1 | |
---|
2 | |
---|
3 | |
---|
4 | |
---|
5 | subroutine SISVAT_TSo |
---|
6 | ! #e1. (ETSo_0,ETSo_1,ETSo_d) |
---|
7 | |
---|
8 | ! +------------------------------------------------------------------------+ |
---|
9 | ! | MAR SISVAT_TSo 06-10-2020 MAR | |
---|
10 | ! | SubRoutine SISVAT_TSo computes the Soil/Snow Energy Balance | |
---|
11 | ! +------------------------------------------------------------------------+ |
---|
12 | ! | | |
---|
13 | ! | PARAMETERS: knonv: Total Number of columns = | |
---|
14 | ! | ^^^^^^^^^^ = Total Number of continental grid boxes | |
---|
15 | ! | X Number of Mosaic Cell per grid box | |
---|
16 | ! | | |
---|
17 | ! | INPUT: isotSV = 0,...,11: Soil Type | |
---|
18 | ! | ^^^^^ 0: Water, Solid or Liquid | |
---|
19 | ! | isnoSV = total Nb of Ice/Snow Layers | |
---|
20 | ! | dQa_SV = Limitation of Water Vapor Turbulent Flux | |
---|
21 | ! | | |
---|
22 | ! | INPUT: sol_SV : Downward Solar Radiation [W/m2] | |
---|
23 | ! | ^^^^^ IRd_SV : Surface Downward Longwave Radiation [W/m2] | |
---|
24 | ! | za__SV : SBL Top Height [m] | |
---|
25 | ! | VV__SV : SBL Top Wind Speed [m/s] | |
---|
26 | ! | TaT_SV : SBL Top Temperature [K] | |
---|
27 | ! | rhT_SV : SBL Top Air Density [kg/m3] | |
---|
28 | ! | QaT_SV : SBL Top Specific Humidity [kg/kg] | |
---|
29 | ! | LSdzsv : Vertical Discretization Factor [-] | |
---|
30 | ! | = 1. Soil | |
---|
31 | ! | = 1000. Ocean | |
---|
32 | ! | dzsnSV : Snow Layer Thickness [m] | |
---|
33 | ! | ro__SV : Snow/Soil Volumic Mass [kg/m3] | |
---|
34 | ! | eta_SV : Soil Water Content [m3/m3] | |
---|
35 | ! | dt__SV : Time Step [s] | |
---|
36 | ! | | |
---|
37 | ! | SoSosv : Absorbed Solar Radiation by Surfac.(Normaliz)[-] | |
---|
38 | ! | Eso_sv : Soil+Snow Emissivity [-] | |
---|
39 | ! | rah_sv : Aerodynamic Resistance for Heat [s/m] | |
---|
40 | ! | Lx_H2O : Latent Heat of Vaporization/Sublimation [J/kg] | |
---|
41 | ! | sEX_sv : Verticaly Integrated Extinction Coefficient [-] | |
---|
42 | ! | | |
---|
43 | ! | INPUT / TsisSV : Soil/Ice Temperatures (layers -nsol,-nsol+1,..,0)| |
---|
44 | ! | OUTPUT: & Snow Temperatures (layers 1,2,...,nsno) [K] | |
---|
45 | ! | ^^^^^^ | |
---|
46 | ! | | |
---|
47 | ! | OUTPUT: IRs_SV : Soil IR Radiation [W/m2] | |
---|
48 | ! | ^^^^^^ HSs_sv : Sensible Heat Flux [W/m2] | |
---|
49 | ! | HLs_sv : Latent Heat Flux [W/m2] | |
---|
50 | ! | ETSo_0 : Snow/Soil Energy Power, before Forcing [W/m2] | |
---|
51 | ! | ETSo_1 : Snow/Soil Energy Power, after Forcing [W/m2] | |
---|
52 | ! | ETSo_d : Snow/Soil Energy Power Forcing [W/m2] | |
---|
53 | ! | | |
---|
54 | ! | Internal Variables: | |
---|
55 | ! | ^^^^^^^^^^^^^^^^^^ | |
---|
56 | ! | | |
---|
57 | ! | METHOD: NO Skin Surface Temperature | |
---|
58 | ! | ^^^^^^ Semi-Implicit Crank Nicholson Scheme | |
---|
59 | ! | | |
---|
60 | ! | # OPTIONS: #E0: Energy Budget Verification | |
---|
61 | ! | # ^^^^^^^ #kd: KDsvat Option:NO Flux Limitor on HL | |
---|
62 | ! | # #KD: KDsvat Option:Explicit Formulation of HL | |
---|
63 | ! | # #NC: OUTPUT for Stand Alone NetCDF File | |
---|
64 | ! | | |
---|
65 | ! +------------------------------------------------------------------------+ |
---|
66 | |
---|
67 | |
---|
68 | |
---|
69 | |
---|
70 | ! +--Global Variables |
---|
71 | ! + ================ |
---|
72 | |
---|
73 | use VARphy |
---|
74 | use VAR_SV |
---|
75 | use VARdSV |
---|
76 | use VARxSV |
---|
77 | use VARySV |
---|
78 | use VARtSV |
---|
79 | use VAR0SV |
---|
80 | |
---|
81 | |
---|
82 | IMPLICIT NONE |
---|
83 | |
---|
84 | |
---|
85 | ! +--OUTPUT |
---|
86 | ! + ------ |
---|
87 | |
---|
88 | ! #e1 real ETSo_0(knonv) ! Soil/Snow Power, before Forcing |
---|
89 | ! #e1 real ETSo_1(knonv) ! Soil/Snow Power, after Forcing |
---|
90 | ! #e1 real ETSo_d(knonv) ! Soil/Snow Power, Forcing |
---|
91 | |
---|
92 | |
---|
93 | ! +--Internal Variables |
---|
94 | ! + ================== |
---|
95 | |
---|
96 | integer :: ikl ,isl ,jsl ,ist ! |
---|
97 | integer :: ist__s,ist__w ! Soil/Water Body Identifier |
---|
98 | integer :: islsgn ! Soil/Snow Surfac.Identifier |
---|
99 | real :: eps__3 ! Arbitrary Low Number |
---|
100 | real :: etaMid,psiMid ! Layer Interface's Humidity |
---|
101 | real :: mu_eta ! Soil thermal Conductivity |
---|
102 | real :: mu_exp ! arg Soil thermal Conductivity |
---|
103 | real :: mu_min ! Min Soil thermal Conductivity |
---|
104 | real :: mu_max ! Max Soil thermal Conductivity |
---|
105 | real :: mu_sno(knonv),mu_aux ! Snow thermal Conductivity |
---|
106 | real :: mu__dz(knonv,-nsol:nsno+1) ! mu_(eta,sno) / dz |
---|
107 | real :: dtC_sv(knonv,-nsol:nsno) ! dt / C |
---|
108 | real :: IRs__D(knonv) ! UpwardIR Previous Iter.Contr. |
---|
109 | real :: dIRsdT(knonv) ! UpwardIR T Derivat. |
---|
110 | real :: f_HSHL(knonv) ! Factor common to HS and HL |
---|
111 | real :: dRidTs(knonv) ! d(Rib)/d(Ts) |
---|
112 | real :: HS___D(knonv) ! Sensible Heat Flux Atm.Contr. |
---|
113 | real :: f___HL(knonv) ! |
---|
114 | real :: HL___D(knonv) ! Latent Heat Flux Atm.Contr. |
---|
115 | REAL :: TSurf0(knonv),dTSurf ! Previous Surface Temperature |
---|
116 | real :: qsatsg(knonv) !,den_qs,arg_qs ! Soil Saturat. Spec. Humidity |
---|
117 | real :: dqs_dT(knonv) ! d(qsatsg)/dTv |
---|
118 | real :: Psi( knonv) ! 1st Soil Layer Water Potential |
---|
119 | real :: RHuSol(knonv) ! Soil Surface Relative Humidity |
---|
120 | real :: etaSol ! Soil Surface Humidity |
---|
121 | real :: d__eta ! Soil Surface Humidity Increm. |
---|
122 | real :: Elem_A,Elem_C ! Diagonal Coefficients |
---|
123 | real :: Diag_A(knonv,-nsol:nsno) ! A Diagonal |
---|
124 | real :: Diag_B(knonv,-nsol:nsno) ! B Diagonal |
---|
125 | real :: Diag_C(knonv,-nsol:nsno) ! C Diagonal |
---|
126 | real :: Term_D(knonv,-nsol:nsno) ! Independant Term |
---|
127 | real :: Aux__P(knonv,-nsol:nsno) ! P Auxiliary Variable |
---|
128 | real :: Aux__Q(knonv,-nsol:nsno) ! Q Auxiliary Variable |
---|
129 | real :: Ts_Min,Ts_Max ! Temperature Limits |
---|
130 | ! #e1 real Exist0 ! Existing Layer Switch |
---|
131 | real :: psat_wat, psat_ice, sp ! computation of qsat |
---|
132 | |
---|
133 | integer :: nt_srf,it_srf,itEuBk ! HL: Surface Scheme |
---|
134 | parameter(nt_srf=10) ! 10 before |
---|
135 | real :: agpsrf,xgpsrf,dt_srf,dt_ver ! |
---|
136 | real :: etaBAK(knonv) ! |
---|
137 | real :: etaNEW(knonv) ! |
---|
138 | real :: etEuBk(knonv) ! |
---|
139 | real :: fac_dt(knonv),faceta(knonv) ! |
---|
140 | real :: PsiArg(knonv),SHuSol(knonv) ! |
---|
141 | |
---|
142 | |
---|
143 | |
---|
144 | ! +--Internal DATA |
---|
145 | ! + ============= |
---|
146 | |
---|
147 | data eps__3 / 1.e-3 / ! Arbitrary Low Number |
---|
148 | data mu_exp / -0.4343 / ! Soil Thermal Conductivity |
---|
149 | data mu_min / 0.172 / ! Min Soil Thermal Conductivity |
---|
150 | data mu_max / 2.000 / ! Max Soil Thermal Conductivity |
---|
151 | data Ts_Min / 175. / ! Temperature Minimum |
---|
152 | data Ts_Max / 300. / ! Temperature Acceptable Maximum |
---|
153 | ! + ! including Snow Melt Energy |
---|
154 | |
---|
155 | ! +-- Initilialisation of local arrays |
---|
156 | ! + ================================ |
---|
157 | DO ikl=1,knonv |
---|
158 | |
---|
159 | mu_sno(ikl)=0. |
---|
160 | mu__dz(ikl,:)=0. |
---|
161 | dtC_sv(ikl,:)=0. |
---|
162 | IRs__D(ikl)=0. |
---|
163 | dIRsdT(ikl)=0. |
---|
164 | f_HSHL(ikl)=0. |
---|
165 | dRidTs(ikl)=0. |
---|
166 | HS___D(ikl)=0. |
---|
167 | f___HL(ikl)=0. |
---|
168 | HL___D(ikl)=0. |
---|
169 | TSurf0(ikl)=0. |
---|
170 | qsatsg(ikl)=0. |
---|
171 | dqs_dT(ikl)=0. |
---|
172 | Psi(ikl)=0. |
---|
173 | RHuSol(ikl)=0. |
---|
174 | Diag_A(ikl,:)=0. |
---|
175 | Diag_B(ikl,:)=0. |
---|
176 | Diag_C(ikl,:)=0. |
---|
177 | Term_D(ikl,:)=0. |
---|
178 | Aux__P(ikl,:)=0. |
---|
179 | Aux__Q(ikl,:)=0. |
---|
180 | etaBAK(ikl)=0. |
---|
181 | etaNEW(ikl)=0. |
---|
182 | etEuBk(ikl)=0. |
---|
183 | fac_dt(ikl)=0. |
---|
184 | faceta(ikl)=0. |
---|
185 | PsiArg(ikl)=0. |
---|
186 | SHuSol(ikl)=0. |
---|
187 | |
---|
188 | END DO |
---|
189 | |
---|
190 | |
---|
191 | |
---|
192 | ! +--Heat Conduction Coefficient (zero in the Layers over the highest one) |
---|
193 | ! + =========================== |
---|
194 | ! + ---------------- isl eta_SV, rho C (isl) |
---|
195 | ! + |
---|
196 | ! +--Soil ++++++++++++++++ etaMid, mu (isl) |
---|
197 | ! + ---- |
---|
198 | ! + ---------------- isl-1 eta_SV, rho C (isl-1) |
---|
199 | isl=-nsol |
---|
200 | DO ikl=1,knonv |
---|
201 | |
---|
202 | mu__dz(ikl,isl) = 0. |
---|
203 | |
---|
204 | dtC_sv(ikl,isl) = dtz_SV2(isl) * dt__SV & ! dt / (dz X rho C) |
---|
205 | /((rocsSV(isotSV(ikl)) & ! [s / (m.J/m3/K)] |
---|
206 | +rcwdSV*eta_SV(ikl,isl)) & ! |
---|
207 | *LSdzsv(ikl) ) ! |
---|
208 | END DO |
---|
209 | DO isl=-nsol+1,0 |
---|
210 | DO ikl=1,knonv |
---|
211 | ist = isotSV(ikl) ! Soil Type |
---|
212 | ist__s = min(ist, 1) ! 1 => Soil |
---|
213 | ist__w = 1 - ist__s ! 1 => Water Body |
---|
214 | |
---|
215 | etaMid = 0.5*(dz_dSV(isl-1)*eta_SV(ikl,isl-1) & ! eta at layers |
---|
216 | +dz_dSV(isl) *eta_SV(ikl,isl) ) & ! interface |
---|
217 | /dzmiSV(isl) ! LSdzsv implicit ! |
---|
218 | etaMid = max(etaMid,epsi) |
---|
219 | psiMid = psidSV(ist) & |
---|
220 | *(etadSV(ist)/etaMid)**bCHdSV(ist) |
---|
221 | mu_eta = 3.82 *(psiMid)**mu_exp ! Soil Thermal |
---|
222 | mu_eta = min(max(mu_eta, mu_min), mu_max) ! Conductivity |
---|
223 | ! + ! DR97 eq.3.31 |
---|
224 | mu_eta = ist__s *mu_eta +ist__w * vK_dSV ! Water Bodies |
---|
225 | ! + ! Correction |
---|
226 | mu__dz(ikl,isl) = mu_eta/(dzmiSV(isl) & ! |
---|
227 | *LSdzsv(ikl)) ! |
---|
228 | |
---|
229 | dtC_sv(ikl,isl) = dtz_SV2(isl)* dt__SV & ! dt / (dz X rho C) |
---|
230 | /((rocsSV(isotSV(ikl)) & ! |
---|
231 | +rcwdSV*eta_SV(ikl,isl)) & ! |
---|
232 | *LSdzsv(ikl) ) ! |
---|
233 | END DO |
---|
234 | END DO |
---|
235 | |
---|
236 | |
---|
237 | ! +--Soil/Snow Interface |
---|
238 | ! + ------------------- |
---|
239 | |
---|
240 | ! +--Soil Contribution |
---|
241 | ! + ^^^^^^^^^^^^^^^^^ |
---|
242 | isl=1 |
---|
243 | DO ikl=1,knonv |
---|
244 | ist = isotSV(ikl) ! Soil Type |
---|
245 | ist__s = min(ist, 1) ! 1 => Soil |
---|
246 | ist__w = 1 - ist__s ! 1 => Water Body |
---|
247 | psiMid = psidSV(ist) ! Snow => Saturation |
---|
248 | mu_eta = 3.82 *(psiMid)**mu_exp ! Soil Thermal |
---|
249 | mu_eta = min(max(mu_eta, mu_min), mu_max) ! Conductivity |
---|
250 | ! + ! DR97 eq.3.31 |
---|
251 | mu_eta = ist__s *mu_eta +ist__w * vK_dSV ! Water Bodies |
---|
252 | |
---|
253 | ! +--Snow Contribution |
---|
254 | ! + ^^^^^^^^^^^^^^^^^ |
---|
255 | mu_sno(ikl) = CdidSV & ! |
---|
256 | *(ro__SV(ikl,isl) /ro_Wat) ** 1.88 ! |
---|
257 | mu_sno(ikl) = max(epsi,mu_sno(ikl)) ! |
---|
258 | ! +... mu_sno : Snow Heat Conductivity Coefficient [Wm/K] |
---|
259 | ! + (Yen 1981, CRREL Rep., 81-10) |
---|
260 | |
---|
261 | ! +--Combined Heat Conductivity |
---|
262 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
263 | mu__dz(ikl,isl) = 2./(dzsnSV(ikl,isl ) & ! Combined Heat |
---|
264 | /mu_sno(ikl) & ! Conductivity |
---|
265 | +LSdzsv(ikl) & ! |
---|
266 | *dz_dSV( isl-1)/mu_eta) ! Coefficient |
---|
267 | |
---|
268 | ! +--Inverted Heat Capacity |
---|
269 | ! + ^^^^^^^^^^^^^^^^^^^^^^ |
---|
270 | dtC_sv(ikl,isl) = dt__SV/max(epsi, & ! dt / (dz X rho C) |
---|
271 | dzsnSV(ikl,isl) * ro__SV(ikl,isl) *Cn_dSV) ! |
---|
272 | END DO |
---|
273 | |
---|
274 | |
---|
275 | ! +--Snow |
---|
276 | ! + ---- |
---|
277 | |
---|
278 | DO ikl=1,knonv |
---|
279 | DO isl=1,min(nsno,isnoSV(ikl)+1) |
---|
280 | ro__SV(ikl,isl) = & ! |
---|
281 | ro__SV(ikl ,isl) & ! |
---|
282 | * max(0,min(isnoSV(ikl)-isl+1,1)) ! |
---|
283 | |
---|
284 | END DO |
---|
285 | END DO |
---|
286 | |
---|
287 | DO ikl=1,knonv |
---|
288 | DO isl=1,min(nsno,isnoSV(ikl)+1) |
---|
289 | |
---|
290 | ! +--Combined Heat Conductivity |
---|
291 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
292 | mu_aux = CdidSV & ! |
---|
293 | *(ro__SV(ikl,isl) /ro_Wat) ** 1.88 ! |
---|
294 | mu__dz(ikl,isl) = & ! |
---|
295 | 2. *mu_aux*mu_sno(ikl) & ! Combined Heat |
---|
296 | /max(epsi,dzsnSV(ikl,isl )*mu_sno(ikl) & ! Conductivity |
---|
297 | +dzsnSV(ikl,isl-1)*mu_aux ) ! For upper Layer |
---|
298 | mu_sno(ikl) = mu_aux ! |
---|
299 | |
---|
300 | ! +--Inverted Heat Capacity |
---|
301 | ! + ^^^^^^^^^^^^^^^^^^^^^^ |
---|
302 | dtC_sv(ikl,isl) = dt__SV/max(eps__3, & ! dt / (dz X rho C) |
---|
303 | dzsnSV(ikl,isl) * ro__SV(ikl,isl) *Cn_dSV) ! |
---|
304 | END DO |
---|
305 | END DO |
---|
306 | |
---|
307 | |
---|
308 | ! +--Uppermost Effective Layer: NO conduction |
---|
309 | ! + ---------------------------------------- |
---|
310 | |
---|
311 | DO ikl=1,knonv |
---|
312 | mu__dz(ikl,isnoSV(ikl)+1) = 0.0 |
---|
313 | END DO |
---|
314 | |
---|
315 | |
---|
316 | ! +--Energy Budget (IN) |
---|
317 | ! + ================== |
---|
318 | |
---|
319 | ! #e1 DO ikl=1,knonv |
---|
320 | ! #e1 ETSo_0(ikl) = 0. |
---|
321 | ! #e1 END DO |
---|
322 | ! #e1 DO isl= -nsol,nsno |
---|
323 | ! #e1 DO ikl=1,knonv |
---|
324 | ! #e1 Exist0 = isl - isnoSV(ikl) |
---|
325 | ! #e1 Exist0 = 1. - max(zero,min(unun,Exist0)) |
---|
326 | ! #e1 ETSo_0(ikl) = ETSo_0(ikl) |
---|
327 | ! #e1. +(TsisSV(ikl,isl)-TfSnow)*Exist0 |
---|
328 | ! #e1. /dtC_sv(ikl,isl) |
---|
329 | ! #e1 END DO |
---|
330 | ! #e1 END DO |
---|
331 | |
---|
332 | |
---|
333 | ! +--Tridiagonal Elimination: Set Up |
---|
334 | ! + =============================== |
---|
335 | |
---|
336 | ! +--Soil/Snow Interior |
---|
337 | ! + ^^^^^^^^^^^^^^^^^^ |
---|
338 | DO ikl=1,knonv |
---|
339 | DO isl=-nsol+1,min(nsno-1,isnoSV(ikl)+1) |
---|
340 | |
---|
341 | Elem_A = dtC_sv(ikl,isl) *mu__dz(ikl,isl) |
---|
342 | Elem_C = dtC_sv(ikl,isl) *mu__dz(ikl,isl+1) |
---|
343 | Diag_A(ikl,isl) = -Elem_A *Implic |
---|
344 | Diag_C(ikl,isl) = -Elem_C *Implic |
---|
345 | Diag_B(ikl,isl) = 1.0d+0 -Diag_A(ikl,isl)-Diag_C(ikl,isl) |
---|
346 | Term_D(ikl,isl) = Explic *(Elem_A *TsisSV(ikl,isl-1) & |
---|
347 | +Elem_C *TsisSV(ikl,isl+1)) & |
---|
348 | +(1.0d+0 -Explic *(Elem_A+Elem_C))*TsisSV(ikl,isl) & |
---|
349 | + dtC_sv(ikl,isl) * sol_SV(ikl) *SoSosv(ikl) & |
---|
350 | *(sEX_sv(ikl,isl+1) & |
---|
351 | -sEX_sv(ikl,isl )) |
---|
352 | END DO |
---|
353 | END DO |
---|
354 | |
---|
355 | ! +--Soil lowest Layer |
---|
356 | ! + ^^^^^^^^^^^^^^^^^^ |
---|
357 | isl= -nsol |
---|
358 | DO ikl=1,knonv |
---|
359 | Elem_A = 0. |
---|
360 | Elem_C = dtC_sv(ikl,isl) *mu__dz(ikl,isl+1) |
---|
361 | Diag_A(ikl,isl) = 0. |
---|
362 | Diag_C(ikl,isl) = -Elem_C *Implic |
---|
363 | Diag_B(ikl,isl) = 1.0d+0 -Diag_A(ikl,isl)-Diag_C(ikl,isl) |
---|
364 | Term_D(ikl,isl) = Explic * Elem_C *TsisSV(ikl,isl+1) & |
---|
365 | +(1.0d+0 -Explic * Elem_C) *TsisSV(ikl,isl) & |
---|
366 | + dtC_sv(ikl,isl) * sol_SV(ikl) *SoSosv(ikl) & |
---|
367 | *(sEX_sv(ikl,isl+1) & |
---|
368 | -sEX_sv(ikl,isl )) |
---|
369 | END DO |
---|
370 | |
---|
371 | ! +--Snow highest Layer (dummy!) |
---|
372 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
373 | |
---|
374 | ! !EV!isl= min(isnoSV(1)+1,nsno) |
---|
375 | |
---|
376 | DO ikl=1,knonv |
---|
377 | ! EV try to calculate isl at the ikl grid point |
---|
378 | isl= min(isnoSV(ikl)+1,nsno) |
---|
379 | |
---|
380 | Elem_A = dtC_sv(ikl,isl) *mu__dz(ikl,isl) |
---|
381 | Elem_C = 0. |
---|
382 | Diag_A(ikl,isl) = -Elem_A *Implic |
---|
383 | Diag_C(ikl,isl) = 0. |
---|
384 | Diag_B(ikl,isl) = 1.0d+0 -Diag_A(ikl,isl) |
---|
385 | Term_D(ikl,isl) = Explic * Elem_A *TsisSV(ikl,isl-1) & |
---|
386 | +(1.0d+0 -Explic * Elem_A) *TsisSV(ikl,isl) & |
---|
387 | + dtC_sv(ikl,isl) * (sol_SV(ikl) *SoSosv(ikl) & |
---|
388 | *(sEX_sv(ikl,isl+1) & |
---|
389 | -sEX_sv(ikl,isl ))) |
---|
390 | END DO |
---|
391 | |
---|
392 | ! +--Surface: UPwardIR Heat Flux |
---|
393 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
394 | DO ikl=1,knonv |
---|
395 | isl = isnoSV(ikl) |
---|
396 | dIRsdT(ikl) = Eso_sv(ikl)* StefBo * 4. & ! - d(IR)/d(T) |
---|
397 | * TsisSV(ikl,isl) & ! |
---|
398 | * TsisSV(ikl,isl) & ! |
---|
399 | * TsisSV(ikl,isl) ! |
---|
400 | IRs__D(ikl) = dIRsdT(ikl)* TsisSV(ikl,isl) * 0.75 ! |
---|
401 | |
---|
402 | ! +--Surface: Richardson Number: T Derivative |
---|
403 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
404 | ! #RC dRidTs(ikl) =-gravit * za__SV(ikl) |
---|
405 | ! #RC. /(TaT_SV(ikl) * VV__SV(ikl) |
---|
406 | ! #RC. * VV__SV(ikl)) |
---|
407 | |
---|
408 | ! +--Surface: Turbulent Heat Flux: Factors |
---|
409 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
410 | f_HSHL(ikl) = rhT_SV(ikl) / rah_sv(ikl) ! to HS, HL |
---|
411 | f___HL(ikl) = f_HSHL(ikl) * Lx_H2O(ikl) |
---|
412 | |
---|
413 | ! +--Surface: Sensible Heat Flux: T Derivative |
---|
414 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
415 | dSdTSV(ikl) = f_HSHL(ikl) * Cp !#- d(HS)/d(T) |
---|
416 | ! #RC. *(1.0 -(TsisSV(ikl,isl) -TaT_SV(ikl)) !#Richardson |
---|
417 | ! #RC. * dRidTs(ikl)*dFh_sv(ikl)/rah_sv(ikl)) ! Nb. Correct. |
---|
418 | HS___D(ikl) = dSdTSV(ikl) * TaT_SV(ikl) ! |
---|
419 | |
---|
420 | ! +--Surface: Latent Heat Flux: Saturation Specific Humidity |
---|
421 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
422 | ! den_qs = TsisSV(ikl,isl)- 35.8 ! |
---|
423 | ! arg_qs = 17.27 *(TsisSV(ikl,isl)-273.16) ! |
---|
424 | ! . / den_qs ! |
---|
425 | ! qsatsg(ikl) = .0038 * exp(arg_qs) ! |
---|
426 | ! sp = (pst_SV(ikl) + ptopSV) * 10. |
---|
427 | |
---|
428 | ! !sp=ps__SV(ikl) |
---|
429 | ! ! Etienne: in the formula herebelow sp should be in hPa, not |
---|
430 | ! ! in Pa so I divide by 100. |
---|
431 | sp=ps__SV(ikl)/100. |
---|
432 | psat_ice = 6.1070 * exp(6150. *(1./273.16 - & |
---|
433 | 1./TsisSV(ikl,isl))) |
---|
434 | |
---|
435 | psat_wat = 6.1078 * exp (5.138*log(273.16 /TsisSV(ikl,isl))) & |
---|
436 | * exp (6827.*(1. /273.16-1./TsisSV(ikl,isl))) |
---|
437 | |
---|
438 | if(TsisSV(ikl,isl)<=273.16) then |
---|
439 | qsatsg(ikl) = 0.622 * psat_ice / (sp - 0.378 * psat_ice) |
---|
440 | else |
---|
441 | qsatsg(ikl) = 0.622 * psat_wat / (sp - 0.378 * psat_wat) |
---|
442 | endif |
---|
443 | QsT_SV(ikl)=qsatsg(ikl) |
---|
444 | |
---|
445 | ! dqs_dT(ikl) = qsatsg(ikl)* 4099.2 /(den_qs *den_qs)! |
---|
446 | fac_dt(ikl) = f_HSHL(ikl)/(ro_Wat * dz_dSV(0)) ! |
---|
447 | END DO |
---|
448 | |
---|
449 | |
---|
450 | |
---|
451 | ! +--Surface: Latent Heat Flux: Surface Relative Humidity |
---|
452 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
453 | xgpsrf = 1.05 ! |
---|
454 | agpsrf = dt__SV*( 1.0-xgpsrf ) & ! |
---|
455 | /( 1.0-xgpsrf**nt_srf) ! |
---|
456 | dt_srf = agpsrf ! |
---|
457 | dt_ver = 0. |
---|
458 | |
---|
459 | DO ikl=1,knonv |
---|
460 | isl = isnoSV(ikl) |
---|
461 | ist = max(0,isotSV(ikl)-100*isnoSV(ikl))! 0 if H2O |
---|
462 | ist__s = min(1,ist) |
---|
463 | etaBAK(ikl) = max(epsi,eta_SV(ikl ,isl)) ! |
---|
464 | etaNEW(ikl) = etaBAK(ikl) ! |
---|
465 | etEuBk(ikl) = etaNEW(ikl) ! |
---|
466 | END DO |
---|
467 | |
---|
468 | if(ist__s==1) then ! to reduce computer time |
---|
469 | ! ! |
---|
470 | DO it_srf=1,nt_srf ! |
---|
471 | dt_ver = dt_ver +dt_srf ! |
---|
472 | DO ikl=1,knonv ! |
---|
473 | faceta(ikl) = fac_dt(ikl)*dt_srf ! |
---|
474 | ! #VX faceta(ikl) = faceta(ikl) ! |
---|
475 | ! #VX. /(1.+faceta(ikl)*dQa_SV(ikl)) ! Limitation |
---|
476 | ! ! by Atm.Conten |
---|
477 | ! #??. *max(0,sign(1.,qsatsg(ikl)-QaT_SV(ikl)))) ! NO Limitation |
---|
478 | ! ! of Downw.Flux |
---|
479 | END DO ! |
---|
480 | DO itEuBk=1,2 ! |
---|
481 | DO ikl=1,knonv |
---|
482 | ist = max(0,isotSV(ikl)-100*isnoSV(ikl)) ! 0 if H2O |
---|
483 | ! ! |
---|
484 | Psi(ikl) = & ! |
---|
485 | psidSV(ist) & ! DR97, Eqn 3.34 |
---|
486 | *(etadSV(ist) & ! |
---|
487 | /max(etEuBk(ikl),epsi)) & ! |
---|
488 | **bCHdSV(ist) ! |
---|
489 | PsiArg(ikl) = 7.2E-5*Psi(ikl) ! |
---|
490 | RHuSol(ikl) = exp(-min(0.,PsiArg(ikl))) ! |
---|
491 | SHuSol(ikl) = qsatsg(ikl) *RHuSol(ikl) ! DR97, Eqn 3.15 |
---|
492 | etEuBk(ikl) = & ! |
---|
493 | (etaNEW(ikl) + faceta(ikl)*(QaT_SV(ikl) & ! |
---|
494 | -SHuSol(ikl) & ! |
---|
495 | *(1. -bCHdSV(ist) & ! |
---|
496 | *PsiArg(ikl)) )) & ! |
---|
497 | /(1. + faceta(ikl)* SHuSol(ikl) & ! |
---|
498 | *bCHdSV(ist) & ! |
---|
499 | *PsiArg(ikl) & ! |
---|
500 | /etaNEW(ikl)) ! |
---|
501 | etEuBk(ikl) = etEuBk(ikl) & ! |
---|
502 | ! . /(Ro_Wat*dz_dSV(0)) ! |
---|
503 | * dt_srf /(Ro_Wat*dz_dSV(0)) ! |
---|
504 | !XF 15/05/2017 BUG |
---|
505 | END DO ! |
---|
506 | END DO ! |
---|
507 | DO ikl=1,knonv ! |
---|
508 | etaNEW(ikl) = max(etEuBk(ikl),epsi) ! |
---|
509 | END DO ! |
---|
510 | dt_srf = dt_srf * xgpsrf ! |
---|
511 | END DO |
---|
512 | |
---|
513 | |
---|
514 | endif ! |
---|
515 | |
---|
516 | ! +--Surface: Latent Heat Flux: Soil/Water Surface Contributions |
---|
517 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
518 | DO ikl=1,knonv ! |
---|
519 | isl = isnoSV(ikl) ! |
---|
520 | ist = max(0,isotSV(ikl)-100*isnoSV(ikl)) ! 0 if H2O |
---|
521 | ist__s= min(1,ist) ! 1 if no H2O |
---|
522 | ist__w= 1-ist__s ! 1 if H2O |
---|
523 | d__eta = eta_SV(ikl,isl)-etaNEW(ikl) ! |
---|
524 | ! ! latent heat flux computation |
---|
525 | HL___D(ikl)=( ist__s *ro_Wat *dz_dSV(0) & ! Soil Contrib. |
---|
526 | *(etaNEW(ikl) -etaBAK(ikl)) / dt__SV & ! |
---|
527 | +ist__w *f_HSHL(ikl) & ! H2O Contrib. |
---|
528 | *(QaT_SV(ikl) - qsatsg(ikl)) ) & ! |
---|
529 | * Lx_H2O(ikl) ! common factor |
---|
530 | |
---|
531 | ! #DL RHuSol(ikl) =(QaT_SV(ikl) ! |
---|
532 | ! #DL. -HL___D(ikl) / f___HL(ikl)) ! |
---|
533 | ! #DL. / qsatsg(ikl) ! |
---|
534 | |
---|
535 | ! +--Surface: Latent Heat Flux: T Derivative |
---|
536 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
537 | dLdTSV(ikl) = 0. |
---|
538 | ! #DL dLdTSV(ikl) = f___HL(ikl) * RHuSol(ikl) *dqs_dT(ikl) ! - d(HL)/d(T) |
---|
539 | ! #DL HL___D(ikl) = HL___D(ikl) ! |
---|
540 | ! #DL. +dLdTSV(ikl) * TsisSV(ikl,isl) ! |
---|
541 | END DO ! |
---|
542 | |
---|
543 | ! +--Surface: Tridiagonal Matrix Set Up |
---|
544 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
545 | DO ikl=1,knonv |
---|
546 | isl = isnoSV(ikl) |
---|
547 | TSurf0(ikl) = TsisSV(ikl,isl) |
---|
548 | |
---|
549 | Elem_A = dtC_sv(ikl,isl)*mu__dz(ikl,isl) |
---|
550 | Elem_C = 0. |
---|
551 | Diag_A(ikl,isl) = -Elem_A *Implic |
---|
552 | Diag_C(ikl,isl) = 0. |
---|
553 | Diag_B(ikl,isl) = 1.0d+0 -Diag_A(ikl,isl) |
---|
554 | Diag_B(ikl,isl) = Diag_B(ikl,isl) & |
---|
555 | + dtC_sv(ikl,isl) * (dIRsdT(ikl) & ! Upw. Sol IR |
---|
556 | +dSdTSV(ikl) & ! HS/Surf.Contr. |
---|
557 | +dLdTSV(ikl)) ! HL/Surf.Contr. |
---|
558 | |
---|
559 | Term_D(ikl,isl) = Explic *Elem_A *TsisSV(ikl,isl-1) & |
---|
560 | +(1.0d+0 -Explic *Elem_A)*TsisSV(ikl,isl) |
---|
561 | |
---|
562 | |
---|
563 | |
---|
564 | Term_D(ikl,isl) = Term_D(ikl,isl) & |
---|
565 | + dtC_sv(ikl,isl) * (sol_SV(ikl) *SoSosv(ikl) & ! Absorbed |
---|
566 | *(sEX_sv(ikl,isl+1) & ! Solar |
---|
567 | -sEX_sv(ikl,isl )) & ! |
---|
568 | + IRd_SV(ikl)*Eso_sv(ikl) & ! Down Atm IR |
---|
569 | +IRs__D(ikl) & ! Upw. Sol IR |
---|
570 | +HS___D(ikl) & ! HS/Atmo.Contr. |
---|
571 | +HL___D(ikl) )! HL/Atmo.Contr. |
---|
572 | |
---|
573 | END DO |
---|
574 | |
---|
575 | |
---|
576 | ! +--Tridiagonal Elimination |
---|
577 | ! + ======================= |
---|
578 | |
---|
579 | ! +--Forward Sweep |
---|
580 | ! + ^^^^^^^^^^^^^^ |
---|
581 | DO ikl= 1,knonv |
---|
582 | Aux__P(ikl,-nsol) = Diag_B(ikl,-nsol) |
---|
583 | Aux__Q(ikl,-nsol) =-Diag_C(ikl,-nsol)/Aux__P(ikl,-nsol) |
---|
584 | END DO |
---|
585 | |
---|
586 | DO ikl= 1,knonv |
---|
587 | |
---|
588 | DO isl=-nsol+1,min(nsno,isnoSV(ikl)+1) |
---|
589 | Aux__P(ikl,isl) = Diag_A(ikl,isl) *Aux__Q(ikl,isl-1) & |
---|
590 | +Diag_B(ikl,isl) |
---|
591 | Aux__Q(ikl,isl) =-Diag_C(ikl,isl) /Aux__P(ikl,isl) |
---|
592 | END DO |
---|
593 | END DO |
---|
594 | |
---|
595 | DO ikl= 1,knonv |
---|
596 | TsisSV(ikl,-nsol) = Term_D(ikl,-nsol)/Aux__P(ikl,-nsol) |
---|
597 | END DO |
---|
598 | |
---|
599 | DO ikl= 1,knonv |
---|
600 | DO isl=-nsol+1,min(nsno,isnoSV(ikl)+1) |
---|
601 | TsisSV(ikl,isl) =(Term_D(ikl,isl) & |
---|
602 | -Diag_A(ikl,isl) *TsisSV(ikl,isl-1)) & |
---|
603 | /Aux__P(ikl,isl) |
---|
604 | |
---|
605 | |
---|
606 | END DO |
---|
607 | END DO |
---|
608 | |
---|
609 | ! +--Backward Sweep |
---|
610 | ! + ^^^^^^^^^^^^^^ |
---|
611 | DO ikl= 1,knonv |
---|
612 | DO isl=min(nsno-1,isnoSV(ikl)+1),-nsol,-1 |
---|
613 | |
---|
614 | |
---|
615 | TsisSV(ikl,isl) = Aux__Q(ikl,isl) *TsisSV(ikl,isl+1) & |
---|
616 | +TsisSV(ikl,isl) |
---|
617 | if(isl==0.and.isnoSV(ikl)==0) then |
---|
618 | |
---|
619 | TsisSV(ikl,isl) = min(TaT_SV(ikl)+30,TsisSV(ikl,isl)) |
---|
620 | TsisSV(ikl,isl) = max(TaT_SV(ikl)-30,TsisSV(ikl,isl)) |
---|
621 | |
---|
622 | |
---|
623 | ! #EU TsisSV(ikl,isl) = max(TaT_SV(ikl)-15.,TsisSV(ikl,isl)) |
---|
624 | |
---|
625 | ! !XF 18/11/2018 to avoid ST reaching 70�C!! |
---|
626 | ! !It is an error compensation but does not work over tundra |
---|
627 | |
---|
628 | endif |
---|
629 | |
---|
630 | |
---|
631 | |
---|
632 | END DO |
---|
633 | |
---|
634 | END DO |
---|
635 | |
---|
636 | |
---|
637 | |
---|
638 | ! +--Temperature Limits (avoids problems in case of no Snow Layers) |
---|
639 | ! + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
640 | DO ikl= 1,knonv |
---|
641 | isl = isnoSV(ikl) |
---|
642 | |
---|
643 | dTSurf = TsisSV(ikl,isl) - TSurf0(ikl) |
---|
644 | TsisSV(ikl,isl) = TSurf0(ikl) + sign(1.,dTSurf) & ! 180.0 dgC/hr |
---|
645 | * min(abs(dTSurf),5.e-2*dt__SV) ! =0.05 dgC/s |
---|
646 | |
---|
647 | |
---|
648 | |
---|
649 | END DO |
---|
650 | |
---|
651 | DO ikl= 1,knonv |
---|
652 | DO isl=min(nsno,isnoSV(ikl)+1),1 ,-1 |
---|
653 | TsisSV(ikl,isl) = max(Ts_Min, TsisSV(ikl,isl)) |
---|
654 | TsisSV(ikl,isl) = min(Ts_Max, TsisSV(ikl,isl)) |
---|
655 | END DO |
---|
656 | |
---|
657 | END DO |
---|
658 | |
---|
659 | ! +--Update Surface Fluxes |
---|
660 | ! + ======================== |
---|
661 | |
---|
662 | |
---|
663 | |
---|
664 | DO ikl= 1,knonv |
---|
665 | isl = isnoSV(ikl) |
---|
666 | IRs_SV(ikl) = IRs__D(ikl) & ! |
---|
667 | - dIRsdT(ikl) * TsisSV(ikl,isl) ! |
---|
668 | HSs_sv(ikl) = HS___D(ikl) & ! Sensible Heat |
---|
669 | - dSdTSV(ikl) * TsisSV(ikl,isl) ! Downward > 0 |
---|
670 | HLs_sv(ikl) = HL___D(ikl) & ! Latent Heat |
---|
671 | - dLdTSV(ikl) * TsisSV(ikl,isl) ! Downward > 0 |
---|
672 | END DO |
---|
673 | |
---|
674 | return |
---|
675 | end subroutine sisvat_tso |
---|