[3908] | 1 | ! radiation_tripleclouds_sw.F90 - Shortwave "Tripleclouds" solver |
---|
| 2 | ! |
---|
| 3 | ! (C) Copyright 2016- ECMWF. |
---|
| 4 | ! |
---|
| 5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
| 6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
| 7 | ! |
---|
| 8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
| 9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
| 10 | ! nor does it submit to any jurisdiction. |
---|
| 11 | ! |
---|
| 12 | ! Author: Robin Hogan |
---|
| 13 | ! Email: r.j.hogan@ecmwf.int |
---|
| 14 | ! |
---|
| 15 | ! Modifications |
---|
| 16 | ! 2017-04-11 R. Hogan Receive albedos at g-points |
---|
| 17 | ! 2017-04-22 R. Hogan Store surface fluxes at all g-points |
---|
| 18 | ! 2017-10-23 R. Hogan Renamed single-character variables |
---|
| 19 | ! 2018-10-08 R. Hogan Call calc_region_properties |
---|
| 20 | ! 2019-01-02 R. Hogan Fixed problem of do_save_spectral_flux .and. .not. do_sw_direct |
---|
[4489] | 21 | ! 2020-09-18 R. Hogan Replaced some array expressions with loops for speed |
---|
[3908] | 22 | |
---|
| 23 | module radiation_tripleclouds_sw |
---|
| 24 | |
---|
| 25 | public |
---|
| 26 | |
---|
| 27 | contains |
---|
| 28 | ! Provides elemental function "delta_eddington" |
---|
| 29 | #include "radiation_delta_eddington.h" |
---|
| 30 | |
---|
| 31 | ! Small routine for scaling cloud optical depth in the cloudy |
---|
| 32 | ! regions |
---|
| 33 | #include "radiation_optical_depth_scaling.h" |
---|
| 34 | |
---|
[4489] | 35 | !--------------------------------------------------------------------- |
---|
[3908] | 36 | ! This module contains just one subroutine, the shortwave |
---|
| 37 | ! "Tripleclouds" solver in which cloud inhomogeneity is treated by |
---|
| 38 | ! dividing each model level into three regions, one clear and two |
---|
| 39 | ! cloudy (with differing optical depth). This approach was described |
---|
| 40 | ! by Shonk and Hogan (2008). |
---|
| 41 | subroutine solver_tripleclouds_sw(nlev,istartcol,iendcol, & |
---|
| 42 | & config, single_level, cloud, & |
---|
| 43 | & od, ssa, g, od_cloud, ssa_cloud, g_cloud, & |
---|
| 44 | & albedo_direct, albedo_diffuse, incoming_sw, & |
---|
| 45 | & flux) |
---|
| 46 | |
---|
| 47 | use parkind1, only : jprb |
---|
| 48 | use yomhook, only : lhook, dr_hook |
---|
| 49 | |
---|
| 50 | ! use radiation_io, only : nulout |
---|
| 51 | use radiation_config, only : config_type, IPdfShapeGamma |
---|
| 52 | use radiation_single_level, only : single_level_type |
---|
| 53 | use radiation_cloud, only : cloud_type |
---|
| 54 | use radiation_regions, only : calc_region_properties |
---|
| 55 | use radiation_overlap, only : calc_overlap_matrices |
---|
| 56 | use radiation_flux, only : flux_type, & |
---|
| 57 | & indexed_sum, add_indexed_sum |
---|
| 58 | use radiation_matrix, only : singlemat_x_vec |
---|
| 59 | use radiation_two_stream, only : calc_two_stream_gammas_sw, & |
---|
| 60 | & calc_reflectance_transmittance_sw |
---|
| 61 | |
---|
| 62 | implicit none |
---|
| 63 | |
---|
| 64 | ! Inputs |
---|
| 65 | integer, intent(in) :: nlev ! number of model levels |
---|
| 66 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
---|
| 67 | type(config_type), intent(in) :: config |
---|
| 68 | type(single_level_type), intent(in) :: single_level |
---|
| 69 | type(cloud_type), intent(in) :: cloud |
---|
| 70 | |
---|
| 71 | ! Gas and aerosol optical depth, single-scattering albedo and |
---|
| 72 | ! asymmetry factor at each shortwave g-point |
---|
| 73 | ! real(jprb), intent(in), dimension(istartcol:iendcol,nlev,config%n_g_sw) :: & |
---|
| 74 | real(jprb), intent(in), dimension(config%n_g_sw,nlev,istartcol:iendcol) :: & |
---|
| 75 | & od, ssa, g |
---|
| 76 | |
---|
| 77 | ! Cloud and precipitation optical depth, single-scattering albedo and |
---|
| 78 | ! asymmetry factor in each shortwave band |
---|
| 79 | real(jprb), intent(in), dimension(config%n_bands_sw,nlev,istartcol:iendcol) :: & |
---|
| 80 | & od_cloud, ssa_cloud, g_cloud |
---|
| 81 | |
---|
| 82 | ! Optical depth, single scattering albedo and asymmetry factor in |
---|
| 83 | ! each g-point including gas, aerosol and clouds |
---|
| 84 | real(jprb), dimension(config%n_g_sw) :: od_total, ssa_total, g_total |
---|
| 85 | |
---|
| 86 | ! Direct and diffuse surface albedos, and the incoming shortwave |
---|
| 87 | ! flux into a plane perpendicular to the incoming radiation at |
---|
| 88 | ! top-of-atmosphere in each of the shortwave g points |
---|
| 89 | real(jprb), intent(in), dimension(config%n_g_sw,istartcol:iendcol) :: & |
---|
| 90 | & albedo_direct, albedo_diffuse, incoming_sw |
---|
| 91 | |
---|
| 92 | ! Output |
---|
| 93 | type(flux_type), intent(inout):: flux |
---|
| 94 | |
---|
| 95 | ! Local constants |
---|
| 96 | integer, parameter :: nregions = 3 |
---|
| 97 | |
---|
| 98 | ! In a clear-sky layer this will be 1, otherwise equal to nregions |
---|
| 99 | integer :: nreg |
---|
| 100 | |
---|
| 101 | ! Local variables |
---|
| 102 | |
---|
| 103 | ! The area fractions of each region |
---|
| 104 | real(jprb) :: region_fracs(1:nregions,nlev,istartcol:iendcol) |
---|
| 105 | |
---|
| 106 | ! The scaling used for the optical depth in the cloudy regions |
---|
| 107 | real(jprb) :: od_scaling(2:nregions,nlev,istartcol:iendcol) |
---|
| 108 | |
---|
| 109 | ! Directional overlap matrices defined at all layer interfaces |
---|
| 110 | ! including top-of-atmosphere and the surface |
---|
| 111 | real(jprb), dimension(nregions,nregions,nlev+1, & |
---|
| 112 | & istartcol:iendcol) :: u_matrix, v_matrix |
---|
| 113 | |
---|
| 114 | ! Two-stream variables |
---|
| 115 | real(jprb), dimension(config%n_g_sw) :: gamma1, gamma2, gamma3 |
---|
| 116 | |
---|
| 117 | ! Diffuse reflection and transmission matrices of each layer |
---|
| 118 | real(jprb), dimension(config%n_g_sw, nregions, nlev) & |
---|
| 119 | & :: reflectance, transmittance |
---|
| 120 | |
---|
| 121 | ! Terms translating the direct flux entering the layer from above |
---|
| 122 | ! to the reflected radiation exiting upwards (ref_dir) and the |
---|
| 123 | ! scattered radiation exiting downwards (trans_dir_diff), along with the |
---|
| 124 | ! direct unscattered transmission matrix (trans_dir_dir). |
---|
| 125 | real(jprb), dimension(config%n_g_sw, nregions, nlev) & |
---|
| 126 | & :: ref_dir, trans_dir_diff, trans_dir_dir |
---|
| 127 | |
---|
| 128 | ! Total albedo of the atmosphere/surface just above a layer |
---|
| 129 | ! interface with respect to downwelling diffuse and direct |
---|
| 130 | ! (respectively) radiation at that interface, where level index = |
---|
| 131 | ! 1 corresponds to the top-of-atmosphere |
---|
| 132 | real(jprb), dimension(config%n_g_sw, nregions, nlev+1) & |
---|
| 133 | & :: total_albedo, total_albedo_direct |
---|
| 134 | |
---|
| 135 | ! ...equivalent values for clear-skies |
---|
| 136 | real(jprb), dimension(config%n_g_sw, nlev+1) & |
---|
| 137 | & :: total_albedo_clear, total_albedo_clear_direct |
---|
| 138 | |
---|
| 139 | ! Total albedo of the atmosphere just below a layer interface |
---|
| 140 | real(jprb), dimension(config%n_g_sw, nregions) & |
---|
| 141 | & :: total_albedo_below, total_albedo_below_direct |
---|
| 142 | |
---|
| 143 | ! Direct downwelling flux below and above an interface between |
---|
| 144 | ! layers into a plane perpendicular to the direction of the sun |
---|
| 145 | real(jprb), dimension(config%n_g_sw, nregions) & |
---|
| 146 | & :: direct_dn, direct_dn_below |
---|
| 147 | ! Diffuse equivalents |
---|
| 148 | real(jprb), dimension(config%n_g_sw, nregions) & |
---|
| 149 | & :: flux_dn, flux_dn_below, flux_up |
---|
| 150 | |
---|
| 151 | ! ...clear-sky equivalent (no distinction between "above/below") |
---|
| 152 | real(jprb), dimension(config%n_g_sw) & |
---|
| 153 | & :: direct_dn_clear, flux_dn_clear, flux_up_clear |
---|
| 154 | |
---|
| 155 | ! Clear-sky equivalent, but actually its reciprocal to replace |
---|
| 156 | ! some divisions by multiplications |
---|
| 157 | real(jprb), dimension(config%n_g_sw, nregions) :: inv_denom |
---|
| 158 | |
---|
| 159 | ! Identify clear-sky layers, with pseudo layers for outer space |
---|
| 160 | ! and below the ground, both treated as single-region clear skies |
---|
| 161 | logical :: is_clear_sky_layer(0:nlev+1) |
---|
| 162 | |
---|
| 163 | ! Scattering optical depth of gas+aerosol and of cloud |
---|
| 164 | real(jprb) :: scat_od, scat_od_cloud |
---|
| 165 | |
---|
| 166 | real(jprb) :: mu0 |
---|
| 167 | |
---|
| 168 | integer :: jcol, jlev, jg, jreg, iband, jreg2, ng |
---|
| 169 | |
---|
| 170 | real(jprb) :: hook_handle |
---|
| 171 | |
---|
| 172 | if (lhook) call dr_hook('radiation_tripleclouds_sw:solver_tripleclouds_sw',0,hook_handle) |
---|
| 173 | |
---|
| 174 | ! -------------------------------------------------------- |
---|
| 175 | ! Section 1: Prepare general variables and arrays |
---|
| 176 | ! -------------------------------------------------------- |
---|
| 177 | ! Copy array dimensions to local variables for convenience |
---|
| 178 | ng = config%n_g_sw |
---|
| 179 | |
---|
| 180 | ! Compute the wavelength-independent region fractions and |
---|
| 181 | ! optical-depth scalings |
---|
| 182 | call calc_region_properties(nlev,nregions,istartcol,iendcol, & |
---|
| 183 | & config%i_cloud_pdf_shape == IPdfShapeGamma, & |
---|
| 184 | & cloud%fraction, cloud%fractional_std, region_fracs, & |
---|
| 185 | & od_scaling, config%cloud_fraction_threshold) |
---|
| 186 | |
---|
| 187 | ! Compute wavelength-independent overlap matrices u_matrix and |
---|
| 188 | ! v_matrix |
---|
| 189 | call calc_overlap_matrices(nlev,nregions,istartcol,iendcol, & |
---|
| 190 | & region_fracs, cloud%overlap_param, & |
---|
| 191 | & u_matrix, v_matrix, & |
---|
| 192 | & decorrelation_scaling=config%cloud_inhom_decorr_scaling, & |
---|
| 193 | & cloud_fraction_threshold=config%cloud_fraction_threshold, & |
---|
| 194 | & use_beta_overlap=config%use_beta_overlap, & |
---|
| 195 | & cloud_cover=flux%cloud_cover_sw) |
---|
| 196 | |
---|
| 197 | ! Main loop over columns |
---|
| 198 | do jcol = istartcol, iendcol |
---|
| 199 | ! -------------------------------------------------------- |
---|
| 200 | ! Section 2: Prepare column-specific variables and arrays |
---|
| 201 | ! -------------------------------------------------------- |
---|
| 202 | |
---|
| 203 | ! Copy local cosine of the solar zenith angle |
---|
| 204 | mu0 = single_level%cos_sza(jcol) |
---|
| 205 | |
---|
| 206 | ! Skip profile if sun is too low in the sky |
---|
| 207 | if (mu0 < 1.0e-10_jprb) then |
---|
| 208 | flux%sw_dn(jcol,:) = 0.0_jprb |
---|
| 209 | flux%sw_up(jcol,:) = 0.0_jprb |
---|
| 210 | if (allocated(flux%sw_dn_direct)) then |
---|
| 211 | flux%sw_dn_direct(jcol,:) = 0.0_jprb |
---|
| 212 | end if |
---|
| 213 | if (config%do_clear) then |
---|
| 214 | flux%sw_dn_clear(jcol,:) = 0.0_jprb |
---|
| 215 | flux%sw_up_clear(jcol,:) = 0.0_jprb |
---|
| 216 | if (allocated(flux%sw_dn_direct_clear)) then |
---|
| 217 | flux%sw_dn_direct_clear(jcol,:) = 0.0_jprb |
---|
| 218 | end if |
---|
| 219 | end if |
---|
| 220 | |
---|
| 221 | if (config%do_save_spectral_flux) then |
---|
| 222 | flux%sw_dn_band(:,jcol,:) = 0.0_jprb |
---|
| 223 | flux%sw_up_band(:,jcol,:) = 0.0_jprb |
---|
| 224 | if (allocated(flux%sw_dn_direct_band)) then |
---|
| 225 | flux%sw_dn_direct_band(:,jcol,:) = 0.0_jprb |
---|
| 226 | end if |
---|
| 227 | if (config%do_clear) then |
---|
| 228 | flux%sw_dn_clear_band(:,jcol,:) = 0.0_jprb |
---|
| 229 | flux%sw_up_clear_band(:,jcol,:) = 0.0_jprb |
---|
| 230 | if (allocated(flux%sw_dn_direct_clear_band)) then |
---|
| 231 | flux%sw_dn_direct_clear_band(:,jcol,:) = 0.0_jprb |
---|
| 232 | end if |
---|
| 233 | end if |
---|
| 234 | end if |
---|
| 235 | |
---|
| 236 | flux%sw_dn_diffuse_surf_g(:,jcol) = 0.0_jprb |
---|
| 237 | flux%sw_dn_direct_surf_g(:,jcol) = 0.0_jprb |
---|
| 238 | if (config%do_clear) then |
---|
| 239 | flux%sw_dn_diffuse_surf_clear_g(:,jcol) = 0.0_jprb |
---|
| 240 | flux%sw_dn_direct_surf_clear_g(:,jcol) = 0.0_jprb |
---|
| 241 | end if |
---|
| 242 | |
---|
| 243 | cycle |
---|
| 244 | end if ! sun is below the horizon |
---|
| 245 | |
---|
| 246 | ! At this point mu0 >= 1.0e-10 |
---|
| 247 | |
---|
| 248 | ! Define which layers contain cloud; assume that |
---|
| 249 | ! cloud%crop_cloud_fraction has already been called |
---|
| 250 | is_clear_sky_layer = .true. |
---|
| 251 | do jlev = 1,nlev |
---|
| 252 | if (cloud%fraction(jcol,jlev) > 0.0_jprb) then |
---|
| 253 | is_clear_sky_layer(jlev) = .false. |
---|
| 254 | end if |
---|
| 255 | end do |
---|
| 256 | |
---|
| 257 | ! -------------------------------------------------------- |
---|
| 258 | ! Section 3: Loop over layers to compute reflectance and transmittance |
---|
| 259 | ! -------------------------------------------------------- |
---|
| 260 | ! In this section the reflectance, transmittance and sources |
---|
| 261 | ! are computed for each layer |
---|
| 262 | do jlev = 1,nlev ! Start at top-of-atmosphere |
---|
| 263 | |
---|
| 264 | ! Array-wise assignments |
---|
| 265 | gamma1 = 0.0_jprb |
---|
| 266 | gamma2 = 0.0_jprb |
---|
| 267 | gamma3 = 0.0_jprb |
---|
| 268 | |
---|
| 269 | nreg = nregions |
---|
| 270 | if (is_clear_sky_layer(jlev)) then |
---|
| 271 | nreg = 1 |
---|
| 272 | end if |
---|
| 273 | do jreg = 1,nreg |
---|
| 274 | if (jreg == 1) then |
---|
| 275 | od_total = od(:,jlev,jcol) |
---|
| 276 | ssa_total = ssa(:,jlev,jcol) |
---|
| 277 | g_total = g(:,jlev,jcol) |
---|
| 278 | else |
---|
| 279 | do jg = 1,ng |
---|
| 280 | ! Mapping from g-point to band |
---|
| 281 | iband = config%i_band_from_reordered_g_sw(jg) |
---|
| 282 | scat_od = od(jg,jlev,jcol)*ssa(jg,jlev,jcol) |
---|
| 283 | scat_od_cloud = od_cloud(iband,jlev,jcol) & |
---|
| 284 | & * ssa_cloud(iband,jlev,jcol) * od_scaling(jreg,jlev,jcol) |
---|
| 285 | ! Add scaled cloud optical depth to clear-sky value |
---|
| 286 | od_total(jg) = od(jg,jlev,jcol) & |
---|
| 287 | & + od_cloud(iband,jlev,jcol)*od_scaling(jreg,jlev,jcol) |
---|
| 288 | ! Compute single-scattering albedo and asymmetry |
---|
| 289 | ! factor of gas-cloud combination |
---|
| 290 | ssa_total(jg) = (scat_od+scat_od_cloud) & |
---|
| 291 | & / od_total(jg) |
---|
| 292 | g_total(jg) = (scat_od*g(jg,jlev,jcol) & |
---|
| 293 | & + scat_od_cloud * g_cloud(iband,jlev,jcol)) & |
---|
| 294 | & / (scat_od + scat_od_cloud) |
---|
| 295 | end do |
---|
| 296 | end if |
---|
| 297 | |
---|
| 298 | if (config%do_sw_delta_scaling_with_gases) then |
---|
| 299 | ! Apply delta-Eddington scaling to the aerosol-gas(-cloud) |
---|
| 300 | ! mixture |
---|
| 301 | call delta_eddington(od_total, ssa_total, g_total) |
---|
| 302 | end if |
---|
| 303 | call calc_two_stream_gammas_sw(ng, & |
---|
| 304 | & mu0, ssa_total, g_total, & |
---|
| 305 | & gamma1, gamma2, gamma3) |
---|
| 306 | call calc_reflectance_transmittance_sw(ng, & |
---|
| 307 | & mu0, od_total, ssa_total, & |
---|
| 308 | & gamma1, gamma2, gamma3, & |
---|
| 309 | & reflectance(:,jreg,jlev), transmittance(:,jreg,jlev), & |
---|
| 310 | & ref_dir(:,jreg,jlev), trans_dir_diff(:,jreg,jlev), & |
---|
| 311 | & trans_dir_dir(:,jreg,jlev) ) |
---|
| 312 | end do |
---|
| 313 | end do |
---|
| 314 | |
---|
| 315 | ! -------------------------------------------------------- |
---|
| 316 | ! Section 4: Compute total albedos |
---|
| 317 | ! -------------------------------------------------------- |
---|
| 318 | |
---|
| 319 | total_albedo(:,:,:) = 0.0_jprb |
---|
| 320 | total_albedo_direct(:,:,:) = 0.0_jprb |
---|
| 321 | |
---|
| 322 | ! Copy surface albedo in clear-sky region |
---|
| 323 | do jg = 1,ng |
---|
| 324 | total_albedo(jg,1,nlev+1) = albedo_diffuse(jg,jcol) |
---|
| 325 | end do |
---|
| 326 | |
---|
| 327 | ! If direct albedo is available, use it; otherwise copy from |
---|
| 328 | ! diffuse albedo |
---|
| 329 | do jg = 1,ng |
---|
| 330 | total_albedo_direct(jg,1,nlev+1) & |
---|
| 331 | & = mu0 * albedo_direct(jg,jcol) |
---|
| 332 | end do |
---|
| 333 | |
---|
| 334 | ! If there is cloud in the lowest layer then we need the albedos |
---|
| 335 | ! underneath |
---|
| 336 | if (.not. is_clear_sky_layer(nlev)) then |
---|
| 337 | do jreg = 2,nregions |
---|
| 338 | total_albedo(:,jreg,nlev+1) = total_albedo(:,1,nlev+1) |
---|
| 339 | total_albedo_direct(:,jreg,nlev+1) = total_albedo_direct(:,1,nlev+1) |
---|
| 340 | end do |
---|
| 341 | end if |
---|
| 342 | |
---|
| 343 | if (config%do_clear) then |
---|
| 344 | total_albedo_clear(:,nlev+1) = total_albedo(:,1,nlev+1) |
---|
| 345 | total_albedo_clear_direct(:,nlev+1) = total_albedo_direct(:,1,nlev+1) |
---|
| 346 | end if |
---|
| 347 | |
---|
| 348 | ! Work up from the surface computing the total albedo of the |
---|
| 349 | ! atmosphere below that point using the adding method |
---|
| 350 | do jlev = nlev,1,-1 |
---|
| 351 | |
---|
| 352 | total_albedo_below = 0.0_jprb |
---|
| 353 | total_albedo_below_direct = 0.0_jprb |
---|
| 354 | |
---|
| 355 | if (config%do_clear) then |
---|
| 356 | ! For clear-skies there is no need to consider "above" and |
---|
| 357 | ! "below" quantities since with no cloud overlap to worry |
---|
| 358 | ! about, these are the same |
---|
[4489] | 359 | do jg = 1,ng |
---|
| 360 | inv_denom(jg,1) = 1.0_jprb & |
---|
| 361 | & / (1.0_jprb - total_albedo_clear(jg,jlev+1)*reflectance(jg,1,jlev)) |
---|
| 362 | total_albedo_clear(jg,jlev) = reflectance(jg,1,jlev) & |
---|
| 363 | & + transmittance(jg,1,jlev) * transmittance(jg,1,jlev) & |
---|
| 364 | & * total_albedo_clear(jg,jlev+1) * inv_denom(jg,1) |
---|
| 365 | total_albedo_clear_direct(jg,jlev) = ref_dir(jg,1,jlev) & |
---|
| 366 | & + (trans_dir_dir(jg,1,jlev)*total_albedo_clear_direct(jg,jlev+1) & |
---|
| 367 | & +trans_dir_diff(jg,1,jlev)*total_albedo_clear(jg,jlev+1)) & |
---|
| 368 | & * transmittance(jg,1,jlev) * inv_denom(jg,1) |
---|
| 369 | end do |
---|
[3908] | 370 | end if |
---|
| 371 | |
---|
| 372 | if (is_clear_sky_layer(jlev)) then |
---|
[4489] | 373 | do jg = 1,ng |
---|
| 374 | inv_denom(jg,1) = 1.0_jprb & |
---|
| 375 | & / (1.0_jprb - total_albedo(jg,1,jlev+1)*reflectance(jg,1,jlev)) |
---|
| 376 | total_albedo_below(jg,1) = reflectance(jg,1,jlev) & |
---|
| 377 | & + transmittance(jg,1,jlev) * transmittance(jg,1,jlev) & |
---|
| 378 | & * total_albedo(jg,1,jlev+1) * inv_denom(jg,1) |
---|
| 379 | total_albedo_below_direct(jg,1) = ref_dir(jg,1,jlev) & |
---|
| 380 | & + (trans_dir_dir(jg,1,jlev)*total_albedo_direct(jg,1,jlev+1) & |
---|
| 381 | & +trans_dir_diff(jg,1,jlev)*total_albedo(jg,1,jlev+1)) & |
---|
| 382 | & * transmittance(jg,1,jlev) * inv_denom(jg,1) |
---|
| 383 | end do |
---|
[3908] | 384 | else |
---|
| 385 | inv_denom = 1.0_jprb / (1.0_jprb - total_albedo(:,:,jlev+1)*reflectance(:,:,jlev)) |
---|
| 386 | total_albedo_below = reflectance(:,:,jlev) & |
---|
| 387 | & + transmittance(:,:,jlev) * transmittance(:,:,jlev) & |
---|
| 388 | & * total_albedo(:,:,jlev+1) * inv_denom |
---|
| 389 | total_albedo_below_direct = ref_dir(:,:,jlev) & |
---|
| 390 | & + (trans_dir_dir(:,:,jlev)*total_albedo_direct(:,:,jlev+1) & |
---|
| 391 | & +trans_dir_diff(:,:,jlev)*total_albedo(:,:,jlev+1)) & |
---|
| 392 | & * transmittance(:,:,jlev) * inv_denom |
---|
| 393 | end if |
---|
| 394 | |
---|
| 395 | ! Account for cloud overlap when converting albedo below a |
---|
| 396 | ! layer interface to the equivalent values just above |
---|
| 397 | if (is_clear_sky_layer(jlev) .and. is_clear_sky_layer(jlev-1)) then |
---|
| 398 | total_albedo(:,:,jlev) = total_albedo_below(:,:) |
---|
| 399 | total_albedo_direct(:,:,jlev) = total_albedo_below_direct(:,:) |
---|
| 400 | else |
---|
| 401 | ! Use overlap matrix and exclude "anomalous" horizontal |
---|
| 402 | ! transport described by Shonk & Hogan (2008). Therefore, |
---|
| 403 | ! the operation we perform is essentially diag(total_albedo) |
---|
| 404 | ! = matmul(transpose(v_matrix)), diag(total_albedo_below)). |
---|
| 405 | do jreg = 1,nregions |
---|
| 406 | do jreg2 = 1,nregions |
---|
| 407 | total_albedo(:,jreg,jlev) & |
---|
| 408 | & = total_albedo(:,jreg,jlev) & |
---|
| 409 | & + total_albedo_below(:,jreg2) & |
---|
| 410 | & * v_matrix(jreg2,jreg,jlev,jcol) |
---|
| 411 | total_albedo_direct(:,jreg,jlev) & |
---|
| 412 | & = total_albedo_direct(:,jreg,jlev) & |
---|
| 413 | & + total_albedo_below_direct(:,jreg2) & |
---|
| 414 | & * v_matrix(jreg2,jreg,jlev,jcol) |
---|
| 415 | end do |
---|
| 416 | end do |
---|
| 417 | |
---|
| 418 | end if |
---|
| 419 | |
---|
| 420 | end do ! Reverse loop over levels |
---|
| 421 | |
---|
| 422 | ! -------------------------------------------------------- |
---|
| 423 | ! Section 5: Compute fluxes |
---|
| 424 | ! -------------------------------------------------------- |
---|
| 425 | |
---|
| 426 | ! Top-of-atmosphere fluxes into the regions of the top-most |
---|
| 427 | ! layer, zero since we assume no diffuse downwelling |
---|
| 428 | flux_dn = 0.0_jprb |
---|
| 429 | ! Direct downwelling flux (into a plane perpendicular to the |
---|
| 430 | ! sun) entering the top of each region in the top-most layer |
---|
| 431 | do jreg = 1,nregions |
---|
| 432 | direct_dn(:,jreg) = incoming_sw(:,jcol)*region_fracs(jreg,1,jcol) |
---|
| 433 | end do |
---|
| 434 | flux_up = direct_dn*total_albedo_direct(:,:,1) |
---|
| 435 | |
---|
| 436 | if (config%do_clear) then |
---|
| 437 | flux_dn_clear = 0.0_jprb |
---|
| 438 | direct_dn_clear(:) = incoming_sw(:,jcol) |
---|
| 439 | flux_up_clear = direct_dn_clear*total_albedo_clear_direct(:,1) |
---|
| 440 | end if |
---|
| 441 | |
---|
| 442 | ! Store the TOA broadband fluxes |
---|
| 443 | flux%sw_up(jcol,1) = sum(sum(flux_up,1)) |
---|
| 444 | flux%sw_dn(jcol,1) = mu0 * sum(sum(direct_dn,1)) |
---|
| 445 | if (allocated(flux%sw_dn_direct)) then |
---|
| 446 | flux%sw_dn_direct(jcol,1) = flux%sw_dn(jcol,1) |
---|
| 447 | end if |
---|
| 448 | if (config%do_clear) then |
---|
| 449 | flux%sw_up_clear(jcol,1) = sum(flux_up_clear) |
---|
| 450 | flux%sw_dn_clear(jcol,1) = mu0 * sum(direct_dn_clear) |
---|
| 451 | if (allocated(flux%sw_dn_direct_clear)) then |
---|
| 452 | flux%sw_dn_direct_clear(jcol,1) = flux%sw_dn_clear(jcol,1) |
---|
| 453 | end if |
---|
| 454 | end if |
---|
| 455 | |
---|
| 456 | ! Save the spectral fluxes if required; some redundancy here as |
---|
| 457 | ! the TOA downwelling flux is the same in clear and cloudy skies |
---|
| 458 | if (config%do_save_spectral_flux) then |
---|
| 459 | call indexed_sum(sum(flux_up,2), & |
---|
| 460 | & config%i_spec_from_reordered_g_sw, & |
---|
| 461 | & flux%sw_up_band(:,jcol,1)) |
---|
| 462 | call indexed_sum(sum(direct_dn,2), & |
---|
| 463 | & config%i_spec_from_reordered_g_sw, & |
---|
| 464 | & flux%sw_dn_band(:,jcol,1)) |
---|
| 465 | flux%sw_dn_band(:,jcol,1) = & |
---|
| 466 | & mu0 * flux%sw_dn_band(:,jcol,1) |
---|
| 467 | if (allocated(flux%sw_dn_direct_band)) then |
---|
| 468 | flux%sw_dn_direct_band(:,jcol,1) = flux%sw_dn_band(:,jcol,1) |
---|
| 469 | end if |
---|
| 470 | call add_indexed_sum(sum(flux_dn,2), & |
---|
| 471 | & config%i_spec_from_reordered_g_sw, & |
---|
| 472 | & flux%sw_dn_band(:,jcol,1)) |
---|
| 473 | if (config%do_clear) then |
---|
| 474 | call indexed_sum(flux_up_clear, & |
---|
| 475 | & config%i_spec_from_reordered_g_sw, & |
---|
| 476 | & flux%sw_up_clear_band(:,jcol,1)) |
---|
| 477 | call indexed_sum(direct_dn_clear, & |
---|
| 478 | & config%i_spec_from_reordered_g_sw, & |
---|
| 479 | & flux%sw_dn_clear_band(:,jcol,1)) |
---|
| 480 | flux%sw_dn_clear_band(:,jcol,1) & |
---|
| 481 | & = mu0 * flux%sw_dn_clear_band(:,jcol,1) |
---|
| 482 | if (allocated(flux%sw_dn_direct_clear_band)) then |
---|
| 483 | flux%sw_dn_direct_clear_band(:,jcol,1) & |
---|
| 484 | & = flux%sw_dn_clear_band(:,jcol,1) |
---|
| 485 | end if |
---|
| 486 | call add_indexed_sum(flux_dn_clear, & |
---|
| 487 | & config%i_spec_from_reordered_g_sw, & |
---|
| 488 | & flux%sw_dn_clear_band(:,jcol,1)) |
---|
| 489 | end if |
---|
| 490 | end if |
---|
| 491 | |
---|
| 492 | ! Final loop back down through the atmosphere to compute fluxes |
---|
| 493 | do jlev = 1,nlev |
---|
| 494 | if (config%do_clear) then |
---|
[4489] | 495 | do jg = 1,ng |
---|
| 496 | flux_dn_clear(jg) = (transmittance(jg,1,jlev)*flux_dn_clear(jg) + direct_dn_clear(jg) & |
---|
| 497 | & * (trans_dir_dir(jg,1,jlev)*total_albedo_clear_direct(jg,jlev+1)*reflectance(jg,1,jlev) & |
---|
| 498 | & + trans_dir_diff(jg,1,jlev) )) & |
---|
| 499 | & / (1.0_jprb - reflectance(jg,1,jlev)*total_albedo_clear(jg,jlev+1)) |
---|
| 500 | direct_dn_clear(jg) = trans_dir_dir(jg,1,jlev)*direct_dn_clear(jg) |
---|
| 501 | flux_up_clear(jg) = direct_dn_clear(jg)*total_albedo_clear_direct(jg,jlev+1) & |
---|
| 502 | & + flux_dn_clear(jg)*total_albedo_clear(jg,jlev+1) |
---|
| 503 | end do |
---|
[3908] | 504 | end if |
---|
| 505 | |
---|
| 506 | if (is_clear_sky_layer(jlev)) then |
---|
[4489] | 507 | do jg = 1,ng |
---|
| 508 | flux_dn(jg,1) = (transmittance(jg,1,jlev)*flux_dn(jg,1) + direct_dn(jg,1) & |
---|
| 509 | & * (trans_dir_dir(jg,1,jlev)*total_albedo_direct(jg,1,jlev+1)*reflectance(jg,1,jlev) & |
---|
| 510 | & + trans_dir_diff(jg,1,jlev) )) & |
---|
| 511 | & / (1.0_jprb - reflectance(jg,1,jlev)*total_albedo(jg,1,jlev+1)) |
---|
| 512 | direct_dn(jg,1) = trans_dir_dir(jg,1,jlev)*direct_dn(jg,1) |
---|
| 513 | flux_up(jg,1) = direct_dn(jg,1)*total_albedo_direct(jg,1,jlev+1) & |
---|
| 514 | & + flux_dn(jg,1)*total_albedo(jg,1,jlev+1) |
---|
| 515 | end do |
---|
| 516 | |
---|
[3908] | 517 | flux_dn(:,2:) = 0.0_jprb |
---|
| 518 | flux_up(:,2:) = 0.0_jprb |
---|
| 519 | direct_dn(:,2:)= 0.0_jprb |
---|
| 520 | else |
---|
| 521 | flux_dn = (transmittance(:,:,jlev)*flux_dn + direct_dn & |
---|
| 522 | & * (trans_dir_dir(:,:,jlev)*total_albedo_direct(:,:,jlev+1)*reflectance(:,:,jlev) & |
---|
| 523 | & + trans_dir_diff(:,:,jlev) )) & |
---|
| 524 | & / (1.0_jprb - reflectance(:,:,jlev)*total_albedo(:,:,jlev+1)) |
---|
| 525 | direct_dn = trans_dir_dir(:,:,jlev)*direct_dn |
---|
| 526 | flux_up = direct_dn*total_albedo_direct(:,:,jlev+1) & |
---|
| 527 | & + flux_dn*total_albedo(:,:,jlev+1) |
---|
| 528 | end if |
---|
| 529 | |
---|
| 530 | if (.not. (is_clear_sky_layer(jlev) & |
---|
| 531 | & .and. is_clear_sky_layer(jlev+1))) then |
---|
| 532 | ! Account for overlap rules in translating fluxes just above |
---|
| 533 | ! a layer interface to the values just below |
---|
| 534 | flux_dn_below = singlemat_x_vec(ng,ng,nregions, & |
---|
| 535 | & v_matrix(:,:,jlev+1,jcol), flux_dn) |
---|
| 536 | direct_dn_below = singlemat_x_vec(ng,ng,nregions, & |
---|
| 537 | & v_matrix(:,:,jlev+1,jcol), direct_dn) |
---|
| 538 | flux_dn = flux_dn_below |
---|
| 539 | direct_dn = direct_dn_below |
---|
| 540 | end if ! Otherwise the fluxes in each region are the same so |
---|
| 541 | ! nothing to do |
---|
| 542 | |
---|
| 543 | ! Store the broadband fluxes |
---|
| 544 | flux%sw_up(jcol,jlev+1) = sum(sum(flux_up,1)) |
---|
| 545 | if (allocated(flux%sw_dn_direct)) then |
---|
| 546 | flux%sw_dn_direct(jcol,jlev+1) = mu0 * sum(sum(direct_dn,1)) |
---|
| 547 | flux%sw_dn(jcol,jlev+1) & |
---|
| 548 | & = flux%sw_dn_direct(jcol,jlev+1) + sum(sum(flux_dn,1)) |
---|
| 549 | else |
---|
| 550 | flux%sw_dn(jcol,jlev+1) = mu0 * sum(sum(direct_dn,1)) + sum(sum(flux_dn,1)) |
---|
| 551 | end if |
---|
| 552 | if (config%do_clear) then |
---|
| 553 | flux%sw_up_clear(jcol,jlev+1) = sum(flux_up_clear) |
---|
| 554 | if (allocated(flux%sw_dn_direct_clear)) then |
---|
| 555 | flux%sw_dn_direct_clear(jcol,jlev+1) = mu0 * sum(direct_dn_clear) |
---|
| 556 | flux%sw_dn_clear(jcol,jlev+1) & |
---|
| 557 | & = flux%sw_dn_direct_clear(jcol,jlev+1) + sum(flux_dn_clear) |
---|
| 558 | else |
---|
| 559 | flux%sw_dn_clear(jcol,jlev+1) = mu0 * sum(direct_dn_clear) & |
---|
| 560 | & + sum(flux_dn_clear) |
---|
| 561 | end if |
---|
| 562 | end if |
---|
| 563 | |
---|
| 564 | ! Save the spectral fluxes if required |
---|
| 565 | if (config%do_save_spectral_flux) then |
---|
| 566 | call indexed_sum(sum(flux_up,2), & |
---|
| 567 | & config%i_spec_from_reordered_g_sw, & |
---|
| 568 | & flux%sw_up_band(:,jcol,jlev+1)) |
---|
| 569 | call indexed_sum(sum(direct_dn,2), & |
---|
| 570 | & config%i_spec_from_reordered_g_sw, & |
---|
| 571 | & flux%sw_dn_band(:,jcol,jlev+1)) |
---|
| 572 | flux%sw_dn_band(:,jcol,jlev+1) = & |
---|
| 573 | & mu0 * flux%sw_dn_band(:,jcol,jlev+1) |
---|
| 574 | if (allocated(flux%sw_dn_direct_band)) then |
---|
| 575 | flux%sw_dn_direct_band(:,jcol,jlev+1) & |
---|
| 576 | & = flux%sw_dn_band(:,jcol,jlev+1) |
---|
| 577 | end if |
---|
| 578 | call add_indexed_sum(sum(flux_dn,2), & |
---|
| 579 | & config%i_spec_from_reordered_g_sw, & |
---|
| 580 | & flux%sw_dn_band(:,jcol,jlev+1)) |
---|
| 581 | if (config%do_clear) then |
---|
| 582 | call indexed_sum(flux_up_clear, & |
---|
| 583 | & config%i_spec_from_reordered_g_sw, & |
---|
| 584 | & flux%sw_up_clear_band(:,jcol,jlev+1)) |
---|
| 585 | call indexed_sum(direct_dn_clear, & |
---|
| 586 | & config%i_spec_from_reordered_g_sw, & |
---|
| 587 | & flux%sw_dn_clear_band(:,jcol,jlev+1)) |
---|
| 588 | flux%sw_dn_clear_band(:,jcol,jlev+1) = & |
---|
| 589 | & mu0 * flux%sw_dn_clear_band(:,jcol,jlev+1) |
---|
| 590 | if (allocated(flux%sw_dn_direct_clear_band)) then |
---|
| 591 | flux%sw_dn_direct_clear_band(:,jcol,jlev+1) & |
---|
| 592 | & = flux%sw_dn_clear_band(:,jcol,jlev+1) |
---|
| 593 | end if |
---|
| 594 | call add_indexed_sum(flux_dn_clear, & |
---|
| 595 | & config%i_spec_from_reordered_g_sw, & |
---|
| 596 | & flux%sw_dn_clear_band(:,jcol,jlev+1)) |
---|
| 597 | end if |
---|
| 598 | end if |
---|
| 599 | |
---|
| 600 | end do ! Final loop over levels |
---|
| 601 | |
---|
| 602 | ! Store surface spectral fluxes, if required (after the end of |
---|
| 603 | ! the final loop over levels, the current values of these arrays |
---|
| 604 | ! will be the surface values) |
---|
| 605 | flux%sw_dn_diffuse_surf_g(:,jcol) = sum(flux_dn,2) |
---|
| 606 | flux%sw_dn_direct_surf_g(:,jcol) = mu0 * sum(direct_dn,2) |
---|
| 607 | if (config%do_clear) then |
---|
| 608 | flux%sw_dn_diffuse_surf_clear_g(:,jcol) = flux_dn_clear |
---|
| 609 | flux%sw_dn_direct_surf_clear_g(:,jcol) = mu0 * direct_dn_clear |
---|
| 610 | end if |
---|
| 611 | |
---|
| 612 | end do ! Loop over columns |
---|
| 613 | |
---|
| 614 | if (lhook) call dr_hook('radiation_tripleclouds_sw:solver_tripleclouds_sw',1,hook_handle) |
---|
| 615 | |
---|
| 616 | end subroutine solver_tripleclouds_sw |
---|
| 617 | |
---|
| 618 | end module radiation_tripleclouds_sw |
---|