1 | subroutine SISVAT_TS2 |
---|
2 | c #ES. (ETSo_0,ETSo_1,ETSo_d) |
---|
3 | |
---|
4 | C +------------------------------------------------------------------------+ |
---|
5 | C | MAR SISVAT_TS2 Mon 16-08-2009 MAR | |
---|
6 | C | SubRoutine SISVAT_TS2 computes the Soil/Snow temperature and fluxes | |
---|
7 | C | using the same method as in LMDZ for consistency. | |
---|
8 | C | The corresponding LMDZ routines are soil (soil.F90) and calcul_fluxs | |
---|
9 | C | (calcul_fluxs_mod.F90). | |
---|
10 | C +------------------------------------------------------------------------+ |
---|
11 | C | | |
---|
12 | C | | |
---|
13 | C | PARAMETERS: klonv: Total Number of columns = | |
---|
14 | C | ^^^^^^^^^^ = Total Number of grid boxes of surface type | |
---|
15 | C | (land ice for now) | |
---|
16 | C | | |
---|
17 | C | INPUT: isnoSV = total Nb of Ice/Snow Layers | |
---|
18 | C | ^^^^^ sol_SV : Downward Solar Radiation [W/m2] | |
---|
19 | C | IRd_SV : Surface Downward Longwave Radiation [W/m2] | |
---|
20 | C | VV__SV : SBL Top Wind Speed [m/s] | |
---|
21 | C | TaT_SV : SBL Top Temperature [K] | |
---|
22 | C | QaT_SV : SBL Top Specific Humidity [kg/kg] | |
---|
23 | C | dzsnSV : Snow Layer Thickness [m] | |
---|
24 | C | dt__SV : Time Step [s] | |
---|
25 | C | | |
---|
26 | C | SoSosv : Absorbed Solar Radiation by Surfac.(Normaliz)[-] | |
---|
27 | C | Eso_sv : Soil+Snow Emissivity [-] | |
---|
28 | C | ? rah_sv : Aerodynamic Resistance for Heat [s/m] | |
---|
29 | C | | |
---|
30 | C | dz1_SV : "inverse" layer thickness (centered) [1/m] | |
---|
31 | C | dz2_SV : layer thickness (layer above (?)) [m] | |
---|
32 | C | AcoHSV : coefficient for Enthalpy evolution, from atm. | |
---|
33 | C | AcoHSV : coefficient for Enthalpy evolution, from atm. | |
---|
34 | C | AcoQSV : coefficient for Humidity evolution, from atm. | |
---|
35 | C | BcoQSV : coefficient for Humidity evolution, from atm. | |
---|
36 | C | ps__SV : surface pressure [Pa] | |
---|
37 | C | p1l_SV : 1st atmospheric layer pressure [Pa] | |
---|
38 | C | cdH_SV : drag coeff Energy (?) | |
---|
39 | C | rsolSV : Radiation balance surface [W/m2] | |
---|
40 | C | lambSV : Coefficient for soil layer geometry [-] | |
---|
41 | C | | |
---|
42 | C | INPUT / TsisSV : Soil/Ice Temperatures (layers -nsol,-nsol+1,..,0)| |
---|
43 | C | OUTPUT: & Snow Temperatures (layers 1,2,...,nsno) [K] | |
---|
44 | C | ^^^^^^ rsolSV : Radiation balance surface [W/m2] | |
---|
45 | C | | |
---|
46 | C | OUTPUT: IRs_SV : Soil IR Radiation [W/m2] | |
---|
47 | C | ^^^^^^ HSs_sv : Sensible Heat Flux [W/m2] | |
---|
48 | C | HLs_sv : Latent Heat Flux [W/m2] | |
---|
49 | C | TsfnSV : new surface temperature [K] | |
---|
50 | C | Evp_sv : Evaporation [kg/m2] | |
---|
51 | C | dSdTSV : Sensible Heat Flux temp. derivative [W/m2/K] | |
---|
52 | C | dLdTSV : Latent Heat Flux temp. derivative [W/m2/K] | |
---|
53 | C | | |
---|
54 | C | ? ETSo_0 : Snow/Soil Energy Power, before Forcing [W/m2] | |
---|
55 | C | ? ETSo_1 : Snow/Soil Energy Power, after Forcing [W/m2] | |
---|
56 | C | ? ETSo_d : Snow/Soil Energy Power Forcing [W/m2] | |
---|
57 | C | | |
---|
58 | C |________________________________________________________________________| |
---|
59 | |
---|
60 | USE VAR_SV |
---|
61 | USE VARdSV |
---|
62 | |
---|
63 | USE VARySV |
---|
64 | USE VARtSV |
---|
65 | USE VARxSV |
---|
66 | USE VARphy |
---|
67 | USE indice_sol_mod |
---|
68 | |
---|
69 | |
---|
70 | IMPLICIT NONE |
---|
71 | |
---|
72 | |
---|
73 | C +--Global Variables |
---|
74 | C + ================ |
---|
75 | |
---|
76 | INCLUDE "YOMCST.h" |
---|
77 | INCLUDE "YOETHF.h" |
---|
78 | INCLUDE "FCTTRE.h" |
---|
79 | ! INCLUDE "indicesol.h" |
---|
80 | INCLUDE "comsoil.h" |
---|
81 | ! include "LMDZphy.inc" |
---|
82 | |
---|
83 | C +--OUTPUT for Stand Alone NetCDF File |
---|
84 | C + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
85 | c #NC real*8 SOsoKL(klonv) ! Absorbed Solar Radiation |
---|
86 | c #NC real*8 IRsoKL(klonv) ! Absorbed IR Radiation |
---|
87 | c #NC real*8 HSsoKL(klonv) ! Absorbed Sensible Heat Flux |
---|
88 | c #NC real*8 HLsoKL(klonv) ! Absorbed Latent Heat Flux |
---|
89 | c #NC real*8 HLs_KL(klonv) ! Evaporation |
---|
90 | c #NC real*8 HLv_KL(klonv) ! Transpiration |
---|
91 | c #NC common/DumpNC/SOsoKL,IRsoKL |
---|
92 | c #NC . ,HSsoKL,HLsoKL |
---|
93 | c #NC . ,HLs_KL,HLv_KL |
---|
94 | |
---|
95 | C +--Internal Variables |
---|
96 | C + ================== |
---|
97 | |
---|
98 | integer ig,jk,isl |
---|
99 | real mu |
---|
100 | real Tsrf(klonv) ! surface temperature as extrapolated from soil |
---|
101 | real mug(klonv) !hj coef top layers |
---|
102 | real ztherm_i(klonv),zdz2(klonv,-nsol:nsno),z1s |
---|
103 | real pfluxgrd(klonv), pcapcal(klonv), cal(klonv) |
---|
104 | real beta(klonv), dif_grnd(klonv) |
---|
105 | real C_coef(klonv,-nsol:nsno),D_coef(klonv,-nsol:nsno) |
---|
106 | |
---|
107 | REAL, DIMENSION(klonv) :: zx_mh, zx_nh, zx_oh |
---|
108 | REAL, DIMENSION(klonv) :: zx_mq, zx_nq, zx_oq |
---|
109 | REAL, DIMENSION(klonv) :: zx_pkh, zx_dq_s_dt, zx_qsat, zx_coef |
---|
110 | REAL, DIMENSION(klonv) :: zx_sl, zx_k1 |
---|
111 | REAL, DIMENSION(klonv) :: d_ts |
---|
112 | REAL :: zdelta, zcvm5, zx_qs, zcor, zx_dq_s_dh |
---|
113 | REAL :: qsat_new, q1_new |
---|
114 | C REAL, PARAMETER :: t_grnd = 271.35, t_coup = 273.15 |
---|
115 | C REAL, PARAMETER :: max_eau_sol = 150.0 |
---|
116 | REAL, DIMENSION(klonv) :: IRs__D, dIRsdT |
---|
117 | |
---|
118 | |
---|
119 | REAL t_grnd ! not used |
---|
120 | parameter(t_grnd = 271.35) ! |
---|
121 | REAL t_coup ! distinguish evap/sublimation |
---|
122 | parameter(t_coup = 273.15) ! |
---|
123 | REAL max_eau_sol |
---|
124 | parameter(max_eau_sol = 150.0) |
---|
125 | |
---|
126 | |
---|
127 | ! write(*,*)'T check' |
---|
128 | ! |
---|
129 | ! DO ig = 1,knonv |
---|
130 | ! DO jk = 1,isnoSV(ig) !nsno |
---|
131 | ! IF (TsisSV(ig,jk) <= 1.) THEN !hj check |
---|
132 | ! TsisSV(ig,jk) = TsisSV(ig,isnoSV(ig)) |
---|
133 | ! ENDIF |
---|
134 | ! |
---|
135 | ! IF (TsisSV(ig,jk) <= 1.) THEN !hj check |
---|
136 | ! TsisSV(ig,jk) = 273.15 |
---|
137 | ! ENDIF |
---|
138 | ! END DO |
---|
139 | ! END DO |
---|
140 | |
---|
141 | C!======================================================================= |
---|
142 | C! I. First part: corresponds to soil.F90 in LMDZ |
---|
143 | C!======================================================================= |
---|
144 | |
---|
145 | DO ig = 1,knonv |
---|
146 | DO jk =1,isnoSV(ig) |
---|
147 | dz2_SV(ig,jk)=dzsnSV(ig,jk) |
---|
148 | C! use arithmetic center between layers to derive dz1 for snow layers for simplicity: |
---|
149 | dz1_SV(ig,jk)=2./(dzsnSV(ig,jk)+dzsnSV(ig,jk-1)) |
---|
150 | ENDDO |
---|
151 | ENDDO |
---|
152 | |
---|
153 | DO ig = 1,knonv |
---|
154 | ztherm_i(ig) = inertie_lic |
---|
155 | IF (isnoSV(ig) > 0) ztherm_i(ig) = inertie_sno |
---|
156 | ENDDO |
---|
157 | |
---|
158 | C!----------------------------------------------------------------------- |
---|
159 | C! 1) |
---|
160 | C! Calculation of Cgrf and Dgrd coefficients using soil temperature from |
---|
161 | C! previous time step. |
---|
162 | C! |
---|
163 | C! These variables are recalculated on the local compressed grid instead |
---|
164 | C! of saved in restart file. |
---|
165 | C!----------------------------------------------------------------------- |
---|
166 | DO ig=1,knonv |
---|
167 | DO jk=-nsol,nsno |
---|
168 | zdz2(ig,jk)=dz2_SV(ig,jk)/dt__SV !ptimestep |
---|
169 | ENDDO |
---|
170 | ENDDO |
---|
171 | |
---|
172 | DO ig=1,knonv |
---|
173 | z1s = zdz2(ig,-nsol)+dz1_SV(ig,-nsol+1) |
---|
174 | C_coef(ig,-nsol+1)=zdz2(ig,-nsol)*TsisSV(ig,-nsol)/z1s |
---|
175 | D_coef(ig,-nsol+1)=dz1_SV(ig,-nsol+1)/z1s |
---|
176 | ENDDO |
---|
177 | |
---|
178 | DO ig=1,knonv |
---|
179 | DO jk=-nsol+1,isnoSV(ig)-1,1 |
---|
180 | z1s = 1./(zdz2(ig,jk)+dz1_SV(ig,jk+1)+dz1_SV(ig,jk) & |
---|
181 | & *(1.-D_coef(ig,jk))) |
---|
182 | C_coef(ig,jk+1)= & |
---|
183 | & (TsisSV(ig,jk)*zdz2(ig,jk) & |
---|
184 | & +dz1_SV(ig,jk)*C_coef(ig,jk)) * z1s |
---|
185 | D_coef(ig,jk+1)=dz1_SV(ig,jk+1)*z1s |
---|
186 | ENDDO |
---|
187 | ENDDO |
---|
188 | |
---|
189 | C!----------------------------------------------------------------------- |
---|
190 | C! 2) |
---|
191 | C! Computation of the soil temperatures using the Cgrd and Dgrd |
---|
192 | C! coefficient computed above |
---|
193 | C! |
---|
194 | C!----------------------------------------------------------------------- |
---|
195 | C! Extrapolate surface Temperature !hj check |
---|
196 | mu=1./((2.**1.5-1.)/(2.**(0.5)-1.)-1.) |
---|
197 | |
---|
198 | ! IF (knonv>0) THEN |
---|
199 | ! DO ig=1,8 |
---|
200 | ! write(*,*)ig,'sisvat: Tsis ',TsisSV(ig,isnoSV(ig)) |
---|
201 | ! write(*,*)'max-1 ',TsisSV(ig,isnoSV(ig)-1) |
---|
202 | ! write(*,*)'max-2 ',TsisSV(ig,isnoSV(ig)-2) |
---|
203 | ! write(*,*)'0 ',TsisSV(ig,0) |
---|
204 | !! write(*,*)min(max(isnoSV(ig),0),1),max(1-isnoSV(ig),0) |
---|
205 | ! ENDDO |
---|
206 | ! END IF |
---|
207 | |
---|
208 | DO ig=1,knonv |
---|
209 | IF (isnoSV(ig).GT.0) THEN |
---|
210 | IF (isnoSV(ig).GT.1) THEN |
---|
211 | mug(ig)=1./(1.+dzsnSV(ig,isnoSV(ig)-1)/dzsnSV(ig,isnoSV(ig))) !mu |
---|
212 | ELSE |
---|
213 | mug(ig) = 1./(1.+dzsnSV(ig,isnoSV(ig)-1)/dz_dSV(0)) !mu |
---|
214 | ENDIF |
---|
215 | ELSE |
---|
216 | mug(ig) = lambSV |
---|
217 | ENDIF |
---|
218 | |
---|
219 | IF (mug(ig) .LE. 0.05) THEN |
---|
220 | write(*,*)'Attention mu low', mug(ig) |
---|
221 | ENDIF |
---|
222 | IF (mug(ig) .GE. 0.98) THEN |
---|
223 | write(*,*)'Attention mu high', mug(ig) |
---|
224 | ENDIF |
---|
225 | |
---|
226 | Tsrf(ig)=(1.5*TsisSV(ig,isnoSV(ig))-0.5*TsisSV(ig,isnoSV(ig)-1))& |
---|
227 | & *min(max(isnoSV(ig),0),1)+ & |
---|
228 | & ((mug(ig)+1)*TsisSV(ig,0)-mug(ig)*TsisSV(ig,-1)) & |
---|
229 | & *max(1-isnoSV(ig),0) |
---|
230 | ENDDO |
---|
231 | |
---|
232 | |
---|
233 | |
---|
234 | C! Surface temperature |
---|
235 | DO ig=1,knonv |
---|
236 | TsisSV(ig,isnoSV(ig))=(mug(ig)*C_coef(ig,isnoSV(ig))+Tsf_SV(ig))/ & |
---|
237 | & (mug(ig)*(1.-D_coef(ig,isnoSV(ig)))+1.) |
---|
238 | ENDDO |
---|
239 | |
---|
240 | C! Other temperatures |
---|
241 | DO ig=1,knonv |
---|
242 | DO jk=isnoSV(ig),-nsol+1,-1 |
---|
243 | TsisSV(ig,jk-1)=C_coef(ig,jk)+D_coef(ig,jk) & |
---|
244 | & *TsisSV(ig,jk) |
---|
245 | ENDDO |
---|
246 | ENDDO |
---|
247 | C write(*,*)ig,'Tsis',TsisSV(ig,0) |
---|
248 | |
---|
249 | C IF (indice == is_sic) THEN |
---|
250 | C DO ig = 1,knonv |
---|
251 | C TsisSV(ig,-nsol) = RTT - 1.8 |
---|
252 | C END DO |
---|
253 | C ENDIF |
---|
254 | |
---|
255 | CC !hj new 11 03 2010 |
---|
256 | DO ig=1,knonv |
---|
257 | isl = isnoSV(ig) |
---|
258 | C dIRsdT(ig) = Eso_sv(ig)* SteBo * 4. & ! - d(IR)/d(T) |
---|
259 | C & * Tsf_SV(ig) & !T TsisSV(ig,isl) ! |
---|
260 | C & * Tsf_SV(ig) & !TsisSV(ig,isl) ! |
---|
261 | C & * Tsf_SV(ig) !TsisSV(ig,isl) ! |
---|
262 | C IRs__D(ig) = dIRsdT(ig)* Tsf_SV(ig) * 0.75 !TsisSV(ig,isl) * 0.75 !: |
---|
263 | dIRsdT(ig) = Eso_sv(ig)* StefBo * 4. & ! - d(IR)/d(T) |
---|
264 | & * TsisSV(ig,isl) & ! |
---|
265 | & * TsisSV(ig,isl) & ! |
---|
266 | & * TsisSV(ig,isl) & ! |
---|
267 | IRs__D(ig) = dIRsdT(ig)* TsisSV(ig,isl) * 0.75 !: |
---|
268 | END DO |
---|
269 | !hj |
---|
270 | C!----------------------------------------------------------------------- |
---|
271 | C! 3) |
---|
272 | C! Calculate the Cgrd and Dgrd coefficient corresponding to actual soil |
---|
273 | C! temperature |
---|
274 | C!----------------------------------------------------------------------- |
---|
275 | DO ig=1,knonv |
---|
276 | z1s = zdz2(ig,-nsol)+dz1_SV(ig,-nsol+1) |
---|
277 | C_coef(ig,-nsol+1) = zdz2(ig,-nsol)*TsisSV(ig,-nsol)/z1s |
---|
278 | D_coef(ig,-nsol+1) = dz1_SV(ig,-nsol+1)/z1s |
---|
279 | ENDDO |
---|
280 | |
---|
281 | DO ig=1,knonv |
---|
282 | DO jk=-nsol+1,isnoSV(ig)-1,1 |
---|
283 | z1s = 1./(zdz2(ig,jk)+dz1_SV(ig,jk+1)+dz1_SV(ig,jk) & |
---|
284 | & *(1.-D_coef(ig,jk))) |
---|
285 | C_coef(ig,jk+1) = (TsisSV(ig,jk)*zdz2(ig,jk)+ & |
---|
286 | & dz1_SV(ig,jk)*C_coef(ig,jk)) * z1s |
---|
287 | D_coef(ig,jk+1) = dz1_SV(ig,jk+1)*z1s |
---|
288 | ENDDO |
---|
289 | ENDDO |
---|
290 | |
---|
291 | C!----------------------------------------------------------------------- |
---|
292 | C! 4) |
---|
293 | C! Computation of the surface diffusive flux from ground and |
---|
294 | C! calorific capacity of the ground |
---|
295 | C!----------------------------------------------------------------------- |
---|
296 | DO ig=1,knonv |
---|
297 | C! (pfluxgrd) |
---|
298 | pfluxgrd(ig) = ztherm_i(ig)*dz1_SV(ig,isnoSV(ig))* & |
---|
299 | & (C_coef(ig,isnoSV(ig))+(D_coef(ig,isnoSV(ig))-1.) & |
---|
300 | & *TsisSV(ig,isnoSV(ig))) |
---|
301 | C! (pcapcal) |
---|
302 | pcapcal(ig) = ztherm_i(ig)* & |
---|
303 | & (dz2_SV(ig,isnoSV(ig))+dt__SV*(1.-D_coef(ig,isnoSV(ig))) & |
---|
304 | & *dz1_SV(ig,isnoSV(ig))) |
---|
305 | z1s = mug(ig)*(1.-D_coef(ig,isnoSV(ig)))+1. |
---|
306 | pcapcal(ig) = pcapcal(ig)/z1s |
---|
307 | pfluxgrd(ig) = ( pfluxgrd(ig) & |
---|
308 | & + pcapcal(ig) * (TsisSV(ig,isnoSV(ig)) * z1s & |
---|
309 | & - mug(ig)* C_coef(ig,isnoSV(ig)) & |
---|
310 | & - Tsf_SV(ig)) /dt__SV ) |
---|
311 | ENDDO |
---|
312 | |
---|
313 | |
---|
314 | cal(1:knonv) = RCPD / pcapcal(1:knonv) |
---|
315 | rsolSV(1:knonv) = rsolSV(1:knonv) + pfluxgrd(1:knonv) |
---|
316 | C!======================================================================= |
---|
317 | C! II. Second part: corresponds to calcul_fluxs_mod.F90 in LMDZ |
---|
318 | C!======================================================================= |
---|
319 | |
---|
320 | Evp_sv = 0. |
---|
321 | c #NC HSsoKL=0. |
---|
322 | c #NC HLsoKL=0. |
---|
323 | dSdTSV = 0. |
---|
324 | dLdTSV = 0. |
---|
325 | |
---|
326 | beta(:) = 1.0 |
---|
327 | dif_grnd(:) = 0.0 |
---|
328 | |
---|
329 | C! zx_qs = qsat en kg/kg |
---|
330 | C!**********************************************************************x*************** |
---|
331 | |
---|
332 | DO ig = 1,knonv |
---|
333 | IF (ps__SV(ig).LT.1.) THEN |
---|
334 | ! write(*,*)'ig',ig,'ps',ps__SV(ig) |
---|
335 | ps__SV(ig)=max(ps__SV(ig),1.e-8) |
---|
336 | ENDIF |
---|
337 | IF (p1l_SV(ig).LT.1.) THEN |
---|
338 | ! write(*,*)'ig',ig,'p1l',p1l_SV(ig) |
---|
339 | p1l_SV(ig)=max(p1l_SV(ig),1.e-8) |
---|
340 | ENDIF |
---|
341 | IF (TaT_SV(ig).LT.180.) THEN |
---|
342 | ! write(*,*)'ig',ig,'TaT',TaT_SV(ig) |
---|
343 | TaT_SV(ig)=max(TaT_SV(ig),180.) |
---|
344 | ENDIF |
---|
345 | IF (QaT_SV(ig).LT.1.e-8) THEN |
---|
346 | ! write(*,*)'ig',ig,'QaT',QaT_SV(ig) |
---|
347 | QaT_SV(ig)=max(QaT_SV(ig),1.e-8) |
---|
348 | ENDIF |
---|
349 | IF (Tsf_SV(ig).LT.100.) THEN |
---|
350 | ! write(*,*)'ig',ig,'Tsf',Tsf_SV(ig) |
---|
351 | Tsf_SV(ig)=max(Tsf_SV(ig),180.) |
---|
352 | ENDIF |
---|
353 | IF (Tsf_SV(ig).GT.500.) THEN |
---|
354 | ! write(*,*)'ig',ig,'Tsf',Tsf_SV(ig) |
---|
355 | Tsf_SV(ig)=min(Tsf_SV(ig),400.) |
---|
356 | ENDIF |
---|
357 | ! IF (Tsrf(ig).LT.1.) THEN |
---|
358 | !! write(*,*)'ig',ig,'Tsrf',Tsrf(ig) |
---|
359 | ! Tsrf(ig)=max(Tsrf(ig),TaT_SV(ig)-20.) |
---|
360 | ! ENDIF |
---|
361 | IF (cdH_SV(ig).LT.1.e-10) THEN |
---|
362 | ! IF (ig.le.3) write(*,*)'ig',ig,'cdH',cdH_SV(ig) |
---|
363 | cdH_SV(ig)=.5 |
---|
364 | ENDIF |
---|
365 | ENDDO |
---|
366 | |
---|
367 | |
---|
368 | DO ig = 1,knonv |
---|
369 | zx_pkh(ig) = 1. ! (ps__SV(ig)/ps__SV(ig))**RKAPPA |
---|
370 | IF (thermcep) THEN |
---|
371 | zdelta=MAX(0.,SIGN(1.,rtt-Tsf_SV(ig))) |
---|
372 | zcvm5 = R5LES*LhvH2O*(1.-zdelta) + R5IES*LhsH2O*zdelta |
---|
373 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*QaT_SV(ig)) |
---|
374 | zx_qs= r2es * FOEEW(Tsf_SV(ig),zdelta)/ps__SV(ig) |
---|
375 | zx_qs=MIN(0.5,zx_qs) |
---|
376 | !write(*,*)'zcor',retv*zx_qs |
---|
377 | zcor=1./(1.-retv*zx_qs) |
---|
378 | zx_qs=zx_qs*zcor |
---|
379 | zx_dq_s_dh = FOEDE(Tsf_SV(ig),zdelta,zcvm5,zx_qs,zcor) & |
---|
380 | & /LhvH2O / zx_pkh(ig) |
---|
381 | ELSE |
---|
382 | IF (Tsf_SV(ig).LT.t_coup) THEN |
---|
383 | zx_qs = qsats(Tsf_SV(ig)) / ps__SV(ig) |
---|
384 | zx_dq_s_dh = dqsats(Tsf_SV(ig),zx_qs)/LhvH2O & |
---|
385 | & / zx_pkh(ig) |
---|
386 | ELSE |
---|
387 | zx_qs = qsatl(Tsf_SV(ig)) / ps__SV(ig) |
---|
388 | zx_dq_s_dh = dqsatl(Tsf_SV(ig),zx_qs)/LhvH2O & |
---|
389 | & / zx_pkh(ig) |
---|
390 | ENDIF |
---|
391 | ENDIF |
---|
392 | zx_dq_s_dt(ig) = RCPD * zx_pkh(ig) * zx_dq_s_dh |
---|
393 | zx_qsat(ig) = zx_qs |
---|
394 | C zx_coef(ig) = cdH_SV(ig) * & |
---|
395 | C & (1.0+SQRT(u1lay(ig)**2+v1lay(ig)**2)) * & |
---|
396 | C & p1l_SV(ig)/(RD*t1lay(ig)) |
---|
397 | zx_coef(ig) = cdH_SV(ig) * & |
---|
398 | & (1.0+VV__SV(ig)) * & |
---|
399 | & p1l_SV(ig)/(RD*TaT_SV(ig)) |
---|
400 | |
---|
401 | ENDDO |
---|
402 | |
---|
403 | |
---|
404 | C! === Calcul de la temperature de surface === |
---|
405 | C! zx_sl = chaleur latente d'evaporation ou de sublimation |
---|
406 | C!**************************************************************************************** |
---|
407 | |
---|
408 | DO ig = 1,knonv |
---|
409 | zx_sl(ig) = LhvH2O |
---|
410 | IF (Tsf_SV(ig) .LT. RTT) zx_sl(ig) = LhsH2O |
---|
411 | zx_k1(ig) = zx_coef(ig) |
---|
412 | ENDDO |
---|
413 | |
---|
414 | |
---|
415 | DO ig = 1,knonv |
---|
416 | C! Q |
---|
417 | zx_oq(ig) = 1. - (beta(ig) * zx_k1(ig) * BcoQSV(ig) * dt__SV) |
---|
418 | zx_mq(ig) = beta(ig) * zx_k1(ig) * & |
---|
419 | & (AcoQSV(ig) - zx_qsat(ig) + & |
---|
420 | & zx_dq_s_dt(ig) * Tsf_SV(ig)) & |
---|
421 | & / zx_oq(ig) |
---|
422 | zx_nq(ig) = beta(ig) * zx_k1(ig) * (-1. * zx_dq_s_dt(ig)) & |
---|
423 | & / zx_oq(ig) |
---|
424 | |
---|
425 | C! H |
---|
426 | zx_oh(ig) = 1. - (zx_k1(ig) * BcoHSV(ig) * dt__SV) |
---|
427 | zx_mh(ig) = zx_k1(ig) * AcoHSV(ig) / zx_oh(ig) |
---|
428 | zx_nh(ig) = - (zx_k1(ig) * RCPD * zx_pkh(ig))/ zx_oh(ig) |
---|
429 | |
---|
430 | C! surface temperature |
---|
431 | TsfnSV(ig) = (Tsf_SV(ig) + cal(ig)/RCPD * zx_pkh(ig) * dt__SV * & |
---|
432 | & (rsolSV(ig) + zx_mh(ig) + zx_sl(ig) * zx_mq(ig)) & |
---|
433 | & + dif_grnd(ig) * t_grnd * dt__SV)/ & |
---|
434 | & ( 1. - dt__SV * cal(ig)/(RCPD * zx_pkh(ig)) * & |
---|
435 | & (zx_nh(ig) + zx_sl(ig) * zx_nq(ig)) & |
---|
436 | & + dt__SV * dif_grnd(ig)) |
---|
437 | |
---|
438 | !hj rajoute 22 11 2010 tuning... |
---|
439 | TsfnSV(ig) = min(RTT+0.02,TsfnSV(ig)) |
---|
440 | |
---|
441 | d_ts(ig) = TsfnSV(ig) - Tsf_SV(ig) |
---|
442 | |
---|
443 | |
---|
444 | C!== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas |
---|
445 | C!== flux_t est le flux de cpt (energie sensible): j/(m**2 s) |
---|
446 | Evp_sv(ig) = - zx_mq(ig) - zx_nq(ig) * TsfnSV(ig) |
---|
447 | HLs_sv(ig) = - Evp_sv(ig) * zx_sl(ig) |
---|
448 | HSs_sv(ig) = zx_mh(ig) + zx_nh(ig) * TsfnSV(ig) |
---|
449 | |
---|
450 | C! Derives des flux dF/dTs (W m-2 K-1): |
---|
451 | dSdTSV(ig) = zx_nh(ig) |
---|
452 | dLdTSV(ig) = zx_sl(ig) * zx_nq(ig) |
---|
453 | |
---|
454 | |
---|
455 | !hj new 11 03 2010 |
---|
456 | isl = isnoSV(ig) |
---|
457 | ! TsisSV(ig,isl) = TsfnSV(ig) |
---|
458 | IRs_SV(ig) = IRs__D(ig) &! |
---|
459 | & - dIRsdT(ig) * TsfnSV(ig) !TsisSV(ig,isl)? ! |
---|
460 | |
---|
461 | ! hj |
---|
462 | c #NC SOsoKL(ig) = sol_SV(ig) * SoSosv(ig) ! Absorbed Sol. |
---|
463 | c #NC IRsoKL(ig) = IRs_SV(ig) & !Up Surf. IR |
---|
464 | c #NC& + tau_sv(ig) *IRd_SV(ig)*Eso_sv(ig) & !Down Atm IR |
---|
465 | c #NC& -(1.0-tau_sv(ig)) *0.5*IRv_sv(ig) ! Down Veg IR |
---|
466 | c #NC HLsoKL(ig) = HLs_sv(ig) |
---|
467 | c #NC HSsoKL(ig) = HSs_sv(ig) |
---|
468 | c #NC HLs_KL(ig) = Evp_sv(ig) |
---|
469 | |
---|
470 | C! Nouvelle valeure de l'humidite au dessus du sol |
---|
471 | qsat_new=zx_qsat(ig) + zx_dq_s_dt(ig) * d_ts(ig) |
---|
472 | q1_new = AcoQSV(ig) - BcoQSV(ig)* Evp_sv(ig)*dt__SV |
---|
473 | QaT_SV(ig)=q1_new*(1.-beta(ig)) + beta(ig)*qsat_new |
---|
474 | |
---|
475 | ENDDO |
---|
476 | |
---|
477 | end ! subroutine SISVAT_TS2 |
---|