2] |
---|
83 | REAL, INTENT(OUT) :: xflwc(klon, klev) ! liquid water content seen by radiation [kg/kg] |
---|
84 | REAL, INTENT(OUT) :: xfiwc(klon, klev) ! ice water content seen by radiation [kg/kg] |
---|
85 | REAL, INTENT(OUT) :: re(klon, klev) ! cloud droplet effective radius multiplied by fl |
---|
86 | REAL, INTENT(OUT) :: fl(klon, klev) ! xliq * rneb, denominator to re; fraction of liquid water clouds |
---|
87 | ! introduced to avoid problems in the averaging of the output |
---|
88 | ! water clouds within a grid cell |
---|
89 | |
---|
90 | REAL, INTENT(OUT) :: pcltau(klon, klev) ! cloud optical depth [m] |
---|
91 | REAL, INTENT(OUT) :: pclemi(klon, klev) ! cloud emissivity [-] |
---|
92 | REAL, INTENT(OUT) :: pcldtaupi(klon, klev) ! pre-industrial value of cloud optical thickness, ie. |
---|
93 | ! values of optical thickness that does not account |
---|
94 | ! for aerosol effects on cloud droplet radius [m] |
---|
95 | |
---|
96 | REAL, INTENT(OUT) :: reliq(klon, klev) ! liquid droplet effective radius [m] |
---|
97 | REAL, INTENT(OUT) :: reice(klon, klev) ! ice effective radius [m] |
---|
98 | REAL, INTENT(OUT) :: reliq_pi(klon, klev)! liquid droplet effective radius [m], pre-industrial |
---|
99 | REAL, INTENT(OUT) :: reice_pi(klon, klev)! ice effective radius [m], pre-industrial |
---|
100 | REAL, INTENT(OUT) :: scdnc(klon, klev) ! cloud droplet number concentration, mean over the whole mesh [m-3] |
---|
101 | REAL, INTENT(OUT) :: cldncl(klon) ! cloud droplet number concentration at top of cloud [m-3] |
---|
102 | REAL, INTENT(OUT) :: reffclwtop(klon) ! effective radius of cloud droplet at top of cloud [m] |
---|
103 | REAL, INTENT(OUT) :: lcc(klon) ! liquid Cloud Content at top of cloud [kg/kg] |
---|
104 | REAL, INTENT(OUT) :: reffclws(klon, klev)! stratiform cloud droplet effective radius |
---|
105 | REAL, INTENT(OUT) :: reffclwc(klon, klev)! convective cloud droplet effective radius |
---|
106 | REAL, INTENT(OUT) :: cldnvi(klon) ! column Integrated cloud droplet Number [/m2] |
---|
107 | REAL, INTENT(OUT) :: lcc3d(klon, klev) ! cloud fraction for liquid part only [-] |
---|
108 | REAL, INTENT(OUT) :: lcc3dcon(klon, klev)! cloud fraction for liquid part only, convective clouds [-] |
---|
109 | REAL, INTENT(OUT) :: lcc3dstra(klon, klev)!cloud fraction for liquid part only, stratiform clouds [-] |
---|
110 | REAL, INTENT(OUT) :: icc3dcon(klon, klev)! cloud fraction for liquid part only, convective clouds [-] |
---|
111 | REAL, INTENT(OUT) :: icc3dstra(klon, klev)! cloud fraction for ice part only, stratiform clouds [-] |
---|
112 | REAL, INTENT(INOUT) :: icefrac_optics(klon, klev)! ice fraction in clouds seen by radiation [-] |
---|
113 | |
---|
114 | ! Local variables |
---|
115 | !---------------- |
---|
116 | |
---|
117 | LOGICAL, SAVE :: first = .TRUE. |
---|
118 | !$OMP THREADPRIVATE(FIRST) |
---|
119 | INTEGER flag_max |
---|
120 | |
---|
121 | ! threshold PARAMETERs |
---|
122 | REAL phase3d(klon, klev) |
---|
123 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
---|
124 | LOGICAL lo |
---|
125 | INTEGER i, k |
---|
126 | REAL radius |
---|
127 | |
---|
128 | |
---|
129 | REAL rel, tc, rei, iwc, dei, deimin, deimax |
---|
130 | REAL k_ice |
---|
131 | |
---|
132 | ! jq for the aerosol indirect effect |
---|
133 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
134 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
135 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
136 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
137 | |
---|
138 | ! IM cf. CR:parametres supplementaires |
---|
139 | REAL dzfice(klon,klev) |
---|
140 | REAL zclear(klon) |
---|
141 | REAL zcloud(klon) |
---|
142 | REAL zcloudh(klon) |
---|
143 | REAL zcloudm(klon) |
---|
144 | REAL zcloudl(klon) |
---|
145 | REAL rhodz(klon, klev) !--rho*dz pour la couche |
---|
146 | REAL zrho(klon, klev) !--rho pour la couche |
---|
147 | REAL dh(klon, klev) !--dz pour la couche |
---|
148 | REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds |
---|
149 | REAL rad_chaud_pi(klon, klev) !--rayon pour les nuages chauds pre-industriels |
---|
150 | REAL zflwp_var, zfiwp_var |
---|
151 | REAL d_rei_dt |
---|
152 | |
---|
153 | |
---|
154 | ! FH : 2011/05/24 |
---|
155 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max |
---|
156 | ! to be used for a temperature in celcius T(°C) < 0 |
---|
157 | ! rei=rei_min for T(°C) < -81.4 |
---|
158 | ! Calcul de la pente de la relation entre rayon effective des cristaux |
---|
159 | ! et la température Pour retrouver les résultats numériques de la version d'origine, |
---|
160 | ! on impose 0.71 quand on est proche de 0.71 |
---|
161 | d_rei_dt = (rei_max-rei_min)/81.4 |
---|
162 | IF (abs(d_rei_dt-0.71)<1.E-4) d_rei_dt = 0.71 |
---|
163 | |
---|
164 | ! Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
165 | ! IM inversion des DO |
---|
166 | |
---|
167 | xflwp = 0.D0 |
---|
168 | xfiwp = 0.D0 |
---|
169 | xflwc = 0.D0 |
---|
170 | xfiwc = 0.D0 |
---|
171 | |
---|
172 | reliq = 0. |
---|
173 | reice = 0. |
---|
174 | reliq_pi = 0. |
---|
175 | reice_pi = 0. |
---|
176 | |
---|
177 | IF (iflag_t_glace.EQ.0) THEN |
---|
178 | DO k = 1, klev |
---|
179 | DO i = 1, klon |
---|
180 | ! -layer calculation |
---|
181 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
---|
182 | zrho(i, k) = pplay(i, k)/temp(i, k)/rd ! kg/m3 |
---|
183 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
---|
184 | ! -Fraction of ice in cloud using a linear transition |
---|
185 | icefrac_optics(i, k) = 1.0 - (temp(i,k)-t_glace_min_old)/(t_glace_max_old-t_glace_min_old) |
---|
186 | icefrac_optics(i, k) = min(max(icefrac_optics(i,k),0.0), 1.0) |
---|
187 | ! -IM Total Liquid/Ice water content |
---|
188 | xflwc(i, k) = (1.-icefrac_optics(i,k))*radocond(i, k) |
---|
189 | xfiwc(i, k) = icefrac_optics(i, k)*radocond(i, k) |
---|
190 | ENDDO |
---|
191 | ENDDO |
---|
192 | ELSE ! of IF (iflag_t_glace.EQ.0) |
---|
193 | DO k = 1, klev |
---|
194 | |
---|
195 | |
---|
196 | !!$ IF (ok_new_lscp) THEN |
---|
197 | !!$ CALL icefrac_lscp(klon,temp(:,k),iflag_ice_thermo,distcltop(:,k),temp_cltop(:,k),icefrac_optics(:,k),dzfice(:,k)) |
---|
198 | !!$ ELSE |
---|
199 | !!$ CALL icefrac_lsc(klon,temp(:,k),pplay(:,k)/paprs(:,1),icefrac_optics(:,k)) |
---|
200 | !!$ ENDIF |
---|
201 | |
---|
202 | DO i = 1, klon |
---|
203 | |
---|
204 | IF ((.NOT. ptconv(i,k)) .AND. ok_new_lscp .AND. ok_icefra_lscp) THEN |
---|
205 | ! EV: take the ice fraction directly from the lscp code |
---|
206 | ! consistent only for non convective grid points |
---|
207 | ! critical for mixed phase clouds |
---|
208 | icefrac_optics(i,k)=picefra(i,k) |
---|
209 | ENDIF |
---|
210 | |
---|
211 | ! -layer calculation |
---|
212 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
---|
213 | zrho(i, k) = pplay(i, k)/temp(i, k)/rd ! kg/m3 |
---|
214 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
---|
215 | ! -IM Total Liquid/Ice water content |
---|
216 | xflwc(i, k) = (1.-icefrac_optics(i,k))*radocond(i, k) |
---|
217 | xfiwc(i, k) = icefrac_optics(i, k)*radocond(i, k) |
---|
218 | ENDDO |
---|
219 | ENDDO |
---|
220 | ENDIF |
---|
221 | |
---|
222 | |
---|
223 | |
---|
224 | |
---|
225 | |
---|
226 | |
---|
227 | IF (ok_cdnc) THEN |
---|
228 | |
---|
229 | ! --we compute cloud properties as a function of the aerosol load |
---|
230 | |
---|
231 | DO k = 1, klev |
---|
232 | DO i = 1, klon |
---|
233 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
234 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
235 | ! to be within [20, 1000 cm^3] |
---|
236 | |
---|
237 | ! --pre-industrial case |
---|
238 | cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
---|
239 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
240 | cdnc_pi(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc_pi(i,k))) |
---|
241 | |
---|
242 | ENDDO |
---|
243 | ENDDO |
---|
244 | |
---|
245 | !--flag_aerosol=7 => MACv2SP climatology |
---|
246 | !--in this case there is an enhancement factor |
---|
247 | IF (flag_aerosol .EQ. 7) THEN |
---|
248 | |
---|
249 | !--present-day |
---|
250 | DO k = 1, klev |
---|
251 | DO i = 1, klon |
---|
252 | cdnc(i, k) = cdnc_pi(i,k)*dNovrN(i) |
---|
253 | ENDDO |
---|
254 | ENDDO |
---|
255 | |
---|
256 | !--standard case |
---|
257 | ELSE |
---|
258 | |
---|
259 | DO k = 1, klev |
---|
260 | DO i = 1, klon |
---|
261 | |
---|
262 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
263 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
264 | ! to be within [20, 1000 cm^3] |
---|
265 | |
---|
266 | ! --present-day case |
---|
267 | cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
---|
268 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
269 | cdnc(i, k) = min(cdnc_max_m3, max(cdnc_min_m3,cdnc(i,k))) |
---|
270 | |
---|
271 | ENDDO |
---|
272 | ENDDO |
---|
273 | |
---|
274 | ENDIF !--flag_aerosol |
---|
275 | |
---|
276 | !--computing cloud droplet size |
---|
277 | DO k = 1, klev |
---|
278 | DO i = 1, klon |
---|
279 | |
---|
280 | ! --present-day case |
---|
281 | rad_chaud(i, k) = 1.1*((radocond(i,k)*pplay(i, & |
---|
282 | k)/(rd*temp(i,k)))/(4./3*rpi*1000.*cdnc(i,k)))**(1./3.) |
---|
283 | rad_chaud(i, k) = max(rad_chaud(i,k)*1.E6, 5.) |
---|
284 | |
---|
285 | ! --pre-industrial case |
---|
286 | rad_chaud_pi(i, k) = 1.1*((radocond(i,k)*pplay(i, & |
---|
287 | k)/(rd*temp(i,k)))/(4./3.*rpi*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
288 | rad_chaud_pi(i, k) = max(rad_chaud_pi(i,k)*1.E6, 5.) |
---|
289 | |
---|
290 | ! --pre-industrial case |
---|
291 | ! --liquid/ice cloud water paths: |
---|
292 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
293 | |
---|
294 | pcldtaupi(i, k) = 0.0 |
---|
295 | |
---|
296 | ELSE |
---|
297 | |
---|
298 | zflwp_var = 1000.*(1.-icefrac_optics(i,k))*radocond(i, k)/pclc(i, k)* & |
---|
299 | rhodz(i, k) |
---|
300 | zfiwp_var = 1000.*icefrac_optics(i, k)*radocond(i, k)/pclc(i, k)*rhodz(i, k) |
---|
301 | ! Calculation of ice cloud effective radius in micron |
---|
302 | IF (iflag_rei .EQ. 1) THEN |
---|
303 | ! when we account for precipitation in the radiation scheme, |
---|
304 | ! It is recommended to use the rei formula from Sun and Rikkus 1999 with a revision |
---|
305 | ! from Sun 2001 (as in the IFS model) |
---|
306 | iwc=icefrac_optics(i, k)*radocond(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 |
---|
307 | dei=(1.2351+0.0105*(temp(i,k)-273.15))*(45.8966*(iwc**0.2214) + & |
---|
308 | & 0.7957*(iwc**0.2535)*(temp(i,k)-83.15)) |
---|
309 | !deimax=155.0 |
---|
310 | !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
311 | !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def |
---|
312 | deimax=rei_max*2.0 |
---|
313 | deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
314 | dei=min(dei,deimax) |
---|
315 | dei=max(dei,deimin) |
---|
316 | rei=3.*sqrt(3.)/8.*dei |
---|
317 | ELSE |
---|
318 | ! Default |
---|
319 | ! for ice clouds: as a function of the ambiant temperature |
---|
320 | ! [formula used by Iacobellis and Somerville (2000), with an |
---|
321 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
322 | ! consistent with observations of Heymsfield et al. 1986]: |
---|
323 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
---|
324 | ! rei_max=61.29 |
---|
325 | tc = temp(i, k) - 273.15 |
---|
326 | rei = d_rei_dt*tc + rei_max |
---|
327 | IF (tc<=-81.4) rei = rei_min |
---|
328 | ENDIF |
---|
329 | |
---|
330 | ! -- cloud optical thickness : |
---|
331 | ! [for liquid clouds, traditional formula, |
---|
332 | ! for ice clouds, Ebert & Curry (1992)] |
---|
333 | |
---|
334 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
335 | pcldtaupi(i, k) = 3.0/2.0*zflwp_var/rad_chaud_pi(i, k) + & |
---|
336 | zfiwp_var*(3.448E-03+2.431/rei) |
---|
337 | |
---|
338 | ENDIF |
---|
339 | |
---|
340 | ENDDO |
---|
341 | ENDDO |
---|
342 | |
---|
343 | ELSE !--not ok_cdnc |
---|
344 | |
---|
345 | ! -prescribed cloud droplet radius |
---|
346 | |
---|
347 | DO k = 1, min(3, klev) |
---|
348 | DO i = 1, klon |
---|
349 | rad_chaud(i, k) = rad_chau2 |
---|
350 | rad_chaud_pi(i, k) = rad_chau2 |
---|
351 | ENDDO |
---|
352 | ENDDO |
---|
353 | DO k = min(3, klev) + 1, klev |
---|
354 | DO i = 1, klon |
---|
355 | rad_chaud(i, k) = rad_chau1 |
---|
356 | rad_chaud_pi(i, k) = rad_chau1 |
---|
357 | ENDDO |
---|
358 | ENDDO |
---|
359 | |
---|
360 | ENDIF !--ok_cdnc |
---|
361 | |
---|
362 | ! --computation of cloud optical depth and emissivity |
---|
363 | ! --in the general case |
---|
364 | |
---|
365 | DO k = 1, klev |
---|
366 | DO i = 1, klon |
---|
367 | |
---|
368 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
369 | |
---|
370 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
371 | ! For output diagnostics cloud droplet effective radius [um] |
---|
372 | ! we multiply here with f * xl (fraction of liquid water |
---|
373 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
374 | ! output. |
---|
375 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
376 | ! effective radius as re/fl |
---|
377 | |
---|
378 | fl(i, k) = seuil_neb*(1.-icefrac_optics(i,k)) |
---|
379 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
380 | rel = 0. |
---|
381 | rei = 0. |
---|
382 | pclc(i, k) = 0.0 |
---|
383 | pcltau(i, k) = 0.0 |
---|
384 | pclemi(i, k) = 0.0 |
---|
385 | |
---|
386 | ELSE |
---|
387 | |
---|
388 | ! -- liquid/ice cloud water paths: |
---|
389 | |
---|
390 | zflwp_var = 1000.*(1.-icefrac_optics(i,k))*radocond(i, k)/pclc(i, k)*rhodz(i, k) |
---|
391 | zfiwp_var = 1000.*icefrac_optics(i, k)*radocond(i, k)/pclc(i, k)*rhodz(i, k) |
---|
392 | |
---|
393 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
394 | ! For output diagnostics cloud droplet effective radius [um] |
---|
395 | ! we multiply here with f Effective radius of cloud droplet at top of cloud (m)* xl (fraction of liquid water |
---|
396 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
397 | ! output. |
---|
398 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
399 | ! effective radius as re/fl |
---|
400 | |
---|
401 | fl(i, k) = pclc(i, k)*(1.-icefrac_optics(i,k)) |
---|
402 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
403 | |
---|
404 | rel = rad_chaud(i, k) |
---|
405 | |
---|
406 | ! Calculation of ice cloud effective radius in micron |
---|
407 | |
---|
408 | |
---|
409 | IF (iflag_rei .GT. 0) THEN |
---|
410 | |
---|
411 | ! when we account for precipitation in the radiation scheme, |
---|
412 | ! we use the rei formula from Sun and Rikkus 1999 with a revision |
---|
413 | ! from Sun 2001 (as in the IFS model) |
---|
414 | iwc=icefrac_optics(i, k)*radocond(i, k)/pclc(i,k)*zrho(i,k)*1000. !in cloud ice water content in g/m3 |
---|
415 | dei=(1.2351+0.0105*(temp(i,k)-273.15))*(45.8966*(iwc**0.2214) + & |
---|
416 | &0.7957*(iwc**0.2535)*(temp(i,k)-83.15)) |
---|
417 | !deimax=155.0 |
---|
418 | !deimin=20.+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
419 | !Etienne: deimax and deimin controled by rei_max and rei_min in physiq.def |
---|
420 | deimax=rei_max*2.0 |
---|
421 | deimin=2.0*rei_min+40*cos(abs(latitude_deg(i))/180.*RPI) |
---|
422 | dei=min(dei,deimax) |
---|
423 | dei=max(dei,deimin) |
---|
424 | rei=3.*sqrt(3.)/8.*dei |
---|
425 | |
---|
426 | ELSE |
---|
427 | ! Default |
---|
428 | ! for ice clouds: as a function of the ambiant temperature |
---|
429 | ! [formula used by Iacobellis and Somerville (2000), with an |
---|
430 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
431 | ! consistent with observations of Heymsfield et al. 1986]: |
---|
432 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
---|
433 | ! rei_max=61.29 |
---|
434 | tc = temp(i, k) - 273.15 |
---|
435 | rei = d_rei_dt*tc + rei_max |
---|
436 | IF (tc<=-81.4) rei = rei_min |
---|
437 | ENDIF |
---|
438 | ! -- cloud optical thickness : |
---|
439 | ! [for liquid clouds, traditional formula, |
---|
440 | ! for ice clouds, Ebert & Curry (1992)] |
---|
441 | |
---|
442 | IF (zflwp_var==0.) rel = 1. |
---|
443 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
444 | pcltau(i, k) = 3.0/2.0*(zflwp_var/rel) + zfiwp_var*(3.448E-03+2.431/ & |
---|
445 | rei) |
---|
446 | |
---|
447 | ! -- cloud infrared emissivity: |
---|
448 | ! [the broadband infrared absorption coefficient is PARAMETERized |
---|
449 | ! as a function of the effective cld droplet radius] |
---|
450 | ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
451 | |
---|
452 | k_ice = k_ice0 + 1.0/rei |
---|
453 | |
---|
454 | pclemi(i, k) = 1.0 - exp(-coef_chau*zflwp_var-df*k_ice*zfiwp_var) |
---|
455 | |
---|
456 | ENDIF |
---|
457 | |
---|
458 | reice(i, k) = rei |
---|
459 | |
---|
460 | xflwp(i) = xflwp(i) + xflwc(i, k)*rhodz(i, k) |
---|
461 | xfiwp(i) = xfiwp(i) + xfiwc(i, k)*rhodz(i, k) |
---|
462 | |
---|
463 | ENDDO |
---|
464 | ENDDO |
---|
465 | |
---|
466 | ! --if cloud droplet radius is fixed, then pcldtaupi=pcltau |
---|
467 | |
---|
468 | IF (.NOT. ok_cdnc) THEN |
---|
469 | DO k = 1, klev |
---|
470 | DO i = 1, klon |
---|
471 | pcldtaupi(i, k) = pcltau(i, k) |
---|
472 | reice_pi(i, k) = reice(i, k) |
---|
473 | ENDDO |
---|
474 | ENDDO |
---|
475 | ENDIF |
---|
476 | |
---|
477 | DO k = 1, klev |
---|
478 | DO i = 1, klon |
---|
479 | reliq(i, k) = rad_chaud(i, k) |
---|
480 | reliq_pi(i, k) = rad_chaud_pi(i, k) |
---|
481 | reice_pi(i, k) = reice(i, k) |
---|
482 | ENDDO |
---|
483 | ENDDO |
---|
484 | |
---|
485 | ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
486 | ! IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
487 | ! initialisations |
---|
488 | |
---|
489 | DO i = 1, klon |
---|
490 | zclear(i) = 1. |
---|
491 | zcloud(i) = 0. |
---|
492 | zcloudh(i) = 0. |
---|
493 | zcloudm(i) = 0. |
---|
494 | zcloudl(i) = 0. |
---|
495 | pch(i) = 1.0 |
---|
496 | pcm(i) = 1.0 |
---|
497 | pcl(i) = 1.0 |
---|
498 | radocondwp(i) = 0.0 |
---|
499 | ENDDO |
---|
500 | |
---|
501 | ! --calculation of liquid water path |
---|
502 | |
---|
503 | DO k = klev, 1, -1 |
---|
504 | DO i = 1, klon |
---|
505 | radocondwp(i) = radocondwp(i) + radocond(i, k)*rhodz(i, k) |
---|
506 | ENDDO |
---|
507 | ENDDO |
---|
508 | |
---|
509 | ! --calculation of cloud properties with cloud overlap |
---|
510 | ! choix de l'hypothese de recouvrement nuageuse via radopt.h (IM, 19.07.2016) |
---|
511 | ! !novlp=1: max-random |
---|
512 | ! !novlp=2: maximum |
---|
513 | ! !novlp=3: random |
---|
514 | |
---|
515 | |
---|
516 | IF (novlp==1) THEN |
---|
517 | DO k = klev, 1, -1 |
---|
518 | DO i = 1, klon |
---|
519 | zclear(i) = zclear(i)*(1.-max(pclc(i,k),zcloud(i)))/(1.-min(real( & |
---|
520 | zcloud(i),kind=8),1.-zepsec)) |
---|
521 | pct(i) = 1. - zclear(i) |
---|
522 | IF (paprs(i,k)<prmhc) THEN |
---|
523 | pch(i) = pch(i)*(1.-max(pclc(i,k),zcloudh(i)))/(1.-min(real(zcloudh & |
---|
524 | (i),kind=8),1.-zepsec)) |
---|
525 | zcloudh(i) = pclc(i, k) |
---|
526 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
527 | pcm(i) = pcm(i)*(1.-max(pclc(i,k),zcloudm(i)))/(1.-min(real(zcloudm & |
---|
528 | (i),kind=8),1.-zepsec)) |
---|
529 | zcloudm(i) = pclc(i, k) |
---|
530 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
531 | pcl(i) = pcl(i)*(1.-max(pclc(i,k),zcloudl(i)))/(1.-min(real(zcloudl & |
---|
532 | (i),kind=8),1.-zepsec)) |
---|
533 | zcloudl(i) = pclc(i, k) |
---|
534 | ENDIF |
---|
535 | zcloud(i) = pclc(i, k) |
---|
536 | ENDDO |
---|
537 | ENDDO |
---|
538 | ELSE IF (novlp==2) THEN |
---|
539 | DO k = klev, 1, -1 |
---|
540 | DO i = 1, klon |
---|
541 | zcloud(i) = max(pclc(i,k), zcloud(i)) |
---|
542 | pct(i) = zcloud(i) |
---|
543 | IF (paprs(i,k)<prmhc) THEN |
---|
544 | pch(i) = min(pclc(i,k), pch(i)) |
---|
545 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
546 | pcm(i) = min(pclc(i,k), pcm(i)) |
---|
547 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
548 | pcl(i) = min(pclc(i,k), pcl(i)) |
---|
549 | ENDIF |
---|
550 | ENDDO |
---|
551 | ENDDO |
---|
552 | ELSE IF (novlp==3) THEN |
---|
553 | DO k = klev, 1, -1 |
---|
554 | DO i = 1, klon |
---|
555 | zclear(i) = zclear(i)*(1.-pclc(i,k)) |
---|
556 | pct(i) = 1 - zclear(i) |
---|
557 | IF (paprs(i,k)<prmhc) THEN |
---|
558 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
559 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
560 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
561 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
562 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
563 | ENDIF |
---|
564 | ENDDO |
---|
565 | ENDDO |
---|
566 | ENDIF |
---|
567 | |
---|
568 | DO i = 1, klon |
---|
569 | pch(i) = 1. - pch(i) |
---|
570 | pcm(i) = 1. - pcm(i) |
---|
571 | pcl(i) = 1. - pcl(i) |
---|
572 | ENDDO |
---|
573 | |
---|
574 | ! ======================================================== |
---|
575 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
---|
576 | ! ======================================================== |
---|
577 | ! change by Nicolas Yan (LSCE) |
---|
578 | ! Cloud Droplet Number Concentration (CDNC) : 3D variable |
---|
579 | ! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
---|
580 | ! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
---|
581 | ! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
---|
582 | ! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
---|
583 | |
---|
584 | IF (ok_cdnc) THEN |
---|
585 | |
---|
586 | DO k = 1, klev |
---|
587 | DO i = 1, klon |
---|
588 | phase3d(i, k) = 1 - icefrac_optics(i, k) |
---|
589 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
590 | lcc3d(i, k) = seuil_neb*phase3d(i, k) |
---|
591 | ELSE |
---|
592 | lcc3d(i, k) = pclc(i, k)*phase3d(i, k) |
---|
593 | ENDIF |
---|
594 | scdnc(i, k) = lcc3d(i, k)*cdnc(i, k) ! m-3 |
---|
595 | ENDDO |
---|
596 | ENDDO |
---|
597 | |
---|
598 | DO i = 1, klon |
---|
599 | lcc(i) = 0. |
---|
600 | reffclwtop(i) = 0. |
---|
601 | cldncl(i) = 0. |
---|
602 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. |
---|
603 | IF (novlp.EQ.2) tcc(i) = 0. |
---|
604 | ENDDO |
---|
605 | |
---|
606 | DO i = 1, klon |
---|
607 | DO k = klev - 1, 1, -1 !From TOA down |
---|
608 | |
---|
609 | ! Test, if the cloud optical depth exceeds the necessary |
---|
610 | ! threshold: |
---|
611 | |
---|
612 | IF (pcltau(i,k)>thres_tau .AND. pclc(i,k)>thres_neb) THEN |
---|
613 | |
---|
614 | IF (novlp.EQ.2) THEN |
---|
615 | IF (first) THEN |
---|
616 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM' |
---|
617 | first = .FALSE. |
---|
618 | ENDIF |
---|
619 | flag_max = -1. |
---|
620 | ftmp(i) = max(tcc(i), pclc(i,k)) |
---|
621 | ENDIF |
---|
622 | |
---|
623 | IF (novlp.EQ.3) THEN |
---|
624 | IF (first) THEN |
---|
625 | WRITE (*, *) 'Hypothese de recouvrement: RANDOM' |
---|
626 | first = .FALSE. |
---|
627 | ENDIF |
---|
628 | flag_max = 1. |
---|
629 | ftmp(i) = tcc(i)*(1-pclc(i,k)) |
---|
630 | ENDIF |
---|
631 | |
---|
632 | IF (novlp.EQ.1) THEN |
---|
633 | IF (first) THEN |
---|
634 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM_ & |
---|
635 | & & |
---|
636 | & RANDOM' |
---|
637 | first = .FALSE. |
---|
638 | ENDIF |
---|
639 | flag_max = 1. |
---|
640 | ftmp(i) = tcc(i)*(1.-max(pclc(i,k),pclc(i,k+1)))/(1.-min(pclc(i, & |
---|
641 | k+1),1.-thres_neb)) |
---|
642 | ENDIF |
---|
643 | ! Effective radius of cloud droplet at top of cloud (m) |
---|
644 | reffclwtop(i) = reffclwtop(i) + rad_chaud(i, k)*1.0E-06*phase3d(i, & |
---|
645 | k)*(tcc(i)-ftmp(i))*flag_max |
---|
646 | ! CDNC at top of cloud (m-3) |
---|
647 | cldncl(i) = cldncl(i) + cdnc(i, k)*phase3d(i, k)*(tcc(i)-ftmp(i))* & |
---|
648 | flag_max |
---|
649 | ! Liquid Cloud Content at top of cloud |
---|
650 | lcc(i) = lcc(i) + phase3d(i, k)*(tcc(i)-ftmp(i))*flag_max |
---|
651 | ! Total Cloud Content at top of cloud |
---|
652 | tcc(i) = ftmp(i) |
---|
653 | |
---|
654 | ENDIF ! is there a visible, not-too-small cloud? |
---|
655 | ENDDO ! loop over k |
---|
656 | |
---|
657 | IF (novlp.EQ.3 .OR. novlp.EQ.1) tcc(i) = 1. - tcc(i) |
---|
658 | |
---|
659 | ENDDO ! loop over i |
---|
660 | |
---|
661 | ! ! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC |
---|
662 | ! REFFCLWS) |
---|
663 | DO i = 1, klon |
---|
664 | DO k = 1, klev |
---|
665 | ! Weight to be used for outputs: eau_liquide*couverture nuageuse |
---|
666 | lcc3dcon(i, k) = rnebcon(i, k)*phase3d(i, k)*ccwcon(i, k) ! eau liquide convective |
---|
667 | lcc3dstra(i, k) = pclc(i, k)*radocond(i, k)*phase3d(i, k) |
---|
668 | lcc3dstra(i, k) = lcc3dstra(i, k) - lcc3dcon(i, k) ! eau liquide stratiforme |
---|
669 | lcc3dstra(i, k) = max(lcc3dstra(i,k), 0.0) |
---|
670 | !FC pour la glace (CAUSES) |
---|
671 | icc3dcon(i, k) = rnebcon(i, k)*(1-phase3d(i, k))*ccwcon(i, k) ! glace convective |
---|
672 | icc3dstra(i, k)= pclc(i, k)*radocond(i, k)*(1-phase3d(i, k)) |
---|
673 | icc3dstra(i, k) = icc3dstra(i, k) - icc3dcon(i, k) ! glace stratiforme |
---|
674 | icc3dstra(i, k) = max( icc3dstra(i, k), 0.0) |
---|
675 | !FC (CAUSES) |
---|
676 | |
---|
677 | ! Compute cloud droplet radius as above in meter |
---|
678 | radius = 1.1*((radocond(i,k)*pplay(i,k)/(rd*temp(i,k)))/(4./3*rpi*1000.* & |
---|
679 | cdnc(i,k)))**(1./3.) |
---|
680 | radius = max(radius, 5.E-6) |
---|
681 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
---|
682 | reffclwc(i, k) = radius |
---|
683 | reffclwc(i, k) = reffclwc(i, k)*lcc3dcon(i, k) |
---|
684 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
---|
685 | reffclws(i, k) = radius |
---|
686 | reffclws(i, k) = reffclws(i, k)*lcc3dstra(i, k) |
---|
687 | ENDDO !klev |
---|
688 | ENDDO !klon |
---|
689 | |
---|
690 | ! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
---|
691 | |
---|
692 | DO i = 1, klon |
---|
693 | cldnvi(i) = 0. |
---|
694 | lcc_integrat(i) = 0. |
---|
695 | height(i) = 0. |
---|
696 | DO k = 1, klev |
---|
697 | cldnvi(i) = cldnvi(i) + cdnc(i, k)*lcc3d(i, k)*dh(i, k) |
---|
698 | lcc_integrat(i) = lcc_integrat(i) + lcc3d(i, k)*dh(i, k) |
---|
699 | height(i) = height(i) + dh(i, k) |
---|
700 | ENDDO ! klev |
---|
701 | lcc_integrat(i) = lcc_integrat(i)/height(i) |
---|
702 | IF (lcc_integrat(i)<=1.0E-03) THEN |
---|
703 | cldnvi(i) = cldnvi(i)*lcc(i)/seuil_neb |
---|
704 | ELSE |
---|
705 | cldnvi(i) = cldnvi(i)*lcc(i)/lcc_integrat(i) |
---|
706 | ENDIF |
---|
707 | ENDDO ! klon |
---|
708 | |
---|
709 | DO i = 1, klon |
---|
710 | DO k = 1, klev |
---|
711 | IF (scdnc(i,k)<=0.0) scdnc(i, k) = 0.0 |
---|
712 | IF (reffclws(i,k)<=0.0) reffclws(i, k) = 0.0 |
---|
713 | IF (reffclwc(i,k)<=0.0) reffclwc(i, k) = 0.0 |
---|
714 | IF (lcc3d(i,k)<=0.0) lcc3d(i, k) = 0.0 |
---|
715 | IF (lcc3dcon(i,k)<=0.0) lcc3dcon(i, k) = 0.0 |
---|
716 | IF (lcc3dstra(i,k)<=0.0) lcc3dstra(i, k) = 0.0 |
---|
717 | !FC (CAUSES) |
---|
718 | IF (icc3dcon(i,k)<=0.0) icc3dcon(i, k) = 0.0 |
---|
719 | IF (icc3dstra(i,k)<=0.0) icc3dstra(i, k) = 0.0 |
---|
720 | !FC (CAUSES) |
---|
721 | ENDDO |
---|
722 | IF (reffclwtop(i)<=0.0) reffclwtop(i) = 0.0 |
---|
723 | IF (cldncl(i)<=0.0) cldncl(i) = 0.0 |
---|
724 | IF (cldnvi(i)<=0.0) cldnvi(i) = 0.0 |
---|
725 | IF (lcc(i)<=0.0) lcc(i) = 0.0 |
---|
726 | ENDDO |
---|
727 | |
---|
728 | ENDIF !ok_cdnc |
---|
729 | |
---|
730 | first=.false. !to be sure |
---|
731 | |
---|
732 | RETURN |
---|
733 | |
---|
734 | END SUBROUTINE cloud_optics_prop |
---|
735 | |
---|
736 | END MODULE lmdz_cloud_optics_prop |
---|