[4661] | 1 | !SFX_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier |
---|
| 2 | !SFX_LIC This is part of the SURFEX software governed by the CeCILL-C licence |
---|
| 3 | !SFX_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt |
---|
| 4 | !SFX_LIC for details. version 1. |
---|
| 5 | ! ######### |
---|
| 6 | SUBROUTINE ECUMEV6_FLUX(PZ0SEA,PTA,PSST,PQA,PQSAT,PVMOD, & |
---|
| 7 | PZREF,PSSS,PUREF,PPS,PPA,OPRECIP,OPWEBB, & |
---|
| 8 | PSFTH,PSFTQ,PUSTAR,PCD,PCDN,PCH,PCE, & |
---|
| 9 | PRI,PRESA,PRAIN,PZ0HSEA,OPERTFLUX,coeffs ) |
---|
| 10 | !############################################################################### |
---|
| 11 | !! |
---|
| 12 | !!**** *ECUMEV6_FLUX* |
---|
| 13 | !! |
---|
| 14 | !! PURPOSE |
---|
| 15 | !! ------- |
---|
| 16 | ! Calculate the surface turbulent fluxes of heat, moisture, and momentum |
---|
| 17 | ! over sea surface + corrections due to rainfall & Webb effect. |
---|
| 18 | !! |
---|
| 19 | !!** METHOD |
---|
| 20 | !! ------ |
---|
| 21 | ! The estimation of the transfer coefficients relies on the iterative |
---|
| 22 | ! computation of the scaling parameters U*/Teta*/q*. The convergence is |
---|
| 23 | ! supposed to be reached in NITERFL iterations maximum. |
---|
| 24 | ! Neutral transfer coefficients for momentum/temperature/humidity |
---|
| 25 | ! are computed as a function of the 10m-height neutral wind speed using |
---|
| 26 | ! the ECUME_V6 formulation based on the multi-campaign (POMME,FETCH,CATCH, |
---|
| 27 | ! SEMAPHORE,EQUALANT) ALBATROS dataset. |
---|
| 28 | !! |
---|
| 29 | !! EXTERNAL |
---|
| 30 | !! -------- |
---|
| 31 | !! |
---|
| 32 | !! IMPLICIT ARGUMENTS |
---|
| 33 | !! ------------------ |
---|
| 34 | !! |
---|
| 35 | !! REFERENCE |
---|
| 36 | !! --------- |
---|
| 37 | !! Fairall et al (1996), JGR, 3747-3764 |
---|
| 38 | !! Gosnell et al (1995), JGR, 437-442 |
---|
| 39 | !! Fairall et al (1996), JGR, 1295-1308 |
---|
| 40 | !! |
---|
| 41 | !! AUTHOR |
---|
| 42 | !! ------ |
---|
| 43 | !! C. Lebeaupin *Météo-France* (adapted from S. Belamari's code) |
---|
| 44 | !! |
---|
| 45 | !! MODIFICATIONS |
---|
| 46 | !! ------------- |
---|
| 47 | !! Original 15/03/2005 |
---|
| 48 | !! Modified 01/2006 C. Lebeaupin (adapted from A. Pirani's code) |
---|
| 49 | !! Modified 08/2009 B. Decharme: limitation of Ri |
---|
| 50 | !! Modified 09/2012 B. Decharme: CD correction |
---|
| 51 | !! Modified 09/2012 B. Decharme: limitation of Ri in surface_ri.F90 |
---|
| 52 | !! Modified 10/2012 P. Le Moigne: extra inputs for FLake use |
---|
| 53 | !! Modified 06/2013 B. Decharme: bug in z0 (output) computation |
---|
| 54 | !! Modified 12/2013 S. Belamari: ZRF computation updated: |
---|
| 55 | !! 1. ZP00/PPA in ZDWAT, ZLVA in ZDQSDT/ZBULB/ZRF |
---|
| 56 | !! 2. ZDWAT/ZDTMP in ZBULB/ZRF (Gosnell et al 95) |
---|
| 57 | !! 3. cool skin correction included |
---|
| 58 | !! Modified 01/2014 S. Belamari: salinity impact on latent heat of |
---|
| 59 | !! vaporization of seawater included |
---|
| 60 | !! Modified 01/2014 S. Belamari: new formulation for pure water |
---|
| 61 | !! specific heat (ZCPWA) |
---|
| 62 | !! Modified 01/2014 S. Belamari: 4 choices for PZ0SEA computation |
---|
| 63 | !! Modified 12/2015 S. Belamari: ECUME now provides parameterisations |
---|
| 64 | !! for: U10n*sqrt(CDN) instead of CDN |
---|
| 65 | !! U10n*CHN/sqrt(CDN) " CHN |
---|
| 66 | !! U10n*CEN/sqrt(CDN) " CEN |
---|
| 67 | !! Modified 01/2016 S. Belamari: New ECUME formulation |
---|
| 68 | !! |
---|
| 69 | !! To be done: |
---|
| 70 | !! include gustiness computation following Mondon & Redelsperger (1998) |
---|
| 71 | !!! |
---|
| 72 | !------------------------------------------------------------------------------- |
---|
| 73 | !! |
---|
| 74 | !! MODIFICATIONS RELATED TO SST CORRECTION COMPUTATION |
---|
| 75 | !! --------------------------------------------------- |
---|
| 76 | !! Modified 09/2013 S. Belamari: use 0.98 for the ocean emissivity |
---|
| 77 | !! following up to date satellite measurements in |
---|
| 78 | !! the 8-14 μm range (obtained values range from |
---|
| 79 | !! 0.98 to 0.99). |
---|
| 80 | !!! |
---|
| 81 | !------------------------------------------------------------------------------- |
---|
| 82 | ! |
---|
| 83 | ! 0. DECLARATIONS |
---|
| 84 | ! ------------ |
---|
| 85 | ! |
---|
| 86 | USE dimphy |
---|
| 87 | USE indice_sol_mod |
---|
| 88 | USE MODD_CSTS, ONLY : XPI, XDAY, XKARMAN, XG, XP00, XSTEFAN, XRD, XRV, & |
---|
| 89 | XCPD, XCPV, XCL, XTT, XLVTT |
---|
| 90 | |
---|
| 91 | |
---|
| 92 | !USE MODD_SURF_PAR, ONLY : XUNDEF |
---|
| 93 | !USE MODD_SURF_ATM, ONLY : XVCHRNK, XVZ0CM |
---|
| 94 | !USE MODD_REPROD_OPER, ONLY : CCHARNOCK |
---|
| 95 | ! |
---|
| 96 | !USE MODE_THERMOS |
---|
| 97 | !USE MODI_WIND_THRESHOLD |
---|
| 98 | !USE MODI_SURFACE_RI |
---|
| 99 | ! |
---|
| 100 | !USE YOMHOOK, ONLY : LHOOK, DR_HOOK |
---|
| 101 | !USE PARKIND1, ONLY : JPRB |
---|
| 102 | ! |
---|
| 103 | !USE MODI_ABOR1_SFX |
---|
| 104 | ! |
---|
| 105 | IMPLICIT NONE |
---|
| 106 | ! |
---|
| 107 | ! 0.1. Declarations of arguments |
---|
| 108 | ! |
---|
| 109 | REAL, DIMENSION(klon), INTENT(IN) :: PVMOD ! module of wind at atm level (m/s) |
---|
| 110 | REAL, DIMENSION(klon), INTENT(IN) :: PTA ! air temperature at atm level (K) |
---|
| 111 | REAL, DIMENSION(klon), INTENT(IN) :: PQA ! air spec. hum. at atm level (kg/kg) |
---|
| 112 | REAL, DIMENSION(klon), INTENT(IN) :: PQSAT ! sea surface spec. hum. (kg/kg) |
---|
| 113 | REAL, DIMENSION(klon), INTENT(IN) :: PPA ! air pressure at atm level (Pa) |
---|
| 114 | !REAL, DIMENSION(:), INTENT(IN) :: PRHOA ! air density at atm level (kg/m3) |
---|
| 115 | !REAL, DIMENSION(:), INTENT(IN) :: PEXNA ! Exner function at atm level |
---|
| 116 | REAL, DIMENSION(klon), INTENT(IN) :: PUREF ! atm level for wind (m) |
---|
| 117 | REAL, DIMENSION(klon), INTENT(IN) :: PZREF ! atm level for temp./hum. (m) |
---|
| 118 | REAL, DIMENSION(klon), INTENT(IN) :: PSSS ! Sea Surface Salinity (g/kg) |
---|
| 119 | REAL, DIMENSION(klon), INTENT(IN) :: PPS ! air pressure at sea surface (Pa) |
---|
| 120 | !REAL, DIMENSION(:), INTENT(IN) :: PEXNS ! Exner function at sea surface |
---|
| 121 | !REAL, DIMENSION(:), INTENT(IN) :: PPERTFLUX ! stochastic flux perturbation pattern |
---|
| 122 | ! for correction |
---|
| 123 | !REAL, INTENT(IN) :: PICHCE ! |
---|
| 124 | LOGICAL, INTENT(IN) :: OPRECIP ! |
---|
| 125 | LOGICAL, INTENT(IN) :: OPWEBB ! |
---|
| 126 | LOGICAL, INTENT(IN) :: OPERTFLUX |
---|
| 127 | REAL, DIMENSION(klon), INTENT(IN) :: PRAIN ! precipitation rate (kg/s/m2) |
---|
| 128 | ! |
---|
| 129 | !INTEGER, INTENT(IN) :: KZ0 |
---|
| 130 | ! |
---|
| 131 | REAL, DIMENSION(klon), INTENT(INOUT) :: PSST ! Sea Surface Temperature (K) |
---|
| 132 | REAL, DIMENSION(klon), INTENT(INOUT) :: PZ0SEA ! roughness length over sea |
---|
| 133 | REAL, DIMENSION(klon), INTENT(OUT) :: PZ0HSEA ! heat roughness length over sea |
---|
| 134 | |
---|
| 135 | ! surface fluxes : latent heat, sensible heat, friction fluxes |
---|
| 136 | REAL, DIMENSION(klon), INTENT(OUT) :: PUSTAR ! friction velocity (m/s) |
---|
| 137 | REAL, DIMENSION(klon), INTENT(OUT) :: PSFTH ! heat flux (W/m2) |
---|
| 138 | REAL, DIMENSION(klon), INTENT(OUT) :: PSFTQ ! water flux (kg/m2/s) |
---|
| 139 | |
---|
| 140 | ! diagnostics |
---|
| 141 | REAL, DIMENSION(klon), INTENT(OUT) :: PCD ! transfer coef. for momentum |
---|
| 142 | REAL, DIMENSION(klon), INTENT(OUT) :: PCH ! transfer coef. for temperature |
---|
| 143 | REAL, DIMENSION(klon), INTENT(OUT) :: PCE ! transfer coef. for humidity |
---|
| 144 | REAL, DIMENSION(klon), INTENT(OUT) :: PCDN ! neutral coef. for momentum |
---|
| 145 | REAL, DIMENSION(klon), INTENT(OUT) :: PRI ! Richardson number |
---|
| 146 | REAL, DIMENSION(klon), INTENT(OUT) :: PRESA ! aerodynamical resistance |
---|
| 147 | real, dimension(3), intent(out) :: coeffs |
---|
| 148 | |
---|
| 149 | ! 0.2. Declarations of local variables |
---|
| 150 | ! |
---|
| 151 | ! specif SB |
---|
| 152 | INTEGER, DIMENSION(SIZE(PTA)) :: JCV ! convergence index |
---|
| 153 | INTEGER, DIMENSION(SIZE(PTA)) :: JITER ! nb of iterations to converge |
---|
| 154 | !rajout |
---|
| 155 | REAL, DIMENSION(SIZE(PTA)) :: PEXNA ! Exner function at atm level |
---|
| 156 | REAL, DIMENSION(SIZE(PTA)) :: PEXNS ! Exner function at atm level |
---|
| 157 | ! |
---|
| 158 | REAL, DIMENSION(SIZE(PTA)) :: ZTAU ! momentum flux (N/m2) |
---|
| 159 | REAL, DIMENSION(SIZE(PTA)) :: ZHF ! sensible heat flux (W/m2) |
---|
| 160 | REAL, DIMENSION(SIZE(PTA)) :: ZEF ! latent heat flux (W/m2) |
---|
| 161 | REAL, DIMENSION(SIZE(PTA)) :: ZTAUR ! momentum flx due to rain (N/m2) |
---|
| 162 | REAL, DIMENSION(SIZE(PTA)) :: ZRF ! sensible flx due to rain (W/m2) |
---|
| 163 | REAL, DIMENSION(SIZE(PTA)) :: ZEFWEBB ! Webb corr. on latent flx (W/m2) |
---|
| 164 | |
---|
| 165 | REAL, DIMENSION(SIZE(PTA)) :: ZVMOD ! wind intensity at atm level (m/s) |
---|
| 166 | REAL, DIMENSION(SIZE(PTA)) :: ZQSATA ! sat.spec.hum. at atm level (kg/kg) |
---|
| 167 | REAL, DIMENSION(SIZE(PTA)) :: ZLVA ! vap.heat of pure water at atm level (J/kg) |
---|
| 168 | REAL, DIMENSION(SIZE(PTA)) :: ZLVS ! vap.heat of seawater at sea surface (J/kg) |
---|
| 169 | REAL, DIMENSION(SIZE(PTA)) :: ZCPA ! specif.heat moist air (J/kg/K) |
---|
| 170 | REAL, DIMENSION(SIZE(PTA)) :: ZVISA ! kinemat.visc. of dry air (m2/s) |
---|
| 171 | REAL, DIMENSION(SIZE(PTA)) :: ZDU ! U vert.grad. (real atm) |
---|
| 172 | REAL, DIMENSION(SIZE(PTA)) :: ZDT,ZDQ ! T,Q vert.grad. (real atm) |
---|
| 173 | REAL, DIMENSION(SIZE(PTA)) :: ZDDU ! U vert.grad. (real atm + gust) |
---|
| 174 | REAL, DIMENSION(SIZE(PTA)) :: ZDDT,ZDDQ ! T,Q vert.grad. (real atm + WL/CS) |
---|
| 175 | REAL, DIMENSION(SIZE(PTA)) :: ZUSR ! velocity scaling param. (m/s) |
---|
| 176 | ! =friction velocity |
---|
| 177 | REAL, DIMENSION(SIZE(PTA)) :: ZTSR ! temperature scaling param. (K) |
---|
| 178 | REAL, DIMENSION(SIZE(PTA)) :: ZQSR ! humidity scaling param. (kg/kg) |
---|
| 179 | REAL, DIMENSION(SIZE(PTA)) :: ZDELTAU10N,ZDELTAT10N,ZDELTAQ10N |
---|
| 180 | ! U,T,Q vert.grad. (10m, neutral atm) |
---|
| 181 | REAL, DIMENSION(SIZE(PTA)) :: ZUSR0,ZTSR0,ZQSR0 ! ITERATIVE PROCESS |
---|
| 182 | REAL, DIMENSION(SIZE(PTA)) :: ZDUSTO,ZDTSTO,ZDQSTO ! ITERATIVE PROCESS |
---|
| 183 | REAL, DIMENSION(SIZE(PTA)) :: ZPSIU,ZPSIT! PSI funct for U, T/Q (Z0 comp) |
---|
| 184 | REAL, DIMENSION(SIZE(PTA)) :: ZCHARN ! Charnock parameter (Z0 comp) |
---|
| 185 | |
---|
| 186 | REAL, DIMENSION(SIZE(PTA)) :: ZUSTAR2 ! square of friction velocity |
---|
| 187 | REAL, DIMENSION(SIZE(PTA)) :: ZAC ! aerodynamical conductance |
---|
| 188 | REAL, DIMENSION(SIZE(PTA)) :: ZDIRCOSZW ! orography slope cosine |
---|
| 189 | ! (=1 on water!) |
---|
| 190 | REAL, DIMENSION(SIZE(PTA)) :: ZPARUN,ZPARTN,ZPARQN ! neutral parameter for U,T,Q |
---|
| 191 | |
---|
| 192 | !-- rajout pour la pression saturante |
---|
| 193 | REAL, DIMENSION(SIZE(PPA)) :: ZFOES ! [OPWEBB] |
---|
| 194 | REAL, DIMENSION(SIZE(PPA)) :: ZWORK1 |
---|
| 195 | REAL, DIMENSION(SIZE(PPA)) :: ZWORK2 |
---|
| 196 | REAL, DIMENSION(SIZE(PPS)) :: ZWORK1A |
---|
| 197 | REAL, DIMENSION(SIZE(PPS)) :: ZWORK2A |
---|
| 198 | !##################### |
---|
| 199 | |
---|
| 200 | REAL, DIMENSION(0:5) :: ZCOEFU,ZCOEFT,ZCOEFQ |
---|
| 201 | |
---|
| 202 | !--------- Modif Olive ----------------- |
---|
| 203 | REAL, DIMENSION(SIZE(PTA)) :: PRHOA |
---|
| 204 | REAL, PARAMETER :: XUNDEF = 1.E+20 |
---|
| 205 | |
---|
| 206 | |
---|
| 207 | REAL :: XVCHRNK = 0.021 |
---|
| 208 | REAL :: XVZ0CM = 1.0E-5 |
---|
| 209 | !REAL :: XRIMAX |
---|
| 210 | |
---|
| 211 | CHARACTER :: CCHARNOCK = 'NEW' |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | !-------------------------------------- |
---|
| 215 | |
---|
| 216 | |
---|
| 217 | ! local constants |
---|
| 218 | LOGICAL :: OPCVFLX ! to force convergence |
---|
| 219 | INTEGER :: NITERMAX ! nb of iterations to get free convergence |
---|
| 220 | INTEGER :: NITERSUP ! nb of additional iterations if OPCVFLX=.TRUE. |
---|
| 221 | INTEGER :: NITERFL ! maximum number of iterations |
---|
| 222 | REAL :: ZETV,ZRDSRV ! thermodynamic constants |
---|
| 223 | REAL :: ZSQR3 |
---|
| 224 | REAL :: ZLMOMIN,ZLMOMAX ! min/max value of Obukhovs stability param. z/l |
---|
| 225 | REAL :: ZBTA,ZGMA ! parameters of the stability functions |
---|
| 226 | REAL :: ZDUSR0,ZDTSR0,ZDQSR0 ! maximum gap for USR/TSR/QSR between 2 steps |
---|
| 227 | REAL :: ZP00 ! [OPRECIP] - water vap. diffusiv.ref.press.(Pa) |
---|
| 228 | REAL :: ZUTU,ZUTT,ZUTQ ! U10n threshold in ECUME parameterisation |
---|
| 229 | REAL :: ZCDIRU,ZCDIRT,ZCDIRQ ! coef directeur pour fonction affine U,T,Q |
---|
| 230 | REAL :: ZORDOU,ZORDOT,ZORDOQ ! ordonnee a l'origine pour fonction affine U,T,Q |
---|
| 231 | |
---|
| 232 | INTEGER :: JJ ! for ITERATIVE PROCESS |
---|
| 233 | INTEGER :: JLON,JK |
---|
| 234 | REAL :: ZLMOU,ZLMOT ! Obukhovs param. z/l for U, T/Q |
---|
| 235 | REAL :: ZPSI_U,ZPSI_T ! PSI funct. for U, T/Q |
---|
| 236 | REAL :: Z0TSEA,Z0QSEA ! roughness length for T, Q |
---|
| 237 | REAL :: ZCHIC,ZCHIK,ZPSIC,ZPSIK,ZLOGUS10,ZLOGTS10 |
---|
| 238 | REAL :: ZTAC,ZCPWA,ZDQSDT,ZDWAT,ZDTMP,ZBULB ! [OPRECIP] |
---|
| 239 | REAL :: ZWW ! [OPWEBB] |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | INTEGER :: PREF ! reference pressure for exner function |
---|
| 243 | REAL, DIMENSION(klon) :: PQSATA ! sea surface spec. hum. (kg/kg) |
---|
| 244 | |
---|
| 245 | REAL :: qsat_seawater2,qsat_seawater |
---|
| 246 | |
---|
| 247 | INCLUDE "YOMCST.h" |
---|
| 248 | INCLUDE "clesphys.h" |
---|
| 249 | |
---|
| 250 | !REAL(KIND=JPRB) :: ZHOOK_HANDLE |
---|
| 251 | ! |
---|
| 252 | !------------------------------------------------------------------------------- |
---|
| 253 | !----------------------- Modif Olive calcul de PRHOA --------------------------- |
---|
| 254 | |
---|
| 255 | !write(*,*) "PZ0SEA ",PZ0SEA |
---|
| 256 | !write(*,*) "PTA ",PTA |
---|
| 257 | !write(*,*) "PSST ",PSST |
---|
| 258 | !write(*,*) "PQA ",PQA |
---|
| 259 | !write(*,*) "PVMOD ",PVMOD |
---|
| 260 | !write(*,*) "PZREF ",PZREF |
---|
| 261 | !write(*,*) "PUREF ",PUREF |
---|
| 262 | !write(*,*) "PPS ",PPS |
---|
| 263 | !write(*,*) "PPA ",PPA |
---|
| 264 | !write(*,*) "OPRECIP ",OPRECIP |
---|
| 265 | !write(*,*) "PZ0HSEA ",PZ0HSEA |
---|
| 266 | !write(*,*) "PRAIN ",PRAIN |
---|
| 267 | |
---|
| 268 | |
---|
| 269 | PRHOA(:) = PPS(:) / (287.1 * PTA(:) * (1.+.61*PQA(:))) |
---|
| 270 | !write(*,*) "klon klon ",klon,PTA |
---|
| 271 | !write(*,*) "PRHOA ",SIZE(PRHOA),PRHOA |
---|
| 272 | |
---|
| 273 | PREF = 100900. ! = 1000 hPa |
---|
| 274 | |
---|
| 275 | !PEXNA = (PPA/PPS)**RKAPPA |
---|
| 276 | !PEXNS = (PPS/PPS)**RKAPPA |
---|
| 277 | |
---|
| 278 | PEXNA = (PPA/PREF)**(RD/RCPD) |
---|
| 279 | PEXNS = (PPS/PREF)**(RD/RCPD) |
---|
| 280 | |
---|
| 281 | !IF (LHOOK) CALL DR_HOOK('ECUMEV6_FLUX',0,ZHOOK_HANDLE) |
---|
| 282 | ! |
---|
| 283 | ZDUSR0 = 1.E-06 |
---|
| 284 | ZDTSR0 = 1.E-06 |
---|
| 285 | ZDQSR0 = 1.E-09 |
---|
| 286 | ! |
---|
| 287 | NITERMAX = 5 |
---|
| 288 | NITERSUP = 5 |
---|
| 289 | OPCVFLX = .TRUE. |
---|
| 290 | ! |
---|
| 291 | NITERFL = NITERMAX |
---|
| 292 | IF (OPCVFLX) NITERFL = NITERMAX+NITERSUP |
---|
| 293 | ! |
---|
| 294 | ZCOEFU = (/ 1.00E-03, 3.66E-02, -1.92E-03, 2.32E-04, -7.02E-06, 6.40E-08 /) |
---|
| 295 | ZCOEFT = (/ 5.36E-03, 2.90E-02, -1.24E-03, 4.50E-04, -2.06E-05, 0.0 /) |
---|
| 296 | ZCOEFQ = (/ 1.00E-03, 3.59E-02, -2.87E-04, 0.0, 0.0, 0.0 /) |
---|
| 297 | ! |
---|
| 298 | ZUTU = 40.0 |
---|
| 299 | ZUTT = 14.4 |
---|
| 300 | ZUTQ = 10.0 |
---|
| 301 | ! |
---|
| 302 | ZCDIRU = ZCOEFU(1) + 2.0*ZCOEFU(2)*ZUTU + 3.0*ZCOEFU(3)*ZUTU**2 & |
---|
| 303 | + 4.0*ZCOEFU(4)*ZUTU**3 + 5.0*ZCOEFU(5)*ZUTU**4 |
---|
| 304 | ZCDIRT = ZCOEFT(1) + 2.0*ZCOEFT(2)*ZUTT + 3.0*ZCOEFT(3)*ZUTT**2 & |
---|
| 305 | + 4.0*ZCOEFT(4)*ZUTT**3 |
---|
| 306 | ZCDIRQ = ZCOEFQ(1) + 2.0*ZCOEFQ(2)*ZUTQ |
---|
| 307 | ! |
---|
| 308 | ZORDOU = ZCOEFU(0) + ZCOEFU(1)*ZUTU + ZCOEFU(2)*ZUTU**2 + ZCOEFU(3)*ZUTU**3 & |
---|
| 309 | + ZCOEFU(4)*ZUTU**4 + ZCOEFU(5)*ZUTU**5 |
---|
| 310 | ZORDOT = ZCOEFT(0) + ZCOEFT(1)*ZUTT + ZCOEFT(2)*ZUTT**2 + ZCOEFT(3)*ZUTT**3 & |
---|
| 311 | + ZCOEFT(4)*ZUTT**4 |
---|
| 312 | ZORDOQ = ZCOEFQ(0) + ZCOEFQ(1)*ZUTQ + ZCOEFQ(2)*ZUTQ**2 |
---|
| 313 | ! |
---|
| 314 | !------------------------------------------------------------------------------- |
---|
| 315 | ! |
---|
| 316 | ! 1. AUXILIARY CONSTANTS & ARRAY INITIALISATION BY UNDEFINED VALUES. |
---|
| 317 | ! -------------------------------------------------------------------- |
---|
| 318 | ! |
---|
| 319 | ZDIRCOSZW(:) = 1.0 |
---|
| 320 | ! |
---|
| 321 | ZETV = XRV/XRD-1.0 !~0.61 (cf Liu et al. 1979) |
---|
| 322 | ZRDSRV = XRD/XRV !~0.622 |
---|
| 323 | ZSQR3 = SQRT(3.0) |
---|
| 324 | ZLMOMIN = -200.0 |
---|
| 325 | ZLMOMAX = 0.25 |
---|
| 326 | ZBTA = 16.0 |
---|
| 327 | ZGMA = 7.0 !initially =4.7, modified to 7.0 following G. Caniaux |
---|
| 328 | ! |
---|
| 329 | ZP00 = 1013.25E+02 |
---|
| 330 | ! |
---|
| 331 | PCD = XUNDEF |
---|
| 332 | PCH = XUNDEF |
---|
| 333 | PCE = XUNDEF |
---|
| 334 | PCDN = XUNDEF |
---|
| 335 | ZUSR = XUNDEF |
---|
| 336 | ZTSR = XUNDEF |
---|
| 337 | ZQSR = XUNDEF |
---|
| 338 | ZTAU = XUNDEF |
---|
| 339 | ZHF = XUNDEF |
---|
| 340 | ZEF = XUNDEF |
---|
| 341 | ! |
---|
| 342 | PSFTH = XUNDEF |
---|
| 343 | PSFTQ = XUNDEF |
---|
| 344 | PUSTAR = XUNDEF |
---|
| 345 | PRESA = XUNDEF |
---|
| 346 | PRI = XUNDEF |
---|
| 347 | ! |
---|
| 348 | ZTAUR = 0.0 |
---|
| 349 | ZRF = 0.0 |
---|
| 350 | ZEFWEBB = 0.0 |
---|
| 351 | ! |
---|
| 352 | !------------------------------------------------------------------------------- |
---|
| 353 | ! |
---|
| 354 | ! 2. INITIALISATIONS BEFORE ITERATIVE LOOP. |
---|
| 355 | ! ------------------------------------------- |
---|
| 356 | ! |
---|
| 357 | !ZVMOD(:) = WIND_THRESHOLD(PVMOD(:),PUREF(:)) !set a minimum value to wind |
---|
| 358 | ZVMOD = MAX(PVMOD , 0.1 * MIN(10.,PUREF) ) !set a minimum value to wind |
---|
| 359 | |
---|
| 360 | write(*,*) "ZVMOD ",SIZE(ZVMOD) |
---|
| 361 | |
---|
| 362 | ! |
---|
| 363 | ! 2.0. Radiative fluxes - For warm layer & cool skin |
---|
| 364 | ! |
---|
| 365 | ! 2.0b. Warm Layer correction |
---|
| 366 | ! |
---|
| 367 | ! 2.1. Specific humidity at saturation |
---|
| 368 | ! |
---|
| 369 | WHERE(PSSS(:)>0.0.AND.PSSS(:)/=XUNDEF) |
---|
| 370 | PQSATA = QSAT_SEAWATER2 (PSST(:),PPS(:),PSSS(:)) !at sea surface |
---|
| 371 | ELSEWHERE |
---|
| 372 | PQSATA (:) = QSAT_SEAWATER (PSST(:),PPS(:)) !at sea surface |
---|
| 373 | ENDWHERE |
---|
| 374 | |
---|
| 375 | !ZQSATA(:) = QSAT(PTA(:),PPA(:)) !at atm level |
---|
| 376 | |
---|
| 377 | !### OLIVIER POUR PRESSION SATURANTE ##### |
---|
| 378 | !------------------------------------------------------------------------------- |
---|
| 379 | ! |
---|
| 380 | ZFOES = 1 !PSAT(PT(:)) |
---|
| 381 | ZFOES = 0.98*ZFOES |
---|
| 382 | ! |
---|
| 383 | ZWORK1 = ZFOES/PPS |
---|
| 384 | ZWORK2 = XRD/XRV |
---|
| 385 | |
---|
| 386 | ZWORK1A = ZFOES/PPA |
---|
| 387 | ZWORK2A = XRD/XRV |
---|
| 388 | |
---|
| 389 | !write(*,*) "ZFOES ",ZFOES |
---|
| 390 | !write(*,*) "PPS ",PPS |
---|
| 391 | !write(*,*) "ZWORK1 ",ZWORK1 |
---|
| 392 | !write(*,*) "XRD ",XRD |
---|
| 393 | !write(*,*) "XRV ",XRV |
---|
| 394 | !write(*,*) "PPA ",PPA |
---|
| 395 | !write(*,*) "ZWORK1A ",ZWORK1A |
---|
| 396 | |
---|
| 397 | write(*,*) "PQSAT : ",PQSAT |
---|
| 398 | write(*,*) "PQSATA : ",PQSATA |
---|
| 399 | |
---|
| 400 | |
---|
| 401 | ! |
---|
| 402 | !* 2. COMPUTE SATURATION HUMIDITY |
---|
| 403 | ! --------------------------- |
---|
| 404 | ! |
---|
| 405 | !PQSAT = ZWORK2*ZWORK1 / (1.+(ZWORK2-1.)*ZWORK1) |
---|
| 406 | !ZQSATA = ZWORK2A*ZWORK1A / (1.+(ZWORK2A-1.)*ZWORK1A) |
---|
| 407 | ZQSATA = QSAT_SEAWATER (PTA(:),PPA(:)) !at sea surface |
---|
| 408 | |
---|
| 409 | |
---|
| 410 | ! |
---|
| 411 | ! 2.2. Gradients at the air-sea interface |
---|
| 412 | ! |
---|
| 413 | ZDU(:) = ZVMOD(:) !one assumes u is measured / sea surface current |
---|
| 414 | ZDT(:) = PTA(:)/PEXNA(:)-PSST(:)/PEXNS(:) |
---|
| 415 | ZDQ(:) = PQA(:)-PQSATA(:) |
---|
| 416 | |
---|
| 417 | write(*,*) "PQA ",PQA(:) |
---|
| 418 | write(*,*) "PQSAT",PQSAT(:) |
---|
| 419 | write(*,*) "ZDQ",ZDQ(:) |
---|
| 420 | ! |
---|
| 421 | ! 2.3. Latent heat of vaporisation |
---|
| 422 | ! |
---|
| 423 | ZLVA(:) = XLVTT+(XCPV-XCL)*(PTA (:)-XTT) !of pure water at atm level |
---|
| 424 | ZLVS(:) = XLVTT+(XCPV-XCL)*(PSST(:)-XTT) !of pure water at sea surface |
---|
| 425 | |
---|
| 426 | |
---|
| 427 | |
---|
| 428 | write(*,*) "ZLVA ",ZLVA |
---|
| 429 | write(*,*) "ZLVS ",ZLVS |
---|
| 430 | |
---|
| 431 | |
---|
| 432 | WHERE(PSSS(:)>0.0.AND.PSSS(:)/=XUNDEF) |
---|
| 433 | ZLVS(:) = ZLVS(:)*(1.0-1.00472E-3*PSSS(:)) !of seawater at sea surface |
---|
| 434 | ENDWHERE |
---|
| 435 | ! |
---|
| 436 | ! 2.4. Specific heat of moist air (Businger 1982) |
---|
| 437 | ! |
---|
| 438 | !ZCPA(:) = XCPD*(1.0+(XCPV/XCPD-1.0)*PQA(:)) |
---|
| 439 | ZCPA(:) = XCPD |
---|
| 440 | ! |
---|
| 441 | ! 2.4b Kinematic viscosity of dry air (Andreas 1989, CRREL Rep. 89-11) |
---|
| 442 | ! |
---|
| 443 | ZVISA(:) = 1.326E-05*(1.0+6.542E-03*(PTA(:)-XTT)+8.301E-06*(PTA(:)-XTT)**2 & |
---|
| 444 | -4.84E-09*(PTA(:)-XTT)**3) |
---|
| 445 | ! |
---|
| 446 | ! 2.4c Coefficients for warm layer and/or cool skin correction |
---|
| 447 | ! |
---|
| 448 | ! 2.5. Initial guess |
---|
| 449 | ! |
---|
| 450 | ZDDU(:) = ZDU(:) |
---|
| 451 | ZDDT(:) = ZDT(:) |
---|
| 452 | ZDDQ(:) = ZDQ(:) |
---|
| 453 | ZDDU(:) = SIGN(MAX(ABS(ZDDU(:)),10.0*ZDUSR0),ZDDU(:)) |
---|
| 454 | ZDDT(:) = SIGN(MAX(ABS(ZDDT(:)),10.0*ZDTSR0),ZDDT(:)) |
---|
| 455 | ZDDQ(:) = SIGN(MAX(ABS(ZDDQ(:)),10.0*ZDQSR0),ZDDQ(:)) |
---|
| 456 | |
---|
| 457 | write(*,*) "ZDDU ",ZDDU |
---|
| 458 | write(*,*) "ZDDQ ",ZDDQ |
---|
| 459 | write(*,*) "ZDDT ",ZDDT |
---|
| 460 | |
---|
| 461 | ! |
---|
| 462 | JCV (:) = -1 |
---|
| 463 | ZUSR(:) = 0.04*ZDDU(:) |
---|
| 464 | ZTSR(:) = 0.04*ZDDT(:) |
---|
| 465 | ZQSR(:) = 0.04*ZDDQ(:) |
---|
| 466 | ZDELTAU10N(:) = ZDDU(:) |
---|
| 467 | ZDELTAT10N(:) = ZDDT(:) |
---|
| 468 | ZDELTAQ10N(:) = ZDDQ(:) |
---|
| 469 | JITER(:) = 99 |
---|
| 470 | ! |
---|
| 471 | ! In the following, we suppose that Richardson number PRI < XRIMAX |
---|
| 472 | ! If not true, Monin-Obukhov theory can't (and therefore shouldn't) be applied ! |
---|
| 473 | !------------------------------------------------------------------------------- |
---|
| 474 | ! |
---|
| 475 | ! 3. ITERATIVE LOOP TO COMPUTE U*, T*, Q*. |
---|
| 476 | ! ------------------------------------------ |
---|
| 477 | ! |
---|
| 478 | DO JJ=1,NITERFL |
---|
| 479 | DO JLON=1,SIZE(PTA) |
---|
| 480 | ! |
---|
| 481 | IF (JCV(JLON) == -1) THEN |
---|
| 482 | ZUSR0(JLON)=ZUSR(JLON) |
---|
| 483 | ZTSR0(JLON)=ZTSR(JLON) |
---|
| 484 | ZQSR0(JLON)=ZQSR(JLON) |
---|
| 485 | IF (JJ == NITERMAX+1 .OR. JJ == NITERMAX+NITERSUP) THEN |
---|
| 486 | ZDELTAU10N(JLON) = 0.5*(ZDUSTO(JLON)+ZDELTAU10N(JLON)) !forced convergence |
---|
| 487 | ZDELTAT10N(JLON) = 0.5*(ZDTSTO(JLON)+ZDELTAT10N(JLON)) |
---|
| 488 | ZDELTAQ10N(JLON) = 0.5*(ZDQSTO(JLON)+ZDELTAQ10N(JLON)) |
---|
| 489 | IF (JJ == NITERMAX+NITERSUP) JCV(JLON)=3 |
---|
| 490 | ENDIF |
---|
| 491 | ZDUSTO(JLON) = ZDELTAU10N(JLON) |
---|
| 492 | ZDTSTO(JLON) = ZDELTAT10N(JLON) |
---|
| 493 | ZDQSTO(JLON) = ZDELTAQ10N(JLON) |
---|
| 494 | ! |
---|
| 495 | ! 3.1. Neutral parameter for wind speed (ECUME_V6 formulation) |
---|
| 496 | ! |
---|
| 497 | IF (ZDELTAU10N(JLON) <= ZUTU) THEN |
---|
| 498 | ZPARUN(JLON) = ZCOEFU(0) + ZCOEFU(1)*ZDELTAU10N(JLON) & |
---|
| 499 | + ZCOEFU(2)*ZDELTAU10N(JLON)**2 & |
---|
| 500 | + ZCOEFU(3)*ZDELTAU10N(JLON)**3 & |
---|
| 501 | + ZCOEFU(4)*ZDELTAU10N(JLON)**4 & |
---|
| 502 | + ZCOEFU(5)*ZDELTAU10N(JLON)**5 |
---|
| 503 | ELSE |
---|
| 504 | ZPARUN(JLON) = ZCDIRU*(ZDELTAU10N(JLON)-ZUTU) + ZORDOU |
---|
| 505 | ENDIF |
---|
| 506 | PCDN(JLON) = (ZPARUN(JLON)/ZDELTAU10N(JLON))**2 |
---|
| 507 | ! |
---|
| 508 | ! 3.2. Neutral parameter for temperature (ECUME_V6 formulation) |
---|
| 509 | ! |
---|
| 510 | IF (ZDELTAU10N(JLON) <= ZUTT) THEN |
---|
| 511 | ZPARTN(JLON) = ZCOEFT(0) + ZCOEFT(1)*ZDELTAU10N(JLON) & |
---|
| 512 | + ZCOEFT(2)*ZDELTAU10N(JLON)**2 & |
---|
| 513 | + ZCOEFT(3)*ZDELTAU10N(JLON)**3 & |
---|
| 514 | + ZCOEFT(4)*ZDELTAU10N(JLON)**4 |
---|
| 515 | ELSE |
---|
| 516 | ZPARTN(JLON) = ZCDIRT*(ZDELTAU10N(JLON)-ZUTT) + ZORDOT |
---|
| 517 | ENDIF |
---|
| 518 | ! |
---|
| 519 | ! 3.3. Neutral parameter for humidity (ECUME_V6 formulation) |
---|
| 520 | ! |
---|
| 521 | IF (ZDELTAU10N(JLON) <= ZUTQ) THEN |
---|
| 522 | ZPARQN(JLON) = ZCOEFQ(0) + ZCOEFQ(1)*ZDELTAU10N(JLON) & |
---|
| 523 | + ZCOEFQ(2)*ZDELTAU10N(JLON)**2 |
---|
| 524 | ELSE |
---|
| 525 | ZPARQN(JLON) = ZCDIRQ*(ZDELTAU10N(JLON)-ZUTQ) + ZORDOQ |
---|
| 526 | ENDIF |
---|
| 527 | ! |
---|
| 528 | ! 3.4. Scaling parameters U*, T*, Q* |
---|
| 529 | ! |
---|
| 530 | ZUSR(JLON) = ZPARUN(JLON) |
---|
| 531 | ZTSR(JLON) = ZPARTN(JLON)*ZDELTAT10N(JLON)/ZDELTAU10N(JLON) |
---|
| 532 | ZQSR(JLON) = ZPARQN(JLON)*ZDELTAQ10N(JLON)/ZDELTAU10N(JLON) |
---|
| 533 | ! |
---|
| 534 | ! 3.4b Gustiness factor (Deardorff 1970) |
---|
| 535 | ! |
---|
| 536 | ! 3.4c Cool skin correction |
---|
| 537 | ! |
---|
| 538 | ! 3.5. Obukhovs stability param. z/l following Liu et al. (JAS, 1979) |
---|
| 539 | ! |
---|
| 540 | ! For U |
---|
| 541 | ZLMOU = PUREF(JLON)*XG*XKARMAN*(ZTSR(JLON)/PTA(JLON) & |
---|
| 542 | +ZETV*ZQSR(JLON)/(1.0+ZETV*PQA(JLON)))/ZUSR(JLON)**2 |
---|
| 543 | ! For T/Q |
---|
| 544 | ZLMOT = ZLMOU*(PZREF(JLON)/PUREF(JLON)) |
---|
| 545 | ZLMOU = MAX(MIN(ZLMOU,ZLMOMAX),ZLMOMIN) |
---|
| 546 | ZLMOT = MAX(MIN(ZLMOT,ZLMOMAX),ZLMOMIN) |
---|
| 547 | ! |
---|
| 548 | ! 3.6. Stability function psi (see Liu et al, 1979 ; Dyer and Hicks, 1970) |
---|
| 549 | ! Modified to include convective form following Fairall (unpublished) |
---|
| 550 | ! |
---|
| 551 | ! For U |
---|
| 552 | IF (ZLMOU == 0.0) THEN |
---|
| 553 | ZPSI_U = 0.0 |
---|
| 554 | ELSEIF (ZLMOU > 0.0) THEN |
---|
| 555 | ZPSI_U = -ZGMA*ZLMOU |
---|
| 556 | ELSE |
---|
| 557 | ZCHIK = (1.0-ZBTA*ZLMOU)**0.25 |
---|
| 558 | ZPSIK = 2.0*LOG((1.0+ZCHIK)/2.0) & |
---|
| 559 | +LOG((1.0+ZCHIK**2)/2.0) & |
---|
| 560 | -2.0*ATAN(ZCHIK)+0.5*XPI |
---|
| 561 | ZCHIC = (1.0-12.87*ZLMOU)**(1.0/3.0) !for very unstable conditions |
---|
| 562 | ZPSIC = 1.5*LOG((ZCHIC**2+ZCHIC+1.0)/3.0) & |
---|
| 563 | -ZSQR3*ATAN((2.0*ZCHIC+1.0)/ZSQR3) & |
---|
| 564 | +XPI/ZSQR3 |
---|
| 565 | ZPSI_U = ZPSIC+(ZPSIK-ZPSIC)/(1.0+ZLMOU**2) !match Kansas & free-conv. forms |
---|
| 566 | ENDIF |
---|
| 567 | ZPSIU(JLON) = ZPSI_U |
---|
| 568 | ! For T/Q |
---|
| 569 | IF (ZLMOT == 0.0) THEN |
---|
| 570 | ZPSI_T = 0.0 |
---|
| 571 | ELSEIF (ZLMOT > 0.0) THEN |
---|
| 572 | ZPSI_T = -ZGMA*ZLMOT |
---|
| 573 | ELSE |
---|
| 574 | ZCHIK = (1.0-ZBTA*ZLMOT)**0.25 |
---|
| 575 | ZPSIK = 2.0*LOG((1.0+ZCHIK**2)/2.0) |
---|
| 576 | ZCHIC = (1.0-12.87*ZLMOT)**(1.0/3.0) !for very unstable conditions |
---|
| 577 | ZPSIC = 1.5*LOG((ZCHIC**2+ZCHIC+1.0)/3.0) & |
---|
| 578 | -ZSQR3*ATAN((2.0*ZCHIC+1.0)/ZSQR3) & |
---|
| 579 | +XPI/ZSQR3 |
---|
| 580 | ZPSI_T = ZPSIC+(ZPSIK-ZPSIC)/(1.0+ZLMOT**2) !match Kansas & free-conv. forms |
---|
| 581 | ENDIF |
---|
| 582 | ZPSIT(JLON) = ZPSI_T |
---|
| 583 | ! |
---|
| 584 | ! 3.7. Update air-sea gradients |
---|
| 585 | ! |
---|
| 586 | ZDDU(JLON) = ZDU(JLON) |
---|
| 587 | ZDDT(JLON) = ZDT(JLON) |
---|
| 588 | ZDDQ(JLON) = ZDQ(JLON) |
---|
| 589 | ZDDU(JLON) = SIGN(MAX(ABS(ZDDU(JLON)),10.0*ZDUSR0),ZDDU(JLON)) |
---|
| 590 | ZDDT(JLON) = SIGN(MAX(ABS(ZDDT(JLON)),10.0*ZDTSR0),ZDDT(JLON)) |
---|
| 591 | ZDDQ(JLON) = SIGN(MAX(ABS(ZDDQ(JLON)),10.0*ZDQSR0),ZDDQ(JLON)) |
---|
| 592 | ZLOGUS10 = LOG(PUREF(JLON)/10.0) |
---|
| 593 | ZLOGTS10 = LOG(PZREF(JLON)/10.0) |
---|
| 594 | ZDELTAU10N(JLON) = ZDDU(JLON)-ZUSR(JLON)*(ZLOGUS10-ZPSI_U)/XKARMAN |
---|
| 595 | ZDELTAT10N(JLON) = ZDDT(JLON)-ZTSR(JLON)*(ZLOGTS10-ZPSI_T)/XKARMAN |
---|
| 596 | ZDELTAQ10N(JLON) = ZDDQ(JLON)-ZQSR(JLON)*(ZLOGTS10-ZPSI_T)/XKARMAN |
---|
| 597 | ZDELTAU10N(JLON) = SIGN(MAX(ABS(ZDELTAU10N(JLON)),10.0*ZDUSR0), & |
---|
| 598 | ZDELTAU10N(JLON)) |
---|
| 599 | ZDELTAT10N(JLON) = SIGN(MAX(ABS(ZDELTAT10N(JLON)),10.0*ZDTSR0), & |
---|
| 600 | ZDELTAT10N(JLON)) |
---|
| 601 | ZDELTAQ10N(JLON) = SIGN(MAX(ABS(ZDELTAQ10N(JLON)),10.0*ZDQSR0), & |
---|
| 602 | ZDELTAQ10N(JLON)) |
---|
| 603 | ! |
---|
| 604 | ! 3.8. Test convergence for U*, T*, Q* |
---|
| 605 | ! |
---|
| 606 | IF (ABS(ZUSR(JLON)-ZUSR0(JLON)) < ZDUSR0 .AND. & |
---|
| 607 | ABS(ZTSR(JLON)-ZTSR0(JLON)) < ZDTSR0 .AND. & |
---|
| 608 | ABS(ZQSR(JLON)-ZQSR0(JLON)) < ZDQSR0) THEN |
---|
| 609 | JCV(JLON) = 1 !free convergence |
---|
| 610 | IF (JJ >= NITERMAX+1) JCV(JLON) = 2 !leaded convergence |
---|
| 611 | ENDIF |
---|
| 612 | JITER(JLON) = JJ |
---|
| 613 | ENDIF |
---|
| 614 | ! |
---|
| 615 | ENDDO |
---|
| 616 | ENDDO |
---|
| 617 | ! |
---|
| 618 | !------------------------------------------------------------------------------- |
---|
| 619 | ! |
---|
| 620 | ! 4. COMPUTATION OF TURBULENT FLUXES AND EXCHANGE COEFFICIENTS. |
---|
| 621 | ! --------------------------------------------------------------- |
---|
| 622 | ! |
---|
| 623 | DO JLON=1,SIZE(PTA) |
---|
| 624 | ! |
---|
| 625 | ! 4.1. Surface turbulent fluxes |
---|
| 626 | ! (ATM CONV.: ZTAU<<0 ; ZHF,ZEF<0 if atm looses heat) |
---|
| 627 | ! |
---|
| 628 | ZTAU(JLON) = -PRHOA(JLON)*ZUSR(JLON)**2 |
---|
| 629 | ZHF(JLON) = -PRHOA(JLON)*ZCPA(JLON)*ZUSR(JLON)*ZTSR(JLON) |
---|
| 630 | ZEF(JLON) = -PRHOA(JLON)*ZLVS(JLON)*ZUSR(JLON)*ZQSR(JLON) |
---|
| 631 | |
---|
| 632 | write(*,*) "ZTAU = ",ZTAU(JLON) |
---|
| 633 | write(*,*) "SENS = ",ZHF(JLON) |
---|
| 634 | write(*,*) "LAT = ",ZEF(JLON) |
---|
| 635 | |
---|
| 636 | ! |
---|
| 637 | ! 4.2. Exchange coefficients PCD, PCH, PCE |
---|
| 638 | ! |
---|
| 639 | PCD(JLON) = (ZUSR(JLON)/ZDDU(JLON))**2 |
---|
| 640 | PCH(JLON) = (ZUSR(JLON)*ZTSR(JLON))/(ZDDU(JLON)*ZDDT(JLON)) |
---|
| 641 | PCE(JLON) = (ZUSR(JLON)*ZQSR(JLON))/(ZDDU(JLON)*ZDDQ(JLON)) |
---|
| 642 | |
---|
| 643 | write(*,*) "ZUSR = ",ZUSR(JLON) |
---|
| 644 | write(*,*) "ZTSR = ",ZTSR(JLON) |
---|
| 645 | write(*,*) "ZQSR = ",ZQSR(JLON) |
---|
| 646 | |
---|
| 647 | ! |
---|
| 648 | ! 4.3. Stochastic perturbation of turbulent fluxes |
---|
| 649 | ! |
---|
| 650 | ! IF( OPERTFLUX )THEN |
---|
| 651 | ! ZTAU(JLON) = ZTAU(JLON)* ( 1. + PPERTFLUX(JLON) / 2. ) |
---|
| 652 | ! ZHF (JLON) = ZHF(JLON)* ( 1. + PPERTFLUX(JLON) / 2. ) |
---|
| 653 | ! ZEF (JLON) = ZEF(JLON)* ( 1. + PPERTFLUX(JLON) / 2. ) |
---|
| 654 | ! ENDIF |
---|
| 655 | ! |
---|
| 656 | ENDDO |
---|
| 657 | ! |
---|
| 658 | !------------------------------------------------------------------------------- |
---|
| 659 | ! |
---|
| 660 | ! 5. COMPUTATION OF FLUX CORRECTIONS DUE TO RAINFALL. |
---|
| 661 | ! (ATM conv: ZRF<0 if atm. looses heat, ZTAUR<<0) |
---|
| 662 | ! ----------------------------------------------------- |
---|
| 663 | ! |
---|
| 664 | IF (OPRECIP) THEN |
---|
| 665 | DO JLON=1,SIZE(PTA) |
---|
| 666 | ! |
---|
| 667 | ! 5.1. Momentum flux due to rainfall (ZTAUR, N/m2) |
---|
| 668 | ! |
---|
| 669 | ! See pp3752 in FBR96. |
---|
| 670 | ZTAUR(JLON) = -0.85*PRAIN(JLON)*PVMOD(JLON) |
---|
| 671 | ! |
---|
| 672 | ! 5.2. Sensible heat flux due to rainfall (ZRF, W/m2) |
---|
| 673 | ! |
---|
| 674 | ! See Eq.12 in GoF95 with ZCPWA as specific heat of water at atm level (J/kg/K), |
---|
| 675 | ! ZDQSDT from Clausius-Clapeyron relation, ZDWAT as water vapor diffusivity |
---|
| 676 | ! (Eq.13-3 of Pruppacher and Klett, 1978), ZDTMP as heat diffusivity, and ZBULB |
---|
| 677 | ! as wet-bulb factor (Eq.11 in GoF95). |
---|
| 678 | ! |
---|
| 679 | ZTAC = PTA(JLON)-XTT |
---|
| 680 | ZCPWA = 4217.51 -3.65566*ZTAC +0.1381*ZTAC**2 & |
---|
| 681 | -2.8309E-03*ZTAC**3 +3.42061E-05*ZTAC**4 & |
---|
| 682 | -2.18107E-07*ZTAC**5 +5.74535E-10*ZTAC**6 |
---|
| 683 | ZDQSDT = (ZLVA(JLON)*ZQSATA(JLON))/(XRV*PTA(JLON)**2) |
---|
| 684 | ZDWAT = 2.11E-05*(ZP00/PPA(JLON))*(PTA(JLON)/XTT)**1.94 |
---|
| 685 | ZDTMP = (1.0+3.309E-03*ZTAC-1.44E-06*ZTAC**2) & |
---|
| 686 | *0.02411/(PRHOA(JLON)*ZCPA(JLON)) |
---|
| 687 | ZBULB = 1.0/(1.0+ZDQSDT*(ZLVA(JLON)*ZDWAT)/(ZCPA(JLON)*ZDTMP)) |
---|
| 688 | ZRF(JLON) = PRAIN(JLON)*ZCPWA*ZBULB*((PSST(JLON)-PTA(JLON)) & |
---|
| 689 | +(PQSATA(JLON)-PQA(JLON))*(ZLVA(JLON)*ZDWAT)/(ZCPA(JLON)*ZDTMP)) |
---|
| 690 | ! |
---|
| 691 | ENDDO |
---|
| 692 | ENDIF |
---|
| 693 | ! |
---|
| 694 | !------------------------------------------------------------------------------- |
---|
| 695 | ! |
---|
| 696 | ! 6. COMPUTATION OF WEBB CORRECTION TO LATENT HEAT FLUX (ZEFWEBB, W/m2). |
---|
| 697 | ! ------------------------------------------------------------------------ |
---|
| 698 | ! |
---|
| 699 | ! See Eq.21 and Eq.22 in FBR96. |
---|
| 700 | IF (OPWEBB) THEN |
---|
| 701 | DO JLON=1,SIZE(PTA) |
---|
| 702 | ZWW = (1.0+ZETV)*(ZUSR(JLON)*ZQSR(JLON)) & |
---|
| 703 | +(1.0+(1.0+ZETV)*PQA(JLON))*(ZUSR(JLON)*ZTSR(JLON))/PTA(JLON) |
---|
| 704 | ZEFWEBB(JLON) = -PRHOA(JLON)*ZLVS(JLON)*ZWW*PQA(JLON) |
---|
| 705 | ENDDO |
---|
| 706 | ENDIF |
---|
| 707 | ! |
---|
| 708 | !------------------------------------------------------------------------------- |
---|
| 709 | ! |
---|
| 710 | ! 7. FINAL STEP : TOTAL SURFACE FLUXES AND DERIVED DIAGNOSTICS. |
---|
| 711 | ! --------------------------------------------------------------- |
---|
| 712 | ! |
---|
| 713 | ! 7.1. Richardson number |
---|
| 714 | ! |
---|
| 715 | ! CALL SURFACE_RI(PSST,PQSAT,PEXNS,PEXNA,PTA,PQA, & |
---|
| 716 | ! PZREF,PUREF,ZDIRCOSZW,PVMOD,PRI) |
---|
| 717 | ! |
---|
| 718 | ! 7.2. Friction velocity which contains correction due to rain |
---|
| 719 | ! |
---|
| 720 | ZUSTAR2(:) = -(ZTAU(:)+ZTAUR(:))/PRHOA(:) !>>0 as ZTAU<<0 & ZTAUR<=0 |
---|
| 721 | ! |
---|
| 722 | IF (OPRECIP) THEN |
---|
| 723 | PCD(:) = ZUSTAR2(:)/ZDDU(:)**2 |
---|
| 724 | ENDIF |
---|
| 725 | ! |
---|
| 726 | PUSTAR(:) = SQRT(ZUSTAR2(:)) !>>0 |
---|
| 727 | ! |
---|
| 728 | ! 7.3. Aerodynamical conductance and resistance |
---|
| 729 | ! |
---|
| 730 | ZAC (:) = PCH(:)*ZDDU(:) |
---|
| 731 | PRESA(:) = 1.0/ZAC(:) |
---|
| 732 | ! |
---|
| 733 | ! 7.4. Total surface fluxes |
---|
| 734 | ! |
---|
| 735 | PSFTH(:) = ZHF(:)+ZRF(:) |
---|
| 736 | PSFTQ(:) = (ZEF(:)+ZEFWEBB(:))/ZLVS(:) |
---|
| 737 | ! |
---|
| 738 | ! 7.5. Charnock number |
---|
| 739 | ! |
---|
| 740 | IF (CCHARNOCK == 'OLD') THEN |
---|
| 741 | ZCHARN(:) = XVCHRNK |
---|
| 742 | ELSE !modified for moderate wind speed as in COARE3.0 |
---|
| 743 | ZCHARN(:) = MIN(0.018,MAX(0.011,0.011+(0.007/8.0)*(ZDDU(:)-10.0))) |
---|
| 744 | ENDIF |
---|
| 745 | ! |
---|
| 746 | ! 7.6. Roughness lengths Z0 and Z0H over sea |
---|
| 747 | ! |
---|
| 748 | !IF (KZ0 == 0) THEN ! ARPEGE formulation |
---|
| 749 | ! PZ0SEA (:) = (ZCHARN(:)/XG)*ZUSTAR2(:) + XVZ0CM*PCD(:)/PCDN(:) |
---|
| 750 | ! PZ0HSEA(:) = PZ0SEA (:) |
---|
| 751 | !ELSEIF (KZ0 == 1) THEN ! Smith (1988) formulation |
---|
| 752 | ! PZ0SEA (:) = (ZCHARN(:)/XG)*ZUSTAR2(:) + 0.11*ZVISA(:)/PUSTAR(:) |
---|
| 753 | ! PZ0HSEA(:) = PZ0SEA (:) |
---|
| 754 | !ELSEIF (KZ0 == 2) THEN ! Direct computation using the stability functions |
---|
| 755 | ! DO JLON=1,SIZE(PTA) |
---|
| 756 | ! PZ0SEA (JLON) = PUREF(JLON)/EXP(XKARMAN*ZDDU(JLON)/PUSTAR(JLON)+ZPSIU(JLON)) |
---|
| 757 | ! Z0TSEA = PZREF(JLON)/EXP(XKARMAN*ZDDT(JLON)/ZTSR (JLON)+ZPSIT(JLON)) |
---|
| 758 | ! Z0QSEA = PZREF(JLON)/EXP(XKARMAN*ZDDQ(JLON)/ZQSR (JLON)+ZPSIT(JLON)) |
---|
| 759 | ! PZ0HSEA(JLON) = 0.5*(Z0TSEA+Z0QSEA) |
---|
| 760 | ! ENDDO |
---|
| 761 | !ENDIF |
---|
| 762 | |
---|
| 763 | write(*,*) "JLON ",JLON |
---|
| 764 | write(*,*) "PTA ",klon,PTA |
---|
| 765 | write(*,*) "PCD ",SIZE(PCD),PCD |
---|
| 766 | write(*,*) "PCQ ",SIZE(PCE),PCE |
---|
| 767 | write(*,*) "PCH ",SIZE(PCH),PCH |
---|
| 768 | |
---|
| 769 | coeffs = [PCD,& |
---|
| 770 | PCE,& |
---|
| 771 | PCH] |
---|
| 772 | ! |
---|
| 773 | ! |
---|
| 774 | !IF (LHOOK) CALL DR_HOOK('ECUMEV6_FLUX',1,ZHOOK_HANDLE) |
---|
| 775 | ! |
---|
| 776 | !------------------------------------------------------------------------------- |
---|
| 777 | END SUBROUTINE ECUMEV6_FLUX |
---|