[3908] | 1 | ! radsurf_intermediate.f90 - Derived type for intermediate radiative properties of surface |
---|
| 2 | ! |
---|
| 3 | ! (C) Copyright 2017- ECMWF. |
---|
| 4 | ! |
---|
| 5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
| 6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
| 7 | ! |
---|
| 8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
| 9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
| 10 | ! nor does it submit to any jurisdiction. |
---|
| 11 | ! |
---|
| 12 | ! Author: Robin Hogan |
---|
| 13 | ! Email: r.j.hogan@ecmwf.int |
---|
| 14 | ! |
---|
| 15 | |
---|
| 16 | module radsurf_intermediate |
---|
| 17 | |
---|
| 18 | use parkind1, only : jpim, jprb |
---|
| 19 | |
---|
| 20 | implicit none |
---|
| 21 | |
---|
| 22 | public |
---|
| 23 | |
---|
| 24 | !--------------------------------------------------------------------- |
---|
| 25 | ! Derived type storing a description of radiative properties at the |
---|
| 26 | ! level of individual facets |
---|
| 27 | type surface_intermediate_type |
---|
| 28 | |
---|
| 29 | ! Surface "facet" properties, dimensioned (ng, nfacet, istartcol:iendcol) |
---|
| 30 | |
---|
| 31 | ! Longwave blackbody emission (W m-2) and emissivity from facets |
---|
| 32 | real(kind=jprb), allocatable, dimension(:,:,:) :: planck_facet |
---|
| 33 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_emissivity |
---|
| 34 | ! Shortwave direct and diffuse albedo |
---|
| 35 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_albedo_direct |
---|
| 36 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_albedo_diffuse |
---|
| 37 | |
---|
| 38 | ! Longwave blackbody emission (W m-2) from regions (volumes |
---|
| 39 | ! e.g. vegetation and urban canopies) |
---|
| 40 | real(kind=jprb), allocatable, dimension(:,:,:) :: planck_region |
---|
| 41 | |
---|
| 42 | ! Volumetric "region" properties of the canopy, e.g. vegetation or |
---|
| 43 | ! the space between buildings, dimensioned |
---|
| 44 | ! (ng,nregion,istartcol:iendcol) |
---|
| 45 | |
---|
| 46 | ! Shortwave reflectance and transmittance to diffuse radiation |
---|
| 47 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_ref_dif |
---|
| 48 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_tra_dif |
---|
| 49 | ! Shortwave reflectance and transmittance to direct radiation, |
---|
| 50 | ! where the transmittance has separate direct-to-diffuse |
---|
| 51 | ! transmittance (including scattering) and direct-to-direct |
---|
| 52 | ! transmittance (without scattering) |
---|
| 53 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_ref_dir |
---|
| 54 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_tra_dir_dif |
---|
| 55 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_tra_dir_dir |
---|
| 56 | ! Fraction of direct radiation at canyon top that is absorbed by |
---|
| 57 | ! the wall and the atmosphere |
---|
| 58 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_wall_abs_dir |
---|
| 59 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_air_abs_dir |
---|
| 60 | ! Ratio of diffuse absorption in a street canyon by the wall |
---|
| 61 | ! (rather than the air or vegetation in the canyon) |
---|
| 62 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_wall_abs_frac_dif |
---|
| 63 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_wall_abs_frac |
---|
| 64 | ! Shortwave direct and diffuse albedo at the top of a region |
---|
| 65 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_albedo_direct_reg |
---|
| 66 | real(kind=jprb), allocatable, dimension(:,:,:) :: sw_albedo_diffuse_reg |
---|
| 67 | ! Longwave reflectance, transmittance and source (note that source |
---|
| 68 | ! is the same up and down because the canopy temperature is |
---|
| 69 | ! assumed constant with height) |
---|
| 70 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_reflectance |
---|
| 71 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_transmittance |
---|
| 72 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_source |
---|
| 73 | ! Longwave emission and emissivity passed to the atmosphere scheme |
---|
| 74 | ! from the top of a region |
---|
| 75 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_emissivity_region |
---|
| 76 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_emission_region |
---|
| 77 | ! Total emission from wall and the air in an urban canopy, needed |
---|
| 78 | ! at the final partitioning stage to determine net fluxes into |
---|
| 79 | ! wall and air |
---|
| 80 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_total_wall_emission |
---|
| 81 | real(kind=jprb), allocatable, dimension(:,:,:) :: lw_total_canopy_emission |
---|
| 82 | |
---|
| 83 | ! Number of bands in which calculations are to be performed (can |
---|
| 84 | ! match either the spectral resolution of the atmosphere or that |
---|
| 85 | ! of the surface data) |
---|
| 86 | integer :: nswbands, nlwbands |
---|
| 87 | |
---|
| 88 | ! Do we represent gas radiative transfer in street/vegetation |
---|
| 89 | ! canopies? |
---|
| 90 | !logical :: do_canopy_gases_sw = .false. |
---|
| 91 | !logical :: do_canopy_gases_lw = .false. |
---|
| 92 | |
---|
| 93 | ! Do we use the full spectrum? |
---|
| 94 | !logical :: use_full_spectrum_sw = .false. |
---|
| 95 | !logical :: use_full_spectrum_lw = .true. |
---|
| 96 | |
---|
| 97 | contains |
---|
| 98 | |
---|
| 99 | procedure :: allocate => allocate_surface_intermediate |
---|
| 100 | procedure :: deallocate => deallocate_surface_intermediate |
---|
| 101 | procedure :: calc_boundary_conditions_sw |
---|
| 102 | procedure :: calc_boundary_conditions_lw |
---|
| 103 | procedure :: calc_boundary_conditions |
---|
| 104 | procedure :: partition_fluxes |
---|
| 105 | |
---|
| 106 | end type surface_intermediate_type |
---|
| 107 | |
---|
| 108 | contains |
---|
| 109 | |
---|
| 110 | !--------------------------------------------------------------------- |
---|
| 111 | subroutine allocate_surface_intermediate(this, istartcol, iendcol, & |
---|
| 112 | & config, surface) |
---|
| 113 | |
---|
| 114 | use radiation_config, only : config_type |
---|
| 115 | use radsurf_properties, only : surface_type |
---|
| 116 | |
---|
| 117 | class(surface_intermediate_type), intent(inout) :: this |
---|
| 118 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
| 119 | type(config_type), intent(in) :: config |
---|
| 120 | type(surface_type), intent(in) :: surface |
---|
| 121 | |
---|
| 122 | call this%deallocate |
---|
| 123 | |
---|
| 124 | !this%use_full_spectrum_sw = config%use_canopy_full_spectrum_sw |
---|
| 125 | !this%use_full_spectrum_lw = config%use_canopy_full_spectrum_lw |
---|
| 126 | ! Assume that canopy gases will only be used if we do surface |
---|
| 127 | ! calculations at the full spectral resolution |
---|
| 128 | !this%do_canopy_gases_sw = config%do_canopy_gases_sw |
---|
| 129 | !this%do_canopy_gases_lw = config%do_canopy_gases_lw |
---|
| 130 | |
---|
| 131 | if (config%use_canopy_full_spectrum_sw) then |
---|
| 132 | ! Calculations will be performed at the same spectral resolution |
---|
| 133 | ! as in the atmosphere |
---|
| 134 | this%nswbands = config%n_g_sw |
---|
| 135 | else |
---|
| 136 | ! Calculations will be performed at the same spectral resolution |
---|
| 137 | ! as the input surface-property data |
---|
| 138 | this%nswbands = surface%nalbedobands |
---|
| 139 | end if |
---|
| 140 | |
---|
| 141 | if (config%use_canopy_full_spectrum_lw) then |
---|
| 142 | ! Calculations will be performed at the same spectral resolution |
---|
| 143 | ! as in the atmosphere |
---|
| 144 | this%nlwbands = config%n_g_lw |
---|
| 145 | else |
---|
| 146 | ! Calculations will be performed at the same spectral resolution |
---|
| 147 | ! as the input surface-property data |
---|
| 148 | this%nlwbands = surface%nemissbands |
---|
| 149 | end if |
---|
| 150 | |
---|
| 151 | if (config%do_lw) then |
---|
| 152 | allocate(this%planck_facet (this%nlwbands,surface%nfacet,istartcol:iendcol)) |
---|
| 153 | allocate(this%lw_emissivity (this%nlwbands,surface%nfacet,istartcol:iendcol)) |
---|
| 154 | end if |
---|
| 155 | if (config%do_sw) then |
---|
| 156 | allocate(this%sw_albedo_direct (this%nswbands,surface%nfacet,istartcol:iendcol)) |
---|
| 157 | allocate(this%sw_albedo_diffuse(this%nswbands,surface%nfacet,istartcol:iendcol)) |
---|
| 158 | end if |
---|
| 159 | |
---|
| 160 | if (surface%nregion > 0) then |
---|
| 161 | if (config%do_lw) then |
---|
| 162 | allocate(this%planck_region (this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
| 163 | allocate(this%lw_reflectance (this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
| 164 | allocate(this%lw_transmittance(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
| 165 | allocate(this%lw_source (this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
| 166 | allocate(this%lw_emission_region(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
| 167 | allocate(this%lw_emissivity_region(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
| 168 | allocate(this%lw_wall_abs_frac(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
| 169 | allocate(this%lw_total_wall_emission(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
| 170 | allocate(this%lw_total_canopy_emission(this%nlwbands,surface%nregion,istartcol:iendcol)) |
---|
| 171 | end if |
---|
| 172 | if (config%do_sw) then |
---|
| 173 | allocate(this%sw_ref_dif (this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 174 | allocate(this%sw_tra_dif (this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 175 | allocate(this%sw_ref_dir (this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 176 | allocate(this%sw_tra_dir_dif(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 177 | allocate(this%sw_tra_dir_dir(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 178 | allocate(this%sw_wall_abs_dir(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 179 | allocate(this%sw_air_abs_dir(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 180 | allocate(this%sw_wall_abs_frac_dif(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 181 | allocate(this%sw_albedo_diffuse_reg(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 182 | allocate(this%sw_albedo_direct_reg(this%nswbands,surface%nregion,istartcol:iendcol)) |
---|
| 183 | end if |
---|
| 184 | end if |
---|
| 185 | |
---|
| 186 | end subroutine allocate_surface_intermediate |
---|
| 187 | |
---|
| 188 | !--------------------------------------------------------------------- |
---|
| 189 | subroutine deallocate_surface_intermediate(this) |
---|
| 190 | |
---|
| 191 | class(surface_intermediate_type), intent(inout) :: this |
---|
| 192 | |
---|
| 193 | if (allocated(this%planck_facet)) then |
---|
| 194 | deallocate(this%planck_facet) |
---|
| 195 | end if |
---|
| 196 | if (allocated(this%planck_region)) then |
---|
| 197 | deallocate(this%planck_region) |
---|
| 198 | end if |
---|
| 199 | if (allocated(this%lw_emissivity)) then |
---|
| 200 | deallocate(this%lw_emissivity) |
---|
| 201 | end if |
---|
| 202 | if (allocated(this%sw_albedo_direct)) then |
---|
| 203 | deallocate(this%sw_albedo_direct) |
---|
| 204 | end if |
---|
| 205 | if (allocated(this%sw_albedo_diffuse)) then |
---|
| 206 | deallocate(this%sw_albedo_diffuse) |
---|
| 207 | end if |
---|
| 208 | |
---|
| 209 | if (allocated(this%lw_reflectance)) then |
---|
| 210 | deallocate(this%lw_reflectance) |
---|
| 211 | end if |
---|
| 212 | if (allocated(this%lw_transmittance)) then |
---|
| 213 | deallocate(this%lw_transmittance) |
---|
| 214 | end if |
---|
| 215 | if (allocated(this%lw_source)) then |
---|
| 216 | deallocate(this%lw_source) |
---|
| 217 | end if |
---|
| 218 | if (allocated(this%lw_emissivity_region)) then |
---|
| 219 | deallocate(this%lw_emissivity_region) |
---|
| 220 | end if |
---|
| 221 | if (allocated(this%lw_emission_region)) then |
---|
| 222 | deallocate(this%lw_emission_region) |
---|
| 223 | end if |
---|
| 224 | if (allocated(this%lw_wall_abs_frac)) then |
---|
| 225 | deallocate(this%lw_wall_abs_frac) |
---|
| 226 | end if |
---|
| 227 | if (allocated(this%lw_total_wall_emission)) then |
---|
| 228 | deallocate(this%lw_total_wall_emission) |
---|
| 229 | end if |
---|
| 230 | if (allocated(this%lw_total_canopy_emission)) then |
---|
| 231 | deallocate(this%lw_total_canopy_emission) |
---|
| 232 | end if |
---|
| 233 | |
---|
| 234 | if (allocated(this%sw_ref_dif)) then |
---|
| 235 | deallocate(this%sw_ref_dif) |
---|
| 236 | end if |
---|
| 237 | if (allocated(this%sw_tra_dif)) then |
---|
| 238 | deallocate(this%sw_tra_dif) |
---|
| 239 | end if |
---|
| 240 | if (allocated(this%sw_ref_dir)) then |
---|
| 241 | deallocate(this%sw_ref_dir) |
---|
| 242 | end if |
---|
| 243 | if (allocated(this%sw_tra_dir_dif)) then |
---|
| 244 | deallocate(this%sw_tra_dir_dif) |
---|
| 245 | end if |
---|
| 246 | if (allocated(this%sw_tra_dir_dir)) then |
---|
| 247 | deallocate(this%sw_tra_dir_dir) |
---|
| 248 | end if |
---|
| 249 | if (allocated(this%sw_wall_abs_frac_dif)) then |
---|
| 250 | deallocate(this%sw_wall_abs_frac_dif) |
---|
| 251 | end if |
---|
| 252 | if (allocated(this%sw_wall_abs_dir)) then |
---|
| 253 | deallocate(this%sw_wall_abs_dir) |
---|
| 254 | end if |
---|
| 255 | if (allocated(this%sw_air_abs_dir)) then |
---|
| 256 | deallocate(this%sw_air_abs_dir) |
---|
| 257 | end if |
---|
| 258 | if (allocated(this%sw_albedo_direct_reg)) then |
---|
| 259 | deallocate(this%sw_albedo_direct_reg) |
---|
| 260 | end if |
---|
| 261 | if (allocated(this%sw_albedo_diffuse_reg)) then |
---|
| 262 | deallocate(this%sw_albedo_diffuse_reg) |
---|
| 263 | end if |
---|
| 264 | |
---|
| 265 | end subroutine deallocate_surface_intermediate |
---|
| 266 | |
---|
| 267 | |
---|
| 268 | |
---|
| 269 | !--------------------------------------------------------------------- |
---|
| 270 | ! Use the detailed physical properties of the surface in "surface", |
---|
| 271 | ! and optionally the atmospheric optical properties of the lowest |
---|
| 272 | ! atmospheric level, to work out the shortwave direct/diffuse albedo |
---|
| 273 | ! that is presented to the rest of the radiation scheme, and stored |
---|
| 274 | ! in "single_level". Also, store the necessary information so that |
---|
| 275 | ! after the atmospheric radiation scheme has been run, the net |
---|
| 276 | ! fluxes at each. |
---|
| 277 | subroutine calc_boundary_conditions_sw(this, istartcol, iendcol, & ! in |
---|
| 278 | & config, surface, & ! in |
---|
| 279 | & single_level, & ! out |
---|
| 280 | & ext_sw_air, ssa_sw_air, g_sw_air) ! in, optional |
---|
| 281 | |
---|
| 282 | use yomhook, only : lhook, dr_hook |
---|
| 283 | |
---|
| 284 | use radiation_io, only : nulerr, radiation_abort |
---|
| 285 | use radiation_config, only : config_type |
---|
| 286 | use radiation_single_level, only : single_level_type |
---|
| 287 | use radsurf_properties, only : surface_type, ITileFlat,ITileVegetation,ITileUrban3D |
---|
| 288 | use radiation_two_stream, only : calc_two_stream_gammas_sw, & |
---|
| 289 | & calc_reflectance_transmittance_sw, & |
---|
| 290 | & calc_reflectance_transmittance_z_sw |
---|
| 291 | |
---|
| 292 | use radiation_constants, only: Pi, GasConstantDryAir, AccelDueToGravity |
---|
| 293 | |
---|
| 294 | class(surface_intermediate_type), intent(inout) :: this |
---|
| 295 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
| 296 | type(config_type), intent(in) :: config |
---|
| 297 | type(surface_type), intent(in) :: surface |
---|
| 298 | type(single_level_type), intent(inout) :: single_level |
---|
| 299 | |
---|
| 300 | ! Input properties of the air in the lowest model level: |
---|
| 301 | ! extinction coefficient (m-1), single-scattering albedo and |
---|
| 302 | ! asymmetry factor |
---|
| 303 | real(kind=jprb), intent(in), dimension(config%n_g_sw,istartcol:iendcol), optional & |
---|
| 304 | & :: ext_sw_air, ssa_sw_air, g_sw_air |
---|
| 305 | |
---|
| 306 | ! Shortwave region properties |
---|
| 307 | real(kind=jprb), dimension(this%nswbands) :: od_sw_region, ssa_sw_region, g_sw_region |
---|
| 308 | ! Extinction coefficient better for urban areas |
---|
| 309 | real(kind=jprb), dimension(this%nswbands) :: ext_sw_region |
---|
| 310 | ! Optical depth of air |
---|
| 311 | real(kind=jprb), dimension(this%nswbands) :: od_sw_air |
---|
| 312 | |
---|
| 313 | real(kind=jprb) :: tile_fraction, cos_sza |
---|
| 314 | |
---|
| 315 | ! Exchange coefficients (m-1) for direct and diffuse radiation |
---|
| 316 | ! into building walls |
---|
| 317 | real(kind=jprb) :: fdiff, fdir |
---|
| 318 | |
---|
| 319 | ! One minus the building fraction |
---|
| 320 | real(kind=jprb) :: canyon_fraction |
---|
| 321 | |
---|
| 322 | ! Tangent of solar zenith angle |
---|
| 323 | real(kind=jprb) :: tan_sza |
---|
| 324 | |
---|
| 325 | ! Two-stream coefficients |
---|
| 326 | real(jprb), dimension(this%nswbands) :: gamma1_sw, gamma2_sw |
---|
| 327 | real(jprb), dimension(this%nswbands) :: gamma0_sw, gamma3_sw, gamma4_sw |
---|
| 328 | |
---|
| 329 | real(jprb), dimension(this%nswbands) :: inv_denominator_sw |
---|
| 330 | |
---|
| 331 | integer(kind=jpim) :: jcol,jtile,iregion |
---|
| 332 | |
---|
| 333 | ! Mapping from albedo bands to reordered shortwave g points |
---|
| 334 | integer(kind=jpim) :: i_albedo_from_g(config%n_g_sw) |
---|
| 335 | |
---|
| 336 | ! Indices to different facets |
---|
| 337 | integer(kind=jpim) :: iground, iwall, iroof |
---|
| 338 | |
---|
| 339 | real(jprb) :: hook_handle |
---|
| 340 | |
---|
| 341 | if (lhook) call dr_hook('radsurf_intermediate:calc_boundary_conditions_sw',0,hook_handle) |
---|
| 342 | |
---|
| 343 | if (present(ext_sw_air)) then |
---|
| 344 | if (.not. present(ssa_sw_air) .or. .not. present(g_sw_air)) then |
---|
| 345 | write(nulerr,'(a)') '*** Error: if ext_sw_air is provided then ssa_sw_air and g_sw_air must also be provided' |
---|
| 346 | call radiation_abort() |
---|
| 347 | end if |
---|
| 348 | end if |
---|
| 349 | |
---|
| 350 | if (size(single_level%sw_albedo,2) /= this%nswbands) then |
---|
| 351 | write(nulerr,'(a,i0,a,i0)') '*** Error: single-level albedo has ', & |
---|
| 352 | & size(single_level%sw_albedo,2), ' bands, needs ', this%nswbands |
---|
| 353 | call radiation_abort() |
---|
| 354 | end if |
---|
| 355 | |
---|
| 356 | if (config%use_canopy_full_spectrum_sw) then |
---|
| 357 | ! Put shortwave albedo on g-point grid and permute |
---|
| 358 | i_albedo_from_g = config%i_albedo_from_band_sw(config%i_band_from_reordered_g_sw) |
---|
| 359 | do jcol = istartcol,iendcol |
---|
| 360 | this%sw_albedo_diffuse(:,:,jcol) = surface%sw_albedo(jcol,i_albedo_from_g,:) |
---|
| 361 | if (allocated(surface%sw_albedo_direct)) then |
---|
| 362 | this%sw_albedo_direct(:,:,jcol) = surface%sw_albedo_direct(jcol,i_albedo_from_g,:) |
---|
| 363 | else |
---|
| 364 | this%sw_albedo_direct = this%sw_albedo_diffuse |
---|
| 365 | end if |
---|
| 366 | end do |
---|
| 367 | else |
---|
| 368 | do jcol = istartcol,iendcol |
---|
| 369 | ! No change to spectral resolution: simply permute |
---|
| 370 | this%sw_albedo_diffuse(:,:,jcol) = surface%sw_albedo(jcol,:,:) |
---|
| 371 | if (allocated(surface%sw_albedo_direct)) then |
---|
| 372 | this%sw_albedo_direct(:,:,jcol) = surface%sw_albedo_direct(jcol,:,:) |
---|
| 373 | else |
---|
| 374 | this%sw_albedo_direct = this%sw_albedo_diffuse |
---|
| 375 | end if |
---|
| 376 | end do |
---|
| 377 | end if |
---|
| 378 | |
---|
| 379 | if (surface%is_simple) then |
---|
| 380 | ! We have a "traditional" representation: one flat tile |
---|
| 381 | single_level%sw_albedo_direct(istartcol:iendcol,:) & |
---|
| 382 | & = transpose(this%sw_albedo_direct(:,1,istartcol:iendcol)) |
---|
| 383 | single_level%sw_albedo (istartcol:iendcol,:) & |
---|
| 384 | & = transpose(this%sw_albedo_diffuse(:,1,istartcol:iendcol)) |
---|
| 385 | else |
---|
| 386 | ! More complex description of surface |
---|
| 387 | |
---|
| 388 | ! Firstly initialize outputs to zero |
---|
| 389 | single_level%sw_albedo_direct(istartcol:iendcol,:) = 0.0_jprb |
---|
| 390 | single_level%sw_albedo (istartcol:iendcol,:) = 0.0_jprb |
---|
| 391 | |
---|
| 392 | ! Loop over column and tile |
---|
| 393 | do jcol = istartcol,iendcol |
---|
| 394 | cos_sza = single_level%cos_sza(jcol) |
---|
| 395 | |
---|
| 396 | do jtile = 1,surface%ntile |
---|
| 397 | tile_fraction = surface%tile_fraction(jcol,jtile) |
---|
| 398 | |
---|
| 399 | if (tile_fraction > 0.0_jprb) then |
---|
| 400 | |
---|
| 401 | select case (surface%i_representation(jtile)) |
---|
| 402 | case (ITileFlat) |
---|
| 403 | ! SIMPLE FLAT TILE |
---|
| 404 | |
---|
| 405 | ! Add the contribution from this simple flat tile to the |
---|
| 406 | ! accumulated values for the column |
---|
| 407 | iground = surface%i_ground_facet(jcol,jtile) |
---|
| 408 | single_level%sw_albedo_direct(jcol,:) = single_level%sw_albedo_direct(jcol,:) & |
---|
| 409 | & + tile_fraction * this%sw_albedo_direct(:,iground,jcol) |
---|
| 410 | single_level%sw_albedo(jcol,:) = single_level%sw_albedo(jcol,:) & |
---|
| 411 | & + tile_fraction * this%sw_albedo_diffuse(:,iground,jcol) |
---|
| 412 | |
---|
| 413 | case (ITileVegetation) |
---|
| 414 | ! HORIZONTALLY HOMOGENEOUS VEGETATION CANOPY WITH |
---|
| 415 | ! SELLERS-LIKE FORMULATION |
---|
| 416 | |
---|
| 417 | iground = surface%i_ground_facet(jcol,jtile) |
---|
| 418 | iregion = surface%i_region_1(jcol,jtile) |
---|
| 419 | |
---|
| 420 | ! Shortwave calculation |
---|
| 421 | if (present(ext_sw_air)) then |
---|
| 422 | od_sw_air = surface%canopy_depth(jcol,jtile)*ext_sw_air(:,jcol) |
---|
| 423 | od_sw_region = od_sw_air + surface%vegetation_optical_depth(jcol,jtile) |
---|
| 424 | ssa_sw_region= (ssa_sw_air(:,jcol)*od_sw_air & |
---|
| 425 | & + surface%vegetation_optical_depth(jcol,jtile) & |
---|
| 426 | & * surface%vegetation_sw_albedo(jcol,:,jtile)) & |
---|
| 427 | & / od_sw_region |
---|
| 428 | ! Assume asymmetry factor of vegetation is zero |
---|
| 429 | g_sw_region = g_sw_air(:,jcol)*ssa_sw_air(:,jcol)*od_sw_air & |
---|
| 430 | & / (ssa_sw_region*od_sw_region) |
---|
| 431 | else |
---|
| 432 | od_sw_region = surface%vegetation_optical_depth(jcol,jtile) |
---|
| 433 | ssa_sw_region= surface%vegetation_sw_albedo(jcol,:,jtile) |
---|
| 434 | g_sw_region = 0.0_jprb |
---|
| 435 | end if |
---|
| 436 | call calc_two_stream_gammas_sw(this%nswbands, & |
---|
| 437 | & cos_sza, ssa_sw_region, g_sw_region, & |
---|
| 438 | & gamma1_sw, gamma2_sw, gamma3_sw) |
---|
| 439 | call calc_reflectance_transmittance_sw(this%nswbands, & |
---|
| 440 | & cos_sza, od_sw_region, ssa_sw_region, & |
---|
| 441 | & gamma1_sw, gamma2_sw, gamma3_sw, & |
---|
| 442 | & this%sw_ref_dif(:,iregion,jcol), this%sw_tra_dif(:,iregion,jcol), & |
---|
| 443 | & this%sw_ref_dir(:,iregion,jcol), this%sw_tra_dir_dif(:,iregion,jcol), & |
---|
| 444 | & this%sw_tra_dir_dir(:,iregion,jcol)) |
---|
| 445 | |
---|
| 446 | ! Shortwave adding method for a single layer |
---|
| 447 | inv_denominator_sw(:) = 1.0_jprb & |
---|
| 448 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iground,jcol) & |
---|
| 449 | & *this%sw_ref_dif(:,iregion,jcol)) |
---|
| 450 | this%sw_albedo_diffuse_reg(:,iregion,jcol) = this%sw_ref_dif(:,iregion,jcol) & |
---|
| 451 | & + this%sw_tra_dif(:,iregion,jcol)**2 & |
---|
| 452 | & * this%sw_albedo_diffuse(:,iground,jcol) * inv_denominator_sw(:) |
---|
| 453 | this%sw_albedo_direct_reg(:,iregion,jcol) = this%sw_ref_dir(:,iregion,jcol) & |
---|
| 454 | & + (this%sw_tra_dir_dir(:,iregion,jcol)*this%sw_albedo_direct (:,iground,jcol) & |
---|
| 455 | & +this%sw_tra_dir_dif(:,iregion,jcol)*this%sw_albedo_diffuse(:,iground,jcol)) & |
---|
| 456 | & * this%sw_tra_dif(:,iregion,jcol) * inv_denominator_sw(:) |
---|
| 457 | single_level%sw_albedo(jcol,:) = single_level%sw_albedo(jcol,:) & |
---|
| 458 | & + tile_fraction * this%sw_albedo_diffuse_reg(:,iregion,jcol) |
---|
| 459 | single_level%sw_albedo_direct(jcol,:) = single_level%sw_albedo_direct(jcol,:) & |
---|
| 460 | & + tile_fraction * this%sw_albedo_direct_reg(:,iregion,jcol) |
---|
| 461 | |
---|
| 462 | case (ITileUrban3D) |
---|
| 463 | ! URBAN CANOPY WITH NO VEGETATION, TREATED USING |
---|
| 464 | ! SPARTACUS METHODOLOGY |
---|
| 465 | |
---|
| 466 | iground = surface%i_ground_facet(jcol,jtile) |
---|
| 467 | iwall = surface%i_wall_facet(jcol,jtile) |
---|
| 468 | iroof = surface%i_roof_facet(jcol,jtile) |
---|
| 469 | iregion = surface%i_region_1(jcol,jtile) |
---|
| 470 | |
---|
| 471 | canyon_fraction = 1.0_jprb - surface%building_fraction(jcol,jtile) |
---|
| 472 | |
---|
| 473 | fdiff = 0.5_jprb * surface%building_normalized_perimeter(jcol,jtile) / canyon_fraction |
---|
| 474 | |
---|
| 475 | tan_sza = sqrt(1.0_jprb / (cos_sza*cos_sza) - 1.0_jprb) |
---|
| 476 | fdir = surface%building_normalized_perimeter(jcol,jtile) * tan_sza / (Pi * canyon_fraction) |
---|
| 477 | |
---|
| 478 | if (present(ext_sw_air)) then |
---|
| 479 | ext_sw_region = ext_sw_air(:,jcol) |
---|
| 480 | ssa_sw_region = ssa_sw_air(:,jcol) |
---|
| 481 | g_sw_region = g_sw_air(:,jcol) |
---|
| 482 | else |
---|
| 483 | ext_sw_region = 0.0_jprb |
---|
| 484 | ssa_sw_region = 0.0_jprb |
---|
| 485 | g_sw_region = 0.0_jprb |
---|
| 486 | end if |
---|
| 487 | |
---|
| 488 | ! Get gammas for atmosphere only |
---|
| 489 | call calc_two_stream_gammas_sw(this%nswbands, & |
---|
| 490 | & cos_sza, ssa_sw_region, g_sw_region, & |
---|
| 491 | & gamma1_sw, gamma2_sw, gamma3_sw) |
---|
| 492 | |
---|
| 493 | ! At this point gamma1_sw-gamma2_sw is the rate of |
---|
| 494 | ! absorption per unit optical depth of the air in the |
---|
| 495 | ! canyon |
---|
| 496 | this%sw_wall_abs_frac_dif(:,iregion,jcol) & |
---|
| 497 | & = fdiff * (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol)) |
---|
| 498 | this%sw_wall_abs_frac_dif(:,iregion,jcol) = this%sw_wall_abs_frac_dif(:,iregion,jcol) & |
---|
| 499 | & / max(1.0e-8_jprb,ext_sw_region*(gamma1_sw-gamma2_sw) & |
---|
| 500 | & + this%sw_wall_abs_frac_dif(:,iregion,jcol)) |
---|
| 501 | |
---|
| 502 | gamma4_sw = 1.0_jprb - gamma3_sw |
---|
| 503 | gamma0_sw = ext_sw_region / cos_sza + fdir |
---|
| 504 | gamma1_sw = ext_sw_region * gamma1_sw & |
---|
| 505 | & + fdiff * (1.0_jprb - 0.5_jprb*this%sw_albedo_diffuse(:,iwall,jcol)) |
---|
| 506 | gamma2_sw = ext_sw_region * gamma2_sw & |
---|
| 507 | & + fdiff * 0.5_jprb*this%sw_albedo_diffuse(:,iwall,jcol) |
---|
| 508 | gamma3_sw = ext_sw_region * ssa_sw_region * gamma3_sw & |
---|
| 509 | & + 0.5_jprb * fdir * this%sw_albedo_direct(:,iwall,jcol) |
---|
| 510 | gamma4_sw = ext_sw_region * ssa_sw_region * gamma4_sw & |
---|
| 511 | & + 0.5_jprb * fdir * this%sw_albedo_direct(:,iwall,jcol) |
---|
| 512 | |
---|
| 513 | call calc_reflectance_transmittance_z_sw(this%nswbands, & |
---|
| 514 | & cos_sza, surface%canopy_depth(jcol,jtile), gamma0_sw, & |
---|
| 515 | & gamma1_sw, gamma2_sw, gamma3_sw, gamma3_sw, & |
---|
| 516 | & this%sw_ref_dif(:,iregion,jcol), this%sw_tra_dif(:,iregion,jcol), & |
---|
| 517 | & this%sw_ref_dir(:,iregion,jcol), this%sw_tra_dir_dif(:,iregion,jcol), & |
---|
| 518 | & this%sw_tra_dir_dir(:,iregion,jcol)) |
---|
| 519 | |
---|
| 520 | ! Compute fraction of direct at canyon top that is absorbed by wall and air |
---|
| 521 | this%sw_wall_abs_dir(:,iregion,jcol) & |
---|
| 522 | & = (1.0_jprb - this%sw_tra_dir_dir(:,iregion,jcol)) & |
---|
| 523 | & * fdir * (1.0_jprb - this%sw_albedo_direct(:,iwall,jcol)) * cos_sza & |
---|
| 524 | & / max(1.0e-8_jprb, fdir*cos_sza + ext_sw_region) |
---|
| 525 | this%sw_air_abs_dir(:,iregion,jcol)& |
---|
| 526 | & = (1.0_jprb - this%sw_tra_dir_dir(:,iregion,jcol)) & |
---|
| 527 | & * ext_sw_region * (1.0_jprb - ssa_sw_region) & |
---|
| 528 | & / max(1.0e-8_jprb, fdir*cos_sza + ext_sw_region) |
---|
| 529 | |
---|
| 530 | ! Add roof component |
---|
| 531 | single_level%sw_albedo(jcol,:) = single_level%sw_albedo(jcol,:) & |
---|
| 532 | & + tile_fraction * surface%building_fraction(jcol,jtile) & |
---|
| 533 | & * this%sw_albedo_diffuse(:,iroof,jcol) |
---|
| 534 | single_level%sw_albedo_direct(jcol,:) = single_level%sw_albedo_direct(jcol,:) & |
---|
| 535 | & + tile_fraction * surface%building_fraction(jcol,jtile) & |
---|
| 536 | & * this%sw_albedo_direct(:,iroof,jcol) |
---|
| 537 | |
---|
| 538 | ! Add canyon component using shortwave adding method for a single layer |
---|
| 539 | inv_denominator_sw(:) = 1.0_jprb & |
---|
| 540 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iground,jcol) & |
---|
| 541 | & *this%sw_ref_dif(:,iregion,jcol)) |
---|
| 542 | this%sw_albedo_diffuse_reg(:,iregion,jcol) = this%sw_ref_dif(:,iregion,jcol) & |
---|
| 543 | & + this%sw_tra_dif(:,iregion,jcol)**2 & |
---|
| 544 | & * this%sw_albedo_diffuse(:,iground,jcol) * inv_denominator_sw(:) |
---|
| 545 | this%sw_albedo_direct_reg(:,iregion,jcol) = this%sw_ref_dir(:,iregion,jcol) & |
---|
| 546 | & + (this%sw_tra_dir_dir(:,iregion,jcol)*this%sw_albedo_direct (:,iground,jcol) & |
---|
| 547 | & +this%sw_tra_dir_dif(:,iregion,jcol)*this%sw_albedo_diffuse(:,iground,jcol)) & |
---|
| 548 | & * this%sw_tra_dif(:,iregion,jcol) * inv_denominator_sw(:) |
---|
| 549 | single_level%sw_albedo(jcol,:) = single_level%sw_albedo(jcol,:) & |
---|
| 550 | & + tile_fraction * canyon_fraction * this%sw_albedo_diffuse_reg(:,iregion,jcol) |
---|
| 551 | single_level%sw_albedo_direct(jcol,:) = single_level%sw_albedo_direct(jcol,:) & |
---|
| 552 | & + tile_fraction * canyon_fraction * this%sw_albedo_direct_reg(:,iregion,jcol) |
---|
| 553 | |
---|
| 554 | end select |
---|
| 555 | end if |
---|
| 556 | end do |
---|
| 557 | end do |
---|
| 558 | end if |
---|
| 559 | |
---|
| 560 | if (lhook) call dr_hook('radsurf_intermediate:calc_boundary_conditions_sw',1,hook_handle) |
---|
| 561 | |
---|
| 562 | end subroutine calc_boundary_conditions_sw |
---|
| 563 | |
---|
| 564 | |
---|
| 565 | !--------------------------------------------------------------------- |
---|
| 566 | ! As calc_boundary_conditions_sw, but for the longwave. |
---|
| 567 | subroutine calc_boundary_conditions_lw(this, istartcol, iendcol, & ! in |
---|
| 568 | & config, surface, & ! in |
---|
| 569 | & single_level, & ! out |
---|
| 570 | & ext_lw_air, ssa_lw_air, g_lw_air) ! in, optional |
---|
| 571 | |
---|
| 572 | use yomhook, only : lhook, dr_hook |
---|
| 573 | |
---|
| 574 | use radiation_io, only : nulerr, radiation_abort |
---|
| 575 | use radiation_config, only : config_type |
---|
| 576 | use radiation_single_level, only : single_level_type |
---|
| 577 | use radsurf_properties, only : surface_type, ITileFlat,ITileVegetation,ITileUrban3D |
---|
| 578 | use radiation_two_stream, only : calc_two_stream_gammas_lw, & |
---|
| 579 | & calc_reflectance_transmittance_isothermal_lw, & |
---|
| 580 | & LwDiffusivity |
---|
| 581 | use radiation_ifs_rrtm, only : planck_function |
---|
| 582 | use radiation_constants, only: Pi, GasConstantDryAir, AccelDueToGravity, StefanBoltzmann |
---|
| 583 | |
---|
| 584 | class(surface_intermediate_type), intent(inout) :: this |
---|
| 585 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
| 586 | type(config_type), intent(in) :: config |
---|
| 587 | type(surface_type), intent(in) :: surface |
---|
| 588 | type(single_level_type), intent(inout) :: single_level |
---|
| 589 | |
---|
| 590 | ! Input properties of the air in the lowest model level: |
---|
| 591 | ! extinction coefficient (m-1), single-scattering albedo and |
---|
| 592 | ! asymmetry factor |
---|
| 593 | real(kind=jprb), intent(in), dimension(config%n_g_lw,istartcol:iendcol), optional & |
---|
| 594 | & :: ext_lw_air, ssa_lw_air, g_lw_air |
---|
| 595 | |
---|
| 596 | ! Longwave region properties |
---|
| 597 | real(kind=jprb), dimension(this%nlwbands) :: od_lw_region, ssa_lw_region, g_lw_region |
---|
| 598 | |
---|
| 599 | ! Optical depth of air |
---|
| 600 | real(kind=jprb), dimension(this%nlwbands) :: od_lw_air |
---|
| 601 | |
---|
| 602 | ! Effective Planck function of urban canopy as a weighted average |
---|
| 603 | ! of wall and air emission |
---|
| 604 | real(kind=jprb), dimension(this%nlwbands) :: planck_canopy |
---|
| 605 | |
---|
| 606 | ! Vegetation emissivity using local spectral representation |
---|
| 607 | real(kind=jprb), dimension(this%nlwbands) :: vegetation_lw_emissivity |
---|
| 608 | |
---|
| 609 | real(kind=jprb) :: tile_fraction |
---|
| 610 | |
---|
| 611 | ! Exchange coefficient (m-1) for diffuse radiation into building |
---|
| 612 | ! walls, multiplied by canyon depth (m) to get a dimensionless |
---|
| 613 | ! analogue for optical depth |
---|
| 614 | real(kind=jprb) :: od_lw_wall |
---|
| 615 | |
---|
| 616 | ! One minus the building fraction |
---|
| 617 | real(kind=jprb) :: canyon_fraction |
---|
| 618 | |
---|
| 619 | ! Two-stream coefficients |
---|
| 620 | real(jprb), dimension(this%nlwbands) :: gamma1_lw, gamma2_lw |
---|
| 621 | |
---|
| 622 | real(jprb), dimension(this%nlwbands) :: inv_denominator_lw |
---|
| 623 | |
---|
| 624 | integer(kind=jpim) :: jcol,jtile,jfacet,iregion |
---|
| 625 | |
---|
| 626 | ! Indices to different facets |
---|
| 627 | integer(kind=jpim) :: iground, iwall, iroof |
---|
| 628 | |
---|
| 629 | real(jprb) :: hook_handle |
---|
| 630 | |
---|
| 631 | if (lhook) call dr_hook('radsurf_intermediate:calc_boundary_conditions_lw',0,hook_handle) |
---|
| 632 | |
---|
| 633 | if (present(ssa_lw_air)) then |
---|
| 634 | if (.not. present(g_lw_air)) then |
---|
| 635 | write(nulerr,'(a)') '*** Error: if ssa_lw_air is provided then g_lw_air must also be provided' |
---|
| 636 | call radiation_abort() |
---|
| 637 | end if |
---|
| 638 | end if |
---|
| 639 | |
---|
| 640 | if (size(single_level%lw_emissivity,2) /= this%nlwbands) then |
---|
| 641 | write(nulerr,'(a,i0,a,i0)') '*** Error: single-level emissivity has ', & |
---|
| 642 | & size(single_level%lw_emissivity,2), ' bands, needs ', this%nlwbands |
---|
| 643 | call radiation_abort() |
---|
| 644 | end if |
---|
| 645 | |
---|
| 646 | ! FIX: This section ought to check what tiles are present in each column |
---|
| 647 | if (config%use_canopy_full_spectrum_lw) then |
---|
| 648 | ! Put longwave emissivity on g-point grid and permute |
---|
| 649 | do jcol = istartcol,iendcol |
---|
| 650 | this%lw_emissivity(:,:,jcol) = surface%lw_emissivity(jcol,config%i_emiss_from_band_lw( & |
---|
| 651 | & config%i_band_from_reordered_g_lw),:) |
---|
| 652 | end do |
---|
| 653 | ! Compute Planck function at each facet |
---|
| 654 | do jfacet = 1,surface%nfacet |
---|
| 655 | do jcol = istartcol,iendcol |
---|
| 656 | ! FIX this function assumes contiguous data for planck_facet |
---|
| 657 | ! so copies into a temporary |
---|
| 658 | call planck_function(config, & |
---|
| 659 | & surface%skin_temperature(jcol,jfacet), & |
---|
| 660 | & this%planck_facet(:,jfacet,jcol)) |
---|
| 661 | end do |
---|
| 662 | end do |
---|
| 663 | do jtile = 1,surface%ntile |
---|
| 664 | do jcol = istartcol,iendcol |
---|
| 665 | iregion = surface%i_region_1(jcol,jtile) |
---|
| 666 | if (iregion > 0) then |
---|
| 667 | call planck_function(config, & |
---|
| 668 | & surface%canopy_temperature(jcol,jtile), & |
---|
| 669 | & this%planck_region(:,iregion,jcol:jcol)) |
---|
| 670 | end if |
---|
| 671 | end do |
---|
| 672 | end do |
---|
| 673 | else |
---|
| 674 | if (surface%nemissbands /= 1) then |
---|
| 675 | write(nulerr,'(a)') '*** Error: insufficient information to compute Planck function in emissivity bands' |
---|
| 676 | call radiation_abort() |
---|
| 677 | end if |
---|
| 678 | do jcol = istartcol,iendcol |
---|
| 679 | ! No change to spectral resolution: simply permute |
---|
| 680 | this%lw_emissivity(:,:,jcol) = surface%lw_emissivity(jcol,:,:) |
---|
| 681 | end do |
---|
| 682 | ! Broadband calculation: Stefan-Boltzmann law |
---|
| 683 | do jfacet = 1,surface%nfacet |
---|
| 684 | this%planck_facet(1,jfacet,istartcol:iendcol) & |
---|
| 685 | & = StefanBoltzmann*surface%skin_temperature(istartcol:iendcol,jfacet)**4 |
---|
| 686 | end do |
---|
| 687 | do jtile = 1,surface%ntile |
---|
| 688 | do jcol = istartcol,iendcol |
---|
| 689 | iregion = surface%i_region_1(jcol,jtile) |
---|
| 690 | if (iregion > 0) then |
---|
| 691 | this%planck_region(1,iregion,jcol) & |
---|
| 692 | & = StefanBoltzmann*surface%canopy_temperature(jcol,jtile) |
---|
| 693 | end if |
---|
| 694 | end do |
---|
| 695 | end do |
---|
| 696 | end if |
---|
| 697 | |
---|
| 698 | if (surface%is_simple) then |
---|
| 699 | ! We have a "traditional" representation: one flat tile |
---|
| 700 | single_level%lw_emissivity(istartcol:iendcol,:) & |
---|
| 701 | & = transpose(this%lw_emissivity(:,1,istartcol:iendcol)) |
---|
| 702 | single_level%lw_emission(istartcol:iendcol,:) & |
---|
| 703 | & = transpose(this%planck_facet(:,1,istartcol:iendcol) & |
---|
| 704 | & * this%lw_emissivity(:,1,istartcol:iendcol)) |
---|
| 705 | |
---|
| 706 | else |
---|
| 707 | ! More complex description of surface |
---|
| 708 | |
---|
| 709 | ! Firstly initialize outputs to zero |
---|
| 710 | single_level%lw_emissivity(istartcol:iendcol,:) = 0.0_jprb |
---|
| 711 | single_level%lw_emission (istartcol:iendcol,:) = 0.0_jprb |
---|
| 712 | |
---|
| 713 | ! Loop over column and tile |
---|
| 714 | do jcol = istartcol,iendcol |
---|
| 715 | |
---|
| 716 | do jtile = 1,surface%ntile |
---|
| 717 | tile_fraction = surface%tile_fraction(jcol,jtile) |
---|
| 718 | |
---|
| 719 | if (tile_fraction > 0.0_jprb) then |
---|
| 720 | |
---|
| 721 | select case (surface%i_representation(jtile)) |
---|
| 722 | case (ITileFlat) |
---|
| 723 | ! SIMPLE FLAT TILE |
---|
| 724 | |
---|
| 725 | ! Add the contribution from this simple flat tile to the |
---|
| 726 | ! accumulated values for the column |
---|
| 727 | iground = surface%i_ground_facet(jcol,jtile) |
---|
| 728 | single_level%lw_emissivity(jcol,:) = single_level%lw_emissivity(jcol,:) & |
---|
| 729 | & + tile_fraction*this%lw_emissivity(:,iground,jcol) |
---|
| 730 | single_level%lw_emission(jcol,:) = single_level%lw_emission(jcol,:) + tile_fraction & |
---|
| 731 | & * (this%planck_facet(:,iground,jcol)*this%lw_emissivity(:,iground,jcol)) |
---|
| 732 | |
---|
| 733 | case (ITileVegetation) |
---|
| 734 | ! HORIZONTALLY HOMOGENEOUS VEGETATION CANOPY |
---|
| 735 | |
---|
| 736 | iground = surface%i_ground_facet(jcol,jtile) |
---|
| 737 | iregion = surface%i_region_1(jcol,jtile) |
---|
| 738 | |
---|
| 739 | ! Convert vegetation emissivity to local spectral representation |
---|
| 740 | if (config%use_canopy_full_spectrum_lw) then |
---|
| 741 | vegetation_lw_emissivity = surface%vegetation_lw_emissivity(jcol, & |
---|
| 742 | & config%i_emiss_from_band_lw(config%i_band_from_reordered_g_lw), & |
---|
| 743 | & jtile) |
---|
| 744 | else |
---|
| 745 | vegetation_lw_emissivity = surface%vegetation_lw_emissivity(jcol,:,jtile) |
---|
| 746 | end if |
---|
| 747 | |
---|
| 748 | if (present(ext_lw_air)) then |
---|
| 749 | od_lw_air = surface%canopy_depth(jcol,jtile)*ext_lw_air(:,jcol) |
---|
| 750 | od_lw_region = od_lw_air + surface%vegetation_optical_depth(jcol,jtile) |
---|
| 751 | if (present(ssa_lw_air)) then |
---|
| 752 | ssa_lw_region= (ssa_lw_air(:,jcol)*od_lw_air & |
---|
| 753 | & + surface%vegetation_optical_depth(jcol,jtile) & |
---|
| 754 | & * (1.0_jprb-vegetation_lw_emissivity)) & |
---|
| 755 | & / od_lw_region |
---|
| 756 | ! Assume asymmetry factor of vegetation is zero |
---|
| 757 | g_lw_region = g_lw_air(:,jcol)*ssa_lw_air(:,jcol)*od_lw_air & |
---|
| 758 | & / (ssa_lw_region * od_lw_region) |
---|
| 759 | else |
---|
| 760 | ! No longwave scattering properties for air |
---|
| 761 | ssa_lw_region= surface%vegetation_optical_depth(jcol,jtile) & |
---|
| 762 | & * (1.0_jprb-vegetation_lw_emissivity) & |
---|
| 763 | & / od_lw_region |
---|
| 764 | ! Assume asymmetry factor of vegetation is zero |
---|
| 765 | g_lw_region = 0.0_jprb |
---|
| 766 | |
---|
| 767 | end if |
---|
| 768 | else |
---|
| 769 | ! No gases |
---|
| 770 | od_lw_region = surface%vegetation_optical_depth(jcol,jtile) |
---|
| 771 | ssa_lw_region= 1.0_jprb-vegetation_lw_emissivity |
---|
| 772 | g_lw_region = 0.0_jprb |
---|
| 773 | end if |
---|
| 774 | |
---|
| 775 | call calc_two_stream_gammas_lw(this%nlwbands, & |
---|
| 776 | & ssa_lw_region, g_lw_region, & |
---|
| 777 | & gamma1_lw, gamma2_lw) |
---|
| 778 | call calc_reflectance_transmittance_isothermal_lw(this%nlwbands, & |
---|
| 779 | & od_lw_region, gamma1_lw, gamma2_lw, this%planck_region(:,iregion,jcol), & |
---|
| 780 | & this%lw_reflectance(:,iregion,jcol), this%lw_transmittance(:,iregion,jcol), & |
---|
| 781 | & this%lw_source(:,iregion,jcol)) |
---|
| 782 | |
---|
| 783 | ! Longwave adding method for a single layer |
---|
| 784 | inv_denominator_lw(:) = 1.0_jprb & |
---|
| 785 | & / (1.0_jprb - (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
| 786 | & *this%lw_reflectance(:,iregion,jcol)) |
---|
| 787 | single_level%lw_emissivity(jcol,:) = single_level%lw_emissivity(jcol,:) & |
---|
| 788 | & + tile_fraction * (1.0_jprb - (this%lw_reflectance(:,iregion,jcol) & |
---|
| 789 | & + this%lw_transmittance(:,iregion,jcol)**2 & |
---|
| 790 | & * (1.0_jprb - this%lw_emissivity(:,iground,jcol)) * inv_denominator_lw(:))) |
---|
| 791 | single_level%lw_emission(jcol,:) = single_level%lw_emission(jcol,:) + tile_fraction & |
---|
| 792 | & * (this%lw_source(:,iregion,jcol) * (1.0_jprb + inv_denominator_lw(:) & |
---|
| 793 | & * (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
| 794 | & * this%lw_transmittance(:,iregion,jcol)) & |
---|
| 795 | & +this%planck_facet(:,iground,jcol)*this%lw_emissivity(:,iground,jcol) & |
---|
| 796 | & *this%lw_transmittance(:,iregion,jcol)*inv_denominator_lw(:)) |
---|
| 797 | |
---|
| 798 | case (ITileUrban3D) |
---|
| 799 | ! URBAN CANOPY WITH NO VEGETATION, TREATED USING |
---|
| 800 | ! SPARTACUS METHODOLOGY |
---|
| 801 | |
---|
| 802 | iground = surface%i_ground_facet(jcol,jtile) |
---|
| 803 | iwall = surface%i_wall_facet(jcol,jtile) |
---|
| 804 | iroof = surface%i_roof_facet(jcol,jtile) |
---|
| 805 | iregion = surface%i_region_1(jcol,jtile) |
---|
| 806 | |
---|
| 807 | canyon_fraction = 1.0_jprb - surface%building_fraction(jcol,jtile) |
---|
| 808 | |
---|
| 809 | ! fdiff woould be 0.5 * building_normalized_perimeter / |
---|
| 810 | ! canyon_fraction, but to get equivalent zenith optical |
---|
| 811 | ! depth we multiply by the building height and divide by |
---|
| 812 | ! the longwave diffusivity angle |
---|
| 813 | ! od_lw_wall = 0.5_jprb * surface%building_normalized_perimeter(jcol,jtile) & |
---|
| 814 | ! & * surface%canopy_depth(jcol,jtile) / (LwDiffusivity * canyon_fraction) |
---|
| 815 | |
---|
| 816 | ! Or first compute H/W |
---|
| 817 | od_lw_wall = 0.5_jprb * surface%building_normalized_perimeter(jcol,jtile) & |
---|
| 818 | & * surface%canopy_depth(jcol,jtile) / canyon_fraction |
---|
| 819 | ! And then use the Harman et al. (2004) formula for |
---|
| 820 | ! street-to-sky transmittance T=sqrt[(H/W)^2+1]-H/W, to |
---|
| 821 | ! compute equivalent optical depth knowing that the |
---|
| 822 | ! two-stream scheme treatment will be T=exp(-D*od) |
---|
| 823 | od_lw_wall = -log(sqrt(od_lw_wall*od_lw_wall + 1) - od_lw_wall) / LwDiffusivity |
---|
| 824 | |
---|
| 825 | if (present(ext_lw_air)) then |
---|
| 826 | od_lw_air = ext_lw_air(:,jcol)*surface%canopy_depth(jcol,jtile) !*10.0_jprb |
---|
| 827 | od_lw_region = od_lw_air + od_lw_wall |
---|
| 828 | if (present(ssa_lw_air)) then |
---|
| 829 | ssa_lw_region = (od_lw_air * ssa_lw_air(:,jcol) & |
---|
| 830 | & + od_lw_wall * (1.0_jprb - this%lw_emissivity(:,iwall,jcol))) & |
---|
| 831 | & / max(od_lw_region,1.0e-6_jprb) |
---|
| 832 | ! We assume that any scattering off the walls is |
---|
| 833 | ! equally likely to be up or down, so the effective |
---|
| 834 | ! asymmetry factor is zero |
---|
| 835 | g_lw_region = (od_lw_air * ssa_lw_air(:,jcol)*g_lw_air(:,jcol)) & |
---|
| 836 | & / max(od_lw_region*ssa_lw_region,1.0e-6_jprb) |
---|
| 837 | ! Effective Planck function of the canopy is the |
---|
| 838 | ! weighted average of wall and air emission |
---|
| 839 | this%lw_total_wall_emission(:,iregion,jcol) = LwDiffusivity & |
---|
| 840 | & * od_lw_wall*this%lw_emissivity(:,iwall,jcol)*this%planck_facet(:,iwall,jcol) |
---|
| 841 | this%lw_total_canopy_emission(:,iregion,jcol) = LwDiffusivity & |
---|
| 842 | & * od_lw_air*(1.0_jprb-ssa_lw_air(:,jcol))*this%planck_region(:,iregion,jcol) |
---|
| 843 | planck_canopy = (this%lw_total_wall_emission(:,iregion,jcol) & |
---|
| 844 | & +this%lw_total_canopy_emission(:,iregion,jcol)) & |
---|
| 845 | & / max(od_lw_region*(1.0_jprb-ssa_lw_region)*LwDiffusivity,1.0e-6_jprb) |
---|
| 846 | else |
---|
| 847 | ssa_lw_region = od_lw_wall * (1.0_jprb - this%lw_emissivity(:,iwall,jcol)) & |
---|
| 848 | & / max(od_lw_region,1.0e-6_jprb) |
---|
| 849 | ! We assume that any scattering off the walls is |
---|
| 850 | ! equally likely to be up or down, so the effective |
---|
| 851 | ! asymmetry factor is zero |
---|
| 852 | g_lw_region = 0.0_jprb |
---|
| 853 | ! Effective Planck function of the canopy is the |
---|
| 854 | ! weighted average of wall and air emission |
---|
| 855 | this%lw_total_wall_emission(:,iregion,jcol) = LwDiffusivity & |
---|
| 856 | & * od_lw_wall*this%lw_emissivity(:,iwall,jcol)*this%planck_facet(:,iwall,jcol) |
---|
| 857 | this%lw_total_canopy_emission(:,iregion,jcol) = LwDiffusivity & |
---|
| 858 | & * od_lw_air*this%planck_region(:,iregion,jcol) |
---|
| 859 | planck_canopy = (this%lw_total_wall_emission(:,iregion,jcol) & |
---|
| 860 | & +this%lw_total_canopy_emission(:,iregion,jcol)) & |
---|
| 861 | & / max(od_lw_region*(1.0_jprb-ssa_lw_region)*LwDiffusivity,1.0e-6_jprb) |
---|
| 862 | end if |
---|
| 863 | |
---|
| 864 | ! Compute fraction of canyon absorption by the wall |
---|
| 865 | this%lw_wall_abs_frac(:,iregion,jcol) = od_lw_wall * this%lw_emissivity(:,iwall,jcol) & |
---|
| 866 | & / max(od_lw_region*(1.0_jprb-ssa_lw_region),1.0e-6_jprb) |
---|
| 867 | |
---|
| 868 | |
---|
| 869 | else |
---|
| 870 | od_lw_region = od_lw_wall |
---|
| 871 | ssa_lw_region = 1.0_jprb - this%lw_emissivity(:,iwall,jcol); |
---|
| 872 | g_lw_region = 0.0_jprb |
---|
| 873 | |
---|
| 874 | ! All absorption and emission is by the wall |
---|
| 875 | this%lw_wall_abs_frac(:,iregion,jcol) = 1.0_jprb |
---|
| 876 | this%lw_total_wall_emission(:,iregion,jcol) = LwDiffusivity & |
---|
| 877 | & * od_lw_wall*this%lw_emissivity(:,iwall,jcol)*this%planck_facet(:,iwall,jcol) |
---|
| 878 | this%lw_total_canopy_emission(:,iregion,jcol) = 0.0_jprb |
---|
| 879 | planck_canopy = this%planck_facet(:,iwall,jcol) |
---|
| 880 | end if |
---|
| 881 | |
---|
| 882 | call calc_two_stream_gammas_lw(this%nlwbands, & |
---|
| 883 | & ssa_lw_region, g_lw_region, & |
---|
| 884 | & gamma1_lw, gamma2_lw) |
---|
| 885 | call calc_reflectance_transmittance_isothermal_lw(this%nlwbands, & |
---|
| 886 | & od_lw_region, gamma1_lw, gamma2_lw, planck_canopy, & |
---|
| 887 | & this%lw_reflectance(:,iregion,jcol), this%lw_transmittance(:,iregion,jcol), & |
---|
| 888 | & this%lw_source(:,iregion,jcol)) |
---|
| 889 | |
---|
| 890 | ! Add roof component |
---|
| 891 | single_level%lw_emissivity(jcol,:) = single_level%lw_emissivity(jcol,:) & |
---|
| 892 | & + tile_fraction * surface%building_fraction(jcol,jtile) & |
---|
| 893 | & * this%lw_emissivity(:,iroof,jcol) |
---|
| 894 | single_level%lw_emission(jcol,:) = single_level%lw_emission(jcol,:) & |
---|
| 895 | & + tile_fraction * surface%building_fraction(jcol,jtile) & |
---|
| 896 | & * this%lw_emissivity(:,iroof,jcol)*this%planck_facet(:,iroof,jcol) |
---|
| 897 | |
---|
| 898 | ! Add canyon component: longwave adding method for a single layer |
---|
| 899 | inv_denominator_lw(:) = 1.0_jprb & |
---|
| 900 | & / (1.0_jprb - (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
| 901 | & *this%lw_reflectance(:,iregion,jcol)) |
---|
| 902 | this%lw_emissivity_region(:,iregion,jcol) & |
---|
| 903 | & = (1.0_jprb - (this%lw_reflectance(:,iregion,jcol) & |
---|
| 904 | & + this%lw_transmittance(:,iregion,jcol)**2 & |
---|
| 905 | & * (1.0_jprb - this%lw_emissivity(:,iground,jcol)) * inv_denominator_lw(:))) |
---|
| 906 | single_level%lw_emissivity(jcol,:) = single_level%lw_emissivity(jcol,:) & |
---|
| 907 | & + tile_fraction * canyon_fraction * this%lw_emissivity_region(:,iregion,jcol) |
---|
| 908 | this%lw_emission_region(:,iregion,jcol) & |
---|
| 909 | & = this%lw_source(:,iregion,jcol) * (1.0_jprb + inv_denominator_lw(:) & |
---|
| 910 | & * (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
| 911 | & * this%lw_transmittance(:,iregion,jcol)) & |
---|
| 912 | & +this%planck_facet(:,iground,jcol)*this%lw_emissivity(:,iground,jcol) & |
---|
| 913 | & *this%lw_transmittance(:,iregion,jcol)*inv_denominator_lw(:) |
---|
| 914 | single_level%lw_emission(jcol,:) = single_level%lw_emission(jcol,:) & |
---|
| 915 | & + tile_fraction * canyon_fraction * this%lw_emission_region(:,iregion,jcol) |
---|
| 916 | |
---|
| 917 | end select |
---|
| 918 | end if |
---|
| 919 | end do |
---|
| 920 | end do |
---|
| 921 | end if |
---|
| 922 | |
---|
| 923 | if (lhook) call dr_hook('radsurf_intermediate:calc_boundary_conditions_lw',1,hook_handle) |
---|
| 924 | |
---|
| 925 | end subroutine calc_boundary_conditions_lw |
---|
| 926 | |
---|
| 927 | |
---|
| 928 | !--------------------------------------------------------------------- |
---|
| 929 | ! Compute both shortwave and longwave boundary conditions neglecting |
---|
| 930 | ! gases within vegetation and urban canopies |
---|
| 931 | subroutine calc_boundary_conditions_vacuum(this, istartcol, iendcol, & ! in |
---|
| 932 | & config, surface, & ! in |
---|
| 933 | & single_level) ! out |
---|
| 934 | |
---|
| 935 | use radiation_config, only : config_type |
---|
| 936 | use radiation_single_level, only : single_level_type |
---|
| 937 | use radsurf_properties, only : surface_type |
---|
| 938 | |
---|
| 939 | class(surface_intermediate_type), intent(inout) :: this |
---|
| 940 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
| 941 | type(config_type), intent(in) :: config |
---|
| 942 | type(surface_type), intent(in) :: surface |
---|
| 943 | type(single_level_type), intent(inout) :: single_level |
---|
| 944 | |
---|
| 945 | call this%calc_boundary_conditions_sw(istartcol, iendcol, & |
---|
| 946 | & config, surface, single_level) |
---|
| 947 | call this%calc_boundary_conditions_lw(istartcol, iendcol, & |
---|
| 948 | & config, surface, single_level) |
---|
| 949 | |
---|
| 950 | end subroutine calc_boundary_conditions_vacuum |
---|
| 951 | |
---|
| 952 | |
---|
| 953 | !--------------------------------------------------------------------- |
---|
| 954 | ! Compute both shortwave and longwave boundary conditions |
---|
| 955 | subroutine calc_boundary_conditions(this, istartcol, iendcol, & ! in |
---|
| 956 | & config, surface, & ! in |
---|
| 957 | & thermodynamics, gas, & ! in |
---|
| 958 | & single_level) ! out |
---|
| 959 | |
---|
| 960 | use radiation_config, only : config_type |
---|
| 961 | use radiation_thermodynamics,only: thermodynamics_type |
---|
| 962 | use radiation_gas, only : gas_type |
---|
| 963 | use radiation_single_level, only : single_level_type |
---|
| 964 | use radiation_ifs_rrtm, only : gas_optics |
---|
| 965 | use radsurf_properties, only : surface_type |
---|
| 966 | use radiation_constants, only : GasConstantDryAir, & |
---|
| 967 | & AccelDueToGravity |
---|
| 968 | |
---|
| 969 | class(surface_intermediate_type), intent(inout) :: this |
---|
| 970 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
| 971 | type(config_type), intent(in) :: config |
---|
| 972 | type(surface_type), intent(in) :: surface |
---|
| 973 | type(gas_type), intent(in) :: gas |
---|
| 974 | type(thermodynamics_type), intent(in) :: thermodynamics |
---|
| 975 | type(single_level_type), intent(inout) :: single_level |
---|
| 976 | |
---|
| 977 | ! Ratio of gas constant for dry air to acceleration due to gravity |
---|
| 978 | real(jprb), parameter :: R_over_g = GasConstantDryAir / AccelDueToGravity |
---|
| 979 | |
---|
| 980 | ! Number of leves to request gas optical depths for; we only need |
---|
| 981 | ! one but gas optics scheme assumes more |
---|
| 982 | integer, parameter :: NGasLevels = 1 |
---|
| 983 | |
---|
| 984 | ! Canopy longwave optical depth |
---|
| 985 | real(jprb), dimension(config%n_g_lw,NGasLevels,istartcol:iendcol) :: od_lw |
---|
| 986 | |
---|
| 987 | ! Canopy longwave extinction coefficient |
---|
| 988 | real(jprb), dimension(config%n_g_lw,istartcol:iendcol) :: ext_lw |
---|
| 989 | |
---|
| 990 | ! Canopy shortwave optical depth, single scattering albedo and |
---|
| 991 | ! asymmetry factor of gases and aerosols at each shortwave g-point |
---|
| 992 | real(jprb), dimension(config%n_g_sw,NGasLevels,istartcol:iendcol) :: od_sw, ssa_sw, g_sw |
---|
| 993 | |
---|
| 994 | ! Thickness of lowest model level |
---|
| 995 | real(jprb) :: layer_depth |
---|
| 996 | |
---|
| 997 | ! Index to final level of full model grid |
---|
| 998 | integer :: iendlev |
---|
| 999 | |
---|
| 1000 | ! Column loop counter, number of columns |
---|
| 1001 | integer :: jcol, ncol |
---|
| 1002 | |
---|
| 1003 | ncol = ubound(thermodynamics%pressure_hl,1) |
---|
| 1004 | iendlev = ubound(thermodynamics%pressure_hl,2)-1 |
---|
| 1005 | |
---|
| 1006 | call gas_optics(ncol, NGasLevels, istartcol, iendcol, & |
---|
| 1007 | & config, single_level, thermodynamics, gas, & |
---|
| 1008 | & od_lw, od_sw, ssa_sw) |
---|
| 1009 | |
---|
| 1010 | ! Scale optical depths to extinction |
---|
| 1011 | do jcol = istartcol,iendcol |
---|
| 1012 | layer_depth = R_over_g & |
---|
| 1013 | & * (thermodynamics%pressure_hl(jcol,iendlev+1) & |
---|
| 1014 | & - thermodynamics%pressure_hl(jcol,iendlev)) & |
---|
| 1015 | & * (thermodynamics%temperature_hl(jcol,iendlev) & |
---|
| 1016 | & + thermodynamics%temperature_hl(jcol,iendlev+1)) & |
---|
| 1017 | & / (thermodynamics%pressure_hl(jcol,iendlev) & |
---|
| 1018 | & + thermodynamics%pressure_hl(jcol,iendlev+1)) |
---|
| 1019 | !if (config%do_sw) then |
---|
| 1020 | ! ext_sw(jcol) = ext_sw(jcol) / layer_depth |
---|
| 1021 | !end if |
---|
| 1022 | if (config%do_lw) then |
---|
| 1023 | ext_lw(:,jcol) = od_lw(:,NGasLevels,jcol) / layer_depth |
---|
| 1024 | end if |
---|
| 1025 | end do |
---|
| 1026 | |
---|
| 1027 | call this%calc_boundary_conditions_sw(istartcol, iendcol, & |
---|
| 1028 | & config, surface, single_level) |
---|
| 1029 | if (config%do_canopy_gases_lw) then |
---|
| 1030 | call this%calc_boundary_conditions_lw(istartcol, iendcol, & |
---|
| 1031 | & config, surface, single_level, & |
---|
| 1032 | & ext_lw_air=ext_lw) |
---|
| 1033 | else |
---|
| 1034 | call this%calc_boundary_conditions_lw(istartcol, iendcol, & |
---|
| 1035 | & config, surface, single_level) |
---|
| 1036 | end if |
---|
| 1037 | |
---|
| 1038 | end subroutine calc_boundary_conditions |
---|
| 1039 | |
---|
| 1040 | |
---|
| 1041 | !--------------------------------------------------------------------- |
---|
| 1042 | subroutine partition_fluxes(this, istartcol, iendcol, config, surface, flux, & |
---|
| 1043 | & surface_flux) |
---|
| 1044 | |
---|
| 1045 | use yomhook, only : lhook, dr_hook |
---|
| 1046 | |
---|
| 1047 | use radiation_flux, only : flux_type |
---|
| 1048 | use radsurf_flux, only : surface_flux_type |
---|
| 1049 | use radiation_config, only : config_type |
---|
| 1050 | use radsurf_properties,only : surface_type, ITileFlat,ITileVegetation,ITileUrban3D |
---|
| 1051 | |
---|
| 1052 | class(surface_intermediate_type), intent(in) :: this |
---|
| 1053 | integer(kind=jpim), intent(in) :: istartcol, iendcol |
---|
| 1054 | type(config_type), intent(in) :: config |
---|
| 1055 | type(surface_type), intent(in) :: surface |
---|
| 1056 | type(flux_type), intent(in) :: flux |
---|
| 1057 | type(surface_flux_type), intent(inout) :: surface_flux |
---|
| 1058 | |
---|
| 1059 | real(kind=jprb), dimension(config%n_g_lw) :: lw_dn_g, lw_up_g |
---|
| 1060 | real(kind=jprb), dimension(config%n_canopy_bands_sw) & |
---|
| 1061 | & :: sw_dn_diffuse_g, sw_dn_direct_g, sw_up_g, sw_abs_g |
---|
| 1062 | real(kind=jprb), dimension(config%n_canopy_bands_lw) :: lw_abs_g |
---|
| 1063 | |
---|
| 1064 | ! Ratio of street planar area to wall frontal area |
---|
| 1065 | real(kind=jprb) :: wall_scaling |
---|
| 1066 | |
---|
| 1067 | real(kind=jprb) :: tile_fraction |
---|
| 1068 | integer(kind=jpim) :: iground, iroof, iwall, iregion |
---|
| 1069 | integer(kind=jpim) :: isurf ! index to lowest flux level (=nlev+1) |
---|
| 1070 | integer(kind=jpim) :: jcol, jtile |
---|
| 1071 | |
---|
| 1072 | real(kind=jprb) :: hook_handle |
---|
| 1073 | |
---|
| 1074 | if (lhook) call dr_hook('radsurf_intermediate:partition_fluxes',0,hook_handle) |
---|
| 1075 | |
---|
| 1076 | if (.not. surface%is_simple) then |
---|
| 1077 | isurf = size(flux%lw_dn,2) |
---|
| 1078 | |
---|
| 1079 | if (config%do_lw) then |
---|
| 1080 | surface_flux%lw_dn_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
| 1081 | surface_flux%lw_up_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
| 1082 | surface_flux%lw_abs_canopy(istartcol:iendcol,:)=0.0_jprb |
---|
| 1083 | end if |
---|
| 1084 | if (config%do_sw) then |
---|
| 1085 | surface_flux%sw_dn_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
| 1086 | surface_flux%sw_dn_direct_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
| 1087 | surface_flux%sw_up_facet(istartcol:iendcol,:) = 0.0_jprb |
---|
| 1088 | surface_flux%sw_abs_canopy(istartcol:iendcol,:)=0.0_jprb |
---|
| 1089 | end if |
---|
| 1090 | |
---|
| 1091 | ! Loop over column and tile |
---|
| 1092 | do jcol = istartcol,iendcol |
---|
| 1093 | do jtile = 1,surface%ntile |
---|
| 1094 | tile_fraction = surface%tile_fraction(jcol,jtile) |
---|
| 1095 | |
---|
| 1096 | if (tile_fraction > 0.0_jprb) then |
---|
| 1097 | |
---|
| 1098 | select case (surface%i_representation(jtile)) |
---|
| 1099 | case (ITileFlat) |
---|
| 1100 | iground = surface%i_ground_facet(jcol,jtile) |
---|
| 1101 | if (config%do_lw) then |
---|
| 1102 | surface_flux%lw_dn_facet(jcol,iground) = flux%lw_dn(jcol,isurf) |
---|
| 1103 | surface_flux%lw_up_facet(jcol,iground) & |
---|
| 1104 | & = sum(this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) & |
---|
| 1105 | & + (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
| 1106 | & * flux%lw_dn_surf_canopy(:,jcol)) |
---|
| 1107 | end if |
---|
| 1108 | if (config%do_sw) then |
---|
| 1109 | surface_flux%sw_dn_facet(jcol,iground) = flux%sw_dn(jcol,isurf) |
---|
| 1110 | surface_flux%sw_dn_direct_facet(jcol,iground) = flux%sw_dn_direct(jcol,isurf) |
---|
| 1111 | surface_flux%sw_up_facet(jcol,iground) & |
---|
| 1112 | & = sum(this%sw_albedo_diffuse(:,iground,jcol) & |
---|
| 1113 | & * flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
| 1114 | & + this%sw_albedo_direct (:,iground,jcol) & |
---|
| 1115 | & * flux%sw_dn_direct_surf_canopy (:,jcol)) |
---|
| 1116 | end if |
---|
| 1117 | |
---|
| 1118 | case (ITileVegetation) |
---|
| 1119 | iground = surface%i_ground_facet(jcol,jtile) |
---|
| 1120 | iregion = surface%i_region_1(jcol,jtile) |
---|
| 1121 | ! Adding method in longwave and shortwave |
---|
| 1122 | if (config%do_lw) then |
---|
| 1123 | ! Surface downwelling fluxes at each g point |
---|
| 1124 | lw_dn_g = (this%lw_transmittance(:,iregion,jcol)*flux%lw_dn_surf_canopy(:,jcol) & |
---|
| 1125 | & +this%lw_reflectance (:,iregion,jcol) & |
---|
| 1126 | & *this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) & |
---|
| 1127 | & +this%lw_source(:,iregion,jcol)) & |
---|
| 1128 | & / (1.0_jprb - (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
| 1129 | & *this%lw_reflectance(:,iregion,jcol)) |
---|
| 1130 | surface_flux%lw_dn_facet(jcol,iground) = sum(lw_dn_g) |
---|
| 1131 | surface_flux%lw_up_facet(jcol,iground) & |
---|
| 1132 | & = sum((1.0_jprb-this%lw_emissivity(:,iground,jcol))*lw_dn_g & |
---|
| 1133 | & +this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol)) |
---|
| 1134 | surface_flux%lw_abs_canopy(jcol,jtile) = flux%lw_dn(jcol,isurf) & |
---|
| 1135 | & - flux%lw_up(jcol,isurf) - surface_flux%lw_dn_facet(jcol,iground) & |
---|
| 1136 | & + surface_flux%lw_up_facet(jcol,iground) |
---|
| 1137 | |
---|
| 1138 | end if |
---|
| 1139 | if (config%do_sw) then |
---|
| 1140 | sw_dn_direct_g = this%sw_tra_dir_dir(:,iregion,jcol) & |
---|
| 1141 | & * flux%sw_dn_direct_surf_canopy(:,jcol) |
---|
| 1142 | ! Note that the following is initially just the |
---|
| 1143 | ! upwelling due to scattering of the direct beam |
---|
| 1144 | sw_up_g = sw_dn_direct_g * this%sw_albedo_direct(:,iground,jcol) |
---|
| 1145 | sw_dn_diffuse_g & |
---|
| 1146 | & = (this%sw_tra_dif(:,iregion,jcol)*flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
| 1147 | & +this%sw_ref_dif(:,iregion,jcol)*sw_up_g & |
---|
| 1148 | & +this%sw_tra_dir_dif(:,iregion,jcol)*flux%sw_dn_direct_surf_canopy(:,jcol)) & |
---|
| 1149 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iground,jcol) & |
---|
| 1150 | & *this%sw_ref_dif(:,iregion,jcol)) |
---|
| 1151 | sw_up_g = sw_up_g + sw_dn_diffuse_g * this%sw_albedo_diffuse(:,iground,jcol) |
---|
| 1152 | surface_flux%sw_dn_direct_facet(jcol,iground) = sum(sw_dn_direct_g) |
---|
| 1153 | surface_flux%sw_dn_facet(jcol,iground) = surface_flux%sw_dn_direct_facet(jcol,iground) & |
---|
| 1154 | & + sum(sw_dn_diffuse_g) |
---|
| 1155 | surface_flux%sw_up_facet(jcol,iground) = sum(sw_up_g) |
---|
| 1156 | surface_flux%sw_abs_canopy(jcol,jtile) & |
---|
| 1157 | & = flux%sw_dn(jcol,isurf) - flux%sw_up(jcol,isurf) & |
---|
| 1158 | & - surface_flux%sw_dn_facet(jcol,iground) & |
---|
| 1159 | & + surface_flux%sw_up_facet(jcol,iground) |
---|
| 1160 | end if |
---|
| 1161 | case (ITileUrban3D) |
---|
| 1162 | iground = surface%i_ground_facet(jcol,jtile) |
---|
| 1163 | iroof = surface%i_roof_facet(jcol,jtile) |
---|
| 1164 | iwall = surface%i_wall_facet(jcol,jtile) |
---|
| 1165 | iregion = surface%i_region_1(jcol,jtile) |
---|
| 1166 | |
---|
| 1167 | ! We want wall fluxes per unit area of wall, not per |
---|
| 1168 | ! unit area of street |
---|
| 1169 | wall_scaling = (1.0_jprb - surface%building_fraction(jcol,jtile)) & |
---|
| 1170 | & / max(1.0e-4_jprb, surface%building_normalized_perimeter(jcol,jtile) & |
---|
| 1171 | & * surface%canopy_depth(jcol,jtile)) |
---|
| 1172 | |
---|
| 1173 | if (config%do_sw) then |
---|
| 1174 | ! Roof fluxes |
---|
| 1175 | surface_flux%sw_dn_facet(jcol,iroof) = flux%sw_dn(jcol,isurf) |
---|
| 1176 | surface_flux%sw_dn_direct_facet(jcol,iroof) = flux%sw_dn_direct(jcol,isurf) |
---|
| 1177 | surface_flux%sw_up_facet(jcol,iroof) & |
---|
| 1178 | & = sum(this%sw_albedo_diffuse(:,iroof,jcol) & |
---|
| 1179 | & * flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
| 1180 | & + this%sw_albedo_direct (:,iroof,jcol) & |
---|
| 1181 | & * flux%sw_dn_direct_surf_canopy (:,jcol)) |
---|
| 1182 | |
---|
| 1183 | ! Ground fluxes |
---|
| 1184 | sw_dn_direct_g = this%sw_tra_dir_dir(:,iregion,jcol) & |
---|
| 1185 | & * flux%sw_dn_direct_surf_canopy(:,jcol) |
---|
| 1186 | ! Note that the following is initially just the |
---|
| 1187 | ! upwelling due to scattering of the direct beam |
---|
| 1188 | sw_up_g = sw_dn_direct_g * this%sw_albedo_direct(:,iground,jcol) |
---|
| 1189 | sw_dn_diffuse_g & |
---|
| 1190 | & = (this%sw_tra_dif(:,iregion,jcol)*flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
| 1191 | & +this%sw_ref_dif(:,iregion,jcol)*sw_up_g & |
---|
| 1192 | & +this%sw_tra_dir_dif(:,iregion,jcol)*flux%sw_dn_direct_surf_canopy(:,jcol)) & |
---|
| 1193 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iground,jcol) & |
---|
| 1194 | & *this%sw_ref_dif(:,iregion,jcol)) |
---|
| 1195 | sw_up_g = sw_up_g + sw_dn_diffuse_g * this%sw_albedo_diffuse(:,iground,jcol) |
---|
| 1196 | surface_flux%sw_dn_direct_facet(jcol,iground) = sum(sw_dn_direct_g) |
---|
| 1197 | surface_flux%sw_dn_facet(jcol,iground) = surface_flux%sw_dn_direct_facet(jcol,iground) & |
---|
| 1198 | & + sum(sw_dn_diffuse_g) |
---|
| 1199 | surface_flux%sw_up_facet(jcol,iground) = sum(sw_up_g) |
---|
| 1200 | |
---|
| 1201 | ! Wall fluxes |
---|
| 1202 | sw_abs_g = flux%sw_dn_direct_surf_canopy(:,jcol)*this%sw_wall_abs_dir(:,iregion,jcol) |
---|
| 1203 | surface_flux%sw_dn_direct_facet(jcol,iwall) & |
---|
| 1204 | & = wall_scaling * sum(sw_abs_g / (1.0_jprb - this%sw_albedo_direct(:,iwall,jcol))) |
---|
| 1205 | ! Initially just the direct reflection |
---|
| 1206 | surface_flux%sw_up_facet(jcol,iwall) = wall_scaling & |
---|
| 1207 | & * sum(sw_abs_g * this%sw_albedo_direct(:,iwall,jcol) & |
---|
| 1208 | & / (1.0_jprb - this%sw_albedo_direct(:,iwall,jcol))) |
---|
| 1209 | ! Initially just the direct absorption |
---|
| 1210 | surface_flux%sw_abs_canopy(jcol,jtile) & |
---|
| 1211 | & = sum(flux%sw_dn_direct_surf_canopy(:,jcol)*this%sw_air_abs_dir(:,iregion,jcol)) |
---|
| 1212 | |
---|
| 1213 | ! Diffuse absorption within canopy |
---|
| 1214 | sw_abs_g = flux%sw_dn_direct_surf_canopy(:,jcol) & |
---|
| 1215 | & * (1.0-this%sw_albedo_direct_reg (:,iregion,jcol)) & |
---|
| 1216 | & + flux%sw_dn_diffuse_surf_canopy(:,jcol) & |
---|
| 1217 | & * (1.0-this%sw_albedo_diffuse_reg(:,iregion,jcol)) & |
---|
| 1218 | & - sw_dn_direct_g - sw_dn_diffuse_g + sw_up_g - sw_abs_g |
---|
| 1219 | ! Add diffuse absorption |
---|
| 1220 | surface_flux%sw_abs_canopy(jcol,jtile) = surface_flux%sw_abs_canopy(jcol,jtile) & |
---|
| 1221 | & + sum(sw_abs_g * (1.0_jprb - this%sw_wall_abs_frac_dif(:,iregion,jcol))) |
---|
| 1222 | ! Add diffuse reflection |
---|
| 1223 | surface_flux%sw_up_facet(jcol,iwall) = surface_flux%sw_up_facet(jcol,iwall) & |
---|
| 1224 | & + wall_scaling * sum(sw_abs_g * this%sw_wall_abs_frac_dif(:,iregion,jcol) & |
---|
| 1225 | & * this%sw_albedo_diffuse(:,iwall,jcol) & |
---|
| 1226 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol))) |
---|
| 1227 | ! Add diffuse into wall |
---|
| 1228 | surface_flux%sw_dn_facet(jcol,iwall) = surface_flux%sw_dn_direct_facet(jcol,iwall) & |
---|
| 1229 | & + wall_scaling * sum(sw_abs_g * this%sw_wall_abs_frac_dif(:,iregion,jcol) & |
---|
| 1230 | & / (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol))) |
---|
| 1231 | !!$ |
---|
| 1232 | !!$ sw_direct_abs_g = flux%sw_dn_direct_surf_g (:,jcol) - sw_dn_direct_g |
---|
| 1233 | !!$ sw_diffuse_abs_g = flux%sw_dn_diffuse_surf_g(:,jcol)*(1.0_jprb - this%sw_albedo_diffuse_reg(:,iregion,jcol)) & |
---|
| 1234 | !!$ & + flux%sw_dn_direct_surf_g (:,jcol)*(1.0_jprb - this%sw_albedo_direct_reg (:,iregion,jcol)) & |
---|
| 1235 | !!$ & - sw_dn_direct_g - sw_dn_diffuse_g + sw_up_g |
---|
| 1236 | !!$ |
---|
| 1237 | !!$ |
---|
| 1238 | !!$ surface_flux%sw_abs_canopy(jcol,jtile) = sum((1.0_jprb - this%sw_wall_abs_frac(:,iregion,jcol))*sw_abs_g) |
---|
| 1239 | !!$ surface_flux%sw_dn_facet(jcol,iwall) = sum(this%sw_wall_abs_frac(:,iregion,jcol)*sw_abs_g & |
---|
| 1240 | !!$ & / (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol))) |
---|
| 1241 | !!$ surface_flux%sw_up_facet(jcol,iwall) = sum(this%sw_albedo_diffuse(:,iwall,jcol) & |
---|
| 1242 | !!$ & *this%sw_wall_abs_frac(:,iregion,jcol)*sw_abs_g & |
---|
| 1243 | !!$ & / (1.0_jprb - this%sw_albedo_diffuse(:,iwall,jcol))) |
---|
| 1244 | end if |
---|
| 1245 | |
---|
| 1246 | if (config%do_lw) then |
---|
| 1247 | surface_flux%lw_dn_facet(jcol,iroof) = flux%lw_dn(jcol,isurf) |
---|
| 1248 | surface_flux%lw_up_facet(jcol,iroof) & |
---|
| 1249 | & = sum(this%lw_emissivity(:,iroof,jcol)*this%planck_facet(:,iroof,jcol) & |
---|
| 1250 | & + (1.0_jprb - this%lw_emissivity(:,iroof,jcol))*flux%lw_dn_surf_canopy(:,jcol)) |
---|
| 1251 | lw_dn_g = (this%lw_transmittance(:,iregion,jcol)*flux%lw_dn_surf_canopy(:,jcol) & |
---|
| 1252 | & +this%lw_reflectance (:,iregion,jcol) & |
---|
| 1253 | & *this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) & |
---|
| 1254 | & +this%lw_source(:,iregion,jcol)) & |
---|
| 1255 | & / (1.0_jprb - (1.0_jprb - this%lw_emissivity(:,iground,jcol)) & |
---|
| 1256 | & *this%lw_reflectance(:,iregion,jcol)) |
---|
| 1257 | lw_up_g = (1.0_jprb-this%lw_emissivity(:,iground,jcol))*lw_dn_g & |
---|
| 1258 | & +this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) |
---|
| 1259 | surface_flux%lw_dn_facet(jcol,iground) = sum(lw_dn_g) |
---|
| 1260 | surface_flux%lw_up_facet(jcol,iground) = sum(lw_up_g) |
---|
| 1261 | ! lw_abs_g = flux%lw_dn(jcol,isurf)-flux%lw_up(jcol,isurf) & |
---|
| 1262 | ! & - surface_flux%lw_dn_facet(jcol,iground)+surface_flux%lw_up_facet(jcol,iground) |
---|
| 1263 | ! lw_abs_g = flux%lw_dn_surf_canopy(:,jcol) & |
---|
| 1264 | ! & * (1.0_jprb-this%lw_emissivity_region(:,iregion,jcol)) & |
---|
| 1265 | ! & - this%lw_emission_region(:,iregion,jcol) & |
---|
| 1266 | ! & - lw_dn_g*(1.0_jprb-this%lw_emissivity(:,iground,jcol)) & |
---|
| 1267 | ! & + this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) |
---|
| 1268 | ! lw_abs_g = flux%lw_dn_surf_canopy(:,jcol) & |
---|
| 1269 | ! & * this%lw_emissivity_region(:,iregion,jcol) & |
---|
| 1270 | ! & - this%lw_emission_region(:,iregion,jcol) & |
---|
| 1271 | ! & - lw_dn_g*this%lw_emissivity(:,iground,jcol) & |
---|
| 1272 | ! & + this%lw_emissivity(:,iground,jcol)*this%planck_facet(:,iground,jcol) |
---|
| 1273 | lw_abs_g = (flux%lw_dn_surf_canopy(:,jcol) + lw_up_g) & |
---|
| 1274 | & * (1.0_jprb - this%lw_reflectance(:,iregion,jcol) & |
---|
| 1275 | & - this%lw_transmittance(:,iregion,jcol)) & |
---|
| 1276 | & + this%lw_total_wall_emission(:,iregion,jcol) & |
---|
| 1277 | & + this%lw_total_canopy_emission(:,iregion,jcol) & |
---|
| 1278 | & - 2.0_jprb * this%lw_source(:,iregion,jcol) |
---|
| 1279 | |
---|
| 1280 | ! surface_flux%lw_up_facet(jcol,iwall) = sum(this%planck_facet(:,iwall,jcol) & |
---|
| 1281 | ! & + wall_scaling*(1.0_jprb-this%lw_emissivity(:,iwall,jcol)) & |
---|
| 1282 | ! & *this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g & |
---|
| 1283 | ! & / this%lw_emissivity(:,iwall,jcol)) |
---|
| 1284 | ! surface_flux%lw_dn_facet(jcol,iwall) = sum((this%planck_facet(:,iwall,jcol) & |
---|
| 1285 | ! & + this%lw_total_wall_emission(:,iregion,jcol)) / this%lw_emissivity(:,iwall,jcol)) |
---|
| 1286 | |
---|
| 1287 | ! surface_flux%lw_dn_facet(jcol,iwall) = wall_scaling*sum((this%lw_total_wall_emission(:,iregion,jcol) & |
---|
| 1288 | ! & + this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g) & |
---|
| 1289 | ! & / this%lw_emissivity(:,iwall,jcol)) |
---|
| 1290 | ! surface_flux%lw_up_facet(jcol,iwall) = surface_flux%lw_dn_facet(jcol,iwall) & |
---|
| 1291 | ! & - wall_scaling*sum(this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g) |
---|
| 1292 | |
---|
| 1293 | surface_flux%lw_dn_facet(jcol,iwall) & |
---|
| 1294 | & = wall_scaling*sum(this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g & |
---|
| 1295 | & / this%lw_emissivity(:,iwall,jcol)) |
---|
| 1296 | surface_flux%lw_up_facet(jcol,iwall) = surface_flux%lw_dn_facet(jcol,iwall) & |
---|
| 1297 | & + wall_scaling * sum(this%lw_total_wall_emission(:,iregion,jcol) & |
---|
| 1298 | & - this%lw_wall_abs_frac(:,iregion,jcol)*lw_abs_g) |
---|
| 1299 | |
---|
| 1300 | surface_flux%lw_abs_canopy(jcol,jtile) & |
---|
| 1301 | & = sum(lw_abs_g*(1.0_jprb-this%lw_wall_abs_frac(:,iregion,jcol)) & |
---|
| 1302 | & -this%lw_total_canopy_emission(:,iregion,jcol)) |
---|
| 1303 | end if |
---|
| 1304 | end select |
---|
| 1305 | |
---|
| 1306 | end if |
---|
| 1307 | |
---|
| 1308 | end do |
---|
| 1309 | end do |
---|
| 1310 | end if |
---|
| 1311 | |
---|
| 1312 | if (lhook) call dr_hook('radsurf_intermediate:partition_fluxes',1,hook_handle) |
---|
| 1313 | |
---|
| 1314 | end subroutine partition_fluxes |
---|
| 1315 | |
---|
| 1316 | end module radsurf_intermediate |
---|