1 | ! radsurf_intermediate.f90 - Derived type for intermediate radiative properties of surface |
---|
2 | ! |
---|
3 | ! (C) Copyright 2017- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | |
---|
16 | module radsurf_intermediate |
---|
17 | |
---|
18 | use parkind1, only : jpim, jprb |
---|
19 | |
---|
20 | implicit none |
---|
21 | |
---|
22 | public |
---|
23 | |
---|
24 | !--------------------------------------------------------------------- |
---|
25 | ! Derived type storing a description of radiative properties at the |
---|
26 | ! level of individual facets |
---|
27 | type surface_intermediate_type |
---|
28 | |
---|
29 | ! Surface "facet" properties, dimensioned (ng, nfacet, istartcol:iendcol) |
---|
30 | |
---|
31 | ! Longwave blackbody emission (W m-2) and emissivity from facets |
---|
32 | real(kind=jprb), allocatable, dimension(:,:,:) :: planck_facet |
---|
33 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_emissivity |
---|
34 | ! Shortwave direct and diffuse albedo |
---|
35 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_albedo_direct |
---|
36 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_albedo_diffuse |
---|
37 | |
---|
38 | ! Longwave blackbody emission (W m-2) from regions (volumes |
---|
39 | ! e.g. vegetation and urban canopies) |
---|
40 | real(kind=jprb), allocatable, dimension(:,:,:) :: planck_region |
---|
41 | |
---|
42 | ! Volumetric "region" properties of the canopy, e.g. vegetation or |
---|
43 | ! the space between buildings, dimensioned |
---|
44 | ! (ng,nregion,istartcol:iendcol) |
---|
45 | |
---|
46 | ! Shortwave reflectance and transmittance to diffuse radiation |
---|
47 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_ref_dif |
---|
48 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_tra_dif |
---|
49 | ! Shortwave reflectance and transmittance to direct radiation, |
---|
50 | ! where the transmittance has separate direct-to-diffuse |
---|
51 | ! transmittance (including scattering) and direct-to-direct |
---|
52 | ! transmittance (without scattering) |
---|
53 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_ref_dir |
---|
54 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_tra_dir_dif |
---|
55 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_tra_dir_dir |
---|
56 | ! Fraction of direct radiation at canyon top that is absorbed by |
---|
57 | ! the wall and the atmosphere |
---|
58 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_wall_abs_dir |
---|
59 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_air_abs_dir |
---|
60 | ! Ratio of diffuse absorption in a street canyon by the wall |
---|
61 | ! (rather than the air or vegetation in the canyon) |
---|
62 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_wall_abs_frac_dif |
---|
63 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_wall_abs_frac |
---|
64 | ! Shortwave direct and diffuse albedo at the top of a region |
---|
65 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_albedo_direct_reg |
---|
66 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_albedo_diffuse_reg |
---|
67 | ! Longwave reflectance, transmittance and source (note that source |
---|
68 | ! is the same up and down because the canopy temperature is |
---|
69 | ! assumed constant with height) |
---|
70 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_reflectance |
---|
71 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_transmittance |
---|
72 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_source |
---|
73 | ! Longwave emission and emissivity passed to the atmosphere scheme |
---|
74 | ! from the top of a region |
---|
75 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_emissivity_region |
---|
76 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_emission_region |
---|
77 | ! Total emission from wall and the air in an urban canopy, needed |
---|
78 | ! at the final partitioning stage to determine net fluxes into |
---|
79 | ! wall and air |
---|
80 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_total_wall_emission |
---|
81 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_total_canopy_emission |
---|
82 | |
---|
83 | ! Number of bands in which calculations are to be performed (can |
---|
84 | ! match either the spectral resolution of the atmosphere or that |
---|
85 | ! of the surface data) |
---|
86 | integer :: nswbands, nlwbands |
---|
87 | |
---|
88 | ! Do we represent gas radiative transfer in street/vegetation |
---|
89 | ! canopies? |
---|
90 | !logical :: do_canopy_gases_sw = .false. |
---|
91 | !logical :: do_canopy_gases_lw = .false. |
---|
92 | |
---|
93 | ! Do we use the full spectrum? |
---|
94 | !logical :: use_full_spectrum_sw = .false. |
---|
95 | !logical :: use_full_spectrum_lw = .true. |
---|
96 | |
---|
97 | contains |
---|
98 | |
---|
99 | procedure :: allocate => allocate_surface_intermediate |
---|
100 | procedure :: deallocate => deallocate_surface_intermediate |
---|
101 | procedure :: calc_boundary_conditions_sw |
---|
102 | procedure :: calc_boundary_conditions_lw |
---|
103 | procedure :: calc_boundary_conditions |
---|
104 | procedure :: partition_fluxes |
---|
105 | |
---|
106 | end type surface_intermediate_type |
---|
107 | |
---|
108 | contains |
---|
109 | |
---|
110 | !--------------------------------------------------------------------- |
---|
111 | subroutine allocate_surface_intermediate(this, istartcol, iendcol, & |
---|
112 | & config, surface) |
---|
113 | |
---|
114 | use radiation_config, only : config_type |
---|
115 | use radsurf_properties, only : surface_type |
---|
116 | |
---|
117 | class(surface_intermediate_type), intent(inout) :: this |
---|
118 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
119 | type(config_type), intent(in) :: config |
---|
120 | type(surface_type), intent(in) :: surface |
---|
121 | |
---|
122 | call this%deallocate |
---|
123 | |
---|
124 | !this%use_full_spectrum_sw = config%use_canopy_full_spectrum_sw |
---|
125 | !this%use_full_spectrum_lw = config%use_canopy_full_spectrum_lw |
---|
126 | ! Assume that canopy gases will only be used if we do surface |
---|
127 | ! calculations at the full spectral resolution |
---|
128 | !this%do_canopy_gases_sw = config%do_canopy_gases_sw |
---|
129 | !this%do_canopy_gases_lw = config%do_canopy_gases_lw |
---|
130 | |
---|
131 | if (config%use_canopy_full_spectrum_sw) then |
---|
132 | ! Calculations will be performed at the same spectral resolution |
---|
133 | ! as in the atmosphere |
---|
134 | this%nswbands = config%n_g_sw |
---|
135 | else |
---|
136 | ! Calculations will be performed at the same spectral resolution |
---|
137 | ! as the input surface-property data |
---|
138 | this%nswbands = surface%nalbedobands |
---|
139 | end if |
---|
140 | |
---|
141 | if (config%use_canopy_full_spectrum_lw) then |
---|
142 | ! Calculations will be performed at the same spectral resolution |
---|
143 | ! as in the atmosphere |
---|
144 | this%nlwbands = config%n_g_lw |
---|
145 | else |
---|
146 | ! Calculations will be performed at the same spectral resolution |
---|
147 | ! as the input surface-property data |
---|
148 | this%nlwbands = surface%nemissbands |
---|
149 | end if |
---|
150 | |
---|
151 | if (config%do_lw) then |
---|
152 | allocate(this%planck_facet (this%nlwbands,surface%nfacet,istartcol:iendcol)) |
---|
153 | allocate(this%lw_emissivity (this%nlwbands,surface%nfacet,istartcol:iendcol)) |
---|
154 | end if |
---|
155 | if (config%do_sw) then |
---|
156 | allocate(this%sw_albedo_direct (this%nswbands,surface%nfacet,istartcol:iendcol)) |
---|
157 | allocate(this%sw_albedo_diffuse(this%nswbands,surface%nfacet,istartcol:iendcol)) |
---|
158 | end if |
---|
159 | |
---|
160 | if (surface%nregion > 0) then |
---|
161 | if (config%do_lw) then |
---|
162 | allocate(this%planck_region (this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
163 | allocate(this%lw_reflectance (this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
164 | allocate(this%lw_transmittance(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
165 | allocate(this%lw_source (this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
166 | allocate(this%lw_emission_region(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
167 | allocate(this%lw_emissivity_region(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
168 | allocate(this%lw_wall_abs_frac(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
169 | allocate(this%lw_total_wall_emission(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
170 | allocate(this%lw_total_canopy_emission(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
171 | end if |
---|
172 | if (config%do_sw) then |
---|
173 | allocate(this%sw_ref_dif (this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
174 | allocate(this%sw_tra_dif (this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
175 | allocate(this%sw_ref_dir (this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
176 | allocate(this%sw_tra_dir_dif(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
177 | allocate(this%sw_tra_dir_dir(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
178 | allocate(this%sw_wall_abs_dir(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
179 | allocate(this%sw_air_abs_dir(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
180 | allocate(this%sw_wall_abs_frac_dif(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
181 | allocate(this%sw_albedo_diffuse_reg(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
182 | allocate(this%sw_albedo_direct_reg(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
183 | end if |
---|
184 | end if |
---|
185 | |
---|
186 | end subroutine allocate_surface_intermediate |
---|
187 | |
---|
188 | !--------------------------------------------------------------------- |
---|
189 | subroutine deallocate_surface_intermediate(this) |
---|
190 | |
---|
191 | class(surface_intermediate_type), intent(inout) :: this |
---|
192 | |
---|
193 | if (allocated(this%planck_facet)) then |
---|
194 | deallocate(this%planck_facet) |
---|
195 | end if |
---|
196 | if (allocated(this%planck_region)) then |
---|
197 | deallocate(this%planck_region) |
---|
198 | end if |
---|
199 | if (allocated(this%lw_emissivity)) then |
---|
200 | deallocate(this%lw_emissivity) |
---|
201 | end if |
---|
202 | if (allocated(this%sw_albedo_direct)) then |
---|
203 | deallocate(this%sw_albedo_direct) |
---|
204 | end if |
---|
205 | if (allocated(this%sw_albedo_diffuse)) then |
---|
206 | deallocate(this%sw_albedo_diffuse) |
---|
207 | end if |
---|
208 | |
---|
209 | if (allocated(this%lw_reflectance)) then |
---|
210 | deallocate(this%lw_reflectance) |
---|
211 | end if |
---|
212 | if (allocated(this%lw_transmittance)) then |
---|
213 | deallocate(this%lw_transmittance) |
---|
214 | end if |
---|
215 | if (allocated(this%lw_source)) then |
---|
216 | deallocate(this%lw_source) |
---|
217 | end if |
---|
218 | if (allocated(this%lw_emissivity_region)) then |
---|
219 | deallocate(this%lw_emissivity_region) |
---|
220 | end if |
---|
221 | if (allocated(this%lw_emission_region)) then |
---|
222 | deallocate(this%lw_emission_region) |
---|
223 | end if |
---|
224 | if (allocated(this%lw_wall_abs_frac)) then |
---|
225 | deallocate(this%lw_wall_abs_frac) |
---|
226 | end if |
---|
227 | if (allocated(this%lw_total_wall_emission)) then |
---|
228 | deallocate(this%lw_total_wall_emission) |
---|
229 | end if |
---|
230 | if (allocated(this%lw_total_canopy_emission)) then |
---|
231 | deallocate(this%lw_total_canopy_emission) |
---|
232 | end if |
---|
233 | |
---|
234 | if (allocated(this%sw_ref_dif)) then |
---|
235 | deallocate(this%sw_ref_dif) |
---|
236 | end if |
---|
237 | if (allocated(this%sw_tra_dif)) then |
---|
238 | deallocate(this%sw_tra_dif) |
---|
239 | end if |
---|
240 | if (allocated(this%sw_ref_dir)) then |
---|
241 | deallocate(this%sw_ref_dir) |
---|
242 | end if |
---|
243 | if (allocated(this%sw_tra_dir_dif)) then |
---|
244 | deallocate(this%sw_tra_dir_dif) |
---|
245 | end if |
---|
246 | if (allocated(this%sw_tra_dir_dir)) then |
---|
247 | deallocate(this%sw_tra_dir_dir) |
---|
248 | end if |
---|
249 | if (allocated(this%sw_wall_abs_frac_dif)) then |
---|
250 | deallocate(this%sw_wall_abs_frac_dif) |
---|
251 | end if |
---|
252 | if (allocated(this%sw_wall_abs_dir)) then |
---|
253 | deallocate(this%sw_wall_abs_dir) |
---|
254 | end if |
---|
255 | if (allocated(this%sw_air_abs_dir)) then |
---|
256 | deallocate(this%sw_air_abs_dir) |
---|
257 | end if |
---|
258 | if (allocated(this%sw_albedo_direct_reg)) then |
---|
259 | deallocate(this%sw_albedo_direct_reg) |
---|
260 | end if |
---|
261 | if (allocated(this%sw_albedo_diffuse_reg)) then |
---|
262 | deallocate(this%sw_albedo_diffuse_reg) |
---|
263 | end if |
---|
264 | |
---|
265 | end subroutine deallocate_surface_intermediate |
---|
266 | |
---|
267 | |
---|
268 | |
---|
269 | !--------------------------------------------------------------------- |
---|
270 | ! Use the detailed physical properties of the surface in "surface", |
---|
271 | ! and optionally the atmospheric optical properties of the lowest |
---|
272 | ! atmospheric level, to work out the shortwave direct/diffuse albedo |
---|
273 | ! that is presented to the rest of the radiation scheme, and stored |
---|
274 | ! in "single_level". Also, store the necessary information so that |
---|
275 | ! after the atmospheric radiation scheme has been run, the net |
---|
276 | ! fluxes at each. |
---|
277 | subroutine calc_boundary_conditions_sw(this, istartcol, iendcol, & ! in |
---|
278 | & config, surface, & ! in |
---|
279 | & single_level, & ! out |
---|
280 | & ext_sw_air, ssa_sw_air, g_sw_air) ! in, optional |
---|
281 | |
---|
282 | use yomhook, only : lhook, dr_hook |
---|
283 | |
---|
284 | use radiation_io, only : nulerr, radiation_abort |
---|
285 | use radiation_config, only : config_type |
---|
286 | use radiation_single_level, only : single_level_type |
---|
287 | use radsurf_properties, only : surface_type, ITileFlat,ITileVegetation,ITileUrban3D |
---|
288 | use radiation_two_stream, only : calc_two_stream_gammas_sw, & |
---|
289 | & calc_reflectance_transmittance_sw, & |
---|
290 | & calc_reflectance_transmittance_z_sw |
---|
291 | |
---|
292 | use radiation_constants, only: Pi, GasConstantDryAir, AccelDueToGravity |
---|
293 | |
---|
294 | class(surface_intermediate_type), intent(inout) :: this |
---|
295 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
296 | type(config_type), intent(in) :: config |
---|
297 | type(surface_type), intent(in) :: surface |
---|
298 | type(single_level_type), intent(inout) :: single_level |
---|
299 | |
---|
300 | ! Input properties of the air in the lowest model level: |
---|
301 | ! extinction coefficient (m-1), single-scattering albedo and |
---|
302 | ! asymmetry factor |
---|
303 | real(kind=jprb), intent(in), dimension(config%n_g_sw,istartcol:iendcol), optional & |
---|
304 | & :: ext_sw_air, ssa_sw_air, g_sw_air |
---|
305 | |
---|
306 | ! Shortwave region properties |
---|
307 | real(kind=jprb), dimension(this%nswbands) :: od_sw_region, ssa_sw_region, g_sw_region |
---|
308 | ! Extinction coefficient better for urban areas |
---|
309 | real(kind=jprb), dimension(this%nswbands) :: ext_sw_region |
---|
310 | ! Optical depth of air |
---|
311 | real(kind=jprb), dimension(this%nswbands) :: od_sw_air |
---|
312 | |
---|
313 | real(kind=jprb) :: tile_fraction, cos_sza |
---|
314 | |
---|
315 | ! Exchange coefficients (m-1) for direct and diffuse radiation |
---|
316 | ! into building walls |
---|
317 | real(kind=jprb) :: fdiff, fdir |
---|
318 | |
---|
319 | ! One minus the building fraction |
---|
320 | real(kind=jprb) :: canyon_fraction |
---|
321 | |
---|
322 | ! Tangent of solar zenith angle |
---|
323 | real(kind=jprb) :: tan_sza |
---|
324 | |
---|
325 | ! Two-stream coefficients |
---|
326 | real(jprb), dimension(this%nswbands) :: gamma1_sw, gamma2_sw |
---|
327 | real(jprb), dimension(this%nswbands) :: gamma0_sw, gamma3_sw, gamma4_sw |
---|
328 | |
---|
329 | real(jprb), dimension(this%nswbands) :: inv_denominator_sw |
---|
330 | |
---|
331 | integer(kind=jpim) :: jcol,jtile,iregion |
---|
332 | |
---|
333 | ! Mapping from albedo bands to reordered shortwave g points |
---|
334 | integer(kind=jpim) :: i_albedo_from_g(config%n_g_sw) |
---|
335 | |
---|
336 | ! Indices to different facets |
---|
337 | integer(kind=jpim) :: iground, iwall, iroof |
---|
338 | |
---|
339 | real(jprb) :: hook_handle |
---|
340 | |
---|
341 | if (lhook) call dr_hook('radsurf_intermediate:calc_boundary_conditions_sw',0,hook_handle) |
---|
342 | |
---|
343 | if (present(ext_sw_air)) then |
---|
344 | if (.not. present(ssa_sw_air) .or. .not. present(g_sw_air)) then |
---|
345 | write(nulerr,'(a)') '*** Error: if ext_sw_air is provided then ssa_sw_air and g_sw_air must also be provided' |
---|
346 | call radiation_abort() |
---|
347 | end if |
---|
348 | end if |
---|
349 | |
---|
350 | if (size(single_level%sw_albedo,2) /= this%nswbands) then |
---|
351 | write(nulerr,'(a,i0,a,i0)') '*** Error: single-level albedo has ', & |
---|
352 | & size(single_level%sw_albedo,2), ' bands, needs ', this%nswbands |
---|
353 | call radiation_abort() |
---|
354 | end if |
---|
355 | |
---|
356 | if (config%use_canopy_full_spectrum_sw) then |
---|
357 | ! Put shortwave albedo on g-point grid and permute |
---|
358 | i_albedo_from_g = config%i_albedo_from_band_sw(config%i_band_from_reordered_g_sw) |
---|
359 | do jcol = istartcol,iendcol |
---|
360 | this%sw_albedo_diffuse(:,:,jcol) = surface%sw_albedo(jcol,i_albedo_from_g,:) |
---|
361 | if (allocated(surface%sw_albedo_direct)) then |
---|
362 | this%sw_albedo_direct(:,:,jcol) = surface%sw_albedo_direct(jcol,i_albedo_from_g,:) |
---|
363 | else |
---|
364 | this%sw_albedo_direct = this%sw_albedo_diffuse |
---|
365 | end if |
---|
366 | end do |
---|
367 | else |
---|
368 | do jcol = istartcol,iendcol |
---|
369 | ! No change to spectral resolution: simply permute |
---|
370 | this%sw_albedo_diffuse(:,:,jcol) = surface%sw_albedo(jcol,:,:) |
---|
371 | if (allocated(surface%sw_albedo_direct)) then |
---|
372 | this%sw_albedo_direct(:,:,jcol) = surface%sw_albedo_direct(jcol,:,:) |
---|
373 | else |
---|
374 | this%sw_albedo_direct = this%sw_albedo_diffuse |
---|
375 | end if |
---|
376 | end do |
---|
377 | end if |
---|
378 | |
---|
379 | if (surface%is_simple) then |
---|
380 | ! We have a "traditional" representation: one flat tile |
---|
381 | single_level%sw_albedo_direct(istartcol:iendcol,:) & |
---|
382 | & = transpose(this%sw_albedo_direct(:,1,istartcol:iendcol)) |
---|
383 | single_level%sw_albedo (istartcol:iendcol,:) & |
---|
384 | & = transpose(this%sw_albedo_diffuse(:,1,istartcol:iendcol)) |
---|
385 | else |
---|
386 | ! More complex description of surface |
---|
387 | |
---|
388 | ! Firstly initialize outputs to zero |
---|
389 | single_level%sw_albedo_direct(istartcol:iendcol,:) = 0.0_jprb |
---|
390 | single_level%sw_albedo (istartcol:iendcol,:) = 0.0_jprb |
---|
391 | |
---|
392 | ! Loop over column and tile |
---|
393 | do jcol = istartcol,iendcol |
---|
394 | cos_sza = single_level%cos_sza(jcol) |
---|
395 | |
---|
396 | do jtile = 1,surface%ntile |
---|
397 | tile_fraction = surface%tile_fraction(jcol,jtile) |
---|
398 | |
---|
399 | if (tile_fraction > 0.0_jprb) then |
---|
400 | |
---|
401 | select case (surface%i_representation(jtile)) |
---|
402 | case (ITileFlat) |
---|
403 | ! SIMPLE FLAT TILE |
---|
404 | |
---|
405 | ! Add the contribution from this simple flat tile to the |
---|
406 | ! accumulated values for the column |
---|
407 | iground = surface%i_ground_facet(jcol,jtile) |
---|
408 | single_level%sw_albedo_direct(jcol,:) = single_level%sw_albedo_direct(jcol,:) & |
---|
409 | & + tile_fraction * this%sw_albedo_direct(:,iground,jcol) |
---|
410 | single_level%sw_albedo(jcol,:) = single_level%sw_albedo(jcol,:) & |
---|
411 | & + tile_fraction * this%sw_albedo_diffuse(:,iground,jcol) |
---|
412 | |
---|
413 | case (ITileVegetation) |
---|
414 | ! HORIZONTALLY HOMOGENEOUS VEGETATION CANOPY WITH |
---|
415 | ! SELLERS-LIKE FORMULATION |
---|
416 | |
---|
417 | iground = surface%i_ground_facet(jcol,jtile) |
---|
418 | iregion = surface%i_region_1(jcol,jtile) |
---|
419 | |
---|
420 | ! Shortwave calculation |
---|
421 | if (present(ext_sw_air)) then |
---|
422 | od_sw_air = surface%canopy_depth(jcol,jtile)*ext_sw_air(:,jcol) |
---|
423 | od_sw_region = od_sw_air + surface%vegetation_optical_depth(jcol,jtile) |
---|
424 | ssa_sw_region= (ssa_sw_air(:,jcol)*od_sw_air & |
---|
425 | & + surface%vegetation_optical_depth(jcol,jtile) & |
---|
426 | & * surface%vegetation_sw_albedo(jcol,:,jtile)) & |
---|
427 | & / od_sw_region |
---|
428 | ! Assume asymmetry factor of vegetation is zero |
---|
429 | g_sw_region = g_sw_air(:,jcol)*ssa_sw_air(:,jcol)*od_sw_air & |
---|
430 | & / (ssa_sw_region*od_sw_region) |
---|
431 | else |
---|
432 | od_sw_region = surface%vegetation_optical_depth(jcol,jtile) |
---|
433 | ssa_sw_region= surface%vegetation_sw_albedo(jcol,:,jtile) |
---|
434 | g_sw_region = 0.0_jprb |
---|
435 | end if |
---|
436 | call calc_two_stream_gammas_sw(this%nswbands, & |
---|
437 | & cos_sza, ssa_sw_region, g_sw_region, & |
---|
438 | & gamma1_sw, gamma2_sw, gamma3_sw) |
---|
439 | call calc_reflectance_transmittance_sw(this%nswbands, & |
---|
440 | & cos_sza, od_sw_region, ssa_sw_region, & |
---|
441 | & gamma1_sw, gamma2_sw, gamma3_sw, & |
---|
442 | & this%sw_ref_dif(:,iregion,jcol), this%sw_tra_dif(:,iregion,jcol), & |
---|
443 | & this%sw_ref_dir(:,iregion,jcol), this%sw_tra_dir_dif(:,iregion,jcol), & |
---|
444 | & this%sw_tra_dir_dir(:,iregion,jcol)) |
---|
445 | |
---|
446 | ! Shortwave adding method for a single layer |
---|
447 | inv_denominator_sw(:) = 1.0_jprb & |
---|
448 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iground,jcol) & |
---|
449 | & *this%sw_ref_dif(:,iregion,jcol)) |
---|
450 | this%sw_albedo_diffuse_reg(:,iregion,jcol) = this%sw_ref_dif(:,iregion,jcol) & |
---|
451 | & + this%sw_tra_dif(:,iregion,jcol)**2 & |
---|
452 | & * this%sw_albedo_diffuse(:,iground,jcol) * inv_denominator_sw(:) |
---|
453 | this%sw_albedo_direct_reg(:,iregion,jcol) = this%sw_ref_dir(:,iregion,jcol) & |
---|
454 | & + (this%sw_tra_dir_dir(:,iregion,jcol)*this%sw_albedo_direct (:,iground,jcol) & |
---|
455 | & +this%sw_tra_dir_dif(:,iregion,jcol)*this%sw_albedo_diffuse(:,iground,jcol)) & |
---|
456 | & * this%sw_tra_dif(:,iregion,jcol) * inv_denominator_sw(:) |
---|
457 | single_level%sw_albedo(jcol,:) = single_level%sw_albedo(jcol,:) & |
---|
458 | & + tile_fraction * this%sw_albedo_diffuse_reg(:,iregion,jcol) |
---|
459 | single_level%sw_albedo_direct(jcol,:) = single_level%sw_albedo_direct(jcol,:) & |
---|
460 | & + tile_fraction * this%sw_albedo_direct_reg(:,iregion,jcol) |
---|
461 | |
---|
462 | case (ITileUrban3D) |
---|
463 | ! URBAN CANOPY WITH NO VEGETATION, TREATED USING |
---|
464 | ! SPARTACUS METHODOLOGY |
---|
465 | |
---|
466 | iground = surface%i_ground_facet(jcol,jtile) |
---|
467 | iwall = surface%i_wall_facet(jcol,jtile) |
---|
468 | iroof = surface%i_roof_facet(jcol,jtile) |
---|
469 | iregion = surface%i_region_1(jcol,jtile) |
---|
470 | |
---|
471 | canyon_fraction = 1.0_jprb - surface%building_fraction(jcol,jtile) |
---|
472 | |
---|
473 | fdiff = 0.5_jprb * surface%building_normalized_perimeter(jcol,jtile) / canyon_fraction |
---|
474 | |
---|
475 | tan_sza = sqrt(1.0_jprb / (cos_sza*cos_sza) - 1.0_jprb) |
---|
476 | fdir = surface%building_normalized_perimeter(jcol,jtile) * tan_sza / (Pi * canyon_fraction) |
---|
477 | |
---|
478 | if (present(ext_sw_air)) then |
---|
479 | ext_sw_region = ext_sw_air(:,jcol) |
---|
480 | ssa_sw_region = ssa_sw_air(:,jcol) |
---|
481 | g_sw_region = g_sw_air(:,jcol) |
---|
482 | else |
---|
483 | ext_sw_region = 0.0_jprb |
---|
484 | ssa_sw_region = 0.0_jprb |
---|
485 | g_sw_region = 0.0_jprb |
---|
486 | end if |
---|
487 | |
---|
488 | ! Get gammas for atmosphere only |
---|
489 | call calc_two_stream_gammas_sw(this%nswbands, & |
---|
490 | & cos_sza, ssa_sw_region, g_sw_region, & |
---|
491 | & gamma1_sw, gamma2_sw, gamma3_sw) |
---|
492 | |
---|
493 | ! At this point gamma1_sw-gamma2_sw is the rate of |
---|
494 | ! absorption per unit optical depth of the air in the |
---|
495 | ! canyon |
---|
496 | this%sw_wall_abs_frac_dif(:,iregion,jcol) & |
---|
497 | & = fdiff * (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol)) |
---|
498 | this%sw_wall_abs_frac_dif(:,iregion,jcol) = this%sw_wall_abs_frac_dif(:,iregion,jcol) & |
---|
499 | & / max(1.0e-8_jprb,ext_sw_region*(gamma1_sw-gamma2_sw) & |
---|
500 | & + this%sw_wall_abs_frac_dif(:,iregion,jcol)) |
---|
501 | |
---|
502 | gamma4_sw = 1.0_jprb - gamma3_sw |
---|
503 | gamma0_sw = ext_sw_region / cos_sza + fdir |
---|
504 | gamma1_sw = ext_sw_region * gamma1_sw & |
---|
505 | & + fdiff * (1.0_jprb - 0.5_jprb*this%sw_albedo_diffuse(:,iwall,jcol)) |
---|
506 | gamma2_sw = ext_sw_region * gamma2_sw & |
---|
507 | & + fdiff * 0.5_jprb*this%sw_albedo_diffuse(:,iwall,jcol) |
---|
508 | gamma3_sw = ext_sw_region * ssa_sw_region * gamma3_sw & |
---|
509 | & + 0.5_jprb * fdir * this%sw_albedo_direct(:,iwall,jcol) |
---|
510 | gamma4_sw = ext_sw_region * ssa_sw_region * gamma4_sw & |
---|
511 | & + 0.5_jprb * fdir * this%sw_albedo_direct(:,iwall,jcol) |
---|
512 | |
---|
513 | call calc_reflectance_transmittance_z_sw(this%nswbands, & |
---|
514 | & cos_sza, surface%canopy_depth(jcol,jtile), gamma0_sw, & |
---|
515 | & gamma1_sw, gamma2_sw, gamma3_sw, gamma3_sw, & |
---|
516 | & this%sw_ref_dif(:,iregion,jcol), this%sw_tra_dif(:,iregion,jcol), & |
---|
517 | & this%sw_ref_dir(:,iregion,jcol), this%sw_tra_dir_dif(:,iregion,jcol), & |
---|
518 | & this%sw_tra_dir_dir(:,iregion,jcol)) |
---|
519 | |
---|
520 | ! Compute fraction of direct at canyon top that is absorbed by wall and air |
---|
521 | this%sw_wall_abs_dir(:,iregion,jcol) & |
---|
522 | & = (1.0_jprb - this%sw_tra_dir_dir(:,iregion,jcol)) & |
---|
523 | & * fdir * (1.0_jprb - this%sw_albedo_direct(:,iwall,jcol)) * cos_sza & |
---|
524 | & / max(1.0e-8_jprb, fdir*cos_sza + ext_sw_region) |
---|
525 | this%sw_air_abs_dir(:,iregion,jcol)& |
---|
526 | & = (1.0_jprb - this%sw_tra_dir_dir(:,iregion,jcol)) & |
---|
527 | & * ext_sw_region * (1.0_jprb - ssa_sw_region) & |
---|
528 | & / max(1.0e-8_jprb, fdir*cos_sza + ext_sw_region) |
---|
529 | |
---|
530 | ! Add roof component |
---|
531 | single_level%sw_albedo(jcol,:) = single_level%sw_albedo(jcol,:) & |
---|
532 | & + tile_fraction * surface%building_fraction(jcol,jtile) & |
---|
533 | & * this%sw_albedo_diffuse(:,iroof,jcol) |
---|
534 | single_level%sw_albedo_direct(jcol,:) = single_level%sw_albedo_direct(jcol,:) & |
---|
535 | & + tile_fraction * surface%building_fraction(jcol,jtile) & |
---|
536 | & * this%sw_albedo_direct(:,iroof,jcol) |
---|
537 | |
---|
538 | ! Add canyon component using shortwave adding method for a single layer |
---|
539 | inv_denominator_sw(:) = 1.0_jprb & |
---|
540 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iground,jcol) & |
---|
541 | & *this%sw_ref_dif(:,iregion,jcol)) |
---|
542 | this%sw_albedo_diffuse_reg(:,iregion,jcol) = this%sw_ref_dif(:,iregion,jcol) & |
---|
543 | & + this%sw_tra_dif(:,iregion,jcol)**2 & |
---|
544 | & * this%sw_albedo_diffuse(:,iground,jcol) * inv_denominator_sw(:) |
---|
545 | this%sw_albedo_direct_reg(:,iregion,jcol) = this%sw_ref_dir(:,iregion,jcol) & |
---|
546 | & + (this%sw_tra_dir_dir(:,iregion,jcol)*this%sw_albedo_direct (:,iground,jcol) & |
---|
547 | & +this%sw_tra_dir_dif(:,iregion,jcol)*this%sw_albedo_diffuse(:,iground,jcol)) & |
---|
548 | & * this%sw_tra_dif(:,iregion,jcol) * inv_denominator_sw(:) |
---|
549 | single_level%sw_albedo(jcol,:) = single_level%sw_albedo(jcol,:) & |
---|
550 | & + tile_fraction * canyon_fraction * this%sw_albedo_diffuse_reg(:,iregion,jcol) |
---|
551 | single_level%sw_albedo_direct(jcol,:) = single_level%sw_albedo_direct(jcol,:) & |
---|
552 | & + tile_fraction * canyon_fraction * this%sw_albedo_direct_reg(:,iregion,jcol) |
---|
553 | |
---|
554 | end select |
---|
555 | end if |
---|
556 | end do |
---|
557 | end do |
---|
558 | end if |
---|
559 | |
---|
560 | if (lhook) call dr_hook('radsurf_intermediate:calc_boundary_conditions_sw',1,hook_handle) |
---|
561 | |
---|
562 | end subroutine calc_boundary_conditions_sw |
---|
563 | |
---|
564 | |
---|
565 | !--------------------------------------------------------------------- |
---|
566 | ! As calc_boundary_conditions_sw, but for the longwave. |
---|
567 | subroutine calc_boundary_conditions_lw(this, istartcol, iendcol, & ! in |
---|
568 | & config, surface, & ! in |
---|
569 | & single_level, & ! out |
---|
570 | & ext_lw_air, ssa_lw_air, g_lw_air) ! in, optional |
---|
571 | |
---|
572 | use yomhook, only : lhook, dr_hook |
---|
573 | |
---|
574 | use radiation_io, only : nulerr, radiation_abort |
---|
575 | use radiation_config, only : config_type |
---|
576 | use radiation_single_level, only : single_level_type |
---|
577 | use radsurf_properties, only : surface_type, ITileFlat,ITileVegetation,ITileUrban3D |
---|
578 | use radiation_two_stream, only : calc_two_stream_gammas_lw, & |
---|
579 | & calc_reflectance_transmittance_isothermal_lw, & |
---|
580 | & LwDiffusivity |
---|
581 | use radiation_ifs_rrtm, only : planck_function |
---|
582 | use radiation_constants, only: Pi, GasConstantDryAir, AccelDueToGravity, StefanBoltzmann |
---|
583 | |
---|
584 | class(surface_intermediate_type), intent(inout) :: this |
---|
585 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
586 | type(config_type), intent(in) :: config |
---|
587 | type(surface_type), intent(in) :: surface |
---|
588 | type(single_level_type), intent(inout) :: single_level |
---|
589 | |
---|
590 | ! Input properties of the air in the lowest model level: |
---|
591 | ! extinction coefficient (m-1), single-scattering albedo and |
---|
592 | ! asymmetry factor |
---|
593 | real(kind=jprb), intent(in), dimension(config%n_g_lw,istartcol:iendcol), optional & |
---|
594 | & :: ext_lw_air, ssa_lw_air, g_lw_air |
---|
595 | |
---|
596 | ! Longwave region properties |
---|
597 | real(kind=jprb), dimension(this%nlwbands) :: od_lw_region, ssa_lw_region, g_lw_region |
---|
598 | |
---|
599 | ! Optical depth of air |
---|
600 | real(kind=jprb), dimension(this%nlwbands) :: od_lw_air |
---|
601 | |
---|
602 | ! Effective Planck function of urban canopy as a weighted average |
---|
603 | ! of wall and air emission |
---|
604 | real(kind=jprb), dimension(this%nlwbands) :: planck_canopy |
---|
605 | |
---|
606 | ! Vegetation emissivity using local spectral representation |
---|
607 | real(kind=jprb), dimension(this%nlwbands) :: vegetation_lw_emissivity |
---|
608 | |
---|
609 | real(kind=jprb) :: tile_fraction |
---|
610 | |
---|
611 | ! Exchange coefficient (m-1) for diffuse radiation into building |
---|
612 | ! walls, multiplied by canyon depth (m) to get a dimensionless |
---|
613 | ! analogue for optical depth |
---|
614 | real(kind=jprb) :: od_lw_wall |
---|
615 | |
---|
616 | ! One minus the building fraction |
---|
617 | real(kind=jprb) :: canyon_fraction |
---|
618 | |
---|
619 | ! Two-stream coefficients |
---|
620 | real(jprb), dimension(this%nlwbands) :: gamma1_lw, gamma2_lw |
---|
621 | |
---|
622 | real(jprb), dimension(this%nlwbands) :: inv_denominator_lw |
---|
623 | |
---|
624 | integer(kind=jpim) :: jcol,jtile,jfacet,iregion |
---|
625 | |
---|
626 | ! Indices to different facets |
---|
627 | integer(kind=jpim) :: iground, iwall, iroof |
---|
628 | |
---|
629 | real(jprb) :: hook_handle |
---|
630 | |
---|
631 | if (lhook) call dr_hook('radsurf_intermediate:calc_boundary_conditions_lw',0,hook_handle) |
---|
632 | |
---|
633 | if (present(ssa_lw_air)) then |
---|
634 | if (.not. present(g_lw_air)) then |
---|
635 | write(nulerr,'(a)') '*** Error: if ssa_lw_air is provided then g_lw_air must also be provided' |
---|
636 | call radiation_abort() |
---|
637 | end if |
---|
638 | end if |
---|
639 | |
---|
640 | if (size(single_level%lw_emissivity,2) /= this%nlwbands) then |
---|
641 | write(nulerr,'(a,i0,a,i0)') '*** Error: single-level emissivity has ', & |
---|
642 | & size(single_level%lw_emissivity,2), ' bands, needs ', this%nlwbands |
---|
643 | call radiation_abort() |
---|
644 | end if |
---|
645 | |
---|
646 | ! FIX: This section ought to check what tiles are present in each column |
---|
647 | if (config%use_canopy_full_spectrum_lw) then |
---|
648 | ! Put longwave emissivity on g-point grid and permute |
---|
649 | do jcol = istartcol,iendcol |
---|
650 | this%lw_emissivity(:,:,jcol) = surface%lw_emissivity(jcol,config%i_emiss_from_band_lw( & |
---|
651 | & config%i_band_from_reordered_g_lw),:) |
---|
652 | end do |
---|
653 | ! Compute Planck function at each facet |
---|
654 | do jfacet = 1,surface%nfacet |
---|
655 | do jcol = istartcol,iendcol |
---|
656 | ! FIX this function assumes contiguous data for planck_facet |
---|
657 | ! so copies into a temporary |
---|
658 | call planck_function(config, & |
---|
659 | & surface%skin_temperature(jcol,jfacet), & |
---|
660 | & this%planck_facet(:,jfacet,jcol)) |
---|
661 | end do |
---|
662 | end do |
---|
663 | do jtile = 1,surface%ntile |
---|
664 | do jcol = istartcol,iendcol |
---|
665 | iregion = surface%i_region_1(jcol,jtile) |
---|
666 | if (iregion > 0) then |
---|
667 | call planck_function(config, & |
---|
668 | & surface%canopy_temperature(jcol,jtile), & |
---|
669 | & this%planck_region(:,iregion,jcol:jcol)) |
---|
670 | end if |
---|
671 | end do |
---|
672 | end do |
---|
673 | else |
---|
674 | if (surface%nemissbands /= 1) then |
---|
675 | write(nulerr,'(a)') '*** Error: insufficient information to compute Planck function in emissivity bands' |
---|
676 | call radiation_abort() |
---|
677 | end if |
---|
678 | do jcol = istartcol,iendcol |
---|
679 | ! No change to spectral resolution: simply permute |
---|
680 | this%lw_emissivity(:,:,jcol) = surface%lw_emissivity(jcol,:,:) |
---|
681 | end do |
---|
682 | ! Broadband calculation: Stefan-Boltzmann law |
---|
683 | do jfacet = 1,surface%nfacet |
---|
684 | this%planck_facet(1,jfacet,istartcol:iendcol) & |
---|
685 | & = StefanBoltzmann*surface%skin_temperature(istartcol:iendcol,jfacet)**4 |
---|
686 | end do |
---|
687 | do jtile = 1,surface%ntile |
---|
688 | do jcol = istartcol,iendcol |
---|
689 | iregion = surface%i_region_1(jcol,jtile) |
---|
690 | if (iregion > 0) then |
---|
691 | this%planck_region(1,iregion,jcol) & |
---|
692 | & = StefanBoltzmann*surface%canopy_temperature(jcol,jtile) |
---|
693 | end if |
---|
694 | end do |
---|
695 | end do |
---|
696 | end if |
---|
697 | |
---|
698 | if (surface%is_simple) then |
---|
699 | ! We have a "traditional" representation: one flat tile |
---|
700 | single_level%lw_emissivity(istartcol:iendcol,:) & |
---|
701 | & = transpose(this%lw_emissivity(:,1,istartcol:iendcol)) |
---|
702 | single_level%lw_emission(istartcol:iendcol,:) & |
---|
703 | & = transpose(this%planck_facet(:,1,istartcol:iendcol) & |
---|
704 | & * this%lw_emissivity(:,1,istartcol:iendcol)) |
---|
705 | |
---|
706 | else |
---|
707 | ! More complex description of surface |
---|
708 | |
---|
709 | ! Firstly initialize outputs to zero |
---|
710 | single_level%lw_emissivity(istartcol:iendcol,:) = 0.0_jprb |
---|
711 | single_level%lw_emission (istartcol:iendcol,:) = 0.0_jprb |
---|
712 | |
---|
713 | ! Loop over column and tile |
---|
714 | do jcol = istartcol,iendcol |
---|
715 | |
---|
716 | do jtile = 1,surface%ntile |
---|
717 | tile_fraction = surface%tile_fraction(jcol,jtile) |
---|
718 | |
---|
719 | if (tile_fraction > 0.0_jprb) then |
---|
720 | |
---|
721 | select case (surface%i_representation(jtile)) |
---|
722 | case (ITileFlat) |
---|
723 | ! SIMPLE FLAT TILE |
---|
724 | |
---|
725 | ! Add the contribution from this simple flat tile to the |
---|
726 | ! accumulated values for the column |
---|
727 | iground = surface%i_ground_facet(jcol,jtile) |
---|
728 | single_level%lw_emissivity(jcol,:) = single_level%lw_emissivity(jcol,:) & |
---|
729 | & + tile_fraction*this%lw_emissivity(:,iground,jcol) |
---|
730 | single_level%lw_emission(jcol,:) = single_level%lw_emission(jcol,:) + tile_fraction & |
---|
731 | & * (this%planck_facet(:,iground,jcol)*this%lw_emissivity(:,iground,jcol)) |
---|
732 | |
---|
733 | case (ITileVegetation) |
---|
734 | ! HORIZONTALLY HOMOGENEOUS VEGETATION CANOPY |
---|
735 | |
---|
736 | iground = surface%i_ground_facet(jcol,jtile) |
---|
737 | iregion = surface%i_region_1(jcol,jtile) |
---|
738 | |
---|
739 | ! Convert vegetation emissivity to local spectral representation |
---|
740 | if (config%use_canopy_full_spectrum_lw) then |
---|
741 | vegetation_lw_emissivity = surface%vegetation_lw_emissivity(jcol, & |
---|
742 | & config%i_emiss_from_band_lw(config%i_band_from_reordered_g_lw), & |
---|
743 | & jtile) |
---|
744 | else |
---|
745 | vegetation_lw_emissivity = surface%vegetation_lw_emissivity(jcol,:,jtile) |
---|
746 | end if |
---|
747 | |
---|
748 | if (present(ext_lw_air)) then |
---|
749 | od_lw_air = surface%canopy_depth(jcol,jtile)*ext_lw_air(:,jcol) |
---|
750 | od_lw_region = od_lw_air + surface%vegetation_optical_depth(jcol,jtile) |
---|
751 | if (present(ssa_lw_air)) then |
---|
752 | ssa_lw_region= (ssa_lw_air(:,jcol)*od_lw_air & |
---|
753 | & + surface%vegetation_optical_depth(jcol,jtile) & |
---|
754 | & * (1.0_jprb-vegetation_lw_emissivity)) & |
---|
755 | & / od_lw_region |
---|
756 | ! Assume asymmetry factor of vegetation is zero |
---|
757 | g_lw_region = g_lw_air(:,jcol)*ssa_lw_air(:,jcol)*od_lw_air & |
---|
758 | & / (ssa_lw_region * od_lw_region) |
---|
759 | else |
---|
760 | ! No longwave scattering properties for air |
---|
761 | ssa_lw_region= surface%vegetation_optical_depth(jcol,jtile) & |
---|
762 | & * (1.0_jprb-vegetation_lw_emissivity) & |
---|
763 | & / od_lw_region |
---|
764 | ! Assume asymmetry factor of vegetation is zero |
---|
765 | g_lw_region = 0.0_jprb |
---|
766 | |
---|
767 | end if |
---|
768 | else |
---|
769 | ! No gases |
---|
770 | od_lw_region = surface%vegetation_optical_depth(jcol,jtile) |
---|
771 | ssa_lw_region= 1.0_jprb-vegetation_lw_emissivity |
---|
772 | g_lw_region = 0.0_jprb |
---|
773 | end if |
---|
774 | |
---|
775 | call calc_two_stream_gammas_lw(this%nlwbands, & |
---|
776 | & ssa_lw_region, g_lw_region, & |
---|
777 | & gamma1_lw, gamma2_lw) |
---|
778 | call calc_reflectance_transmittance_isothermal_lw(this%nlwbands, & |
---|
779 | & od_lw_region, gamma1_lw, gamma2_lw, this%planck_region(:,iregion,jcol), & |
---|
780 | & this%lw_reflectance(:,iregion,jcol), this%lw_transmittance(:,iregion,jcol), & |
---|
781 | & this%lw_source(:,iregion,jcol)) |
---|
782 | |
---|
783 | ! Longwave adding method for a single layer |
---|
784 | inv_denominator_lw(:) = 1.0_jprb & |
---|
785 | & / (1.0_jprb - (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
786 | & *this%lw_reflectance(:,iregion,jcol)) |
---|
787 | single_level%lw_emissivity(jcol,:) = single_level%lw_emissivity(jcol,:) & |
---|
788 | & + tile_fraction * (1.0_jprb - (this%lw_reflectance(:,iregion,jcol) & |
---|
789 | & + this%lw_transmittance(:,iregion,jcol)**2 & |
---|
790 | & * (1.0_jprb - this%lw_emissivity(:,iground,jcol)) * inv_denominator_lw(:))) |
---|
791 | single_level%lw_emission(jcol,:) = single_level%lw_emission(jcol,:) + tile_fraction & |
---|
792 | & * (this%lw_source(:,iregion,jcol) * (1.0_jprb + inv_denominator_lw(:) & |
---|
793 | & * (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
794 | & * this%lw_transmittance(:,iregion,jcol)) & |
---|
795 | & +this%planck_facet(:,iground,jcol)*this%lw_emissivity(:,iground,jcol) & |
---|
796 | & *this%lw_transmittance(:,iregion,jcol)*inv_denominator_lw(:)) |
---|
797 | |
---|
798 | case (ITileUrban3D) |
---|
799 | ! URBAN CANOPY WITH NO VEGETATION, TREATED USING |
---|
800 | ! SPARTACUS METHODOLOGY |
---|
801 | |
---|
802 | iground = surface%i_ground_facet(jcol,jtile) |
---|
803 | iwall = surface%i_wall_facet(jcol,jtile) |
---|
804 | iroof = surface%i_roof_facet(jcol,jtile) |
---|
805 | iregion = surface%i_region_1(jcol,jtile) |
---|
806 | |
---|
807 | canyon_fraction = 1.0_jprb - surface%building_fraction(jcol,jtile) |
---|
808 | |
---|
809 | ! fdiff woould be 0.5 * building_normalized_perimeter / |
---|
810 | ! canyon_fraction, but to get equivalent zenith optical |
---|
811 | ! depth we multiply by the building height and divide by |
---|
812 | ! the longwave diffusivity angle |
---|
813 | ! od_lw_wall = 0.5_jprb * surface%building_normalized_perimeter(jcol,jtile) & |
---|
814 | ! & * surface%canopy_depth(jcol,jtile) / (LwDiffusivity * canyon_fraction) |
---|
815 | |
---|
816 | ! Or first compute H/W |
---|
817 | od_lw_wall = 0.5_jprb * surface%building_normalized_perimeter(jcol,jtile) & |
---|
818 | & * surface%canopy_depth(jcol,jtile) / canyon_fraction |
---|
819 | ! And then use the Harman et al. (2004) formula for |
---|
820 | ! street-to-sky transmittance T=sqrt[(H/W)^2+1]-H/W, to |
---|
821 | ! compute equivalent optical depth knowing that the |
---|
822 | ! two-stream scheme treatment will be T=exp(-D*od) |
---|
823 | od_lw_wall = -log(sqrt(od_lw_wall*od_lw_wall + 1) - od_lw_wall) / LwDiffusivity |
---|
824 | |
---|
825 | if (present(ext_lw_air)) then |
---|
826 | od_lw_air = ext_lw_air(:,jcol)*surface%canopy_depth(jcol,jtile) !*10.0_jprb |
---|
827 | od_lw_region = od_lw_air + od_lw_wall |
---|
828 | if (present(ssa_lw_air)) then |
---|
829 | ssa_lw_region = (od_lw_air * ssa_lw_air(:,jcol) & |
---|
830 | & + od_lw_wall * (1.0_jprb - this%lw_emissivity(:,iwall,jcol))) & |
---|
831 | & / max(od_lw_region,1.0e-6_jprb) |
---|
832 | ! We assume that any scattering off the walls is |
---|
833 | ! equally likely to be up or down, so the effective |
---|
834 | ! asymmetry factor is zero |
---|
835 | g_lw_region = (od_lw_air * ssa_lw_air(:,jcol)*g_lw_air(:,jcol)) & |
---|
836 | & / max(od_lw_region*ssa_lw_region,1.0e-6_jprb) |
---|
837 | ! Effective Planck function of the canopy is the |
---|
838 | ! weighted average of wall and air emission |
---|
839 | this%lw_total_wall_emission(:,iregion,jcol) = LwDiffusivity & |
---|
840 | & * od_lw_wall*this%lw_emissivity(:,iwall,jcol)*this%planck_facet(:,iwall,jcol) |
---|
841 | this%lw_total_canopy_emission(:,iregion,jcol) = LwDiffusivity & |
---|
842 | & * od_lw_air*(1.0_jprb-ssa_lw_air(:,jcol))*this%planck_region(:,iregion,jcol) |
---|
843 | planck_canopy = (this%lw_total_wall_emission(:,iregion,jcol) & |
---|
844 | & +this%lw_total_canopy_emission(:,iregion,jcol)) & |
---|
845 | & / max(od_lw_region*(1.0_jprb-ssa_lw_region)*LwDiffusivity,1.0e-6_jprb) |
---|
846 | else |
---|
847 | ssa_lw_region = od_lw_wall * (1.0_jprb - this%lw_emissivity(:,iwall,jcol)) & |
---|
848 | & / max(od_lw_region,1.0e-6_jprb) |
---|
849 | ! We assume that any scattering off the walls is |
---|
850 | ! equally likely to be up or down, so the effective |
---|
851 | ! asymmetry factor is zero |
---|
852 | g_lw_region = 0.0_jprb |
---|
853 | ! Effective Planck function of the canopy is the |
---|
854 | ! weighted average of wall and air emission |
---|
855 | this%lw_total_wall_emission(:,iregion,jcol) = LwDiffusivity & |
---|
856 | & * od_lw_wall*this%lw_emissivity(:,iwall,jcol)*this%planck_facet(:,iwall,jcol) |
---|
857 | this%lw_total_canopy_emission(:,iregion,jcol) = LwDiffusivity & |
---|
858 | & * od_lw_air*this%planck_region(:,iregion,jcol) |
---|
859 | planck_canopy = (this%lw_total_wall_emission(:,iregion,jcol) & |
---|
860 | & +this%lw_total_canopy_emission(:,iregion,jcol)) & |
---|
861 | & / max(od_lw_region*(1.0_jprb-ssa_lw_region)*LwDiffusivity,1.0e-6_jprb) |
---|
862 | end if |
---|
863 | |
---|
864 | ! Compute fraction of canyon absorption by the wall |
---|
865 | this%lw_wall_abs_frac(:,iregion,jcol) = od_lw_wall * this%lw_emissivity(:,iwall,jcol) & |
---|
866 | & / max(od_lw_region*(1.0_jprb-ssa_lw_region),1.0e-6_jprb) |
---|
867 | |
---|
868 | |
---|
869 | else |
---|
870 | od_lw_region = od_lw_wall |
---|
871 | ssa_lw_region = 1.0_jprb - this%lw_emissivity(:,iwall,jcol); |
---|
872 | g_lw_region = 0.0_jprb |
---|
873 | |
---|
874 | ! All absorption and emission is by the wall |
---|
875 | this%lw_wall_abs_frac(:,iregion,jcol) = 1.0_jprb |
---|
876 | this%lw_total_wall_emission(:,iregion,jcol) = LwDiffusivity & |
---|
877 | & * od_lw_wall*this%lw_emissivity(:,iwall,jcol)*this%planck_facet(:,iwall,jcol) |
---|
878 | this%lw_total_canopy_emission(:,iregion,jcol) = 0.0_jprb |
---|
879 | planck_canopy = this%planck_facet(:,iwall,jcol) |
---|
880 | end if |
---|
881 | |
---|
882 | call calc_two_stream_gammas_lw(this%nlwbands, & |
---|
883 | & ssa_lw_region, g_lw_region, & |
---|
884 | & gamma1_lw, gamma2_lw) |
---|
885 | call calc_reflectance_transmittance_isothermal_lw(this%nlwbands, & |
---|
886 | & od_lw_region, gamma1_lw, gamma2_lw, planck_canopy, & |
---|
887 | & this%lw_reflectance(:,iregion,jcol), this%lw_transmittance(:,iregion,jcol), & |
---|
888 | & this%lw_source(:,iregion,jcol)) |
---|
889 | |
---|
890 | ! Add roof component |
---|
891 | single_level%lw_emissivity(jcol,:) = single_level%lw_emissivity(jcol,:) & |
---|
892 | & + tile_fraction * surface%building_fraction(jcol,jtile) & |
---|
893 | & * this%lw_emissivity(:,iroof,jcol) |
---|
894 | single_level%lw_emission(jcol,:) = single_level%lw_emission(jcol,:) & |
---|
895 | & + tile_fraction * surface%building_fraction(jcol,jtile) & |
---|
896 | & * this%lw_emissivity(:,iroof,jcol)*this%planck_facet(:,iroof,jcol) |
---|
897 | |
---|
898 | ! Add canyon component: longwave adding method for a single layer |
---|
899 | inv_denominator_lw(:) = 1.0_jprb & |
---|
900 | & / (1.0_jprb - (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
901 | & *this%lw_reflectance(:,iregion,jcol)) |
---|
902 | this%lw_emissivity_region(:,iregion,jcol) & |
---|
903 | & = (1.0_jprb - (this%lw_reflectance(:,iregion,jcol) & |
---|
904 | & + this%lw_transmittance(:,iregion,jcol)**2 & |
---|
905 | & * (1.0_jprb - this%lw_emissivity(:,iground,jcol)) * inv_denominator_lw(:))) |
---|
906 | single_level%lw_emissivity(jcol,:) = single_level%lw_emissivity(jcol,:) & |
---|
907 | & + tile_fraction * canyon_fraction * this%lw_emissivity_region(:,iregion,jcol) |
---|
908 | this%lw_emission_region(:,iregion,jcol) & |
---|
909 | & = this%lw_source(:,iregion,jcol) * (1.0_jprb + inv_denominator_lw(:) & |
---|
910 | & * (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
911 | & * this%lw_transmittance(:,iregion,jcol)) & |
---|
912 | & +this%planck_facet(:,iground,jcol)*this%lw_emissivity(:,iground,jcol) & |
---|
913 | & *this%lw_transmittance(:,iregion,jcol)*inv_denominator_lw(:) |
---|
914 | single_level%lw_emission(jcol,:) = single_level%lw_emission(jcol,:) & |
---|
915 | & + tile_fraction * canyon_fraction * this%lw_emission_region(:,iregion,jcol) |
---|
916 | |
---|
917 | end select |
---|
918 | end if |
---|
919 | end do |
---|
920 | end do |
---|
921 | end if |
---|
922 | |
---|
923 | if (lhook) call dr_hook('radsurf_intermediate:calc_boundary_conditions_lw',1,hook_handle) |
---|
924 | |
---|
925 | end subroutine calc_boundary_conditions_lw |
---|
926 | |
---|
927 | |
---|
928 | !--------------------------------------------------------------------- |
---|
929 | ! Compute both shortwave and longwave boundary conditions neglecting |
---|
930 | ! gases within vegetation and urban canopies |
---|
931 | subroutine calc_boundary_conditions_vacuum(this, istartcol, iendcol, & ! in |
---|
932 | & config, surface, & ! in |
---|
933 | & single_level) ! out |
---|
934 | |
---|
935 | use radiation_config, only : config_type |
---|
936 | use radiation_single_level, only : single_level_type |
---|
937 | use radsurf_properties, only : surface_type |
---|
938 | |
---|
939 | class(surface_intermediate_type), intent(inout) :: this |
---|
940 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
941 | type(config_type), intent(in) :: config |
---|
942 | type(surface_type), intent(in) :: surface |
---|
943 | type(single_level_type), intent(inout) :: single_level |
---|
944 | |
---|
945 | call this%calc_boundary_conditions_sw(istartcol, iendcol, & |
---|
946 | & config, surface, single_level) |
---|
947 | call this%calc_boundary_conditions_lw(istartcol, iendcol, & |
---|
948 | & config, surface, single_level) |
---|
949 | |
---|
950 | end subroutine calc_boundary_conditions_vacuum |
---|
951 | |
---|
952 | |
---|
953 | !--------------------------------------------------------------------- |
---|
954 | ! Compute both shortwave and longwave boundary conditions |
---|
955 | subroutine calc_boundary_conditions(this, istartcol, iendcol, & ! in |
---|
956 | & config, surface, & ! in |
---|
957 | & thermodynamics, gas, & ! in |
---|
958 | & single_level) ! out |
---|
959 | |
---|
960 | use radiation_config, only : config_type |
---|
961 | use radiation_thermodynamics,only: thermodynamics_type |
---|
962 | use radiation_gas, only : gas_type |
---|
963 | use radiation_single_level, only : single_level_type |
---|
964 | use radiation_ifs_rrtm, only : gas_optics |
---|
965 | use radsurf_properties, only : surface_type |
---|
966 | use radiation_constants, only : GasConstantDryAir, & |
---|
967 | & AccelDueToGravity |
---|
968 | |
---|
969 | class(surface_intermediate_type), intent(inout) :: this |
---|
970 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
971 | type(config_type), intent(in) :: config |
---|
972 | type(surface_type), intent(in) :: surface |
---|
973 | type(gas_type), intent(in) :: gas |
---|
974 | type(thermodynamics_type), intent(in) :: thermodynamics |
---|
975 | type(single_level_type), intent(inout) :: single_level |
---|
976 | |
---|
977 | ! Ratio of gas constant for dry air to acceleration due to gravity |
---|
978 | real(jprb), parameter :: R_over_g = GasConstantDryAir / AccelDueToGravity |
---|
979 | |
---|
980 | ! Number of leves to request gas optical depths for; we only need |
---|
981 | ! one but gas optics scheme assumes more |
---|
982 | integer, parameter :: NGasLevels = 1 |
---|
983 | |
---|
984 | ! Canopy longwave optical depth |
---|
985 | real(jprb), dimension(config%n_g_lw,NGasLevels,istartcol:iendcol) :: od_lw |
---|
986 | |
---|
987 | ! Canopy longwave extinction coefficient |
---|
988 | real(jprb), dimension(config%n_g_lw,istartcol:iendcol) :: ext_lw |
---|
989 | |
---|
990 | ! Canopy shortwave optical depth, single scattering albedo and |
---|
991 | ! asymmetry factor of gases and aerosols at each shortwave g-point |
---|
992 | real(jprb), dimension(config%n_g_sw,NGasLevels,istartcol:iendcol) :: od_sw, ssa_sw, g_sw |
---|
993 | |
---|
994 | ! Thickness of lowest model level |
---|
995 | real(jprb) :: layer_depth |
---|
996 | |
---|
997 | ! Index to final level of full model grid |
---|
998 | integer :: iendlev |
---|
999 | |
---|
1000 | ! Column loop counter, number of columns |
---|
1001 | integer :: jcol, ncol |
---|
1002 | |
---|
1003 | ncol = ubound(thermodynamics%pressure_hl,1) |
---|
1004 | iendlev = ubound(thermodynamics%pressure_hl,2)-1 |
---|
1005 | |
---|
1006 | call gas_optics(ncol, NGasLevels, istartcol, iendcol, & |
---|
1007 | & config, single_level, thermodynamics, gas, & |
---|
1008 | & od_lw, od_sw, ssa_sw) |
---|
1009 | |
---|
1010 | ! Scale optical depths to extinction |
---|
1011 | do jcol = istartcol,iendcol |
---|
1012 | layer_depth = R_over_g & |
---|
1013 | & * (thermodynamics%pressure_hl(jcol,iendlev+1) & |
---|
1014 | & - thermodynamics%pressure_hl(jcol,iendlev)) & |
---|
1015 | & * (thermodynamics%temperature_hl(jcol,iendlev) & |
---|
1016 | & + thermodynamics%temperature_hl(jcol,iendlev+1)) & |
---|
1017 | & / (thermodynamics%pressure_hl(jcol,iendlev) & |
---|
1018 | & + thermodynamics%pressure_hl(jcol,iendlev+1)) |
---|
1019 | !if (config%do_sw) then |
---|
1020 | ! ext_sw(jcol) = ext_sw(jcol) / layer_depth |
---|
1021 | !end if |
---|
1022 | if (config%do_lw) then |
---|
1023 | ext_lw(:,jcol) = od_lw(:,NGasLevels,jcol) / layer_depth |
---|
1024 | end if |
---|
1025 | end do |
---|
1026 | |
---|
1027 | call this%calc_boundary_conditions_sw(istartcol, iendcol, & |
---|
1028 | & config, surface, single_level) |
---|
1029 | if (config%do_canopy_gases_lw) then |
---|
1030 | call this%calc_boundary_conditions_lw(istartcol, iendcol, & |
---|
1031 | & config, surface, single_level, & |
---|
1032 | & ext_lw_air=ext_lw) |
---|
1033 | else |
---|
1034 | call this%calc_boundary_conditions_lw(istartcol, iendcol, & |
---|
1035 | & config, surface, single_level) |
---|
1036 | end if |
---|
1037 | |
---|
1038 | end subroutine calc_boundary_conditions |
---|
1039 | |
---|
1040 | |
---|
1041 | !--------------------------------------------------------------------- |
---|
1042 | subroutine partition_fluxes(this, istartcol, iendcol, config, surface, flux, & |
---|
1043 | & surface_flux) |
---|
1044 | |
---|
1045 | use yomhook, only : lhook, dr_hook |
---|
1046 | |
---|
1047 | use radiation_flux, only : flux_type |
---|
1048 | use radsurf_flux, only : surface_flux_type |
---|
1049 | use radiation_config, only : config_type |
---|
1050 | use radsurf_properties,only : surface_type, ITileFlat,ITileVegetation,ITileUrban3D |
---|
1051 | |
---|
1052 | class(surface_intermediate_type), intent(in) :: this |
---|
1053 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
1054 | type(config_type), intent(in) :: config |
---|
1055 | type(surface_type), intent(in) :: surface |
---|
1056 | type(flux_type), intent(in) :: flux |
---|
1057 | type(surface_flux_type), intent(inout) :: surface_flux |
---|
1058 | |
---|
1059 | real(kind=jprb), dimension(config%n_g_lw) :: lw_dn_g, lw_up_g |
---|
1060 | real(kind=jprb), dimension(config%n_canopy_bands_sw) & |
---|
1061 | & :: sw_dn_diffuse_g, sw_dn_direct_g, sw_up_g, sw_abs_g |
---|
1062 | real(kind=jprb), dimension(config%n_canopy_bands_lw) :: lw_abs_g |
---|
1063 | |
---|
1064 | ! Ratio of street planar area to wall frontal area |
---|
1065 | real(kind=jprb) :: wall_scaling |
---|
1066 | |
---|
1067 | real(kind=jprb) :: tile_fraction |
---|
1068 | integer(kind=jpim) :: iground, iroof, iwall, iregion |
---|
1069 | integer(kind=jpim) :: isurf ! index to lowest flux level (=nlev+1) |
---|
1070 | integer(kind=jpim) :: jcol, jtile |
---|
1071 | |
---|
1072 | real(kind=jprb) :: hook_handle |
---|
1073 | |
---|
1074 | if (lhook) call dr_hook('radsurf_intermediate:partition_fluxes',0,hook_handle) |
---|
1075 | |
---|
1076 | if (.not. surface%is_simple) then |
---|
1077 | isurf = size(flux%lw_dn,2) |
---|
1078 | |
---|
1079 | if (config%do_lw) then |
---|
1080 | surface_flux%lw_dn_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
1081 | surface_flux%lw_up_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
1082 | surface_flux%lw_abs_canopy(istartcol:iendcol,:)=0.0_jprb |
---|
1083 | end if |
---|
1084 | if (config%do_sw) then |
---|
1085 | surface_flux%sw_dn_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
1086 | surface_flux%sw_dn_direct_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
1087 | surface_flux%sw_up_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
1088 | surface_flux%sw_abs_canopy(istartcol:iendcol,:)=0.0_jprb |
---|
1089 | end if |
---|
1090 | |
---|
1091 | ! Loop over column and tile |
---|
1092 | do jcol = istartcol,iendcol |
---|
1093 | do jtile = 1,surface%ntile |
---|
1094 | tile_fraction = surface%tile_fraction(jcol,jtile) |
---|
1095 | |
---|
1096 | if (tile_fraction > 0.0_jprb) then |
---|
1097 | |
---|
1098 | select case (surface%i_representation(jtile)) |
---|
1099 | case (ITileFlat) |
---|
1100 | iground = surface%i_ground_facet(jcol,jtile) |
---|
1101 | if (config%do_lw) then |
---|
1102 | surface_flux%lw_dn_facet(jcol,iground) = flux%lw_dn(jcol,isurf) |
---|
1103 | surface_flux%lw_up_facet(jcol,iground) & |
---|
1104 | & = sum(this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) & |
---|
1105 | & + (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
1106 | & * flux%lw_dn_surf_canopy(:,jcol)) |
---|
1107 | end if |
---|
1108 | if (config%do_sw) then |
---|
1109 | surface_flux%sw_dn_facet(jcol,iground) = flux%sw_dn(jcol,isurf) |
---|
1110 | surface_flux%sw_dn_direct_facet(jcol,iground) = flux%sw_dn_direct(jcol,isurf) |
---|
1111 | surface_flux%sw_up_facet(jcol,iground) & |
---|
1112 | & = sum(this%sw_albedo_diffuse(:,iground,jcol) & |
---|
1113 | & * flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
1114 | & + this%sw_albedo_direct (:,iground,jcol) & |
---|
1115 | & * flux%sw_dn_direct_surf_canopy (:,jcol)) |
---|
1116 | end if |
---|
1117 | |
---|
1118 | case (ITileVegetation) |
---|
1119 | iground = surface%i_ground_facet(jcol,jtile) |
---|
1120 | iregion = surface%i_region_1(jcol,jtile) |
---|
1121 | ! Adding method in longwave and shortwave |
---|
1122 | if (config%do_lw) then |
---|
1123 | ! Surface downwelling fluxes at each g point |
---|
1124 | lw_dn_g = (this%lw_transmittance(:,iregion,jcol)*flux%lw_dn_surf_canopy(:,jcol) & |
---|
1125 | & +this%lw_reflectance (:,iregion,jcol) & |
---|
1126 | & *this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) & |
---|
1127 | & +this%lw_source(:,iregion,jcol)) & |
---|
1128 | & / (1.0_jprb - (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
1129 | & *this%lw_reflectance(:,iregion,jcol)) |
---|
1130 | surface_flux%lw_dn_facet(jcol,iground) = sum(lw_dn_g) |
---|
1131 | surface_flux%lw_up_facet(jcol,iground) & |
---|
1132 | & = sum((1.0_jprb-this%lw_emissivity(:,iground,jcol))*lw_dn_g & |
---|
1133 | & +this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol)) |
---|
1134 | surface_flux%lw_abs_canopy(jcol,jtile) = flux%lw_dn(jcol,isurf) & |
---|
1135 | & - flux%lw_up(jcol,isurf) - surface_flux%lw_dn_facet(jcol,iground) & |
---|
1136 | & + surface_flux%lw_up_facet(jcol,iground) |
---|
1137 | |
---|
1138 | end if |
---|
1139 | if (config%do_sw) then |
---|
1140 | sw_dn_direct_g = this%sw_tra_dir_dir(:,iregion,jcol) & |
---|
1141 | & * flux%sw_dn_direct_surf_canopy(:,jcol) |
---|
1142 | ! Note that the following is initially just the |
---|
1143 | ! upwelling due to scattering of the direct beam |
---|
1144 | sw_up_g = sw_dn_direct_g * this%sw_albedo_direct(:,iground,jcol) |
---|
1145 | sw_dn_diffuse_g & |
---|
1146 | & = (this%sw_tra_dif(:,iregion,jcol)*flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
1147 | & +this%sw_ref_dif(:,iregion,jcol)*sw_up_g & |
---|
1148 | & +this%sw_tra_dir_dif(:,iregion,jcol)*flux%sw_dn_direct_surf_canopy(:,jcol)) & |
---|
1149 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iground,jcol) & |
---|
1150 | & *this%sw_ref_dif(:,iregion,jcol)) |
---|
1151 | sw_up_g = sw_up_g + sw_dn_diffuse_g * this%sw_albedo_diffuse(:,iground,jcol) |
---|
1152 | surface_flux%sw_dn_direct_facet(jcol,iground) = sum(sw_dn_direct_g) |
---|
1153 | surface_flux%sw_dn_facet(jcol,iground) = surface_flux%sw_dn_direct_facet(jcol,iground) & |
---|
1154 | & + sum(sw_dn_diffuse_g) |
---|
1155 | surface_flux%sw_up_facet(jcol,iground) = sum(sw_up_g) |
---|
1156 | surface_flux%sw_abs_canopy(jcol,jtile) & |
---|
1157 | & = flux%sw_dn(jcol,isurf) - flux%sw_up(jcol,isurf) & |
---|
1158 | & - surface_flux%sw_dn_facet(jcol,iground) & |
---|
1159 | & + surface_flux%sw_up_facet(jcol,iground) |
---|
1160 | end if |
---|
1161 | case (ITileUrban3D) |
---|
1162 | iground = surface%i_ground_facet(jcol,jtile) |
---|
1163 | iroof = surface%i_roof_facet(jcol,jtile) |
---|
1164 | iwall = surface%i_wall_facet(jcol,jtile) |
---|
1165 | iregion = surface%i_region_1(jcol,jtile) |
---|
1166 | |
---|
1167 | ! We want wall fluxes per unit area of wall, not per |
---|
1168 | ! unit area of street |
---|
1169 | wall_scaling = (1.0_jprb - surface%building_fraction(jcol,jtile)) & |
---|
1170 | & / max(1.0e-4_jprb, surface%building_normalized_perimeter(jcol,jtile) & |
---|
1171 | & * surface%canopy_depth(jcol,jtile)) |
---|
1172 | |
---|
1173 | if (config%do_sw) then |
---|
1174 | ! Roof fluxes |
---|
1175 | surface_flux%sw_dn_facet(jcol,iroof) = flux%sw_dn(jcol,isurf) |
---|
1176 | surface_flux%sw_dn_direct_facet(jcol,iroof) = flux%sw_dn_direct(jcol,isurf) |
---|
1177 | surface_flux%sw_up_facet(jcol,iroof) & |
---|
1178 | & = sum(this%sw_albedo_diffuse(:,iroof,jcol) & |
---|
1179 | & * flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
1180 | & + this%sw_albedo_direct (:,iroof,jcol) & |
---|
1181 | & * flux%sw_dn_direct_surf_canopy (:,jcol)) |
---|
1182 | |
---|
1183 | ! Ground fluxes |
---|
1184 | sw_dn_direct_g = this%sw_tra_dir_dir(:,iregion,jcol) & |
---|
1185 | & * flux%sw_dn_direct_surf_canopy(:,jcol) |
---|
1186 | ! Note that the following is initially just the |
---|
1187 | ! upwelling due to scattering of the direct beam |
---|
1188 | sw_up_g = sw_dn_direct_g * this%sw_albedo_direct(:,iground,jcol) |
---|
1189 | sw_dn_diffuse_g & |
---|
1190 | & = (this%sw_tra_dif(:,iregion,jcol)*flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
1191 | & +this%sw_ref_dif(:,iregion,jcol)*sw_up_g & |
---|
1192 | & +this%sw_tra_dir_dif(:,iregion,jcol)*flux%sw_dn_direct_surf_canopy(:,jcol)) & |
---|
1193 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iground,jcol) & |
---|
1194 | & *this%sw_ref_dif(:,iregion,jcol)) |
---|
1195 | sw_up_g = sw_up_g + sw_dn_diffuse_g * this%sw_albedo_diffuse(:,iground,jcol) |
---|
1196 | surface_flux%sw_dn_direct_facet(jcol,iground) = sum(sw_dn_direct_g) |
---|
1197 | surface_flux%sw_dn_facet(jcol,iground) = surface_flux%sw_dn_direct_facet(jcol,iground) & |
---|
1198 | & + sum(sw_dn_diffuse_g) |
---|
1199 | surface_flux%sw_up_facet(jcol,iground) = sum(sw_up_g) |
---|
1200 | |
---|
1201 | ! Wall fluxes |
---|
1202 | sw_abs_g = flux%sw_dn_direct_surf_canopy(:,jcol)*this%sw_wall_abs_dir(:,iregion,jcol) |
---|
1203 | surface_flux%sw_dn_direct_facet(jcol,iwall) & |
---|
1204 | & = wall_scaling * sum(sw_abs_g / (1.0_jprb - this%sw_albedo_direct(:,iwall,jcol))) |
---|
1205 | ! Initially just the direct reflection |
---|
1206 | surface_flux%sw_up_facet(jcol,iwall) = wall_scaling & |
---|
1207 | & * sum(sw_abs_g * this%sw_albedo_direct(:,iwall,jcol) & |
---|
1208 | & / (1.0_jprb - this%sw_albedo_direct(:,iwall,jcol))) |
---|
1209 | ! Initially just the direct absorption |
---|
1210 | surface_flux%sw_abs_canopy(jcol,jtile) & |
---|
1211 | & = sum(flux%sw_dn_direct_surf_canopy(:,jcol)*this%sw_air_abs_dir(:,iregion,jcol)) |
---|
1212 | |
---|
1213 | ! Diffuse absorption within canopy |
---|
1214 | sw_abs_g = flux%sw_dn_direct_surf_canopy(:,jcol) & |
---|
1215 | & * (1.0-this%sw_albedo_direct_reg (:,iregion,jcol)) & |
---|
1216 | & + flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
1217 | & * (1.0-this%sw_albedo_diffuse_reg(:,iregion,jcol)) & |
---|
1218 | & - sw_dn_direct_g - sw_dn_diffuse_g + sw_up_g - sw_abs_g |
---|
1219 | ! Add diffuse absorption |
---|
1220 | surface_flux%sw_abs_canopy(jcol,jtile) = surface_flux%sw_abs_canopy(jcol,jtile) & |
---|
1221 | & + sum(sw_abs_g * (1.0_jprb - this%sw_wall_abs_frac_dif(:,iregion,jcol))) |
---|
1222 | ! Add diffuse reflection |
---|
1223 | surface_flux%sw_up_facet(jcol,iwall) = surface_flux%sw_up_facet(jcol,iwall) & |
---|
1224 | & + wall_scaling * sum(sw_abs_g * this%sw_wall_abs_frac_dif(:,iregion,jcol) & |
---|
1225 | & * this%sw_albedo_diffuse(:,iwall,jcol) & |
---|
1226 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol))) |
---|
1227 | ! Add diffuse into wall |
---|
1228 | surface_flux%sw_dn_facet(jcol,iwall) = surface_flux%sw_dn_direct_facet(jcol,iwall) & |
---|
1229 | & + wall_scaling * sum(sw_abs_g * this%sw_wall_abs_frac_dif(:,iregion,jcol) & |
---|
1230 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol))) |
---|
1231 | !!$ |
---|
1232 | !!$ sw_direct_abs_g = flux%sw_dn_direct_surf_g (:,jcol) - sw_dn_direct_g |
---|
1233 | !!$ sw_diffuse_abs_g = flux%sw_dn_diffuse_surf_g(:,jcol)*(1.0_jprb - this%sw_albedo_diffuse_reg(:,iregion,jcol)) & |
---|
1234 | !!$ & + flux%sw_dn_direct_surf_g (:,jcol)*(1.0_jprb - this%sw_albedo_direct_reg (:,iregion,jcol)) & |
---|
1235 | !!$ & - sw_dn_direct_g - sw_dn_diffuse_g + sw_up_g |
---|
1236 | !!$ |
---|
1237 | !!$ |
---|
1238 | !!$ surface_flux%sw_abs_canopy(jcol,jtile) = sum((1.0_jprb - this%sw_wall_abs_frac(:,iregion,jcol))*sw_abs_g) |
---|
1239 | !!$ surface_flux%sw_dn_facet(jcol,iwall) = sum(this%sw_wall_abs_frac(:,iregion,jcol)*sw_abs_g & |
---|
1240 | !!$ & / (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol))) |
---|
1241 | !!$ surface_flux%sw_up_facet(jcol,iwall) = sum(this%sw_albedo_diffuse(:,iwall,jcol) & |
---|
1242 | !!$ & *this%sw_wall_abs_frac(:,iregion,jcol)*sw_abs_g & |
---|
1243 | !!$ & / (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol))) |
---|
1244 | end if |
---|
1245 | |
---|
1246 | if (config%do_lw) then |
---|
1247 | surface_flux%lw_dn_facet(jcol,iroof) = flux%lw_dn(jcol,isurf) |
---|
1248 | surface_flux%lw_up_facet(jcol,iroof) & |
---|
1249 | & = sum(this%lw_emissivity(:,iroof,jcol)*this%planck_facet(:,iroof,jcol) & |
---|
1250 | & + (1.0_jprb - this%lw_emissivity(:,iroof,jcol))*flux%lw_dn_surf_canopy(:,jcol)) |
---|
1251 | lw_dn_g = (this%lw_transmittance(:,iregion,jcol)*flux%lw_dn_surf_canopy(:,jcol) & |
---|
1252 | & +this%lw_reflectance (:,iregion,jcol) & |
---|
1253 | & *this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) & |
---|
1254 | & +this%lw_source(:,iregion,jcol)) & |
---|
1255 | & / (1.0_jprb - (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
1256 | & *this%lw_reflectance(:,iregion,jcol)) |
---|
1257 | lw_up_g = (1.0_jprb-this%lw_emissivity(:,iground,jcol))*lw_dn_g & |
---|
1258 | & +this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) |
---|
1259 | surface_flux%lw_dn_facet(jcol,iground) = sum(lw_dn_g) |
---|
1260 | surface_flux%lw_up_facet(jcol,iground) = sum(lw_up_g) |
---|
1261 | ! lw_abs_g = flux%lw_dn(jcol,isurf)-flux%lw_up(jcol,isurf) & |
---|
1262 | ! & - surface_flux%lw_dn_facet(jcol,iground)+surface_flux%lw_up_facet(jcol,iground) |
---|
1263 | ! lw_abs_g = flux%lw_dn_surf_canopy(:,jcol) & |
---|
1264 | ! & * (1.0_jprb-this%lw_emissivity_region(:,iregion,jcol)) & |
---|
1265 | ! & - this%lw_emission_region(:,iregion,jcol) & |
---|
1266 | ! & - lw_dn_g*(1.0_jprb-this%lw_emissivity(:,iground,jcol)) & |
---|
1267 | ! & + this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) |
---|
1268 | ! lw_abs_g = flux%lw_dn_surf_canopy(:,jcol) & |
---|
1269 | ! & * this%lw_emissivity_region(:,iregion,jcol) & |
---|
1270 | ! & - this%lw_emission_region(:,iregion,jcol) & |
---|
1271 | ! & - lw_dn_g*this%lw_emissivity(:,iground,jcol) & |
---|
1272 | ! & + this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) |
---|
1273 | lw_abs_g = (flux%lw_dn_surf_canopy(:,jcol) + lw_up_g) & |
---|
1274 | & * (1.0_jprb - this%lw_reflectance(:,iregion,jcol) & |
---|
1275 | & - this%lw_transmittance(:,iregion,jcol)) & |
---|
1276 | & + this%lw_total_wall_emission(:,iregion,jcol) & |
---|
1277 | & + this%lw_total_canopy_emission(:,iregion,jcol) & |
---|
1278 | & - 2.0_jprb * this%lw_source(:,iregion,jcol) |
---|
1279 | |
---|
1280 | ! surface_flux%lw_up_facet(jcol,iwall) = sum(this%planck_facet(:,iwall,jcol) & |
---|
1281 | ! & + wall_scaling*(1.0_jprb-this%lw_emissivity(:,iwall,jcol)) & |
---|
1282 | ! & *this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g & |
---|
1283 | ! & / this%lw_emissivity(:,iwall,jcol)) |
---|
1284 | ! surface_flux%lw_dn_facet(jcol,iwall) = sum((this%planck_facet(:,iwall,jcol) & |
---|
1285 | ! & + this%lw_total_wall_emission(:,iregion,jcol)) / this%lw_emissivity(:,iwall,jcol)) |
---|
1286 | |
---|
1287 | ! surface_flux%lw_dn_facet(jcol,iwall) = wall_scaling*sum((this%lw_total_wall_emission(:,iregion,jcol) & |
---|
1288 | ! & + this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g) & |
---|
1289 | ! & / this%lw_emissivity(:,iwall,jcol)) |
---|
1290 | ! surface_flux%lw_up_facet(jcol,iwall) = surface_flux%lw_dn_facet(jcol,iwall) & |
---|
1291 | ! & - wall_scaling*sum(this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g) |
---|
1292 | |
---|
1293 | surface_flux%lw_dn_facet(jcol,iwall) & |
---|
1294 | & = wall_scaling*sum(this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g & |
---|
1295 | & / this%lw_emissivity(:,iwall,jcol)) |
---|
1296 | surface_flux%lw_up_facet(jcol,iwall) = surface_flux%lw_dn_facet(jcol,iwall) & |
---|
1297 | & + wall_scaling * sum(this%lw_total_wall_emission(:,iregion,jcol) & |
---|
1298 | & - this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g) |
---|
1299 | |
---|
1300 | surface_flux%lw_abs_canopy(jcol,jtile) & |
---|
1301 | & = sum(lw_abs_g*(1.0_jprb-this%lw_wall_abs_frac(:,iregion,jcol)) & |
---|
1302 | & -this%lw_total_canopy_emission(:,iregion,jcol)) |
---|
1303 | end if |
---|
1304 | end select |
---|
1305 | |
---|
1306 | end if |
---|
1307 | |
---|
1308 | end do |
---|
1309 | end do |
---|
1310 | end if |
---|
1311 | |
---|
1312 | if (lhook) call dr_hook('radsurf_intermediate:partition_fluxes',1,hook_handle) |
---|
1313 | |
---|
1314 | end subroutine partition_fluxes |
---|
1315 | |
---|
1316 | end module radsurf_intermediate |
---|