[3531] | 1 | ! |
---|
| 2 | ! $Id: flott_gwd_rando_m.f90 5512 2025-01-28 18:07:51Z fhourdin $ |
---|
| 3 | ! |
---|
[1938] | 4 | module FLOTT_GWD_rando_m |
---|
| 5 | |
---|
[5282] | 6 | USE clesphys_mod_h |
---|
| 7 | implicit none |
---|
[5512] | 8 | INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO |
---|
| 9 | INTEGER, PARAMETER:: NA = 5 !number of realizations to get the phase speed |
---|
| 10 | LOGICAL, SAVE :: gwd_reproductibilite_mpiomp=.true. |
---|
| 11 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
| 12 | !$OMP THREADPRIVATE(firstcall,gwd_reproductibilite_mpiomp) |
---|
[1938] | 13 | |
---|
| 14 | contains |
---|
| 15 | |
---|
[5512] | 16 | SUBROUTINE FLOTT_GWD_rando_first |
---|
| 17 | use dimphy, only: klev |
---|
| 18 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 19 | IMPLICIT NONE |
---|
| 20 | CHARACTER (LEN=20),PARAMETER :: modname='acama_gwd_rando_m' |
---|
| 21 | CHARACTER (LEN=80) :: abort_message |
---|
| 22 | |
---|
| 23 | IF (firstcall) THEN |
---|
| 24 | ! Cle introduite pour resoudre un probleme de non reproductibilite |
---|
| 25 | ! Le but est de pouvoir tester de revenir a la version precedenete |
---|
| 26 | ! A eliminer rapidement |
---|
| 27 | CALL getin_p('gwd_reproductibilite_mpiomp',gwd_reproductibilite_mpiomp) |
---|
| 28 | IF (NW+3*NA>=KLEV) THEN |
---|
| 29 | abort_message = 'NW+3*NA>=KLEV Probleme pour generation des ondes' |
---|
| 30 | CALL abort_physic (modname,abort_message,1) |
---|
| 31 | ENDIF |
---|
| 32 | firstcall=.false. |
---|
| 33 | ENDIF |
---|
| 34 | END SUBROUTINE FLOTT_GWD_rando_first |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | SUBROUTINE FLOTT_GWD_rando(DTIME, PP, tt, uu, vv, prec, zustr, zvstr, d_u, & |
---|
[2333] | 38 | d_v,east_gwstress,west_gwstress) |
---|
[1938] | 39 | |
---|
| 40 | ! Parametrization of the momentum flux deposition due to a discrete |
---|
[5282] | 41 | ! number of gravity waves. |
---|
[1938] | 42 | ! Author: F. Lott |
---|
| 43 | ! July, 12th, 2012 |
---|
| 44 | ! Gaussian distribution of the source, source is precipitation |
---|
| 45 | ! Reference: Lott (JGR, vol 118, page 8897, 2013) |
---|
| 46 | |
---|
[2333] | 47 | !ONLINE: |
---|
[5285] | 48 | USE yomcst_mod_h |
---|
[5274] | 49 | use dimphy, only: klon, klev |
---|
[2333] | 50 | use assert_m, only: assert |
---|
[3198] | 51 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 52 | USE vertical_layers_mod, ONLY : presnivs |
---|
[5309] | 53 | USE yoegwd_mod_h |
---|
[5512] | 54 | USE lmdz_fake_call, ONLY : fake_call |
---|
| 55 | |
---|
| 56 | CHARACTER (LEN=20),PARAMETER :: modname='flott_gwd_rando' |
---|
[3531] | 57 | CHARACTER (LEN=80) :: abort_message |
---|
[3198] | 58 | |
---|
[2333] | 59 | ! OFFLINE: |
---|
[5271] | 60 | ! include "dimensions_mod.f90" |
---|
[2333] | 61 | ! include "dimphy.h" |
---|
| 62 | ! END OF DIFFERENCE ONLINE-OFFLINE |
---|
[1938] | 63 | |
---|
| 64 | ! 0. DECLARATIONS: |
---|
| 65 | |
---|
| 66 | ! 0.1 INPUTS |
---|
| 67 | REAL, intent(in)::DTIME ! Time step of the Physics |
---|
[5512] | 68 | REAL, intent(in):: pp(KLON, KLEV) ! (KLON, KLEV) Pressure at full levels |
---|
| 69 | REAL, intent(in):: prec(KLON) ! (klon) Precipitation (kg/m^2/s) |
---|
| 70 | REAL, intent(in):: TT(KLON, KLEV) ! (KLON, KLEV) Temp at full levels |
---|
| 71 | REAL, intent(in):: UU(KLON, KLEV) ! (KLON, KLEV) Zonal wind at full levels |
---|
| 72 | REAL, intent(in):: VV(KLON, KLEV) ! (KLON, KLEV) Merid wind at full levels |
---|
[1938] | 73 | |
---|
| 74 | ! 0.2 OUTPUTS |
---|
[5512] | 75 | REAL, intent(out):: zustr(KLON), zvstr(KLON) ! (KLON) Surface Stresses |
---|
[1938] | 76 | |
---|
[5512] | 77 | REAL, intent(inout):: d_u(KLON, KLEV), d_v(KLON, KLEV) |
---|
| 78 | REAL, intent(inout):: east_gwstress(KLON, KLEV) ! Profile of eastward stress |
---|
| 79 | REAL, intent(inout):: west_gwstress(KLON, KLEV) ! Profile of westward stress |
---|
[2333] | 80 | |
---|
[1938] | 81 | ! (KLON, KLEV) tendencies on winds |
---|
| 82 | |
---|
| 83 | ! O.3 INTERNAL ARRAYS |
---|
| 84 | REAL BVLOW(klon) |
---|
[2333] | 85 | REAL DZ ! Characteristic depth of the Source |
---|
[1938] | 86 | |
---|
[2333] | 87 | INTEGER II, JJ, LL |
---|
[1938] | 88 | |
---|
| 89 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
---|
| 90 | |
---|
| 91 | REAL DELTAT |
---|
| 92 | |
---|
| 93 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
---|
| 94 | |
---|
| 95 | INTEGER JK, JP, JO, JW |
---|
| 96 | REAL KMIN, KMAX ! Min and Max horizontal wavenumbers |
---|
[2333] | 97 | REAL CMAX ! standard deviation of the phase speed distribution |
---|
| 98 | REAL RUWMAX,SAT ! ONLINE SPECIFIED IN run.def |
---|
[1938] | 99 | REAL CPHA ! absolute PHASE VELOCITY frequency |
---|
[5512] | 100 | REAL ZK(KLON, NW) ! Horizontal wavenumber amplitude |
---|
| 101 | REAL ZP(KLON, NW) ! Horizontal wavenumber angle |
---|
| 102 | REAL ZO(KLON, NW) ! Absolute frequency ! |
---|
[1938] | 103 | |
---|
| 104 | ! Waves Intr. freq. at the 1/2 lev surrounding the full level |
---|
[5512] | 105 | REAL ZOM(KLON, NW), ZOP(KLON, NW) |
---|
[1938] | 106 | |
---|
| 107 | ! Wave EP-fluxes at the 2 semi levels surrounding the full level |
---|
[5512] | 108 | REAL WWM(KLON, NW), WWP(KLON, NW) |
---|
[1938] | 109 | |
---|
[5512] | 110 | REAL RUW0(KLON, NW) ! Fluxes at launching level |
---|
[1938] | 111 | |
---|
[5512] | 112 | REAL RUWP(KLON, NW), RVWP(KLON, NW) |
---|
[1938] | 113 | ! Fluxes X and Y for each waves at 1/2 Levels |
---|
| 114 | |
---|
| 115 | INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude |
---|
| 116 | |
---|
| 117 | REAL XLAUNCH ! Controle the launching altitude |
---|
| 118 | REAL XTROP ! SORT of Tropopause altitude |
---|
| 119 | REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels |
---|
| 120 | REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels |
---|
| 121 | |
---|
| 122 | REAL PRMAX ! Maximum value of PREC, and for which our linear formula |
---|
| 123 | ! for GWs parameterisation apply |
---|
| 124 | |
---|
| 125 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
---|
| 126 | |
---|
| 127 | REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ |
---|
| 128 | |
---|
| 129 | ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE |
---|
| 130 | |
---|
| 131 | REAL H0 ! Characteristic Height of the atmosphere |
---|
| 132 | REAL PR, TR ! Reference Pressure and Temperature |
---|
| 133 | |
---|
| 134 | REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude |
---|
| 135 | |
---|
| 136 | REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels |
---|
| 137 | REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels |
---|
| 138 | REAL PSEC ! Security to avoid division by 0 pressure |
---|
| 139 | REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
---|
| 140 | REAL BVSEC ! Security to avoid negative BVF |
---|
[3198] | 141 | REAL RAN_NUM_1,RAN_NUM_2,RAN_NUM_3 |
---|
[1938] | 142 | |
---|
[3198] | 143 | REAL, DIMENSION(klev+1) ::HREF |
---|
| 144 | |
---|
| 145 | |
---|
[1938] | 146 | !----------------------------------------------------------------- |
---|
| 147 | |
---|
| 148 | ! 1. INITIALISATIONS |
---|
| 149 | |
---|
| 150 | ! 1.1 Basic parameter |
---|
| 151 | |
---|
| 152 | ! Are provided from elsewhere (latent heat of vaporization, dry |
---|
| 153 | ! gaz constant for air, gravity constant, heat capacity of dry air |
---|
| 154 | ! at constant pressure, earth rotation rate, pi). |
---|
| 155 | |
---|
| 156 | ! 1.2 Tuning parameters of V14 |
---|
| 157 | |
---|
[2333] | 158 | |
---|
[2665] | 159 | RDISS = 0.5 ! Diffusion parameter |
---|
[2333] | 160 | ! ONLINE |
---|
| 161 | RUWMAX=GWD_RANDO_RUWMAX |
---|
| 162 | SAT=gwd_rando_sat |
---|
| 163 | !END ONLINE |
---|
| 164 | ! OFFLINE |
---|
| 165 | ! RUWMAX= 1.75 ! Launched flux |
---|
| 166 | ! SAT=0.25 ! Saturation parameter |
---|
| 167 | ! END OFFLINE |
---|
[1938] | 168 | |
---|
| 169 | PRMAX = 20. / 24. /3600. |
---|
| 170 | ! maximum of rain for which our theory applies (in kg/m^2/s) |
---|
| 171 | |
---|
[2333] | 172 | ! Characteristic depth of the source |
---|
| 173 | DZ = 1000. |
---|
[1938] | 174 | XLAUNCH=0.5 ! Parameter that control launching altitude |
---|
| 175 | XTROP=0.2 ! Parameter that control tropopause altitude |
---|
| 176 | DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b) |
---|
[2333] | 177 | ! OFFLINE |
---|
| 178 | ! DELTAT=DTIME |
---|
| 179 | ! END OFFLINE |
---|
[1938] | 180 | |
---|
| 181 | KMIN = 2.E-5 |
---|
| 182 | ! minimum horizontal wavenumber (inverse of the subgrid scale resolution) |
---|
| 183 | |
---|
| 184 | KMAX = 1.E-3 ! Max horizontal wavenumber |
---|
[2333] | 185 | CMAX = 30. ! Max phase speed velocity |
---|
[1938] | 186 | |
---|
| 187 | TR = 240. ! Reference Temperature |
---|
| 188 | PR = 101300. ! Reference pressure |
---|
| 189 | H0 = RD * TR / RG ! Characteristic vertical scale height |
---|
| 190 | |
---|
| 191 | BVSEC = 5.E-3 ! Security to avoid negative BVF |
---|
| 192 | PSEC = 1.E-6 ! Security to avoid division by 0 pressure |
---|
| 193 | ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ |
---|
| 194 | |
---|
[3198] | 195 | IF (1==0) THEN |
---|
[2333] | 196 | !ONLINE |
---|
| 197 | call assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), & |
---|
| 198 | size(vv, 1), size(zustr), size(zvstr), size(d_u, 1), & |
---|
| 199 | size(d_v, 1), & |
---|
| 200 | size(east_gwstress, 1), size(west_gwstress, 1) /), & |
---|
| 201 | "FLOTT_GWD_RANDO klon") |
---|
| 202 | call assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), & |
---|
| 203 | size(vv, 2), size(d_u, 2), size(d_v, 2), & |
---|
| 204 | size(east_gwstress,2), size(west_gwstress,2) /), & |
---|
| 205 | "FLOTT_GWD_RANDO klev") |
---|
| 206 | !END ONLINE |
---|
[3198] | 207 | ENDIF |
---|
[5512] | 208 | |
---|
[1938] | 209 | IF(DELTAT < DTIME)THEN |
---|
[3531] | 210 | abort_message='flott_gwd_rando: deltat < dtime!' |
---|
| 211 | CALL abort_physic(modname,abort_message,1) |
---|
[1938] | 212 | ENDIF |
---|
| 213 | |
---|
| 214 | IF (KLEV < NW) THEN |
---|
[3531] | 215 | abort_message='flott_gwd_rando: you will have problem with random numbers' |
---|
| 216 | CALL abort_physic(modname,abort_message,1) |
---|
[1938] | 217 | ENDIF |
---|
[5512] | 218 | |
---|
| 219 | CALL FAKE_CALL(BVLOW) ! to be suppress in future |
---|
| 220 | |
---|
[1938] | 221 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
---|
| 222 | |
---|
| 223 | ! Pressure and Inv of pressure |
---|
| 224 | DO LL = 2, KLEV |
---|
| 225 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
---|
| 226 | end DO |
---|
| 227 | PH(:, KLEV + 1) = 0. |
---|
| 228 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
---|
| 229 | |
---|
| 230 | ! Launching altitude |
---|
| 231 | |
---|
[3198] | 232 | !Pour revenir a la version non reproductible en changeant le nombre de process |
---|
| 233 | IF (gwd_reproductibilite_mpiomp) THEN |
---|
| 234 | ! Reprend la formule qui calcule PH en fonction de PP=play |
---|
| 235 | DO LL = 2, KLEV |
---|
| 236 | HREF(LL) = EXP((LOG(presnivs(LL)) + LOG(presnivs(LL - 1))) / 2.) |
---|
| 237 | end DO |
---|
| 238 | HREF(KLEV + 1) = 0. |
---|
| 239 | HREF(1) = 2. * presnivs(1) - HREF(2) |
---|
| 240 | ELSE |
---|
| 241 | HREF(1:KLEV)=PH(KLON/2,1:KLEV) |
---|
| 242 | ENDIF |
---|
| 243 | |
---|
[1938] | 244 | LAUNCH=0 |
---|
| 245 | LTROP =0 |
---|
| 246 | DO LL = 1, KLEV |
---|
[3198] | 247 | IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL |
---|
[1938] | 248 | ENDDO |
---|
| 249 | DO LL = 1, KLEV |
---|
[3198] | 250 | IF (HREF(LL) / HREF(1) > XTROP) LTROP = LL |
---|
[1938] | 251 | ENDDO |
---|
[3198] | 252 | !LAUNCH=22 ; LTROP=33 |
---|
| 253 | ! print*,'LAUNCH=',LAUNCH,'LTROP=',LTROP |
---|
[1938] | 254 | |
---|
| 255 | ! Log pressure vert. coordinate |
---|
| 256 | DO LL = 1, KLEV + 1 |
---|
| 257 | ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
---|
| 258 | end DO |
---|
| 259 | |
---|
| 260 | ! BV frequency |
---|
| 261 | DO LL = 2, KLEV |
---|
| 262 | ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS) |
---|
| 263 | UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & |
---|
| 264 | * RD**2 / RCPD / H0**2 + (TT(:, LL) & |
---|
| 265 | - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0 |
---|
| 266 | end DO |
---|
[2333] | 267 | BVLOW(:) = 0.5 * (TT(:, LTROP )+ TT(:, LAUNCH)) & |
---|
[1938] | 268 | * RD**2 / RCPD / H0**2 + (TT(:, LTROP ) & |
---|
| 269 | - TT(:, LAUNCH))/(ZH(:, LTROP )- ZH(:, LAUNCH)) * RD / H0 |
---|
| 270 | |
---|
| 271 | UH(:, 1) = UH(:, 2) |
---|
| 272 | UH(:, KLEV + 1) = UH(:, KLEV) |
---|
| 273 | BV(:, 1) = UH(:, 2) |
---|
| 274 | BV(:, KLEV + 1) = UH(:, KLEV) |
---|
| 275 | ! SMOOTHING THE BV HELPS |
---|
| 276 | DO LL = 2, KLEV |
---|
| 277 | BV(:, LL)=(UH(:, LL+1)+2.*UH(:, LL)+UH(:, LL-1))/4. |
---|
| 278 | end DO |
---|
| 279 | |
---|
| 280 | BV=MAX(SQRT(MAX(BV, 0.)), BVSEC) |
---|
| 281 | BVLOW=MAX(SQRT(MAX(BVLOW, 0.)), BVSEC) |
---|
| 282 | |
---|
[2333] | 283 | |
---|
[1938] | 284 | ! WINDS |
---|
| 285 | DO LL = 2, KLEV |
---|
| 286 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
---|
| 287 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
---|
| 288 | end DO |
---|
| 289 | UH(:, 1) = 0. |
---|
| 290 | VH(:, 1) = 0. |
---|
| 291 | UH(:, KLEV + 1) = UU(:, KLEV) |
---|
| 292 | VH(:, KLEV + 1) = VV(:, KLEV) |
---|
| 293 | |
---|
| 294 | ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE |
---|
| 295 | |
---|
| 296 | ! The mod functions of weird arguments are used to produce the |
---|
| 297 | ! waves characteristics in an almost stochastic way |
---|
| 298 | |
---|
[3198] | 299 | DO JW = 1, NW |
---|
[1938] | 300 | ! Angle |
---|
| 301 | DO II = 1, KLON |
---|
| 302 | ! Angle (0 or PI so far) |
---|
[3198] | 303 | RAN_NUM_1=MOD(TT(II, JW) * 10., 1.) |
---|
| 304 | RAN_NUM_2= MOD(TT(II, JW) * 100., 1.) |
---|
[5512] | 305 | ZP(II, JW) = (SIGN(1., 0.5 - RAN_NUM_1) + 1.) & |
---|
[1938] | 306 | * RPI / 2. |
---|
| 307 | ! Horizontal wavenumber amplitude |
---|
[5512] | 308 | ZK(II, JW) = KMIN + (KMAX - KMIN) *RAN_NUM_2 |
---|
[1938] | 309 | ! Horizontal phase speed |
---|
[2333] | 310 | CPHA = 0. |
---|
| 311 | DO JJ = 1, NA |
---|
[3198] | 312 | RAN_NUM_3=MOD(TT(II, JW+3*JJ)**2, 1.) |
---|
[2333] | 313 | CPHA = CPHA + & |
---|
[3198] | 314 | CMAX*2.*(RAN_NUM_3 -0.5)*SQRT(3.)/SQRT(NA*1.) |
---|
[2333] | 315 | END DO |
---|
| 316 | IF (CPHA.LT.0.) THEN |
---|
| 317 | CPHA = -1.*CPHA |
---|
[5512] | 318 | ZP(II, JW) = ZP(II, JW) + RPI |
---|
[2333] | 319 | ENDIF |
---|
[1938] | 320 | ! Absolute frequency is imposed |
---|
[5512] | 321 | ZO(II, JW) = CPHA * ZK(II, JW) |
---|
[1938] | 322 | ! Intrinsic frequency is imposed |
---|
[5512] | 323 | ZO(II, JW) = ZO(II, JW) & |
---|
| 324 | + ZK(II, JW) * COS(ZP(II, JW)) * UH(II, LAUNCH) & |
---|
| 325 | + ZK(II, JW) * SIN(ZP(II, JW)) * VH(II, LAUNCH) |
---|
[1938] | 326 | ! Momentum flux at launch lev |
---|
[5512] | 327 | RUW0(II, JW) = RUWMAX |
---|
[1938] | 328 | ENDDO |
---|
[3198] | 329 | ENDDO |
---|
[1938] | 330 | |
---|
| 331 | ! 4. COMPUTE THE FLUXES |
---|
| 332 | |
---|
| 333 | ! 4.1 Vertical velocity at launching altitude to ensure |
---|
| 334 | ! the correct value to the imposed fluxes. |
---|
| 335 | |
---|
| 336 | DO JW = 1, NW |
---|
| 337 | |
---|
| 338 | ! Evaluate intrinsic frequency at launching altitude: |
---|
[5512] | 339 | ZOP(:,JW) = ZO(:, JW) & |
---|
| 340 | - ZK(:, JW) * COS(ZP(:, JW)) * UH(:, LAUNCH) & |
---|
| 341 | - ZK(:, JW) * SIN(ZP(:, JW)) * VH(:, LAUNCH) |
---|
[1938] | 342 | |
---|
| 343 | ! VERSION WITH CONVECTIVE SOURCE |
---|
| 344 | |
---|
| 345 | ! Vertical velocity at launch level, value to ensure the |
---|
| 346 | ! imposed factor related to the convective forcing: |
---|
| 347 | ! precipitations. |
---|
| 348 | |
---|
| 349 | ! tanh limitation to values above prmax: |
---|
[5512] | 350 | WWP(:, JW) = RUW0(:, JW) & |
---|
[2333] | 351 | * (RD / RCPD / H0 * RLVTT * PRMAX * TANH(PREC(:) / PRMAX))**2 |
---|
[1938] | 352 | |
---|
| 353 | ! Factor related to the characteristics of the waves: |
---|
[5512] | 354 | WWP(:, JW) = WWP(:, JW) * ZK(:, JW)**3 / KMIN / BVLOW(:) & |
---|
| 355 | / MAX(ABS(ZOP(:, JW)), ZOISEC)**3 |
---|
[1938] | 356 | |
---|
| 357 | ! Moderation by the depth of the source (dz here): |
---|
[5512] | 358 | WWP(:, JW) = WWP(:, JW) & |
---|
| 359 | * EXP(- BVLOW(:)**2 / MAX(ABS(ZOP(:, JW)), ZOISEC)**2 * ZK(:, JW)**2 & |
---|
[1938] | 360 | * DZ**2) |
---|
| 361 | |
---|
| 362 | ! Put the stress in the right direction: |
---|
[5512] | 363 | RUWP(:, JW) = ZOP(:, JW) / MAX(ABS(ZOP(:, JW)), ZOISEC)**2 & |
---|
| 364 | * BV(:, LAUNCH) * COS(ZP(:, JW)) * WWP(:, JW)**2 |
---|
| 365 | RVWP(:, JW) = ZOP(:, JW) / MAX(ABS(ZOP(:, JW)), ZOISEC)**2 & |
---|
| 366 | * BV(:, LAUNCH) * SIN(ZP(:, JW)) * WWP(:, JW)**2 |
---|
[1938] | 367 | end DO |
---|
| 368 | |
---|
[2333] | 369 | |
---|
[1938] | 370 | ! 4.2 Uniform values below the launching altitude |
---|
| 371 | |
---|
| 372 | DO LL = 1, LAUNCH |
---|
| 373 | RUW(:, LL) = 0 |
---|
| 374 | RVW(:, LL) = 0 |
---|
| 375 | DO JW = 1, NW |
---|
[5512] | 376 | RUW(:, LL) = RUW(:, LL) + RUWP(:, JW) |
---|
| 377 | RVW(:, LL) = RVW(:, LL) + RVWP(:, JW) |
---|
[1938] | 378 | end DO |
---|
| 379 | end DO |
---|
| 380 | |
---|
| 381 | ! 4.3 Loop over altitudes, with passage from one level to the next |
---|
| 382 | ! done by i) conserving the EP flux, ii) dissipating a little, |
---|
| 383 | ! iii) testing critical levels, and vi) testing the breaking. |
---|
| 384 | |
---|
| 385 | DO LL = LAUNCH, KLEV - 1 |
---|
| 386 | ! Warning: all the physics is here (passage from one level |
---|
| 387 | ! to the next) |
---|
| 388 | DO JW = 1, NW |
---|
[5512] | 389 | ZOM(:, JW) = ZOP(:,JW) |
---|
| 390 | WWM(:, JW) = WWP(:, JW) |
---|
[1938] | 391 | ! Intrinsic Frequency |
---|
[5512] | 392 | ZOP(:, JW) = ZO(:, JW) - ZK(:, JW) * COS(ZP(:, JW)) * UH(:, LL + 1) & |
---|
| 393 | - ZK(:, JW) * SIN(ZP(:, JW)) * VH(:, LL + 1) |
---|
[1938] | 394 | |
---|
| 395 | ! No breaking (Eq.6) |
---|
| 396 | ! Dissipation (Eq. 8) |
---|
[5512] | 397 | WWP(:, JW) = WWM(:, JW) * EXP(- 4. * RDISS * PR / (PH(:, LL + 1) & |
---|
[1938] | 398 | + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
---|
[5512] | 399 | / MAX(ABS(ZOP(:, JW) + ZOM(:, JW)) / 2., ZOISEC)**4 & |
---|
| 400 | * ZK(:, JW)**3 * (ZH(:, LL + 1) - ZH(:, LL))) |
---|
[1938] | 401 | |
---|
| 402 | ! Critical levels (forced to zero if intrinsic frequency changes sign) |
---|
| 403 | ! Saturation (Eq. 12) |
---|
[5512] | 404 | WWP(:, JW) = min(WWP(:, JW), MAX(0., & |
---|
| 405 | SIGN(1., ZOP(:, JW) * ZOM(:, JW))) * ABS(ZOP(:, JW))**3 & |
---|
[2333] | 406 | / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 & |
---|
[5512] | 407 | * SAT**2 / ZK(:, JW)**4) |
---|
[1938] | 408 | end DO |
---|
| 409 | |
---|
| 410 | ! Evaluate EP-flux from Eq. 7 and give the right orientation to |
---|
| 411 | ! the stress |
---|
| 412 | |
---|
| 413 | DO JW = 1, NW |
---|
[5512] | 414 | RUWP(:, JW) = SIGN(1., ZOP(:, JW))*COS(ZP(:, JW)) * WWP(:, JW) |
---|
| 415 | RVWP(:, JW) = SIGN(1., ZOP(:, JW))*SIN(ZP(:, JW)) * WWP(:, JW) |
---|
[1938] | 416 | end DO |
---|
| 417 | |
---|
| 418 | RUW(:, LL + 1) = 0. |
---|
| 419 | RVW(:, LL + 1) = 0. |
---|
| 420 | |
---|
| 421 | DO JW = 1, NW |
---|
[5512] | 422 | RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(:, JW) |
---|
| 423 | RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(:, JW) |
---|
| 424 | EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LL)+MAX(0.,RUWP(:, JW))/REAL(NW) |
---|
| 425 | WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LL)+MIN(0.,RUWP(:, JW))/REAL(NW) |
---|
[1938] | 426 | end DO |
---|
| 427 | end DO |
---|
[2333] | 428 | ! OFFLINE ONLY |
---|
| 429 | ! PRINT *,'SAT PROFILE:' |
---|
| 430 | ! DO LL=1,KLEV |
---|
| 431 | ! PRINT *,ZH(KLON/2,LL)/1000.,SAT*(2.+TANH(ZH(KLON/2,LL)/H0-8.)) |
---|
| 432 | ! ENDDO |
---|
[1938] | 433 | |
---|
| 434 | ! 5 CALCUL DES TENDANCES: |
---|
| 435 | |
---|
| 436 | ! 5.1 Rectification des flux au sommet et dans les basses couches |
---|
| 437 | |
---|
| 438 | RUW(:, KLEV + 1) = 0. |
---|
| 439 | RVW(:, KLEV + 1) = 0. |
---|
| 440 | RUW(:, 1) = RUW(:, LAUNCH) |
---|
| 441 | RVW(:, 1) = RVW(:, LAUNCH) |
---|
| 442 | DO LL = 1, LAUNCH |
---|
| 443 | RUW(:, LL) = RUW(:, LAUNCH+1) |
---|
| 444 | RVW(:, LL) = RVW(:, LAUNCH+1) |
---|
[2333] | 445 | EAST_GWSTRESS(:, LL) = EAST_GWSTRESS(:, LAUNCH) |
---|
| 446 | WEST_GWSTRESS(:, LL) = WEST_GWSTRESS(:, LAUNCH) |
---|
[1938] | 447 | end DO |
---|
| 448 | |
---|
| 449 | ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
---|
| 450 | DO LL = 1, KLEV |
---|
| 451 | D_U(:, LL) = (1.-DTIME/DELTAT) * D_U(:, LL) + DTIME/DELTAT/REAL(NW) * & |
---|
| 452 | RG * (RUW(:, LL + 1) - RUW(:, LL)) & |
---|
| 453 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
[2333] | 454 | ! NO AR-1 FOR MERIDIONAL TENDENCIES |
---|
| 455 | D_V(:, LL) = 1./REAL(NW) * & |
---|
[1938] | 456 | RG * (RVW(:, LL + 1) - RVW(:, LL)) & |
---|
| 457 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
| 458 | ENDDO |
---|
| 459 | |
---|
| 460 | ! Cosmetic: evaluation of the cumulated stress |
---|
| 461 | ZUSTR = 0. |
---|
| 462 | ZVSTR = 0. |
---|
| 463 | DO LL = 1, KLEV |
---|
| 464 | ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
| 465 | ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
| 466 | ENDDO |
---|
| 467 | |
---|
[3198] | 468 | |
---|
[1938] | 469 | END SUBROUTINE FLOTT_GWD_RANDO |
---|
| 470 | |
---|
| 471 | end module FLOTT_GWD_rando_m |
---|