[4444] | 1 | ! radiation_spectral_definition.F90 - Derived type to describe a spectral definition |
---|
| 2 | ! |
---|
| 3 | ! (C) Copyright 2020- ECMWF. |
---|
| 4 | ! |
---|
| 5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
| 6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
| 7 | ! |
---|
| 8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
| 9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
| 10 | ! nor does it submit to any jurisdiction. |
---|
| 11 | ! |
---|
| 12 | ! Author: Robin Hogan |
---|
| 13 | ! Email: r.j.hogan@ecmwf.int |
---|
| 14 | ! License: see the COPYING file for details |
---|
| 15 | ! |
---|
| 16 | |
---|
| 17 | module radiation_spectral_definition |
---|
| 18 | |
---|
| 19 | use parkind1, only : jprb |
---|
| 20 | |
---|
| 21 | implicit none |
---|
| 22 | |
---|
| 23 | public |
---|
| 24 | |
---|
| 25 | real(jprb), parameter :: SolarReferenceTemperature = 5777.0_jprb ! K |
---|
| 26 | real(jprb), parameter :: TerrestrialReferenceTemperature = 273.15_jprb ! K |
---|
| 27 | |
---|
| 28 | !--------------------------------------------------------------------- |
---|
| 29 | ! A derived type describing the contribution of the g points of a |
---|
| 30 | ! correlated k-distribution gas-optics model from each part of the |
---|
| 31 | ! spectrum. This is used primarily to map the cloud and aerosol |
---|
| 32 | ! optical properties on to the gas g points. |
---|
| 33 | type spectral_definition_type |
---|
| 34 | |
---|
| 35 | ! Spectral mapping of g points |
---|
| 36 | |
---|
| 37 | ! Number of wavenumber intervals |
---|
| 38 | integer :: nwav = 0 |
---|
| 39 | ! Number of k terms / g points |
---|
| 40 | integer :: ng = 0 |
---|
| 41 | ! Start and end wavenumber (cm-1), dimensioned (nwav) |
---|
| 42 | real(jprb), allocatable :: wavenumber1(:) |
---|
| 43 | real(jprb), allocatable :: wavenumber2(:) |
---|
| 44 | ! Fraction of each g point in each wavenumber interval, |
---|
| 45 | ! dimensioned (nwav, ng) |
---|
| 46 | real(jprb), allocatable :: gpoint_fraction(:,:) |
---|
| 47 | |
---|
| 48 | ! Band information |
---|
| 49 | |
---|
| 50 | ! Number of bands |
---|
| 51 | integer :: nband = 0 |
---|
| 52 | ! Lower and upper bounds of wavenumber bands (cm-1), dimensioned |
---|
| 53 | ! (nband) |
---|
| 54 | real(jprb), allocatable :: wavenumber1_band(:) |
---|
| 55 | real(jprb), allocatable :: wavenumber2_band(:) |
---|
| 56 | ! Band (one based) to which each g point belongs |
---|
| 57 | integer, allocatable :: i_band_number(:) |
---|
| 58 | |
---|
| 59 | contains |
---|
| 60 | procedure :: read => read_spectral_definition |
---|
| 61 | procedure :: allocate_bands_only |
---|
| 62 | procedure :: deallocate |
---|
| 63 | procedure :: find => find_wavenumber |
---|
| 64 | procedure :: calc_mapping |
---|
| 65 | procedure :: calc_mapping_from_bands |
---|
| 66 | procedure :: calc_mapping_from_wavenumber_bands |
---|
| 67 | procedure :: print_mapping_from_bands |
---|
| 68 | procedure :: min_wavenumber, max_wavenumber |
---|
| 69 | |
---|
| 70 | end type spectral_definition_type |
---|
| 71 | |
---|
| 72 | contains |
---|
| 73 | |
---|
| 74 | !--------------------------------------------------------------------- |
---|
| 75 | ! Read the description of a spectral definition from a NetCDF |
---|
| 76 | ! file of the type used to describe an ecCKD model |
---|
| 77 | subroutine read_spectral_definition(this, file) |
---|
| 78 | |
---|
| 79 | use easy_netcdf, only : netcdf_file |
---|
| 80 | use yomhook, only : lhook, dr_hook |
---|
| 81 | |
---|
| 82 | class(spectral_definition_type), intent(inout) :: this |
---|
| 83 | type(netcdf_file), intent(inout) :: file |
---|
| 84 | |
---|
| 85 | real(jprb) :: hook_handle |
---|
| 86 | |
---|
| 87 | if (lhook) call dr_hook('radiation_spectral_definition:read',0,hook_handle) |
---|
| 88 | |
---|
| 89 | ! Read spectral mapping of g points |
---|
| 90 | call file%get('wavenumber1', this%wavenumber1) |
---|
| 91 | call file%get('wavenumber2', this%wavenumber2) |
---|
| 92 | call file%get('gpoint_fraction', this%gpoint_fraction) |
---|
| 93 | |
---|
| 94 | ! Read band information |
---|
| 95 | call file%get('wavenumber1_band', this%wavenumber1_band) |
---|
| 96 | call file%get('wavenumber2_band', this%wavenumber2_band) |
---|
| 97 | call file%get('band_number', this%i_band_number) |
---|
| 98 | |
---|
| 99 | ! Band number is 0-based: add 1 |
---|
| 100 | this%i_band_number = this%i_band_number + 1 |
---|
| 101 | |
---|
| 102 | this%nwav = size(this%wavenumber1) |
---|
| 103 | this%ng = size(this%gpoint_fraction, 2); |
---|
| 104 | this%nband = size(this%wavenumber1_band) |
---|
| 105 | |
---|
| 106 | if (lhook) call dr_hook('radiation_spectral_definition:read',1,hook_handle) |
---|
| 107 | |
---|
| 108 | end subroutine read_spectral_definition |
---|
| 109 | |
---|
| 110 | |
---|
| 111 | !--------------------------------------------------------------------- |
---|
| 112 | ! Store a simple band description by copying over the lower and |
---|
| 113 | ! upper wavenumbers of each band |
---|
| 114 | subroutine allocate_bands_only(this, wavenumber1, wavenumber2) |
---|
| 115 | |
---|
| 116 | use yomhook, only : lhook, dr_hook |
---|
| 117 | |
---|
| 118 | class(spectral_definition_type), intent(inout) :: this |
---|
| 119 | real(jprb), dimension(:), intent(in) :: wavenumber1, wavenumber2 |
---|
| 120 | |
---|
| 121 | real(jprb) :: hook_handle |
---|
| 122 | |
---|
| 123 | if (lhook) call dr_hook('radiation_spectral_definition:allocate_bands_only',0,hook_handle) |
---|
| 124 | |
---|
| 125 | call this%deallocate() |
---|
| 126 | |
---|
| 127 | this%nband = size(wavenumber1) |
---|
| 128 | allocate(this%wavenumber1_band(this%nband)) |
---|
| 129 | allocate(this%wavenumber2_band(this%nband)) |
---|
| 130 | this%wavenumber1_band = wavenumber1 |
---|
| 131 | this%wavenumber2_band = wavenumber2 |
---|
| 132 | |
---|
| 133 | if (lhook) call dr_hook('radiation_spectral_definition:allocate_bands_only',1,hook_handle) |
---|
| 134 | |
---|
| 135 | end subroutine allocate_bands_only |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | !--------------------------------------------------------------------- |
---|
| 139 | ! Deallocate memory inside a spectral definition object |
---|
| 140 | subroutine deallocate(this) |
---|
| 141 | |
---|
| 142 | class(spectral_definition_type), intent(inout) :: this |
---|
| 143 | |
---|
| 144 | this%nwav = 0 |
---|
| 145 | this%ng = 0 |
---|
| 146 | this%nband = 0 |
---|
| 147 | |
---|
| 148 | if (allocated(this%wavenumber1)) deallocate(this%wavenumber1) |
---|
| 149 | if (allocated(this%wavenumber2)) deallocate(this%wavenumber2) |
---|
| 150 | if (allocated(this%wavenumber1_band)) deallocate(this%wavenumber1_band) |
---|
| 151 | if (allocated(this%wavenumber2_band)) deallocate(this%wavenumber2_band) |
---|
| 152 | if (allocated(this%gpoint_fraction)) deallocate(this%gpoint_fraction) |
---|
| 153 | if (allocated(this%i_band_number)) deallocate(this%i_band_number) |
---|
| 154 | |
---|
| 155 | end subroutine deallocate |
---|
| 156 | |
---|
| 157 | |
---|
| 158 | !--------------------------------------------------------------------- |
---|
| 159 | ! Find the index to the highest wavenumber in the spectral |
---|
| 160 | ! definition that is lower than or equal to "wavenumber", used for |
---|
| 161 | ! implementing look-up tables |
---|
| 162 | pure function find_wavenumber(this, wavenumber) |
---|
| 163 | class(spectral_definition_type), intent(in) :: this |
---|
| 164 | real(jprb), intent(in) :: wavenumber ! cm-1 |
---|
| 165 | integer :: find_wavenumber |
---|
| 166 | |
---|
| 167 | if (wavenumber < this%wavenumber1(1) .or. wavenumber > this%wavenumber2(this%nwav)) then |
---|
| 168 | ! Wavenumber not present |
---|
| 169 | find_wavenumber = 0 |
---|
| 170 | else |
---|
| 171 | find_wavenumber = 1 |
---|
| 172 | do while (wavenumber > this%wavenumber2(find_wavenumber) & |
---|
| 173 | & .and. find_wavenumber < this%nwav) |
---|
| 174 | find_wavenumber = find_wavenumber + 1 |
---|
| 175 | end do |
---|
| 176 | end if |
---|
| 177 | end function find_wavenumber |
---|
| 178 | |
---|
| 179 | |
---|
| 180 | !--------------------------------------------------------------------- |
---|
| 181 | ! Compute a mapping matrix "mapping" that can be used in an |
---|
| 182 | ! expression y=matmul(mapping,x) where x is a variable containing |
---|
| 183 | ! optical properties at each input "wavenumber", and y is this |
---|
| 184 | ! variable mapped on to the spectral intervals in the spectral |
---|
| 185 | ! definition "this". Temperature (K) is used to generate a Planck |
---|
| 186 | ! function to weight each wavenumber appropriately. |
---|
| 187 | subroutine calc_mapping(this, temperature, wavenumber, mapping, use_bands) |
---|
| 188 | |
---|
| 189 | use yomhook, only : lhook, dr_hook |
---|
| 190 | use radiation_io, only : nulerr, radiation_abort |
---|
| 191 | |
---|
| 192 | class(spectral_definition_type), intent(in) :: this |
---|
| 193 | real(jprb), intent(in) :: temperature ! K |
---|
| 194 | real(jprb), intent(in) :: wavenumber(:) ! cm-1 |
---|
| 195 | real(jprb), allocatable, intent(inout) :: mapping(:,:) |
---|
| 196 | logical, optional, intent(in) :: use_bands |
---|
| 197 | |
---|
| 198 | ! Spectral weights to apply, same length as wavenumber above |
---|
| 199 | real(jprb), dimension(:), allocatable :: weight, planck_weight |
---|
| 200 | |
---|
| 201 | ! Wavenumbers (cm-1) marking triangle of influence of a cloud |
---|
| 202 | ! spectral point |
---|
| 203 | real(jprb) :: wavenum0, wavenum1, wavenum2 |
---|
| 204 | |
---|
| 205 | integer :: nwav ! Number of wavenumbers describing cloud |
---|
| 206 | |
---|
| 207 | ! Indices to wavenumber intervals in spectral definition structure |
---|
| 208 | integer :: isd, isd0, isd1, isd2 |
---|
| 209 | |
---|
| 210 | ! Wavenumber index |
---|
| 211 | integer :: iwav |
---|
| 212 | |
---|
| 213 | ! Loop indices |
---|
| 214 | integer :: jg, jwav, jband |
---|
| 215 | |
---|
| 216 | logical :: use_bands_local |
---|
| 217 | |
---|
| 218 | real(jprb) :: hook_handle |
---|
| 219 | |
---|
| 220 | if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping',0,hook_handle) |
---|
| 221 | |
---|
| 222 | if (present(use_bands)) then |
---|
| 223 | use_bands_local = use_bands |
---|
| 224 | else |
---|
| 225 | use_bands_local = .false. |
---|
| 226 | end if |
---|
| 227 | |
---|
| 228 | nwav = size(wavenumber) |
---|
| 229 | |
---|
| 230 | if (allocated(mapping)) then |
---|
| 231 | deallocate(mapping) |
---|
| 232 | end if |
---|
| 233 | |
---|
| 234 | ! Define the mapping matrix |
---|
| 235 | if (use_bands_local) then |
---|
| 236 | ! Cloud properties per band |
---|
| 237 | |
---|
| 238 | allocate(mapping(this%nband, nwav)) |
---|
| 239 | allocate(weight(nwav)) |
---|
| 240 | |
---|
| 241 | ! Planck weight uses the wavenumbers of the cloud points |
---|
| 242 | allocate(planck_weight(nwav)) |
---|
| 243 | planck_weight = calc_planck_function_wavenumber(wavenumber, & |
---|
| 244 | & temperature) |
---|
| 245 | |
---|
| 246 | do jband = 1,this%nband |
---|
| 247 | weight = 0.0_jprb |
---|
| 248 | do jwav = 1,nwav |
---|
| 249 | ! Work out wavenumber range for which this cloud wavenumber |
---|
| 250 | ! will be applicable |
---|
| 251 | if (wavenumber(jwav) >= this%wavenumber1_band(jband) & |
---|
| 252 | & .and. wavenumber(jwav) <= this%wavenumber2_band(jband)) then |
---|
| 253 | if (jwav > 1) then |
---|
| 254 | wavenum1 = max(this%wavenumber1_band(jband), & |
---|
| 255 | & 0.5_jprb*(wavenumber(jwav-1)+wavenumber(jwav))) |
---|
| 256 | else |
---|
| 257 | wavenum1 = this%wavenumber1_band(jband) |
---|
| 258 | end if |
---|
| 259 | if (jwav < nwav) then |
---|
| 260 | wavenum2 = min(this%wavenumber2_band(jband), & |
---|
| 261 | & 0.5_jprb*(wavenumber(jwav)+wavenumber(jwav+1))) |
---|
| 262 | else |
---|
| 263 | wavenum2 = this%wavenumber2_band(jband) |
---|
| 264 | end if |
---|
| 265 | ! This cloud wavenumber is weighted by the wavenumber |
---|
| 266 | ! range of its applicability multiplied by the Planck |
---|
| 267 | ! function at an appropriate temperature |
---|
| 268 | weight(jwav) = (wavenum2-wavenum1) * planck_weight(jwav) |
---|
| 269 | end if |
---|
| 270 | end do |
---|
| 271 | if (sum(weight) <= 0.0_jprb) then |
---|
| 272 | ! No cloud wavenumbers lie in the band; interpolate to |
---|
| 273 | ! central wavenumber of band instead |
---|
| 274 | if (wavenumber(1) >= this%wavenumber2_band(jband)) then |
---|
| 275 | ! Band is entirely below first cloudy wavenumber |
---|
| 276 | weight(1) = 1.0_jprb |
---|
| 277 | else if (wavenumber(nwav) <= this%wavenumber1_band(jband)) then |
---|
| 278 | ! Band is entirely above last cloudy wavenumber |
---|
| 279 | weight(nwav) = 1.0_jprb |
---|
| 280 | else |
---|
| 281 | ! Find interpolating points |
---|
| 282 | iwav = 2 |
---|
| 283 | do while (wavenumber(iwav) < this%wavenumber2_band(jband)) |
---|
| 284 | iwav = iwav+1 |
---|
| 285 | end do |
---|
| 286 | weight(iwav-1) = planck_weight(iwav-1) * (wavenumber(iwav) & |
---|
| 287 | & - 0.5_jprb*(this%wavenumber2_band(jband)+this%wavenumber1_band(jband))) |
---|
| 288 | weight(iwav) = planck_weight(iwav) * (-wavenumber(iwav-1) & |
---|
| 289 | & + 0.5_jprb*(this%wavenumber2_band(jband)+this%wavenumber1_band(jband))) |
---|
| 290 | end if |
---|
| 291 | end if |
---|
| 292 | mapping(jband,:) = weight / sum(weight) |
---|
| 293 | end do |
---|
| 294 | |
---|
| 295 | deallocate(weight) |
---|
| 296 | deallocate(planck_weight) |
---|
| 297 | |
---|
| 298 | else |
---|
| 299 | ! Cloud properties per g-point |
---|
| 300 | |
---|
| 301 | if (this%ng == 0) then |
---|
| 302 | write(nulerr,'(a)') '*** Error: requested cloud/aerosol mapping per g-point but only available per band' |
---|
| 303 | call radiation_abort('Radiation configuration error') |
---|
| 304 | end if |
---|
| 305 | |
---|
| 306 | allocate(mapping(this%ng, nwav)) |
---|
| 307 | allocate(weight(this%nwav)) |
---|
| 308 | allocate(planck_weight(this%nwav)) |
---|
| 309 | |
---|
| 310 | planck_weight = calc_planck_function_wavenumber(0.5_jprb & |
---|
| 311 | & * (this%wavenumber1 + this%wavenumber2), & |
---|
| 312 | & temperature) |
---|
| 313 | |
---|
| 314 | mapping = 0.0_jprb |
---|
| 315 | ! Loop over wavenumbers representing cloud |
---|
| 316 | do jwav = 1,nwav |
---|
| 317 | ! Clear the weights. The weight says for one wavenumber in the |
---|
| 318 | ! cloud file, what is its fractional contribution to each of |
---|
| 319 | ! the spectral-definition intervals |
---|
| 320 | weight = 0.0_jprb |
---|
| 321 | |
---|
| 322 | ! Cloud properties are linearly interpolated between each of |
---|
| 323 | ! the nwav cloud points; therefore, the influence of a |
---|
| 324 | ! particular cloud point extends as a triangle between |
---|
| 325 | ! wavenum0 and wavenum2, peaking at wavenum1 |
---|
| 326 | wavenum1 = wavenumber(jwav) |
---|
| 327 | isd1 = this%find(wavenum1) |
---|
| 328 | if (isd1 < 1) then |
---|
| 329 | cycle |
---|
| 330 | end if |
---|
| 331 | if (jwav > 1) then |
---|
| 332 | wavenum0 = wavenumber(jwav-1) |
---|
| 333 | |
---|
| 334 | ! Map triangle under (wavenum0,0) to (wavenum1,1) to the |
---|
| 335 | ! wavenumbers in this%gpoint_fraction |
---|
| 336 | isd0 = this%find(wavenum0) |
---|
| 337 | if (isd0 == isd1) then |
---|
| 338 | ! Triangle completely within the range |
---|
| 339 | ! this%wavenumber1(isd0)-this%wavenumber2(isd0) |
---|
| 340 | weight(isd0) = 0.5_jprb*(wavenum1-wavenum0) & |
---|
| 341 | & / (this%wavenumber2(isd0)-this%wavenumber1(isd0)) |
---|
| 342 | else |
---|
| 343 | if (isd0 >= 1) then |
---|
| 344 | ! Left part of triangle |
---|
| 345 | weight(isd0) = 0.5_jprb * (this%wavenumber2(isd0)-wavenum0)**2 & |
---|
| 346 | & / ((this%wavenumber2(isd0)-this%wavenumber1(isd0)) & |
---|
| 347 | & *(wavenum1-wavenum0)) |
---|
| 348 | end if |
---|
| 349 | ! Right part of triangle (trapezium) |
---|
| 350 | ! weight(isd1) = 0.5_jprb * (wavenum1-this%wavenumber1(isd1)) & |
---|
| 351 | ! & * (wavenum1 + this%wavenumber1(isd1) - 2.0_jprb*wavenum0) & |
---|
| 352 | ! & / (wavenum1-wavenum0) |
---|
| 353 | weight(isd1) = 0.5_jprb * (1.0_jprb & |
---|
| 354 | & + (this%wavenumber1(isd1)-wavenum1)/(wavenum1-wavenum0)) & |
---|
| 355 | & * (wavenum1-this%wavenumber1(isd1)) & |
---|
| 356 | & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) |
---|
| 357 | if (isd1-isd0 > 1) then |
---|
| 358 | do isd = isd0+1,isd1-1 |
---|
| 359 | ! Intermediate trapezia |
---|
| 360 | weight(isd) = 0.5_jprb * (this%wavenumber1(isd)+this%wavenumber2(isd) & |
---|
| 361 | & - 2.0_jprb*wavenum0) & |
---|
| 362 | & / (wavenum1-wavenum0) |
---|
| 363 | end do |
---|
| 364 | end if |
---|
| 365 | end if |
---|
| 366 | |
---|
| 367 | else |
---|
| 368 | ! First cloud wavenumber: all wavenumbers in the spectral |
---|
| 369 | ! definition below this will use the first one |
---|
| 370 | if (isd1 >= 1) then |
---|
| 371 | weight(1:isd1-1) = 1.0_jprb |
---|
| 372 | weight(isd1) = (wavenum1-this%wavenumber1(isd1)) & |
---|
| 373 | & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) |
---|
| 374 | end if |
---|
| 375 | end if |
---|
| 376 | |
---|
| 377 | if (jwav < nwav) then |
---|
| 378 | wavenum2 = wavenumber(jwav+1) |
---|
| 379 | |
---|
| 380 | ! Map triangle under (wavenum1,1) to (wavenum2,0) to the |
---|
| 381 | ! wavenumbers in this%gpoint_fraction |
---|
| 382 | isd2 = this%find(wavenum2) |
---|
| 383 | |
---|
| 384 | if (isd1 == isd2) then |
---|
| 385 | ! Triangle completely within the range |
---|
| 386 | ! this%wavenumber1(isd1)-this%wavenumber2(isd1) |
---|
| 387 | weight(isd1) = weight(isd1) + 0.5_jprb*(wavenum2-wavenum1) & |
---|
| 388 | & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) |
---|
| 389 | else |
---|
| 390 | if (isd2 >= 1 .and. isd2 <= this%nwav) then |
---|
| 391 | ! Right part of triangle |
---|
| 392 | weight(isd2) = weight(isd2) + 0.5_jprb * (wavenum2-this%wavenumber1(isd2))**2 & |
---|
| 393 | & / ((this%wavenumber2(isd2)-this%wavenumber1(isd2)) & |
---|
| 394 | & *(wavenum2-wavenum1)) |
---|
| 395 | end if |
---|
| 396 | ! Left part of triangle (trapezium) |
---|
| 397 | ! weight(isd1) = weight(isd1) + 0.5_jprb * (this%wavenumber2(isd1)-wavenum1) & |
---|
| 398 | ! & * (wavenum1 + this%wavenumber2(isd1) - 2.0_jprb*wavenum2) & |
---|
| 399 | ! & / (wavenum2-wavenum1) |
---|
| 400 | weight(isd1) = weight(isd1) + 0.5_jprb * (1.0_jprb & |
---|
| 401 | & + (wavenum2-this%wavenumber2(isd1)) / (wavenum2-wavenum1)) & |
---|
| 402 | & * (this%wavenumber2(isd1)-wavenum1) & |
---|
| 403 | & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) |
---|
| 404 | if (isd2-isd1 > 1) then |
---|
| 405 | do isd = isd1+1,isd2-1 |
---|
| 406 | ! Intermediate trapezia |
---|
| 407 | weight(isd) = weight(isd) + 0.5_jprb * (2.0_jprb*wavenum2 & |
---|
| 408 | & - this%wavenumber1(isd) - this%wavenumber2(isd)) & |
---|
| 409 | & / (wavenum2-wavenum1) |
---|
| 410 | end do |
---|
| 411 | end if |
---|
| 412 | end if |
---|
| 413 | |
---|
| 414 | else |
---|
| 415 | ! Last cloud wavenumber: all wavenumbers in the spectral |
---|
| 416 | ! definition above this will use the last one |
---|
| 417 | if (isd1 <= this%nwav) then |
---|
| 418 | weight(isd1+1:this%nwav) = 1.0_jprb |
---|
| 419 | weight(isd1) = (this%wavenumber2(isd1)-wavenum1) & |
---|
| 420 | & / (this%wavenumber2(isd1)-this%wavenumber1(isd1)) |
---|
| 421 | end if |
---|
| 422 | end if |
---|
| 423 | |
---|
| 424 | weight = weight * planck_weight |
---|
| 425 | |
---|
| 426 | do jg = 1,this%ng |
---|
| 427 | mapping(jg, jwav) = sum(weight * this%gpoint_fraction(:,jg)) |
---|
| 428 | end do |
---|
| 429 | |
---|
| 430 | end do |
---|
| 431 | |
---|
| 432 | deallocate(weight) |
---|
| 433 | deallocate(planck_weight) |
---|
| 434 | |
---|
| 435 | ! Normalize mapping matrix |
---|
| 436 | do jg = 1,this%ng |
---|
| 437 | mapping(jg,:) = mapping(jg,:) * (1.0_jprb/sum(mapping(jg,:))) |
---|
| 438 | end do |
---|
| 439 | |
---|
| 440 | end if |
---|
| 441 | |
---|
| 442 | if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping',1,hook_handle) |
---|
| 443 | |
---|
| 444 | end subroutine calc_mapping |
---|
| 445 | |
---|
| 446 | |
---|
| 447 | !--------------------------------------------------------------------- |
---|
| 448 | ! Under normal operation (if use_fluxes is .false. or not present), |
---|
| 449 | ! compute a mapping matrix "mapping" that can be used in an |
---|
| 450 | ! expression y=matmul(mapping^T,x) where x is a variable containing |
---|
| 451 | ! optical properties in input bands (e.g. albedo in shortwave albedo |
---|
| 452 | ! bands), and y is this variable mapped on to the spectral intervals |
---|
| 453 | ! in the spectral definition "this". Temperature (K) is used to |
---|
| 454 | ! generate a Planck function to weight each input band |
---|
| 455 | ! appropriately. Note that "mapping" is here transposed from the |
---|
| 456 | ! convention in the calc_mapping routine. Under the alternative |
---|
| 457 | ! operation (if use_fluxes is present and .true.), the mapping works |
---|
| 458 | ! in the reverse sense: if y contains fluxes in each ecRad band or |
---|
| 459 | ! g-point, then x=matmul(mapping,y) would return fluxes in x |
---|
| 460 | ! averaged to user-supplied "input" bands. In this version, the |
---|
| 461 | ! bands are described by their wavelength bounds (wavelength_bound, |
---|
| 462 | ! which must be increasing and exclude the end points) and the index |
---|
| 463 | ! of the mapping matrix that each band corresponds to (i_intervals, |
---|
| 464 | ! which has one more element than wavelength_bound and can have |
---|
| 465 | ! duplicated values if an albedo/emissivity value is to be |
---|
| 466 | ! associated with more than one discontinuous ranges of the |
---|
| 467 | ! spectrum). |
---|
| 468 | subroutine calc_mapping_from_bands(this, temperature, & |
---|
| 469 | & wavelength_bound, i_intervals, mapping, use_bands, use_fluxes) |
---|
| 470 | |
---|
| 471 | use yomhook, only : lhook, dr_hook |
---|
| 472 | use radiation_io, only : nulerr, radiation_abort |
---|
| 473 | |
---|
| 474 | class(spectral_definition_type), intent(in) :: this |
---|
| 475 | real(jprb), intent(in) :: temperature ! K |
---|
| 476 | ! Monotonically increasing wavelength bounds (m) between |
---|
| 477 | ! intervals, not including the outer bounds (which are assumed to |
---|
| 478 | ! be zero and infinity) |
---|
| 479 | real(jprb), intent(in) :: wavelength_bound(:) |
---|
| 480 | ! The albedo band indices corresponding to each interval |
---|
| 481 | integer, intent(in) :: i_intervals(:) |
---|
| 482 | real(jprb), allocatable, intent(inout) :: mapping(:,:) |
---|
| 483 | logical, optional, intent(in) :: use_bands |
---|
| 484 | logical, optional, intent(in) :: use_fluxes |
---|
| 485 | |
---|
| 486 | ! Planck function and central wavenumber of each wavenumber |
---|
| 487 | ! interval of the spectral definition |
---|
| 488 | real(jprb) :: planck(this%nwav) ! W m-2 (cm-1)-1 |
---|
| 489 | real(jprb) :: wavenumber_mid(this%nwav) ! cm-1 |
---|
| 490 | |
---|
| 491 | real(jprb), allocatable :: mapping_denom(:,:) |
---|
| 492 | |
---|
| 493 | real(jprb) :: wavenumber1_bound, wavenumber2_bound |
---|
| 494 | |
---|
| 495 | ! To work out weights we sample the Planck function at five points |
---|
| 496 | ! in the interception between an input interval and a band, and |
---|
| 497 | ! use the Trapezium Rule |
---|
| 498 | integer, parameter :: nsample = 5 |
---|
| 499 | integer :: isamp |
---|
| 500 | real(jprb), dimension(nsample) :: wavenumber_sample, planck_sample |
---|
| 501 | real(jprb), parameter :: weight_sample(nsample) & |
---|
| 502 | & = [0.5_jprb, 1.0_jprb, 1.0_jprb, 1.0_jprb, 0.5_jprb] |
---|
| 503 | |
---|
| 504 | ! Index of input value corresponding to each wavenumber interval |
---|
| 505 | integer :: i_input(this%nwav) |
---|
| 506 | |
---|
| 507 | ! Number of albedo/emissivity values that will be provided, some |
---|
| 508 | ! of which may span discontinuous intervals in wavelength space |
---|
| 509 | integer :: ninput |
---|
| 510 | |
---|
| 511 | ! Number of albedo/emissivity intervals represented, where some |
---|
| 512 | ! may be grouped to have the same value of albedo/emissivity (an |
---|
| 513 | ! example is in the thermal infrared where classically the IFS has |
---|
| 514 | ! ninput=2 and ninterval=3, since only two emissivities are |
---|
| 515 | ! provided representing (1) the infrared window, and (2) the |
---|
| 516 | ! intervals to each side of the infrared window. |
---|
| 517 | integer :: ninterval |
---|
| 518 | |
---|
| 519 | logical :: use_bands_local, use_fluxes_local |
---|
| 520 | |
---|
| 521 | ! Loop indices |
---|
| 522 | integer :: jg, jband, jin, jint |
---|
| 523 | |
---|
| 524 | real(jprb) :: hook_handle |
---|
| 525 | |
---|
| 526 | if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping_from_bands',0,hook_handle) |
---|
| 527 | |
---|
| 528 | if (present(use_bands)) then |
---|
| 529 | use_bands_local = use_bands |
---|
| 530 | else |
---|
| 531 | use_bands_local = .false. |
---|
| 532 | end if |
---|
| 533 | |
---|
| 534 | if (present(use_fluxes)) then |
---|
| 535 | use_fluxes_local = use_fluxes |
---|
| 536 | else |
---|
| 537 | use_fluxes_local = .false. |
---|
| 538 | end if |
---|
| 539 | |
---|
| 540 | ! Count the number of input intervals |
---|
| 541 | ninterval = size(i_intervals) |
---|
| 542 | ninput = maxval(i_intervals) |
---|
| 543 | |
---|
| 544 | if (allocated(mapping)) then |
---|
| 545 | deallocate(mapping) |
---|
| 546 | end if |
---|
| 547 | |
---|
| 548 | ! Check wavelength is monotonically increasing |
---|
| 549 | if (ninterval > 2) then |
---|
| 550 | do jint = 2,ninterval-1 |
---|
| 551 | if (wavelength_bound(jint) <= wavelength_bound(jint-1)) then |
---|
| 552 | write(nulerr, '(a)') '*** Error: wavelength bounds must be monotonically increasing' |
---|
| 553 | call radiation_abort() |
---|
| 554 | end if |
---|
| 555 | end do |
---|
| 556 | end if |
---|
| 557 | |
---|
| 558 | ! Define the mapping matrix |
---|
| 559 | if (use_bands_local) then |
---|
| 560 | ! Require properties per band |
---|
| 561 | |
---|
| 562 | allocate(mapping(ninput, this%nband)) |
---|
| 563 | mapping = 0.0_jprb |
---|
| 564 | |
---|
| 565 | if (use_fluxes_local) then |
---|
| 566 | allocate(mapping_denom(ninput, this%nband)) |
---|
| 567 | mapping_denom = 0.0_jprb |
---|
| 568 | end if |
---|
| 569 | |
---|
| 570 | do jband = 1,this%nband |
---|
| 571 | do jint = 1,ninterval |
---|
| 572 | if (jint == 1) then |
---|
| 573 | ! First input interval in wavelength space: lower |
---|
| 574 | ! wavelength bound is 0 m, so infinity cm-1 |
---|
| 575 | wavenumber2_bound = this%wavenumber2_band(jband) |
---|
| 576 | else |
---|
| 577 | wavenumber2_bound = min(this%wavenumber2_band(jband), & |
---|
| 578 | & 0.01_jprb/wavelength_bound(jint-1)) |
---|
| 579 | end if |
---|
| 580 | |
---|
| 581 | if (jint == ninterval) then |
---|
| 582 | ! Final input interval in wavelength space: upper |
---|
| 583 | ! wavelength bound is infinity m, so 0 cm-1 |
---|
| 584 | wavenumber1_bound = this%wavenumber1_band(jband) |
---|
| 585 | else |
---|
| 586 | wavenumber1_bound = max(this%wavenumber1_band(jband), & |
---|
| 587 | & 0.01_jprb/wavelength_bound(jint)) |
---|
| 588 | |
---|
| 589 | end if |
---|
| 590 | |
---|
| 591 | if (wavenumber2_bound > wavenumber1_bound) then |
---|
| 592 | ! Current input interval contributes to current band; |
---|
| 593 | ! compute the weight of the contribution in proportion to |
---|
| 594 | ! an approximate calculation of the integral of the Planck |
---|
| 595 | ! function over the relevant part of the spectrum |
---|
| 596 | wavenumber_sample = wavenumber1_bound + [(isamp,isamp=0,nsample-1)] & |
---|
| 597 | & * (wavenumber2_bound-wavenumber1_bound) / real(nsample-1,jprb) |
---|
| 598 | planck_sample = calc_planck_function_wavenumber(wavenumber_sample, temperature) |
---|
| 599 | mapping(i_intervals(jint),jband) = mapping(i_intervals(jint),jband) & |
---|
| 600 | & + sum(planck_sample*weight_sample) * (wavenumber2_bound-wavenumber1_bound) |
---|
| 601 | if (use_fluxes_local) then |
---|
| 602 | ! Compute an equivalent sample containing the entire ecRad band |
---|
| 603 | wavenumber_sample = this%wavenumber1_band(jband) + [(isamp,isamp=0,nsample-1)] & |
---|
| 604 | & * (this%wavenumber2_band(jband)-this%wavenumber1_band(jband)) & |
---|
| 605 | & / real(nsample-1,jprb) |
---|
| 606 | planck_sample = calc_planck_function_wavenumber(wavenumber_sample, temperature) |
---|
| 607 | mapping_denom(i_intervals(jint),jband) = mapping_denom(i_intervals(jint),jband) & |
---|
| 608 | & + sum(planck_sample*weight_sample) * (this%wavenumber2_band(jband)-this%wavenumber1_band(jband)) |
---|
| 609 | end if |
---|
| 610 | end if |
---|
| 611 | |
---|
| 612 | end do |
---|
| 613 | end do |
---|
| 614 | |
---|
| 615 | if (use_fluxes_local) then |
---|
| 616 | mapping = mapping / max(1.0e-12_jprb, mapping_denom) |
---|
| 617 | deallocate(mapping_denom) |
---|
| 618 | end if |
---|
| 619 | |
---|
| 620 | else |
---|
| 621 | ! Require properties per g-point |
---|
| 622 | |
---|
| 623 | if (this%ng == 0) then |
---|
| 624 | write(nulerr,'(a)') '*** Error: requested surface mapping per g-point but only available per band' |
---|
| 625 | call radiation_abort('Radiation configuration error') |
---|
| 626 | end if |
---|
| 627 | |
---|
| 628 | allocate(mapping(ninput,this%ng)) |
---|
| 629 | mapping = 0.0_jprb |
---|
| 630 | |
---|
| 631 | wavenumber_mid = 0.5_jprb * (this%wavenumber1 + this%wavenumber2) |
---|
| 632 | planck = calc_planck_function_wavenumber(wavenumber_mid, temperature) |
---|
| 633 | |
---|
| 634 | ! In the processing that follows, we assume that the wavenumber |
---|
| 635 | ! grid on which the g-points are defined in the spectral |
---|
| 636 | ! definition is much finer than the albedo/emissivity intervals |
---|
| 637 | ! that the user will provide. This means that each wavenumber |
---|
| 638 | ! is assigned to only one of the albedo/emissivity intervals. |
---|
| 639 | |
---|
| 640 | ! By default set all wavenumbers to use first input |
---|
| 641 | ! albedo/emissivity |
---|
| 642 | i_input = 1 |
---|
| 643 | |
---|
| 644 | ! All bounded intervals |
---|
| 645 | do jint = 2,ninterval-1 |
---|
| 646 | wavenumber1_bound = 0.01_jprb / wavelength_bound(jint) |
---|
| 647 | wavenumber2_bound = 0.01_jprb / wavelength_bound(jint-1) |
---|
| 648 | where (wavenumber_mid > wavenumber1_bound & |
---|
| 649 | & .and. wavenumber_mid <= wavenumber2_bound) |
---|
| 650 | i_input = i_intervals(jint) |
---|
| 651 | end where |
---|
| 652 | end do |
---|
| 653 | |
---|
| 654 | ! Final interval in wavelength space goes up to wavenumber of |
---|
| 655 | ! infinity |
---|
| 656 | if (ninterval > 1) then |
---|
| 657 | wavenumber2_bound = 0.01_jprb / wavelength_bound(ninterval-1) |
---|
| 658 | where (wavenumber_mid <= wavenumber2_bound) |
---|
| 659 | i_input = i_intervals(ninterval) |
---|
| 660 | end where |
---|
| 661 | end if |
---|
| 662 | |
---|
| 663 | do jg = 1,this%ng |
---|
| 664 | do jin = 1,ninput |
---|
| 665 | mapping(jin,jg) = sum(this%gpoint_fraction(:,jg) * planck, & |
---|
| 666 | & mask=(i_input==jin)) |
---|
| 667 | if (use_fluxes_local) then |
---|
| 668 | mapping(jin,jg) = mapping(jin,jg) / sum(this%gpoint_fraction(:,jg) * planck) |
---|
| 669 | end if |
---|
| 670 | end do |
---|
| 671 | end do |
---|
| 672 | |
---|
| 673 | end if |
---|
| 674 | |
---|
| 675 | if (.not. use_fluxes_local) then |
---|
| 676 | ! Normalize mapping matrix |
---|
| 677 | do jg = 1,size(mapping,dim=2) |
---|
| 678 | mapping(:,jg) = mapping(:,jg) * (1.0_jprb/sum(mapping(:,jg))) |
---|
| 679 | end do |
---|
| 680 | end if |
---|
| 681 | |
---|
| 682 | if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping_from_bands',1,hook_handle) |
---|
| 683 | |
---|
| 684 | end subroutine calc_mapping_from_bands |
---|
| 685 | |
---|
| 686 | |
---|
| 687 | !--------------------------------------------------------------------- |
---|
| 688 | ! As calc_mapping_from_bands but in terms of wavenumber bounds from |
---|
| 689 | ! wavenumber1 to wavenumber2 |
---|
| 690 | subroutine calc_mapping_from_wavenumber_bands(this, temperature, & |
---|
| 691 | & wavenumber1, wavenumber2, mapping, use_bands, use_fluxes) |
---|
| 692 | |
---|
| 693 | use yomhook, only : lhook, dr_hook |
---|
| 694 | use radiation_io, only : nulerr, radiation_abort |
---|
| 695 | |
---|
| 696 | class(spectral_definition_type), intent(in) :: this |
---|
| 697 | real(jprb), intent(in) :: temperature ! K |
---|
| 698 | real(jprb), intent(in) :: wavenumber1(:), wavenumber2(:) |
---|
| 699 | real(jprb), allocatable, intent(inout) :: mapping(:,:) |
---|
| 700 | logical, optional, intent(in) :: use_bands |
---|
| 701 | logical, optional, intent(in) :: use_fluxes |
---|
| 702 | |
---|
| 703 | ! Monotonically increasing wavelength bounds (m) between |
---|
| 704 | ! intervals, not including the outer bounds (which are assumed to |
---|
| 705 | ! be zero and infinity) |
---|
| 706 | real(jprb) :: wavelength_bound(size(wavenumber1)-1) |
---|
| 707 | ! The albedo band indices corresponding to each interval |
---|
| 708 | integer :: i_intervals(size(wavenumber1)) |
---|
| 709 | |
---|
| 710 | ! Lower wavelength bound (m) of each band |
---|
| 711 | real(jprb) :: wavelength1(size(wavenumber1)) |
---|
| 712 | |
---|
| 713 | logical :: is_band_unassigned(size(wavenumber1)) |
---|
| 714 | |
---|
| 715 | ! Number of albedo/emissivity intervals represented, where some |
---|
| 716 | ! may be grouped to have the same value of albedo/emissivity (an |
---|
| 717 | ! example is in the thermal infrared where classically the IFS has |
---|
| 718 | ! ninput=2 and ninterval=3, since only two emissivities are |
---|
| 719 | ! provided representing (1) the infrared window, and (2) the |
---|
| 720 | ! intervals to each side of the infrared window. |
---|
| 721 | integer :: ninterval |
---|
| 722 | |
---|
| 723 | ! Index to next band in order of increasing wavelength |
---|
| 724 | integer :: inext |
---|
| 725 | |
---|
| 726 | ! Loop indices |
---|
| 727 | integer :: jint |
---|
| 728 | |
---|
| 729 | real(jprb) :: hook_handle |
---|
| 730 | |
---|
| 731 | if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping_from_wavenumber_bands',0,hook_handle) |
---|
| 732 | |
---|
| 733 | wavelength1 = 0.01_jprb / wavenumber2 |
---|
| 734 | ninterval = size(wavelength1) |
---|
| 735 | |
---|
| 736 | is_band_unassigned = .true. |
---|
| 737 | |
---|
| 738 | do jint = 1,ninterval |
---|
| 739 | inext = minloc(wavelength1, dim=1, mask=is_band_unassigned) |
---|
| 740 | if (jint > 1) then |
---|
| 741 | wavelength_bound(jint-1) = wavelength1(inext) |
---|
| 742 | end if |
---|
| 743 | is_band_unassigned(inext) = .false. |
---|
| 744 | i_intervals(jint) = inext |
---|
| 745 | end do |
---|
| 746 | |
---|
| 747 | call calc_mapping_from_bands(this, temperature, & |
---|
| 748 | & wavelength_bound, i_intervals, mapping, use_bands, use_fluxes) |
---|
| 749 | |
---|
| 750 | if (lhook) call dr_hook('radiation_spectral_definition:calc_mapping_from_wavenumber_bands',1,hook_handle) |
---|
| 751 | |
---|
| 752 | end subroutine calc_mapping_from_wavenumber_bands |
---|
| 753 | |
---|
| 754 | |
---|
| 755 | !--------------------------------------------------------------------- |
---|
| 756 | ! Print out the mapping computed by calc_mapping_from_bands |
---|
| 757 | subroutine print_mapping_from_bands(this, mapping, use_bands) |
---|
| 758 | |
---|
| 759 | use radiation_io, only : nulout |
---|
| 760 | |
---|
| 761 | class(spectral_definition_type), intent(in) :: this |
---|
| 762 | real(jprb), allocatable, intent(in) :: mapping(:,:) ! (ninput,nband/ng) |
---|
| 763 | logical, optional, intent(in) :: use_bands |
---|
| 764 | |
---|
| 765 | logical :: use_bands_local |
---|
| 766 | |
---|
| 767 | integer :: nin, nout |
---|
| 768 | integer :: jin, jout |
---|
| 769 | |
---|
| 770 | if (present(use_bands)) then |
---|
| 771 | use_bands_local = use_bands |
---|
| 772 | else |
---|
| 773 | use_bands_local = .false. |
---|
| 774 | end if |
---|
| 775 | |
---|
| 776 | nin = size(mapping,1) |
---|
| 777 | nout = size(mapping,2) |
---|
| 778 | |
---|
| 779 | if (nin <= 1) then |
---|
| 780 | write(nulout, '(a)') ' All spectral intervals will use the same albedo/emissivity' |
---|
| 781 | else if (use_bands_local) then |
---|
| 782 | write(nulout, '(a,i0,a,i0,a)') ' Mapping from ', nin, ' values to ', nout, ' bands (wavenumber ranges in cm-1)' |
---|
| 783 | if (nout <= 40) then |
---|
| 784 | do jout = 1,nout |
---|
| 785 | write(nulout,'(i6,a,i6,a)',advance='no') nint(this%wavenumber1_band(jout)), ' to', & |
---|
| 786 | & nint(this%wavenumber2_band(jout)), ':' |
---|
| 787 | do jin = 1,nin |
---|
| 788 | write(nulout,'(f5.2)',advance='no') mapping(jin,jout) |
---|
| 789 | end do |
---|
| 790 | write(nulout, '()') |
---|
| 791 | end do |
---|
| 792 | else |
---|
| 793 | do jout = 1,30 |
---|
| 794 | write(nulout,'(i6,a,i6,a)',advance='no') nint(this%wavenumber1_band(jout)), ' to', & |
---|
| 795 | & nint(this%wavenumber2_band(jout)), ':' |
---|
| 796 | do jin = 1,nin |
---|
| 797 | write(nulout,'(f5.2)',advance='no') mapping(jin,jout) |
---|
| 798 | end do |
---|
| 799 | write(nulout, '()') |
---|
| 800 | end do |
---|
| 801 | write(nulout,'(a)') ' ...' |
---|
| 802 | write(nulout,'(i6,a,i6,a)',advance='no') nint(this%wavenumber1_band(nout)), ' to', & |
---|
| 803 | & nint(this%wavenumber2_band(nout)), ':' |
---|
| 804 | do jin = 1,nin |
---|
| 805 | write(nulout,'(f5.2)',advance='no') mapping(jin,nout) |
---|
| 806 | end do |
---|
| 807 | write(nulout, '()') |
---|
| 808 | end if |
---|
| 809 | else |
---|
| 810 | write(nulout, '(a,i0,a,i0,a)') ' Mapping from ', nin, ' values to ', nout, ' g-points' |
---|
| 811 | if (nout <= 40) then |
---|
| 812 | do jout = 1,nout |
---|
| 813 | write(nulout,'(i3,a)',advance='no') jout, ':' |
---|
| 814 | do jin = 1,nin |
---|
| 815 | write(nulout,'(f5.2)',advance='no') mapping(jin,jout) |
---|
| 816 | end do |
---|
| 817 | write(nulout, '()') |
---|
| 818 | end do |
---|
| 819 | else |
---|
| 820 | do jout = 1,30 |
---|
| 821 | write(nulout,'(i3,a)',advance='no') jout, ':' |
---|
| 822 | do jin = 1,nin |
---|
| 823 | write(nulout,'(f5.2)',advance='no') mapping(jin,jout) |
---|
| 824 | end do |
---|
| 825 | write(nulout, '()') |
---|
| 826 | end do |
---|
| 827 | write(nulout,'(a)') ' ...' |
---|
| 828 | write(nulout,'(i3,a)',advance='no') nout, ':' |
---|
| 829 | do jin = 1,nin |
---|
| 830 | write(nulout,'(f5.2)',advance='no') mapping(jin,nout) |
---|
| 831 | end do |
---|
| 832 | write(nulout, '()') |
---|
| 833 | end if |
---|
| 834 | end if |
---|
| 835 | |
---|
| 836 | end subroutine print_mapping_from_bands |
---|
| 837 | |
---|
| 838 | |
---|
| 839 | !--------------------------------------------------------------------- |
---|
| 840 | ! Return the minimum wavenumber of this object in cm-1 |
---|
| 841 | pure function min_wavenumber(this) |
---|
| 842 | |
---|
| 843 | class(spectral_definition_type), intent(in) :: this |
---|
| 844 | real(jprb) :: min_wavenumber |
---|
| 845 | |
---|
| 846 | if (this%nwav > 0) then |
---|
| 847 | min_wavenumber = this%wavenumber1(1) |
---|
| 848 | else |
---|
| 849 | min_wavenumber = minval(this%wavenumber1_band) |
---|
| 850 | end if |
---|
| 851 | |
---|
| 852 | end function min_wavenumber |
---|
| 853 | |
---|
| 854 | |
---|
| 855 | !--------------------------------------------------------------------- |
---|
| 856 | ! Return the maximum wavenumber of this object in cm-1 |
---|
| 857 | pure function max_wavenumber(this) |
---|
| 858 | |
---|
| 859 | class(spectral_definition_type), intent(in) :: this |
---|
| 860 | real(jprb) :: max_wavenumber |
---|
| 861 | |
---|
| 862 | if (this%nwav > 0) then |
---|
| 863 | max_wavenumber = this%wavenumber1(this%nwav) |
---|
| 864 | else |
---|
| 865 | max_wavenumber = maxval(this%wavenumber2_band) |
---|
| 866 | end if |
---|
| 867 | |
---|
| 868 | end function max_wavenumber |
---|
| 869 | |
---|
| 870 | |
---|
| 871 | !--------------------------------------------------------------------- |
---|
| 872 | ! Return the Planck function (in W m-2 (cm-1)-1) for a given |
---|
| 873 | ! wavenumber (cm-1) and temperature (K), ensuring double precision |
---|
| 874 | ! for internal calculation. If temperature is 0 or less then unity |
---|
| 875 | ! is returned; since this function is primarily used to weight an |
---|
| 876 | ! integral by the Planck function, a temperature of 0 or less means |
---|
| 877 | ! no weighting is to be applied. |
---|
| 878 | elemental function calc_planck_function_wavenumber(wavenumber, temperature) |
---|
| 879 | |
---|
| 880 | use parkind1, only : jprb, jprd |
---|
| 881 | use radiation_constants, only : SpeedOfLight, BoltzmannConstant, PlanckConstant |
---|
| 882 | |
---|
| 883 | real(jprb), intent(in) :: wavenumber ! cm-1 |
---|
| 884 | real(jprb), intent(in) :: temperature ! K |
---|
| 885 | real(jprb) :: calc_planck_function_wavenumber |
---|
| 886 | |
---|
| 887 | real(jprd) :: freq ! Hz |
---|
| 888 | real(jprd) :: planck_fn_freq ! W m-2 Hz-1 |
---|
| 889 | |
---|
| 890 | if (temperature > 0.0_jprd) then |
---|
| 891 | freq = 100.0_jprd * real(SpeedOfLight,jprd) * real(wavenumber,jprd) |
---|
| 892 | planck_fn_freq = 2.0_jprd * real(PlanckConstant,jprd) * freq**3 & |
---|
| 893 | & / (real(SpeedOfLight,jprd)**2 * (exp(real(PlanckConstant,jprd)*freq & |
---|
| 894 | & /(real(BoltzmannConstant,jprd)*real(temperature,jprd))) - 1.0_jprd)) |
---|
| 895 | calc_planck_function_wavenumber = real(planck_fn_freq * 100.0_jprd * real(SpeedOfLight,jprd), jprb) |
---|
| 896 | else |
---|
| 897 | calc_planck_function_wavenumber = 1.0_jprb |
---|
| 898 | end if |
---|
| 899 | |
---|
| 900 | end function calc_planck_function_wavenumber |
---|
| 901 | |
---|
| 902 | end module radiation_spectral_definition |
---|