source: LMDZ6/trunk/libf/phylmd/ecrad/radiation_two_stream.F90 @ 4013

Last change on this file since 4013 was 3908, checked in by idelkadi, 4 years ago

Online implementation of the radiative transfer code ECRAD in the LMDZ model.

  • Inclusion of the ecrad directory containing the sources of the ECRAD code
    • interface routine : radiation_scheme.F90
  • Adaptation of compilation scripts :
    • compilation under CPP key CPP_ECRAD
    • compilation with option "-rad ecard" or "-ecard true"
    • The "-rad old/rtm/ecran" build option will need to replace the "-rrtm true" and "-ecrad true" options in the future.
  • Runing LMDZ simulations with ecrad, you need :
    • logical key iflag_rrtm = 2 in physiq.def
    • namelist_ecrad (DefLists?)
    • the directory "data" containing the configuration files is temporarily placed in ../libfphylmd/ecrad/
  • Compilation and execution are tested in the 1D case. The repository under svn would allow to continue the implementation work: tests, verification of the results, ...
File size: 28.6 KB
Line 
1! radiation_two_stream.F90 - Compute two-stream coefficients
2!
3! (C) Copyright 2014- ECMWF.
4!
5! This software is licensed under the terms of the Apache Licence Version 2.0
6! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
7!
8! In applying this licence, ECMWF does not waive the privileges and immunities
9! granted to it by virtue of its status as an intergovernmental organisation
10! nor does it submit to any jurisdiction.
11!
12! Author:  Robin Hogan
13! Email:   r.j.hogan@ecmwf.int
14!
15! Modifications
16!   2017-05-04  P Dueben/R Hogan  Use JPRD where double precision essential
17!   2017-07-12  R Hogan  Optimized LW coeffs in low optical depth case
18!   2017-07-26  R Hogan  Added calc_frac_scattered_diffuse_sw routine
19!   2017-10-23  R Hogan  Renamed single-character variables
20
21module radiation_two_stream
22
23  use parkind1, only : jprb, jprd
24
25  implicit none
26  public
27
28  ! Elsasser's factor: the effective factor by which the zenith
29  ! optical depth needs to be multiplied to account for longwave
30  ! transmission at all angles through the atmosphere.  Alternatively
31  ! think of acos(1/lw_diffusivity) to be the effective zenith angle
32  ! of longwave radiation.
33  real(jprd), parameter :: LwDiffusivity = 1.66_jprd
34
35  ! Shortwave diffusivity factor assumes hemispheric isotropy, assumed
36  ! by Zdunkowski's scheme and most others; note that for efficiency
37  ! this parameter is not used in the calculation of the gamma values,
38  ! but is used in the SPARTACUS solver.
39  real(jprb), parameter :: SwDiffusivity = 2.00_jprb
40
41  ! The routines in this module can be called millions of times, so
42  !calling Dr Hook for each one may be a significant overhead.
43  !Uncomment the following to turn Dr Hook on.
44!#define DO_DR_HOOK_TWO_STREAM
45
46contains
47
48#ifdef FAST_EXPONENTIAL
49  !---------------------------------------------------------------------
50  ! Fast exponential for negative arguments: a Pade approximant that
51  ! doesn't go negative for negative arguments, applied to arg/8, and
52  ! the result is then squared three times
53  elemental function exp_fast(arg) result(ex)
54    real(jprd) :: arg, ex
55    ex = 1.0_jprd / (1.0_jprd + arg*(-0.125_jprd &
56         + arg*(0.0078125_jprd - 0.000325520833333333_jprd * arg)))
57    ex = ex*ex
58    ex = ex*ex
59    ex = ex*ex
60  end function exp_fast
61#else
62#define exp_fast exp
63#endif
64
65  !---------------------------------------------------------------------
66  ! Calculate the two-stream coefficients gamma1 and gamma2 for the
67  ! longwave
68  subroutine calc_two_stream_gammas_lw(ng, ssa, g, &
69       &                               gamma1, gamma2)
70
71#ifdef DO_DR_HOOK_TWO_STREAM
72    use yomhook, only : lhook, dr_hook
73#endif
74
75    integer, intent(in) :: ng
76    ! Sngle scattering albedo and asymmetry factor:
77    real(jprb), intent(in),  dimension(:) :: ssa, g
78    real(jprb), intent(out), dimension(:) :: gamma1, gamma2
79
80    real(jprb) :: factor
81
82    integer    :: jg
83
84#ifdef DO_DR_HOOK_TWO_STREAM
85    real(jprb) :: hook_handle
86
87    if (lhook) call dr_hook('radiation_two_stream:calc_two_stream_gammas_lw',0,hook_handle)
88#endif
89
90    do jg = 1, ng
91      ! Fu et al. (1997), Eq 2.9 and 2.10:
92      !      gamma1(jg) = LwDiffusivity * (1.0_jprb - 0.5_jprb*ssa(jg) &
93      !           &                    * (1.0_jprb + g(jg)))
94      !      gamma2(jg) = LwDiffusivity * 0.5_jprb * ssa(jg) &
95      !           &                    * (1.0_jprb - g(jg))
96      ! Reduce number of multiplications
97      factor = (LwDiffusivity * 0.5_jprb) * ssa(jg)
98      gamma1(jg) = LwDiffusivity - factor*(1.0_jprb + g(jg))
99      gamma2(jg) = factor * (1.0_jprb - g(jg))
100    end do
101
102#ifdef DO_DR_HOOK_TWO_STREAM
103    if (lhook) call dr_hook('radiation_two_stream:calc_two_stream_gammas_lw',1,hook_handle)
104#endif
105
106  end subroutine calc_two_stream_gammas_lw
107
108
109  !---------------------------------------------------------------------
110  ! Calculate the two-stream coefficients gamma1-gamma4 in the
111  ! shortwave
112  subroutine calc_two_stream_gammas_sw(ng, mu0, ssa, g, &
113       &                               gamma1, gamma2, gamma3)
114
115#ifdef DO_DR_HOOK_TWO_STREAM
116    use yomhook, only : lhook, dr_hook
117#endif
118
119    integer, intent(in) :: ng
120    ! Cosine of solar zenith angle, single scattering albedo and
121    ! asymmetry factor:
122    real(jprb), intent(in)                :: mu0
123    real(jprb), intent(in),  dimension(:) :: ssa, g
124    real(jprb), intent(out), dimension(:) :: gamma1, gamma2, gamma3
125
126    real(jprb) :: factor
127
128    integer    :: jg
129
130#ifdef DO_DR_HOOK_TWO_STREAM
131    real(jprb) :: hook_handle
132
133    if (lhook) call dr_hook('radiation_two_stream:calc_two_stream_gammas_sw',0,hook_handle)
134#endif
135
136    ! Zdunkowski "PIFM" (Zdunkowski et al., 1980; Contributions to
137    ! Atmospheric Physics 53, 147-66)
138    do jg = 1, ng
139      !      gamma1(jg) = 2.0_jprb  - ssa(jg) * (1.25_jprb + 0.75_jprb*g(jg))
140      !      gamma2(jg) = 0.75_jprb *(ssa(jg) * (1.0_jprb - g(jg)))
141      !      gamma3(jg) = 0.5_jprb  - (0.75_jprb*mu0)*g(jg)
142      ! Optimized version:
143      factor = 0.75_jprb*g(jg)
144      gamma1(jg) = 2.0_jprb  - ssa(jg) * (1.25_jprb + factor)
145      gamma2(jg) = ssa(jg) * (0.75_jprb - factor)
146      gamma3(jg) = 0.5_jprb  - mu0*factor
147    end do
148
149#ifdef DO_DR_HOOK_TWO_STREAM
150    if (lhook) call dr_hook('radiation_two_stream:calc_two_stream_gammas_sw',1,hook_handle)
151#endif
152
153  end subroutine calc_two_stream_gammas_sw
154
155
156  !---------------------------------------------------------------------
157  ! Compute the longwave reflectance and transmittance to diffuse
158  ! radiation using the Meador & Weaver formulas, as well as the
159  ! upward flux at the top and the downward flux at the base of the
160  ! layer due to emission from within the layer assuming a linear
161  ! variation of Planck function within the layer.
162  subroutine calc_reflectance_transmittance_lw(ng, &
163       &    od, gamma1, gamma2, planck_top, planck_bot, &
164       &    reflectance, transmittance, source_up, source_dn)
165
166#ifdef DO_DR_HOOK_TWO_STREAM
167    use yomhook, only : lhook, dr_hook
168#endif
169
170    integer, intent(in) :: ng
171
172    ! Optical depth and single scattering albedo
173    real(jprb), intent(in), dimension(ng) :: od
174
175    ! The two transfer coefficients from the two-stream
176    ! differentiatial equations (computed by
177    ! calc_two_stream_gammas_lw)
178    real(jprb), intent(in), dimension(ng) :: gamma1, gamma2
179
180    ! The Planck terms (functions of temperature) at the top and
181    ! bottom of the layer
182    real(jprb), intent(in), dimension(ng) :: planck_top, planck_bot
183
184    ! The diffuse reflectance and transmittance, i.e. the fraction of
185    ! diffuse radiation incident on a layer from either top or bottom
186    ! that is reflected back or transmitted through
187    real(jprb), intent(out), dimension(ng) :: reflectance, transmittance
188
189    ! The upward emission at the top of the layer and the downward
190    ! emission at its base, due to emission from within the layer
191    real(jprb), intent(out), dimension(ng) :: source_up, source_dn
192
193    real(jprd) :: k_exponent, reftrans_factor
194    real(jprd) :: exponential  ! = exp(-k_exponent*od)
195    real(jprd) :: exponential2 ! = exp(-2*k_exponent*od)
196
197    real(jprd) :: coeff, coeff_up_top, coeff_up_bot, coeff_dn_top, coeff_dn_bot
198
199    integer :: jg
200
201#ifdef DO_DR_HOOK_TWO_STREAM
202    real(jprb) :: hook_handle
203
204    if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_lw',0,hook_handle)
205#endif
206
207    do jg = 1, ng
208      if (od(jg) > 1.0e-3_jprd) then
209        k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), &
210             1.E-12_jprd)) ! Eq 18 of Meador & Weaver (1980)
211        exponential = exp_fast(-k_exponent*od(jg))
212        exponential2 = exponential*exponential
213        reftrans_factor = 1.0 / (k_exponent + gamma1(jg) + (k_exponent - gamma1(jg))*exponential2)
214        ! Meador & Weaver (1980) Eq. 25
215        reflectance(jg) = gamma2(jg) * (1.0_jprd - exponential2) * reftrans_factor
216        ! Meador & Weaver (1980) Eq. 26
217        transmittance(jg) = 2.0_jprd * k_exponent * exponential * reftrans_factor
218     
219        ! Compute upward and downward emission assuming the Planck
220        ! function to vary linearly with optical depth within the layer
221        ! (e.g. Wiscombe , JQSRT 1976).
222
223        ! Stackhouse and Stephens (JAS 1991) Eqs 5 & 12
224        coeff = (planck_bot(jg)-planck_top(jg)) / (od(jg)*(gamma1(jg)+gamma2(jg)))
225        coeff_up_top  =  coeff + planck_top(jg)
226        coeff_up_bot  =  coeff + planck_bot(jg)
227        coeff_dn_top  = -coeff + planck_top(jg)
228        coeff_dn_bot  = -coeff + planck_bot(jg)
229        source_up(jg) =  coeff_up_top - reflectance(jg) * coeff_dn_top - transmittance(jg) * coeff_up_bot
230        source_dn(jg) =  coeff_dn_bot - reflectance(jg) * coeff_up_bot - transmittance(jg) * coeff_dn_top
231      else
232        k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), &
233             1.E-12_jprd)) ! Eq 18 of Meador & Weaver (1980)
234        reflectance(jg) = gamma2(jg) * od(jg)
235        transmittance(jg) = (1.0_jprb - k_exponent*od(jg)) / (1.0_jprb + od(jg)*(gamma1(jg)-k_exponent))
236        source_up(jg) = (1.0_jprb - reflectance(jg) - transmittance(jg)) &
237             &       * 0.5 * (planck_top(jg) + planck_bot(jg))
238        source_dn(jg) = source_up(jg)
239      end if
240    end do
241   
242#ifdef DO_DR_HOOK_TWO_STREAM
243    if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_lw',1,hook_handle)
244#endif
245 
246  end subroutine calc_reflectance_transmittance_lw
247 
248
249
250  !---------------------------------------------------------------------
251  ! As calc_reflectance_transmittance_lw but for an isothermal layer
252  subroutine calc_reflectance_transmittance_isothermal_lw(ng, &
253       &    od, gamma1, gamma2, planck, &
254       &    reflectance, transmittance, source)
255
256#ifdef DO_DR_HOOK_TWO_STREAM
257    use yomhook, only : lhook, dr_hook
258#endif
259
260    integer, intent(in) :: ng
261
262    ! Optical depth and single scattering albedo
263    real(jprb), intent(in), dimension(ng) :: od
264
265    ! The two transfer coefficients from the two-stream
266    ! differentiatial equations (computed by
267    ! calc_two_stream_gammas_lw)
268    real(jprb), intent(in), dimension(ng) :: gamma1, gamma2
269
270    ! The Planck terms (functions of temperature) constant through the
271    ! layer
272    real(jprb), intent(in), dimension(ng) :: planck
273
274    ! The diffuse reflectance and transmittance, i.e. the fraction of
275    ! diffuse radiation incident on a layer from either top or bottom
276    ! that is reflected back or transmitted through
277    real(jprb), intent(out), dimension(ng) :: reflectance, transmittance
278
279    ! The upward emission at the top of the layer and the downward
280    ! emission at its base, due to emission from within the layer
281    real(jprb), intent(out), dimension(ng) :: source
282
283    real(jprd) :: k_exponent, reftrans_factor
284    real(jprd) :: exponential  ! = exp(-k_exponent*od)
285    real(jprd) :: exponential2 ! = exp(-2*k_exponent*od)
286
287    integer :: jg
288
289#ifdef DO_DR_HOOK_TWO_STREAM
290    real(jprb) :: hook_handle
291
292    if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_isothermal_lw',0,hook_handle)
293#endif
294
295    do jg = 1, ng
296      k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), &
297           1.E-12_jprd)) ! Eq 18 of Meador & Weaver (1980)
298      exponential = exp_fast(-k_exponent*od(jg))
299      exponential2 = exponential*exponential
300      reftrans_factor = 1.0 / (k_exponent + gamma1(jg) + (k_exponent - gamma1(jg))*exponential2)
301      ! Meador & Weaver (1980) Eq. 25
302      reflectance(jg) = gamma2(jg) * (1.0_jprd - exponential2) * reftrans_factor
303      ! Meador & Weaver (1980) Eq. 26
304      transmittance(jg) = 2.0_jprd * k_exponent * exponential * reftrans_factor
305     
306      ! Emissivity of layer is one minus reflectance minus
307      ! transmittance, multiply by Planck function to get emitted
308      ! ousrce
309      source(jg) = planck(jg) * (1.0_jprd - reflectance(jg) - transmittance(jg))
310    end do
311   
312#ifdef DO_DR_HOOK_TWO_STREAM
313    if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_isothermal_lw',1,hook_handle)
314#endif
315 
316  end subroutine calc_reflectance_transmittance_isothermal_lw
317 
318
319
320  !---------------------------------------------------------------------
321  ! Compute the longwave transmittance to diffuse radiation in the
322  ! no-scattering case, as well as the upward flux at the top and the
323  ! downward flux at the base of the layer due to emission from within
324  ! the layer assuming a linear variation of Planck function within
325  ! the layer.
326  subroutine calc_no_scattering_transmittance_lw(ng, &
327       &    od, planck_top, planck_bot, transmittance, source_up, source_dn)
328
329#ifdef DO_DR_HOOK_TWO_STREAM
330    use yomhook, only : lhook, dr_hook
331#endif
332
333    integer, intent(in) :: ng
334
335    ! Optical depth and single scattering albedo
336    real(jprb), intent(in), dimension(ng) :: od
337
338    ! The Planck terms (functions of temperature) at the top and
339    ! bottom of the layer
340    real(jprb), intent(in), dimension(ng) :: planck_top, planck_bot
341
342    ! The diffuse transmittance, i.e. the fraction of diffuse
343    ! radiation incident on a layer from either top or bottom that is
344    ! reflected back or transmitted through
345    real(jprb), intent(out), dimension(ng) :: transmittance
346
347    ! The upward emission at the top of the layer and the downward
348    ! emission at its base, due to emission from within the layer
349    real(jprb), intent(out), dimension(ng) :: source_up, source_dn
350
351    real(jprd) :: coeff, coeff_up_top, coeff_up_bot, coeff_dn_top, coeff_dn_bot !, planck_mean
352
353    integer :: jg
354
355#ifdef DO_DR_HOOK_TWO_STREAM
356    real(jprb) :: hook_handle
357
358    if (lhook) call dr_hook('radiation_two_stream:calc_no_scattering_transmittance_lw',0,hook_handle)
359#endif
360
361    do jg = 1, ng
362      ! Compute upward and downward emission assuming the Planck
363      ! function to vary linearly with optical depth within the layer
364      ! (e.g. Wiscombe , JQSRT 1976).
365      if (od(jg) > 1.0e-3) then
366        ! Simplified from calc_reflectance_transmittance_lw above
367        coeff = LwDiffusivity*od(jg)
368        transmittance(jg) = exp_fast(-coeff)
369        coeff = (planck_bot(jg)-planck_top(jg)) / coeff
370        coeff_up_top  =  coeff + planck_top(jg)
371        coeff_up_bot  =  coeff + planck_bot(jg)
372        coeff_dn_top  = -coeff + planck_top(jg)
373        coeff_dn_bot  = -coeff + planck_bot(jg)
374        source_up(jg) =  coeff_up_top - transmittance(jg) * coeff_up_bot
375        source_dn(jg) =  coeff_dn_bot - transmittance(jg) * coeff_dn_top
376      else
377        ! Linear limit at low optical depth
378        coeff = LwDiffusivity*od(jg)
379        transmittance(jg) = 1.0_jprb - coeff
380        source_up(jg) = coeff * 0.5_jprb * (planck_top(jg)+planck_bot(jg))
381        source_dn(jg) = source_up(jg)
382      end if
383    end do
384
385    ! Method in the older IFS radiation scheme
386    !    do j = 1, n
387    !      coeff = od(jg) / (3.59712_jprd + od(jg))
388    !      planck_mean = 0.5_jprd * (planck_top(jg) + planck_bot(jg))
389    !     
390    !      source_up(jg) = (1.0_jprd-transmittance(jg)) * (planck_mean + (planck_top(jg)    - planck_mean) * coeff)
391    !      source_dn(jg) = (1.0_jprd-transmittance(jg)) * (planck_mean + (planck_bot(jg) - planck_mean) * coeff)
392    !    end do
393
394#ifdef DO_DR_HOOK_TWO_STREAM
395    if (lhook) call dr_hook('radiation_two_stream:calc_no_scattering_transmittance_lw',1,hook_handle)
396#endif
397
398  end subroutine calc_no_scattering_transmittance_lw
399   
400   
401  !---------------------------------------------------------------------
402  ! Compute the shortwave reflectance and transmittance to diffuse
403  ! radiation using the Meador & Weaver formulas, as well as the
404  ! "direct" reflection and transmission, which really means the rate
405  ! of transfer of direct solar radiation (into a plane perpendicular
406  ! to the direct beam) into diffuse upward and downward streams at
407  ! the top and bottom of the layer, respectively.  Finally,
408  ! trans_dir_dir is the transmittance of the atmosphere to direct
409  ! radiation with no scattering.
410  subroutine calc_reflectance_transmittance_sw(ng, mu0, od, ssa, &
411       &      gamma1, gamma2, gamma3, ref_diff, trans_diff, &
412       &      ref_dir, trans_dir_diff, trans_dir_dir)
413   
414#ifdef DO_DR_HOOK_TWO_STREAM
415    use yomhook, only : lhook, dr_hook
416#endif
417
418    integer, intent(in) :: ng
419
420    ! Cosine of solar zenith angle
421    real(jprb), intent(in) :: mu0
422
423    ! Optical depth and single scattering albedo
424    real(jprb), intent(in), dimension(ng) :: od, ssa
425
426    ! The three transfer coefficients from the two-stream
427    ! differentiatial equations (computed by calc_two_stream_gammas)
428    real(jprb), intent(in), dimension(ng) :: gamma1, gamma2, gamma3
429
430    ! The direct reflectance and transmittance, i.e. the fraction of
431    ! incoming direct solar radiation incident at the top of a layer
432    ! that is either reflected back (ref_dir) or scattered but
433    ! transmitted through the layer to the base (trans_dir_diff)
434    real(jprb), intent(out), dimension(ng) :: ref_dir, trans_dir_diff
435
436    ! The diffuse reflectance and transmittance, i.e. the fraction of
437    ! diffuse radiation incident on a layer from either top or bottom
438    ! that is reflected back or transmitted through
439    real(jprb), intent(out), dimension(ng) :: ref_diff, trans_diff
440
441    ! Transmittance of the direct been with no scattering
442    real(jprb), intent(out), dimension(ng) :: trans_dir_dir
443
444    real(jprd) :: gamma4, alpha1, alpha2, k_exponent, reftrans_factor
445    real(jprd) :: exponential0 ! = exp(-od/mu0)
446    real(jprd) :: exponential  ! = exp(-k_exponent*od)
447    real(jprd) :: exponential2 ! = exp(-2*k_exponent*od)
448    real(jprd) :: k_mu0, k_gamma3, k_gamma4
449    real(jprd) :: k_2_exponential, od_over_mu0
450    integer    :: jg
451
452#ifdef DO_DR_HOOK_TWO_STREAM
453    real(jprb) :: hook_handle
454
455    if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_sw',0,hook_handle)
456#endif
457
458    do jg = 1, ng
459      od_over_mu0 = max(od(jg) / mu0, 0.0_jprd)
460      ! In the IFS this appears to be faster without testing the value
461      ! of od_over_mu0:
462      if (.true.) then
463!      if (od_over_mu0 > 1.0e-6_jprd) then
464        gamma4 = 1.0_jprd - gamma3(jg)
465        alpha1 = gamma1(jg)*gamma4     + gamma2(jg)*gamma3(jg) ! Eq. 16
466        alpha2 = gamma1(jg)*gamma3(jg) + gamma2(jg)*gamma4    ! Eq. 17
467       
468        ! Note that if the minimum value is reduced (e.g. to 1.0e-24)
469        ! then noise starts to appear as a function of solar zenith
470        ! angle
471        k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), &
472             &       1.0e-12_jprd)) ! Eq 18
473        k_mu0 = k_exponent*mu0
474        k_gamma3 = k_exponent*gamma3(jg)
475        k_gamma4 = k_exponent*gamma4
476        ! Check for mu0 <= 0!
477        exponential0 = exp_fast(-od_over_mu0)
478        trans_dir_dir(jg) = exponential0
479        exponential = exp_fast(-k_exponent*od(jg))
480       
481        exponential2 = exponential*exponential
482        k_2_exponential = 2.0_jprd * k_exponent * exponential
483       
484        if (k_mu0 == 1.0_jprd) then
485          k_mu0 = 1.0_jprd - 10.0_jprd*epsilon(1.0_jprd)
486        end if
487       
488        reftrans_factor = 1.0_jprd / (k_exponent + gamma1(jg) + (k_exponent - gamma1(jg))*exponential2)
489       
490        ! Meador & Weaver (1980) Eq. 25
491        ref_diff(jg) = gamma2(jg) * (1.0_jprd - exponential2) * reftrans_factor
492       
493        ! Meador & Weaver (1980) Eq. 26
494        trans_diff(jg) = k_2_exponential * reftrans_factor
495       
496        ! Here we need mu0 even though it wasn't in Meador and Weaver
497        ! because we are assuming the incoming direct flux is defined
498        ! to be the flux into a plane perpendicular to the direction of
499        ! the sun, not into a horizontal plane
500        reftrans_factor = mu0 * ssa(jg) * reftrans_factor / (1.0_jprd - k_mu0*k_mu0)
501       
502        ! Meador & Weaver (1980) Eq. 14, multiplying top & bottom by
503        ! exp(-k_exponent*od) in case of very high optical depths
504        ref_dir(jg) = reftrans_factor &
505             &  * ( (1.0_jprd - k_mu0) * (alpha2 + k_gamma3) &
506             &     -(1.0_jprd + k_mu0) * (alpha2 - k_gamma3)*exponential2 &
507             &     -k_2_exponential*(gamma3(jg) - alpha2*mu0)*exponential0)
508       
509        ! Meador & Weaver (1980) Eq. 15, multiplying top & bottom by
510        ! exp(-k_exponent*od), minus the 1*exp(-od/mu0) term representing direct
511        ! unscattered transmittance. 
512        trans_dir_diff(jg) = reftrans_factor * ( k_2_exponential*(gamma4 + alpha1*mu0) &
513            & - exponential0 &
514            & * ( (1.0_jprd + k_mu0) * (alpha1 + k_gamma4) &
515            &    -(1.0_jprd - k_mu0) * (alpha1 - k_gamma4) * exponential2) )
516
517      else
518        ! Low optical-depth limit; see equations 19, 20 and 27 from
519        ! Meador & Weaver (1980)
520        trans_diff(jg)     = 1.0_jprb - gamma1(jg) * od(jg)
521        ref_diff(jg)       = gamma2(jg) * od(jg)
522        trans_dir_diff(jg) = (1.0_jprb - gamma3(jg)) * ssa(jg) * od(jg)
523        ref_dir(jg)        = gamma3(jg) * ssa(jg) * od(jg)
524        trans_dir_dir(jg)  = 1.0_jprd - od_over_mu0
525      end if
526    end do
527   
528#ifdef DO_DR_HOOK_TWO_STREAM
529    if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_sw',1,hook_handle)
530#endif
531 
532  end subroutine calc_reflectance_transmittance_sw
533 
534  !---------------------------------------------------------------------
535  ! As above but with height as a vertical coordinate rather than
536  ! optical depth
537  subroutine calc_reflectance_transmittance_z_sw(ng, mu0, depth, &
538       &      gamma0, gamma1, gamma2, gamma3, gamma4, &
539       &      ref_diff, trans_diff, ref_dir, trans_dir_diff, trans_dir_dir)
540   
541#ifdef DO_DR_HOOK_TWO_STREAM
542    use yomhook, only : lhook, dr_hook
543#endif
544
545    integer, intent(in) :: ng
546
547    ! Cosine of solar zenith angle
548    real(jprb), intent(in) :: mu0
549
550    ! Layer depth
551    real(jprb), intent(in) :: depth
552
553    ! The four transfer coefficients from the two-stream
554    ! differentiatial equations
555    real(jprb), intent(in), dimension(ng) :: gamma1, gamma2, gamma3, gamma4
556
557    ! An additional coefficient for direct unscattered flux "Fdir"
558    ! such that dFdir/dz = -gamma0*Fdir
559    real(jprb), intent(in), dimension(ng) :: gamma0
560
561    ! The direct reflectance and transmittance, i.e. the fraction of
562    ! incoming direct solar radiation incident at the top of a layer
563    ! that is either reflected back (ref_dir) or scattered but
564    ! transmitted through the layer to the base (trans_dir_diff)
565    real(jprb), intent(out), dimension(ng) :: ref_dir, trans_dir_diff
566
567    ! The diffuse reflectance and transmittance, i.e. the fraction of
568    ! diffuse radiation incident on a layer from either top or bottom
569    ! that is reflected back or transmitted through
570    real(jprb), intent(out), dimension(ng) :: ref_diff, trans_diff
571
572    ! Transmittance of the direct been with no scattering
573    real(jprb), intent(out), dimension(ng) :: trans_dir_dir
574
575    real(jprd) :: alpha1, alpha2, k_exponent, reftrans_factor
576    real(jprd) :: exponential0 ! = exp(-od/mu0)
577    real(jprd) :: exponential  ! = exp(-k_exponent*od)
578    real(jprd) :: exponential2 ! = exp(-2*k_exponent*od)
579    real(jprd) :: k_mu0, k_gamma3, k_gamma4
580    real(jprd) :: k_2_exponential, od_over_mu0
581    integer    :: jg
582
583#ifdef DO_DR_HOOK_TWO_STREAM
584    real(jprb) :: hook_handle
585
586    if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_z_sw',0,hook_handle)
587#endif
588
589    do jg = 1, ng
590      od_over_mu0 = max(gamma0(jg) * depth, 0.0_jprd)
591      ! In the IFS this appears to be faster without testing the value
592      ! of od_over_mu0:
593      if (.true.) then
594!      if (od_over_mu0 > 1.0e-6_jprd) then
595        alpha1 = gamma1(jg)*gamma4(jg) + gamma2(jg)*gamma3(jg) ! Eq. 16
596        alpha2 = gamma1(jg)*gamma3(jg) + gamma2(jg)*gamma4(jg) ! Eq. 17
597       
598        ! Note that if the minimum value is reduced (e.g. to 1.0e-24)
599        ! then noise starts to appear as a function of solar zenith
600        ! angle
601        k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), &
602             &       1.0e-12_jprd)) ! Eq 18
603        k_mu0 = k_exponent*mu0
604        k_gamma3 = k_exponent*gamma3(jg)
605        k_gamma4 = k_exponent*gamma4(jg)
606        ! Check for mu0 <= 0!
607        exponential0 = exp_fast(-od_over_mu0)
608        trans_dir_dir(jg) = exponential0
609        exponential = exp_fast(-k_exponent*depth)
610       
611        exponential2 = exponential*exponential
612        k_2_exponential = 2.0_jprd * k_exponent * exponential
613       
614        if (k_mu0 == 1.0_jprd) then
615          k_mu0 = 1.0_jprd - 10.0_jprd*epsilon(1.0_jprd)
616        end if
617       
618        reftrans_factor = 1.0_jprd / (k_exponent + gamma1(jg) + (k_exponent - gamma1(jg))*exponential2)
619       
620        ! Meador & Weaver (1980) Eq. 25
621        ref_diff(jg) = gamma2(jg) * (1.0_jprd - exponential2) * reftrans_factor
622       
623        ! Meador & Weaver (1980) Eq. 26
624        trans_diff(jg) = k_2_exponential * reftrans_factor
625       
626        ! Here we need mu0 even though it wasn't in Meador and Weaver
627        ! because we are assuming the incoming direct flux is defined
628        ! to be the flux into a plane perpendicular to the direction of
629        ! the sun, not into a horizontal plane
630        reftrans_factor = mu0 * reftrans_factor / (1.0_jprd - k_mu0*k_mu0)
631       
632        ! Meador & Weaver (1980) Eq. 14, multiplying top & bottom by
633        ! exp(-k_exponent*od) in case of very high optical depths
634        ref_dir(jg) = reftrans_factor &
635             &  * ( (1.0_jprd - k_mu0) * (alpha2 + k_gamma3) &
636             &     -(1.0_jprd + k_mu0) * (alpha2 - k_gamma3)*exponential2 &
637             &     -k_2_exponential*(gamma3(jg) - alpha2*mu0)*exponential0)
638       
639        ! Meador & Weaver (1980) Eq. 15, multiplying top & bottom by
640        ! exp(-k_exponent*od), minus the 1*exp(-od/mu0) term representing direct
641        ! unscattered transmittance. 
642        trans_dir_diff(jg) = reftrans_factor * ( k_2_exponential*(gamma4(jg) + alpha1*mu0) &
643            & - exponential0 &
644            & * ( (1.0_jprd + k_mu0) * (alpha1 + k_gamma4) &
645            &    -(1.0_jprd - k_mu0) * (alpha1 - k_gamma4) * exponential2) )
646
647      else
648        ! Low optical-depth limit; see equations 19, 20 and 27 from
649        ! Meador & Weaver (1980)
650        trans_diff(jg)     = 1.0_jprb - gamma1(jg) * depth
651        ref_diff(jg)       = gamma2(jg) * depth
652        trans_dir_diff(jg) = (1.0_jprb - gamma3(jg)) * depth
653        ref_dir(jg)        = gamma3(jg) * depth
654        trans_dir_dir(jg)  = 1.0_jprd - od_over_mu0
655      end if
656    end do
657   
658#ifdef DO_DR_HOOK_TWO_STREAM
659    if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_z_sw',1,hook_handle)
660#endif
661 
662  end subroutine calc_reflectance_transmittance_z_sw
663 
664
665  !---------------------------------------------------------------------
666  ! Compute the fraction of shortwave transmitted diffuse radiation
667  ! that is scattered during its transmission, used to compute
668  ! entrapment in SPARTACUS
669  subroutine calc_frac_scattered_diffuse_sw(ng, od, &
670       &      gamma1, gamma2, frac_scat_diffuse)
671   
672#ifdef DO_DR_HOOK_TWO_STREAM
673    use yomhook, only : lhook, dr_hook
674#endif
675
676    integer, intent(in) :: ng
677
678    ! Optical depth
679    real(jprb), intent(in), dimension(ng) :: od
680
681    ! The first two transfer coefficients from the two-stream
682    ! differentiatial equations (computed by calc_two_stream_gammas)
683    real(jprb), intent(in), dimension(ng) :: gamma1, gamma2
684
685    ! The fraction of shortwave transmitted diffuse radiation that is
686    ! scattered during its transmission
687    real(jprb), intent(out), dimension(ng) :: frac_scat_diffuse
688
689    real(jprd) :: k_exponent, reftrans_factor
690    real(jprd) :: exponential  ! = exp(-k_exponent*od)
691    real(jprd) :: exponential2 ! = exp(-2*k_exponent*od)
692    real(jprd) :: k_2_exponential
693    integer    :: jg
694
695#ifdef DO_DR_HOOK_TWO_STREAM
696    real(jprb) :: hook_handle
697
698    if (lhook) call dr_hook('radiation_two_stream:calc_frac_scattered_diffuse_sw',0,hook_handle)
699#endif
700
701    do jg = 1, ng
702      ! Note that if the minimum value is reduced (e.g. to 1.0e-24)
703      ! then noise starts to appear as a function of solar zenith
704      ! angle
705      k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), &
706           &       1.0e-12_jprd)) ! Eq 18
707      exponential = exp_fast(-k_exponent*od(jg))
708      exponential2 = exponential*exponential
709      k_2_exponential = 2.0_jprd * k_exponent * exponential
710       
711      reftrans_factor = 1.0_jprd / (k_exponent + gamma1(jg) + (k_exponent - gamma1(jg))*exponential2)
712       
713      ! Meador & Weaver (1980) Eq. 26.
714      ! Until 1.1.8, used LwDiffusivity instead of 2.0, although the
715      ! effect is very small
716      !      frac_scat_diffuse(jg) = 1.0_jprb - min(1.0_jprb,exp_fast(-LwDiffusivity*od(jg)) &
717      !           &  / max(1.0e-8_jprb, k_2_exponential * reftrans_factor))
718      frac_scat_diffuse(jg) = 1.0_jprb &
719           &  - min(1.0_jprb,exp_fast(-2.0_jprb*od(jg)) &
720           &  / max(1.0e-8_jprb, k_2_exponential * reftrans_factor))
721    end do
722   
723#ifdef DO_DR_HOOK_TWO_STREAM
724    if (lhook) call dr_hook('radiation_two_stream:calc_frac_scattered_diffuse_sw',1,hook_handle)
725#endif
726 
727  end subroutine calc_frac_scattered_diffuse_sw
728
729end module radiation_two_stream
Note: See TracBrowser for help on using the repository browser.