[3792] | 1 | |
---|
| 2 | |
---|
| 3 | subroutine SISVAT_qSo |
---|
| 4 | ! #m0. (Wats_0,Wats_1,Wats_d) |
---|
| 5 | |
---|
| 6 | C +------------------------------------------------------------------------+ |
---|
| 7 | C | MAR SISVAT_qSo 6-04-2001 MAR | |
---|
| 8 | C | SubRoutine SISVAT_qSo computes the Soil Water Balance | |
---|
| 9 | C +------------------------------------------------------------------------+ |
---|
| 10 | C | | |
---|
| 11 | C | PARAMETERS: knonv: Total Number of columns = | |
---|
| 12 | C | ^^^^^^^^^^ = Total Number of continental grid boxes | |
---|
| 13 | C | X Number of Mosaic Cell per grid box | |
---|
| 14 | C | | |
---|
| 15 | C | INPUT: isnoSV = total Nb of Ice/Snow Layers | |
---|
| 16 | C | ^^^^^ isotSV = 0,...,11: Soil Type | |
---|
| 17 | C | 0: Water, Solid or Liquid | |
---|
| 18 | C | | |
---|
| 19 | C | INPUT: rhT_SV : SBL Top Air Density [kg/m3] | |
---|
| 20 | C | ^^^^^ drr_SV : Rain Intensity [kg/m2/s] | |
---|
| 21 | C | LSdzsv : Vertical Discretization Factor [-] | |
---|
| 22 | C | = 1. Soil | |
---|
| 23 | C | = 1000. Ocean | |
---|
| 24 | C | dt__SV : Time Step [s] | |
---|
| 25 | C | | |
---|
| 26 | C | Lx_H2O : Latent Heat of Vaporization/Sublimation [J/kg] | |
---|
| 27 | C | HLs_sv : Latent Heat Flux [W/m2] | |
---|
| 28 | C | | |
---|
| 29 | C | INPUT / eta_SV : Water Content [m3/m3] | |
---|
| 30 | C | OUTPUT: Khydsv : Soil Hydraulic Conductivity [m/s] | |
---|
| 31 | C | ^^^^^^ | |
---|
| 32 | C | | |
---|
| 33 | C | OUTPUT: RnofSV : RunOFF Intensity [kg/m2/s] | |
---|
| 34 | C | ^^^^^^ Wats_0 : Soil Water, before Forcing [mm] | |
---|
| 35 | C | Wats_1 : Soil Water, after Forcing [mm] | |
---|
| 36 | C | Wats_d : Soil Water Forcing [mm] | |
---|
| 37 | C | | |
---|
| 38 | C | Internal Variables: | |
---|
| 39 | C | ^^^^^^^^^^^^^^^^^^ | |
---|
| 40 | C | z_Bump : (Partly)Bumpy Layers Height [m] | |
---|
| 41 | C | z0Bump : Bumpy Layers Height [m] | |
---|
| 42 | C | dzBump : Lowest Bumpy Layer: [m] | |
---|
| 43 | C | etBump : Bumps Layer Averaged Humidity [m3/m3] | |
---|
| 44 | C | etaMid : Layer Interface's Humidity [m3/m3] | |
---|
| 45 | C | eta__f : Layer Humidity (Water Front)[m3/m3] | |
---|
| 46 | C | Dhyd_f : Soil Hydraulic Diffusivity (Water Front) [m2/s] | |
---|
| 47 | C | Dhydif : Soil Hydraulic Diffusivity [m2/s] | |
---|
| 48 | C | WgFlow : Water gravitational Flux [kg/m2/s] | |
---|
| 49 | C | Wg_MAX : Water MAXIMUM gravitational Flux [kg/m2/s] | |
---|
| 50 | C | SatRat : Water Saturation Flux [kg/m2/s] | |
---|
| 51 | C | WExces : Water Saturation Excess Flux [kg/m2/s] | |
---|
| 52 | C | Dhydtz : Dhydif * dt / dz [m] | |
---|
| 53 | C | FreeDr : Free Drainage Fraction [-] | |
---|
| 54 | C | Elem_A : A Diagonal Coefficient | |
---|
| 55 | C | Elem_C : C Diagonal Coefficient | |
---|
| 56 | C | Diag_A : A Diagonal | |
---|
| 57 | C | Diag_B : B Diagonal | |
---|
| 58 | C | Diag_C : C Diagonal | |
---|
| 59 | C | Term_D : Independant Term | |
---|
| 60 | C | Aux__P : P Auxiliary Variable | |
---|
| 61 | C | Aux__Q : Q Auxiliary Variable | |
---|
| 62 | C | | |
---|
| 63 | C | TUNING PARAMETER: | |
---|
| 64 | C | ^^^^^^^^^^^^^^^^ | |
---|
| 65 | C | z0soil : Soil Surface averaged Bumps Height [m] | |
---|
| 66 | C | | |
---|
| 67 | C | METHOD: NO Skin Surface Humidity | |
---|
| 68 | C | ^^^^^^ Semi-Implicit Crank Nicholson Scheme | |
---|
| 69 | C | (Partial) free Drainage, Water Bodies excepted (Lakes, Sea) | |
---|
| 70 | C | | |
---|
| 71 | |
---|
| 72 | C | | |
---|
| 73 | C | # OPTIONS: #GF: Saturation Front | |
---|
| 74 | C | # ^^^^^^^ #GH: Saturation Front allows Horton Runoff | |
---|
| 75 | C | # #GA: Soil Humidity Geometric Average | |
---|
| 76 | C | # #BP: Parameterization of Terrain Bumps | |
---|
| 77 | C | | |
---|
| 78 | C | | |
---|
| 79 | C +------------------------------------------------------------------------+ |
---|
| 80 | |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | |
---|
| 84 | C +--Global Variables |
---|
| 85 | C + ================ |
---|
| 86 | |
---|
| 87 | use VARphy |
---|
| 88 | use VAR_SV |
---|
| 89 | use VARdSV |
---|
| 90 | use VAR0SV |
---|
| 91 | use VARxSV |
---|
| 92 | use VARySV |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | IMPLICIT NONE |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | C +--OUTPUT |
---|
| 99 | C + ------ |
---|
| 100 | |
---|
| 101 | ! Water (Mass) Budget |
---|
| 102 | ! ~~~~~~~~~~~~~~~~~~~ |
---|
| 103 | ! #m0 real Wats_0(knonv) ! Soil Water, before forcing |
---|
| 104 | ! #m0 real Wats_1(knonv) ! Soil Water, after forcing |
---|
| 105 | ! #m0 real Wats_d(knonv) ! Soil Water forcing |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | C +--Internal Variables |
---|
| 109 | C + ================== |
---|
| 110 | |
---|
| 111 | integer isl ,jsl ,ist ,ikl ! |
---|
| 112 | integer ikm ,ikp ,ik0 ,ik1 ! |
---|
| 113 | integer ist__s,ist__w ! Soil/Water Body Identifier |
---|
| 114 | c #BP real z0soil ! Soil Surface Bumps Height [m] |
---|
| 115 | c #BP real z_Bump !(Partly)Bumpy Layers Height [m] |
---|
| 116 | c #BP real z0Bump ! Bumpy Layers Height [m] |
---|
| 117 | c #BP real dzBump ! Lowest Bumpy Layer: |
---|
| 118 | |
---|
| 119 | c #BP real etBump(knonv) ! Bumps Layer Averaged Humidity |
---|
| 120 | real etaMid ! Layer Interface's Humidity |
---|
| 121 | real Dhydif ! Hydraulic Diffusivity [m2/s] |
---|
| 122 | real eta__f ! Water Front Soil Water Content |
---|
| 123 | real Khyd_f ! Water Front Hydraulic Conduct. |
---|
| 124 | real Khydav ! Hydraulic Conductivity [m/s] |
---|
| 125 | real WgFlow ! Water gravitat. Flux [kg/m2/s] |
---|
| 126 | real Wg_MAX ! Water MAX.grav. Flux [kg/m2/s] |
---|
| 127 | real SatRat ! Saturation Flux [kg/m2/s] |
---|
| 128 | real WExces ! Saturat. Excess Flux [kg/m2/s] |
---|
| 129 | real SoRnOF(knonv) ! Soil Run OFF |
---|
| 130 | real Dhydtz(knonv,-nsol:0) ! Dhydif * dt / dz [m] |
---|
| 131 | real Elem_A,Elem_B,Elem_C ! Diagonal Coefficients |
---|
| 132 | real Diag_A(knonv,-nsol:0) ! A Diagonal |
---|
| 133 | real Diag_B(knonv,-nsol:0) ! B Diagonal |
---|
| 134 | real Diag_C(knonv,-nsol:0) ! C Diagonal |
---|
| 135 | real Term_D(knonv,-nsol:0) ! Independant Term |
---|
| 136 | real Aux__P(knonv,-nsol:0) ! P Auxiliary Variable |
---|
| 137 | real Aux__Q(knonv,-nsol:0) ! Q Auxiliary Variable |
---|
| 138 | real etaaux(knonv,-nsol:-nsol+1) ! Soil Water Content [m3/m3] |
---|
| 139 | real FreeDr ! Free Drainage Fraction (actual) |
---|
| 140 | real FreeD0 ! Free Drainage Fraction (1=Full) |
---|
| 141 | real aKdtSV3( 0:nsot, 0:nkhy) ! Khyd=a*eta+b: a * dt |
---|
| 142 | real bKdtSV3( 0:nsot, 0:nkhy) ! Khyd=a*eta+b: b * dt |
---|
| 143 | |
---|
| 144 | ! Water (Mass) Budget |
---|
| 145 | ! ~~~~~~~~~~~~~~~~~~~ |
---|
| 146 | c #mw logical mwopen ! IO Switch |
---|
| 147 | c #mw common/Sm_qSo_L/mwopen ! |
---|
| 148 | c #mw real hourwr,timewr ! |
---|
| 149 | c #mw common/Sm_qSo_R/timewr ! |
---|
| 150 | c #mw real Evapor(knonv) ! |
---|
| 151 | |
---|
| 152 | |
---|
| 153 | C +--Internal DATA |
---|
| 154 | C + ============= |
---|
| 155 | |
---|
| 156 | c #BP data z0soil/0.020/ ! Soil Surface Bumps Height [m] |
---|
| 157 | data FreeD0/1.000/ ! Free Drainage Fraction (1=Full) |
---|
| 158 | |
---|
| 159 | aKdtSV3=aKdtSV2*dt__SV |
---|
| 160 | bKdtSV3=bKdtSV2*dt__SV |
---|
| 161 | |
---|
| 162 | ! Water Budget (IN) |
---|
| 163 | ! ================== |
---|
| 164 | |
---|
| 165 | ! #m0 DO ikl=1,knonv |
---|
| 166 | ! #m0 Wats_0(ikl) = 0. ! OLD RunOFF Contrib. |
---|
| 167 | ! #m0 Wats_d(ikl) = drr_SV(ikl) ! Water Surface Forc. |
---|
| 168 | ! #m0 END DO |
---|
| 169 | |
---|
| 170 | ! #m0 isl= -nsol |
---|
| 171 | ! #m0 DO ikl=1,knonv |
---|
| 172 | ! #m0 Wats_0(ikl) = Wats_0(ikl) |
---|
| 173 | ! #m0. + ro_Wat *( eta_SV(ikl,isl) *dz78SV(isl) |
---|
| 174 | ! #m0. + eta_SV(ikl,isl+1) *dz_8SV(isl) ) * LSdzsv(ikl) |
---|
| 175 | ! #m0 END DO |
---|
| 176 | |
---|
| 177 | ! #m0 DO isl= -nsol+1,-1 |
---|
| 178 | ! #m0 DO ikl=1,knonv |
---|
| 179 | ! #m0 Wats_0(ikl) = Wats_0(ikl) |
---|
| 180 | ! #m0. + ro_Wat *( eta_SV(ikl,isl) *dz34SV(isl) |
---|
| 181 | ! #m0. +(eta_SV(ikl,isl-1) |
---|
| 182 | ! #m0. +eta_SV(ikl,isl+1))*dz_8SV(isl) ) * LSdzsv(ikl) |
---|
| 183 | ! #m0 END DO |
---|
| 184 | ! #m0 END DO |
---|
| 185 | |
---|
| 186 | ! #m0 isl= 0 |
---|
| 187 | ! #m0 DO ikl=1,knonv |
---|
| 188 | ! #m0 Wats_0(ikl) = Wats_0(ikl) |
---|
| 189 | ! #m0. + ro_Wat *( eta_SV(ikl,isl) *dz78SV(isl) |
---|
| 190 | ! #m0. + eta_SV(ikl,isl-1) *dz_8SV(isl) ) * LSdzsv(ikl) |
---|
| 191 | ! #m0 END DO |
---|
| 192 | |
---|
| 193 | |
---|
| 194 | C +--Gravitational Flow |
---|
| 195 | C + ================== |
---|
| 196 | |
---|
| 197 | C +... METHOD: Surface Water Flux saturates successively the soil layers |
---|
| 198 | C + ^^^^^^ from up to below, but is limited by infiltration capacity. |
---|
| 199 | C + Hydraulic Conductivity again contributes after this step, |
---|
| 200 | C + not redundantly because of a constant (saturated) profile. |
---|
| 201 | |
---|
| 202 | C +--Flux Limitor |
---|
| 203 | C + ^^^^^^^^^^^^^ |
---|
| 204 | isl=0 |
---|
| 205 | DO ikl=1,knonv |
---|
| 206 | ist = isotSV(ikl) ! Soil Type |
---|
| 207 | ist__s = min(ist, 1) ! 1 => Soil |
---|
| 208 | ist__w = 1 - ist__s ! 1 => Water Body |
---|
| 209 | Dhydif = s1__SV(ist) |
---|
| 210 | . *max(epsi,eta_SV(ikl,isl)) ! Hydraulic Diffusivity |
---|
| 211 | . **(bCHdSV(ist)+2.) ! DR97, Eqn.(3.36) |
---|
| 212 | Dhydif = ist__s * Dhydif ! |
---|
| 213 | . + ist__w * vK_dSV ! Water Bodies |
---|
| 214 | C + |
---|
| 215 | Khydav = ist__s * Ks_dSV(ist) ! DR97 Assumption |
---|
| 216 | . + ist__w * vK_dSV ! Water Bodies |
---|
| 217 | C + |
---|
| 218 | Wg_MAX = ro_Wat *Dhydif ! MAXimum Infiltration |
---|
| 219 | . *(etadSV(ist)-eta_SV(ikl,isl)) ! Rate |
---|
| 220 | . /(dzAvSV(isl)*LSdzsv(ikl) ) ! |
---|
| 221 | . + ro_Wat *Khydav ! |
---|
| 222 | |
---|
| 223 | C +--Surface Horton RunOFF |
---|
| 224 | C + ^^^^^^^^^^^^^^^^^^^^^ |
---|
| 225 | SoRnOF(ikl) = |
---|
| 226 | . max(zero,drr_SV(ikl)-Wg_MAX) |
---|
| 227 | RuofSV(ikl,1) = RuofSV(ikl,1) + SoRnOF(ikl) |
---|
| 228 | drr_SV(ikl) = drr_SV(ikl)-SoRnOF(ikl) |
---|
| 229 | RuofSV(ikl,2) = RuofSV(ikl,2) +max(0.,drr_SV(ikl)) |
---|
| 230 | END DO |
---|
| 231 | |
---|
| 232 | c #GF DO isl=0,-nsol,-1 |
---|
| 233 | c #GF DO ikl=1,knonv |
---|
| 234 | c #GF ist = isotSV(ikl) ! Soil Type |
---|
| 235 | c #GF ist__s = min(ist, 1) ! 1 => Soil |
---|
| 236 | c #GF ist__w = 1 - ist__s ! 1 => Water Body |
---|
| 237 | |
---|
| 238 | C +--Water Diffusion |
---|
| 239 | C + ^^^^^^^^^^^^^^^ |
---|
| 240 | c #GF Dhydif = s1__SV(ist) |
---|
| 241 | c #GF. *max(epsi,eta_SV(ikl,isl)) ! Hydraulic Diffusivity |
---|
| 242 | c #GF. **(bCHdSV(ist)+2.) ! DR97, Eqn.(3.36) |
---|
| 243 | c #GF Dhydif = ist__s * Dhydif ! |
---|
| 244 | c #GF. + ist__w * vK_dSV ! Water Bodies |
---|
| 245 | |
---|
| 246 | C +--Water Conduction (without Horton Runoff) |
---|
| 247 | C + ^^^^^^^^^^^^^^^^ |
---|
| 248 | c #GF Khyd_f = Ks_dSV(ist) |
---|
| 249 | C +... Uses saturated K ==> Horton Runoff ~0 ! |
---|
| 250 | |
---|
| 251 | C +--Water Conduction (with Horton Runoff) |
---|
| 252 | C + ^^^^^^^^^^^^^^^^ |
---|
| 253 | c #GH ik0 = nkhy *eta_SV(ikl,isl) |
---|
| 254 | c #GH. /etadSV(ist) |
---|
| 255 | c #GH eta__f = 1. |
---|
| 256 | c #GH. -aKdtSV3(ist,ik0)/(2. *dzAvSV(isl) |
---|
| 257 | c #GH. *LSdzsv(ikl)) |
---|
| 258 | c #GH eta__f = max(eps_21,eta__f) |
---|
| 259 | c #GH eta__f = min(etadSV(ist), |
---|
| 260 | c #GH. eta_SV(ikl,isl) + |
---|
| 261 | c #GH. (aKdtSV3(ist,ik0) *eta_SV(ikl,isl) |
---|
| 262 | c #GH. +bKdtSV3(ist,ik0)) /(dzAvSV(isl) |
---|
| 263 | c #GH. *LSdzsv(ikl)) |
---|
| 264 | c #GH. / eta__f ) |
---|
| 265 | c #GH eta__f = .5*(eta_SV(ikl,isl) |
---|
| 266 | c #GH. +eta__f) |
---|
| 267 | |
---|
| 268 | c #gh eta__f = eta_SV(ikl,isl) |
---|
| 269 | |
---|
| 270 | c #GH ik0 = nkhy *eta__f |
---|
| 271 | c #GH. /etadSV(ist) |
---|
| 272 | c #GH Khyd_f = |
---|
| 273 | c #GH. (aKdtSV3(ist,ik0) *eta__f |
---|
| 274 | c #GH. +bKdtSV3(ist,ik0)) /dt__SV |
---|
| 275 | |
---|
| 276 | c #GF Khydav = ist__s * Khyd_f ! DR97 Assumption |
---|
| 277 | c #GF. + ist__w * vK_dSV ! Water Bodies |
---|
| 278 | |
---|
| 279 | C +--Gravitational Flow |
---|
| 280 | C + ^^^^^^^^^^^^^^^^^^ |
---|
| 281 | c #GF Wg_MAX = ! MAXimum Infiltration |
---|
| 282 | c #GF. ro_Wat *Dhydif ! Rate |
---|
| 283 | c #GF. *(etadSV(ist)-eta_SV(ikl,isl)) ! |
---|
| 284 | c #GF. /(dzAvSV(isl)*LSdzsv(ikl) ) ! |
---|
| 285 | c #GF. + ro_Wat *Khydav ! |
---|
| 286 | c #GF END DO |
---|
| 287 | c #GF END DO |
---|
| 288 | c #GF DO ikl=1,knonv |
---|
| 289 | c #GF SoRnOF(ikl) = SoRnOF(ikl) ! RunOFF Intensity |
---|
| 290 | c #GF. + drr_SV(ikl) ! [kg/m2/s] |
---|
| 291 | C +!!! Inclure la possibilite de creer une mare sur un bedrock impermeable |
---|
| 292 | c #GF drr_SV(ikl) = 0. |
---|
| 293 | c #GF END DO |
---|
| 294 | |
---|
| 295 | |
---|
| 296 | C +--Temperature Correction due to a changed Soil Energy Content |
---|
| 297 | C + =========================================================== |
---|
| 298 | |
---|
| 299 | C +!!! Mettre en oeuvre le couplage humidit?-?nergie |
---|
| 300 | |
---|
| 301 | |
---|
| 302 | C +--Full Resolution of the Richard's Equation |
---|
| 303 | C + ========================================= |
---|
| 304 | |
---|
| 305 | C +... METHOD: Water content evolution results from water fluxes |
---|
| 306 | C + ^^^^^^ at the layer boundaries |
---|
| 307 | C + Conductivity is approximated by a piecewise linear profile. |
---|
| 308 | C + Semi-Implicit Crank-Nicholson scheme is used. |
---|
| 309 | C + (Bruen, 1997, Sensitivity of hydrological processes |
---|
| 310 | C + at the land-atmosphere interface. |
---|
| 311 | C + Proc. Royal Irish Academy, IGBP symposium |
---|
| 312 | C + on global change and the Irish Environment. |
---|
| 313 | C + Publ.: Maynooth) |
---|
| 314 | |
---|
| 315 | C + - - - - - - - - isl+1/2 - - ^ |
---|
| 316 | C + | |
---|
| 317 | C + eta_SV(isl) --------------- isl ----- +--dz_dSV(isl) ^ |
---|
| 318 | C + | | |
---|
| 319 | C + Dhydtz(isl) etaMid - - - - - - - - isl-1/2 - - v dzmiSV(isl)--+ |
---|
| 320 | C + | |
---|
| 321 | C + eta_SV(isl-1) --------------- isl-1 ----- v |
---|
| 322 | |
---|
| 323 | C +--Transfert Coefficients |
---|
| 324 | C + ---------------------------- |
---|
| 325 | |
---|
| 326 | DO isl=-nsol+1,0 |
---|
| 327 | DO ikl=1,knonv |
---|
| 328 | ist = isotSV(ikl) ! Soil Type |
---|
| 329 | ist__s = min(ist, 1) ! 1 => Soil |
---|
| 330 | ist__w = 1 - ist__s ! 1 => Water Body |
---|
| 331 | etaMid = (dz_dSV(isl) *eta_SV(ikl,isl-1) ! eta at layers |
---|
| 332 | . +dz_dSV(isl-1)*eta_SV(ikl,isl) ) ! interface |
---|
| 333 | . /(2.0* dzmiSV(isl)) ! LSdzsv implicit ! |
---|
| 334 | c #GA etaMid = sqrt(dz_dSV(isl) *eta_SV(ikl,isl-1) ! Idem, geometric |
---|
| 335 | c #GA. *dz_dSV(isl-1)*eta_SV(ikl,isl) ) ! average |
---|
| 336 | c #GA. /(2.0* dzmiSV(isl)) ! (Vauclin&al.1979) |
---|
| 337 | Dhydif = s1__SV(ist) ! Hydraul.Diffusi. |
---|
| 338 | . *(etaMid **( bCHdSV(ist)+2.)) ! DR97, Eqn.(3.36) |
---|
| 339 | Dhydtz(ikl,isl) = Dhydif*dt__SV ! |
---|
| 340 | . /(dzmiSV(isl) ! |
---|
| 341 | . *LSdzsv(ikl)) ! |
---|
| 342 | Dhydtz(ikl,isl) = Dhydtz(ikl,isl) * ist__s ! Soil |
---|
| 343 | . +0.5*dzmiSV(isl)*LSdzsv(ikl) * ist__w ! Water bodies |
---|
| 344 | |
---|
| 345 | END DO |
---|
| 346 | END DO |
---|
| 347 | isl=-nsol |
---|
| 348 | DO ikl=1,knonv |
---|
| 349 | Dhydtz(ikl,isl) = 0.0 ! |
---|
| 350 | END DO |
---|
| 351 | |
---|
| 352 | |
---|
| 353 | C +--Tridiagonal Elimination: Set Up |
---|
| 354 | C + ------------------------------- |
---|
| 355 | |
---|
| 356 | C +--Soil/Snow Interior |
---|
| 357 | C + ^^^^^^^^^^^^^^^^^^ |
---|
| 358 | |
---|
| 359 | DO isl=0,-nsol,-1 |
---|
| 360 | DO ikl=1,knonv |
---|
| 361 | ist = isotSV(ikl) |
---|
| 362 | eta_SV(ikl,isl) = max(epsi, eta_SV(ikl,isl)) |
---|
| 363 | END DO |
---|
| 364 | END DO |
---|
| 365 | |
---|
| 366 | DO isl=-nsol,-nsol+1 |
---|
| 367 | DO ikl=1,knonv |
---|
| 368 | etaaux(ikl,isl) = eta_SV(ikl,isl) |
---|
| 369 | END DO |
---|
| 370 | END DO |
---|
| 371 | |
---|
| 372 | DO isl=-nsol+1,-1 |
---|
| 373 | DO ikl=1,knonv |
---|
| 374 | ist = isotSV(ikl) |
---|
| 375 | ikm = nkhy * eta_SV(ikl,isl-1) / etadSV(ist) |
---|
| 376 | ik0 = nkhy * eta_SV(ikl,isl) / etadSV(ist) |
---|
| 377 | ikp = nkhy * eta_SV(ikl,isl+1) / etadSV(ist) |
---|
| 378 | |
---|
| 379 | if(ikm<0.or.ik0<0.or.ikp<0)then |
---|
| 380 | print *,"CRASH1 in sisvat_qso.f on pixel (i,j,n)", |
---|
| 381 | . ii__SV(ikl),jj__SV(ikl),nn__SV(ikl) |
---|
| 382 | print *,"decrease your time step or increase ntphys "// |
---|
| 383 | . "and ntdiff in time_steps.f" |
---|
| 384 | stop |
---|
| 385 | endif |
---|
| 386 | |
---|
| 387 | |
---|
| 388 | Elem_A = Dhydtz(ikl,isl) |
---|
| 389 | . - aKdtSV3(ist,ikm)* dziiSV(isl) *LSdzsv(ikl) |
---|
| 390 | Elem_B = - (Dhydtz(ikl,isl) |
---|
| 391 | . +Dhydtz(ikl,isl+1) |
---|
| 392 | . -aKdtSV3(ist,ik0)*(dziiSV(isl+1) |
---|
| 393 | . -dzi_SV(isl) )*LSdzsv(ikl)) |
---|
| 394 | Elem_C = Dhydtz(ikl,isl+1) |
---|
| 395 | . + aKdtSV3(ist,ikp)* dzi_SV(isl+1)*LSdzsv(ikl) |
---|
| 396 | Diag_A(ikl,isl) = dz_8SV(isl) *LSdzsv(ikl) |
---|
| 397 | . -Implic * Elem_A |
---|
| 398 | Diag_B(ikl,isl) = dz34SV(isl) *LSdzsv(ikl) |
---|
| 399 | . -Implic * Elem_B |
---|
| 400 | Diag_C(ikl,isl) = dz_8SV(isl) *LSdzsv(ikl) |
---|
| 401 | . -Implic * Elem_C |
---|
| 402 | |
---|
| 403 | Term_D(ikl,isl) = (dz_8SV(isl) *LSdzsv(ikl) |
---|
| 404 | . +Explic *Elem_A )*eta_SV(ikl,isl-1) |
---|
| 405 | . + (dz34SV(isl) *LSdzsv(ikl) |
---|
| 406 | . +Explic *Elem_B )*eta_SV(ikl,isl) |
---|
| 407 | . + (dz_8SV(isl) *LSdzsv(ikl) |
---|
| 408 | . +Explic *Elem_C )*eta_SV(ikl,isl+1) |
---|
| 409 | . + (bKdtSV3(ist,ikp)* dzi_SV(isl+1) |
---|
| 410 | . +bKdtSV3(ist,ik0)*(dziiSV(isl+1) |
---|
| 411 | . -dzi_SV(isl) ) |
---|
| 412 | . -bKdtSV3(ist,ikm)* dziiSV(isl) ) |
---|
| 413 | . * LSdzsv(ikl) |
---|
| 414 | END DO |
---|
| 415 | END DO |
---|
| 416 | |
---|
| 417 | isl=-nsol |
---|
| 418 | DO ikl=1,knonv |
---|
| 419 | ist = isotSV(ikl) |
---|
| 420 | c # FreeDr = FreeD0 * min(ist,1) |
---|
| 421 | FreeDr = iWaFSV(ikl) * min(ist,1) |
---|
| 422 | ik0 = nkhy * eta_SV(ikl,isl ) / etadSV(ist) |
---|
| 423 | ikp = nkhy * eta_SV(ikl,isl+1) / etadSV(ist) |
---|
| 424 | |
---|
| 425 | if(ik0<0.or.ikp<0)then |
---|
| 426 | print *,"CRASH2 in sisvat_qso.f on pixel (i,j,n)", |
---|
| 427 | . ii__SV(ikl),jj__SV(ikl),nn__SV(ikl) |
---|
| 428 | print *,"decrease your time step or increase ntphys "// |
---|
| 429 | . "and ntdiff in time_steps.f" |
---|
| 430 | stop |
---|
| 431 | endif |
---|
| 432 | |
---|
| 433 | Elem_A = 0. |
---|
| 434 | Elem_B = - (Dhydtz(ikl,isl+1) |
---|
| 435 | . -aKdtSV3(ist,ik0)*(dziiSV(isl+1)*LSdzsv(ikl) |
---|
| 436 | . -FreeDr )) |
---|
| 437 | Elem_C = Dhydtz(ikl,isl+1) |
---|
| 438 | . + aKdtSV3(ist,ikp)* dzi_SV(isl+1)*LSdzsv(ikl) |
---|
| 439 | Diag_A(ikl,isl) = 0. |
---|
| 440 | Diag_B(ikl,isl) = dz78SV(isl) *LSdzsv(ikl) |
---|
| 441 | . -Implic *Elem_B |
---|
| 442 | Diag_C(ikl,isl) = dz_8SV(isl) *LSdzsv(ikl) |
---|
| 443 | . -Implic *Elem_C |
---|
| 444 | |
---|
| 445 | Term_D(ikl,isl) = (dz78SV(isl) *LSdzsv(ikl) |
---|
| 446 | . +Explic *Elem_B )*eta_SV(ikl,isl) |
---|
| 447 | . + (dz_8SV(isl) *LSdzsv(ikl) |
---|
| 448 | . +Explic *Elem_C )*eta_SV(ikl,isl+1) |
---|
| 449 | . + (bKdtSV3(ist,ikp)* dzi_SV(isl+1)*LSdzsv(ikl) |
---|
| 450 | . +bKdtSV3(ist,ik0)*(dziiSV(isl+1)*LSdzsv(ikl) |
---|
| 451 | . -FreeDr )) |
---|
| 452 | END DO |
---|
| 453 | |
---|
| 454 | isl=0 |
---|
| 455 | DO ikl=1,knonv |
---|
| 456 | ist = isotSV(ikl) |
---|
| 457 | ikm = nkhy * eta_SV(ikl,isl-1) / etadSV(ist) |
---|
| 458 | ik0 = nkhy * eta_SV(ikl,isl) / etadSV(ist) |
---|
| 459 | Elem_A = Dhydtz(ikl,isl) |
---|
| 460 | . - aKdtSV3(ist,ikm)* dziiSV(isl)*LSdzsv(ikl) |
---|
| 461 | Elem_B = - (Dhydtz(ikl,isl) |
---|
| 462 | . +aKdtSV3(ist,ik0)* dzi_SV(isl)*LSdzsv(ikl)) |
---|
| 463 | Elem_C = 0. |
---|
| 464 | Diag_A(ikl,isl) = dz_8SV(isl) *LSdzsv(ikl) |
---|
| 465 | . - Implic *Elem_A |
---|
| 466 | Diag_B(ikl,isl) = dz78SV(isl) *LSdzsv(ikl) |
---|
| 467 | . - Implic *Elem_B |
---|
| 468 | Diag_C(ikl,isl) = 0. |
---|
| 469 | C + |
---|
| 470 | Term_D(ikl,isl) = (dz_8SV(isl) *LSdzsv(ikl) |
---|
| 471 | . +Explic *Elem_A )*eta_SV(ikl,isl-1) |
---|
| 472 | . + (dz78SV(isl) *LSdzsv(ikl) |
---|
| 473 | . +Explic *Elem_B )*eta_SV(ikl,isl) |
---|
| 474 | . - (bKdtSV3(ist,ik0)* dzi_SV(isl) |
---|
| 475 | . +bKdtSV3(ist,ikm)* dziiSV(isl))*LSdzsv(ikl) |
---|
| 476 | . + dt__SV *(HLs_sv(ikl) * (1-min(1,isnoSV(ikl))) |
---|
| 477 | . / (ro_Wat *dz_dSV(0) * Lx_H2O(ikl)) |
---|
| 478 | cXF bug 17/05/2017 |
---|
| 479 | . +drr_SV(ikl))/ro_Wat |
---|
| 480 | END DO |
---|
| 481 | |
---|
| 482 | DO ikl=1,knonv |
---|
| 483 | drr_SV(ikl)=0. ! drr is included in the 1st soil layer |
---|
| 484 | ENDDO |
---|
| 485 | |
---|
| 486 | C + |
---|
| 487 | C + |
---|
| 488 | C +--Tridiagonal Elimination |
---|
| 489 | C + ======================= |
---|
| 490 | C + |
---|
| 491 | C +--Forward Sweep |
---|
| 492 | C + ^^^^^^^^^^^^^^ |
---|
| 493 | DO ikl= 1,knonv |
---|
| 494 | Aux__P(ikl,-nsol) = Diag_B(ikl,-nsol) |
---|
| 495 | Aux__Q(ikl,-nsol) =-Diag_C(ikl,-nsol)/Aux__P(ikl,-nsol) |
---|
| 496 | END DO |
---|
| 497 | C + |
---|
| 498 | DO isl=-nsol+1,0 |
---|
| 499 | DO ikl= 1,knonv |
---|
| 500 | Aux__P(ikl,isl) = Diag_A(ikl,isl) *Aux__Q(ikl,isl-1) |
---|
| 501 | . +Diag_B(ikl,isl) |
---|
| 502 | Aux__Q(ikl,isl) =-Diag_C(ikl,isl) /Aux__P(ikl,isl) |
---|
| 503 | END DO |
---|
| 504 | END DO |
---|
| 505 | C + |
---|
| 506 | DO ikl= 1,knonv |
---|
| 507 | eta_SV(ikl,-nsol) = Term_D(ikl,-nsol)/Aux__P(ikl,-nsol) |
---|
| 508 | END DO |
---|
| 509 | C + |
---|
| 510 | DO isl=-nsol+1,0 |
---|
| 511 | DO ikl= 1,knonv |
---|
| 512 | eta_SV(ikl,isl) =(Term_D(ikl,isl) |
---|
| 513 | . -Diag_A(ikl,isl) *eta_SV(ikl,isl-1)) |
---|
| 514 | . /Aux__P(ikl,isl) |
---|
| 515 | END DO |
---|
| 516 | END DO |
---|
| 517 | |
---|
| 518 | C +--Backward Sweep |
---|
| 519 | C + ^^^^^^^^^^^^^^ |
---|
| 520 | DO isl=-1,-nsol,-1 |
---|
| 521 | DO ikl= 1,knonv |
---|
| 522 | eta_SV(ikl,isl) = Aux__Q(ikl,isl) *eta_SV(ikl,isl+1) |
---|
| 523 | . +eta_SV(ikl,isl) |
---|
| 524 | END DO |
---|
| 525 | END DO |
---|
| 526 | |
---|
| 527 | |
---|
| 528 | C +--Horton RunOFF Intensity |
---|
| 529 | C + ======================= |
---|
| 530 | |
---|
| 531 | DO isl=0,-nsol,-1 |
---|
| 532 | DO ikl=1,knonv |
---|
| 533 | ist = isotSV(ikl) ! Soil Type |
---|
| 534 | SatRat = (eta_SV(ikl,isl)-etadSV(ist)) ! OverSaturation Rate |
---|
| 535 | . *ro_Wat *dzAvSV(isl) ! |
---|
| 536 | . *LSdzsv(ikl) ! |
---|
| 537 | . /dt__SV ! |
---|
| 538 | SoRnOF(ikl) = SoRnOF(ikl) ! |
---|
| 539 | . + max(zero,SatRat) ! |
---|
| 540 | RuofSV(ikl,3) = RuofSV(ikl,3) + |
---|
| 541 | . + max(zero,SatRat) |
---|
| 542 | eta_SV(ikl,isl) = max(epsi ! |
---|
| 543 | c #ED. +etamSV(isotSV(ikl))! |
---|
| 544 | . ,eta_SV(ikl,isl)) ! |
---|
| 545 | eta_SV(ikl,isl) = min(eta_SV(ikl,isl) ! |
---|
| 546 | . ,etadSV(ist) ) ! |
---|
| 547 | END DO |
---|
| 548 | END DO |
---|
| 549 | |
---|
| 550 | C +--IO, for Verification |
---|
| 551 | C + ~~~~~~~~~~~~~~~~~~~~ |
---|
| 552 | c #WR write(6,6010) |
---|
| 553 | 6010 format(/,1x) |
---|
| 554 | DO isl= 0,-nsol,-1 |
---|
| 555 | DO ikl= 1,knonv |
---|
| 556 | ist = isotSV(ikl) |
---|
| 557 | ikp = nkhy * eta_SV(ikl,isl) /etadSV(ist) |
---|
| 558 | Khydsv(ikl,isl) =(aKdtSV3(ist,ikp) *eta_SV(ikl,isl) |
---|
| 559 | . +bKdtSV3(ist,ikp)) *2.0/dt__SV |
---|
| 560 | c #WR write(6,6011) ikl,isl,eta_SV(ikl,isl)*1.e3, |
---|
| 561 | c #WR. ikp, aKdtSV3(ist,ikp),bKdtSV3(ist,ikp), |
---|
| 562 | c #WR. Khydsv(ikl,isl) |
---|
| 563 | 6011 format(2i3,f8.1,i3,3e12.3) |
---|
| 564 | END DO |
---|
| 565 | END DO |
---|
| 566 | |
---|
| 567 | |
---|
| 568 | C +--Additional RunOFF Intensity |
---|
| 569 | C + =========================== |
---|
| 570 | |
---|
| 571 | DO ikl=1,knonv |
---|
| 572 | ist = isotSV(ikl) |
---|
| 573 | ik0 = nkhy * etaaux(ikl,-nsol ) /etadSV(ist) |
---|
| 574 | c # FreeDr = FreeD0 * min(ist,1) |
---|
| 575 | FreeDr = iWaFSV(ikl) * min(ist,1) |
---|
| 576 | SoRnOF(ikl) = SoRnOF(ikl) |
---|
| 577 | . + (aKdtSV3(ist,ik0)*(etaaux(ikl,-nsol)*Explic |
---|
| 578 | . +eta_SV(ikl,-nsol)*Implic) |
---|
| 579 | . + bKdtSV3(ist,ik0) ) |
---|
| 580 | . * FreeDr *ro_Wat /dt__SV |
---|
| 581 | RuofSV(ikl,3) = RuofSV(ikl,3) |
---|
| 582 | . + (aKdtSV3(ist,ik0)*(etaaux(ikl,-nsol)*Explic |
---|
| 583 | . +eta_SV(ikl,-nsol)*Implic) |
---|
| 584 | . + bKdtSV3(ist,ik0) ) |
---|
| 585 | . * FreeDr *ro_Wat /dt__SV |
---|
| 586 | |
---|
| 587 | C +--Full Run OFF: Update |
---|
| 588 | C + ~~~~~~~~~~~~~~~~~~~~ |
---|
| 589 | RnofSV(ikl) = RnofSV(ikl) + SoRnOF(ikl) |
---|
| 590 | RuofSV(ikl,4) = RuofSV(ikl,4) + SoRnOF(ikl) |
---|
| 591 | END DO |
---|
| 592 | |
---|
| 593 | |
---|
| 594 | C +--Temperature Correction due to a changed Soil Energy Content |
---|
| 595 | C + =========================================================== |
---|
| 596 | |
---|
| 597 | C +!!! Mettre en oeuvre le couplage humidit?-?nergie |
---|
| 598 | |
---|
| 599 | |
---|
| 600 | C +--Bumps/Asperites Treatment |
---|
| 601 | C + ========================= |
---|
| 602 | |
---|
| 603 | C +--Average over Bump Depth (z0soil) |
---|
| 604 | C + -------------------------------- |
---|
| 605 | |
---|
| 606 | c #BP z_Bump = 0. |
---|
| 607 | c #BP DO ikl=1,knonv |
---|
| 608 | c #BP etBump(ikl) = 0. |
---|
| 609 | c #BP END DO |
---|
| 610 | C + |
---|
| 611 | c #BP DO isl=0,-nsol,-1 |
---|
| 612 | c #BP z0Bump = z_Bump |
---|
| 613 | c #BP z_Bump = z_Bump + dzAvSV(isl) |
---|
| 614 | c #BP IF (z_Bump.lt.z0soil) THEN |
---|
| 615 | c #BP DO ikl=1,knonv |
---|
| 616 | c #BP etBump(ikl) = etBump(ikl) + dzAvSV(isl) *eta_SV(ikl,isl) |
---|
| 617 | c #BP END DO |
---|
| 618 | c #BP END IF |
---|
| 619 | c #BP IF (z_Bump.gt.z0soil.AND.z0Bump.lt.z0soil) THEN |
---|
| 620 | c #BP DO ikl=1,knonv |
---|
| 621 | c #BP etBump(ikl) = etBump(ikl) + (z0soil-z0Bump)*eta_SV(ikl,isl) |
---|
| 622 | c #BP etBump(ikl) = etBump(ikl) / z0soil |
---|
| 623 | c #BP END DO |
---|
| 624 | c #BP END IF |
---|
| 625 | c #BP END DO |
---|
| 626 | |
---|
| 627 | |
---|
| 628 | C +--Correction |
---|
| 629 | C + ---------- |
---|
| 630 | |
---|
| 631 | c #BP z_Bump = 0. |
---|
| 632 | c #BP DO isl=0,-nsol,-1 |
---|
| 633 | c #BP z0Bump = z_Bump |
---|
| 634 | c #BP z_Bump = z_Bump +dzAvSV(isl) |
---|
| 635 | c #BP IF (z_Bump.lt.z0soil) THEN |
---|
| 636 | c #BP DO ikl=1,knonv |
---|
| 637 | c #BP eta_SV(ikl,isl) = etBump(ikl) |
---|
| 638 | c #BP END DO |
---|
| 639 | c #BP END IF |
---|
| 640 | c #BP IF (z_Bump.gt.z0soil.AND.z0Bump.lt.z0soil) THEN |
---|
| 641 | c #BP dzBump = z_Bump - z0soil |
---|
| 642 | c #BP DO ikl=1,knonv |
---|
| 643 | c #BP eta_SV(ikl,isl) =(etBump(ikl) *(dzAvSV(isl)-dzBump) |
---|
| 644 | c #BP. + eta_SV(ikl,isl)* dzBump) |
---|
| 645 | c #BP. / dzAvSV(isl) |
---|
| 646 | c #BP END DO |
---|
| 647 | c #BP END IF |
---|
| 648 | c #BP END DO |
---|
| 649 | |
---|
| 650 | |
---|
| 651 | C +--Positive Definite |
---|
| 652 | C + ================= |
---|
| 653 | |
---|
| 654 | c #BP DO isl= 0,-nsol,-1 |
---|
| 655 | c #BP DO ikl= 1,knonv |
---|
| 656 | c #BP eta_SV(ikl,isl) = max(epsi,eta_SV(ikl,isl)) |
---|
| 657 | c #BP END DO |
---|
| 658 | c #BP END DO |
---|
| 659 | |
---|
| 660 | |
---|
| 661 | C +--Water Budget (OUT) |
---|
| 662 | C + =================== |
---|
| 663 | |
---|
| 664 | ! #m0 DO ikl=1,knonv |
---|
| 665 | ! #m0 Wats_d(ikl) = Wats_d(ikl) ! |
---|
| 666 | ! #m0. + drr_SV(ikl) *zero ! Precipitation is |
---|
| 667 | C + \______________ already included |
---|
| 668 | ! #m0. + HLs_sv(ikl) |
---|
| 669 | ! #m0. *(1-min(isnoSV(ikl),1)) /Lx_H2O(ikl) ! Evaporation |
---|
| 670 | ! #m0. - SoRnOF(ikl) ! Soil RunOFF Contrib. |
---|
| 671 | ! #m0 Wats_1(ikl) = 0. ! |
---|
| 672 | c #mw Evapor(ikl) = HLs_sv(ikl) *dt__SV ! |
---|
| 673 | c #mw. *(1-min(isnoSV(ikl),1)) /Lx_H2O(ikl) ! |
---|
| 674 | ! #m0 END DO |
---|
| 675 | |
---|
| 676 | ! #m0 DO isl= -nsol,0 |
---|
| 677 | ! #m0 DO ikl=1,knonv |
---|
| 678 | ! #m0 Wats_d(ikl) = Wats_d(ikl) ! |
---|
| 679 | ! #m0 END DO |
---|
| 680 | ! #m0 END DO |
---|
| 681 | ! #m0 DO ikl=1,knonv |
---|
| 682 | ! #m0 Wats_d(ikl) = Wats_d(ikl) *dt__SV ! |
---|
| 683 | ! #m0 END DO |
---|
| 684 | |
---|
| 685 | ! #m0 isl= -nsol |
---|
| 686 | ! #m0 DO ikl=1,knonv |
---|
| 687 | ! #m0 Wats_1(ikl) = Wats_1(ikl) |
---|
| 688 | ! #m0. + ro_Wat *( eta_SV(ikl,isl) *dz78SV(isl) |
---|
| 689 | ! #m0. + eta_SV(ikl,isl+1) *dz_8SV(isl) ) *LSdzsv(ikl) |
---|
| 690 | ! #m0 END DO |
---|
| 691 | |
---|
| 692 | ! #m0 DO isl= -nsol+1,-1 |
---|
| 693 | ! #m0 DO ikl=1,knonv |
---|
| 694 | ! #m0 Wats_1(ikl) = Wats_1(ikl) |
---|
| 695 | ! #m0. + ro_Wat *( eta_SV(ikl,isl) *dz34SV(isl) |
---|
| 696 | ! #m0. +(eta_SV(ikl,isl-1) |
---|
| 697 | ! #m0. +eta_SV(ikl,isl+1))*dz_8SV(isl) ) *LSdzsv(ikl) |
---|
| 698 | ! #m0 END DO |
---|
| 699 | ! #m0 END DO |
---|
| 700 | |
---|
| 701 | ! #m0 isl= 0 |
---|
| 702 | ! #m0 DO ikl=1,knonv |
---|
| 703 | ! #m0 Wats_1(ikl) = Wats_1(ikl) |
---|
| 704 | ! #m0. + ro_Wat *( eta_SV(ikl,isl) *dz78SV(isl) |
---|
| 705 | ! #m0. + eta_SV(ikl,isl-1) *dz_8SV(isl) ) *LSdzsv(ikl) |
---|
| 706 | ! #m0 END DO |
---|
| 707 | |
---|
| 708 | |
---|
| 709 | return |
---|
| 710 | end |
---|