1 | ! radiation_regions.F90 -- Properties of horizontal regions in Tripleclouds & SPARTACUS |
---|
2 | ! |
---|
3 | ! (C) Copyright 2016- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! Modifications |
---|
16 | ! 2017-07-14 R. Hogan Incorporate gamma distribution option |
---|
17 | ! 2018-10-06 R. Hogan Merged from radiation_optical_depth_scaling.h and radiation_overlap.F90 |
---|
18 | |
---|
19 | module radiation_regions |
---|
20 | |
---|
21 | implicit none |
---|
22 | |
---|
23 | public :: calc_region_properties |
---|
24 | |
---|
25 | contains |
---|
26 | |
---|
27 | !--------------------------------------------------------------------- |
---|
28 | ! Compute the optical depth scalings for the optically "thick" and |
---|
29 | ! "thin" regions of a Tripleclouds representation of a sub-grid PDF |
---|
30 | ! of cloud optical depth. Following Shonk and Hogan (2008), the 16th |
---|
31 | ! percentile is used for the thin region, and the formulas estimate |
---|
32 | ! this for both lognormal and gamma distributions. However, an |
---|
33 | ! adjustment is needed for the gamma distribution at large |
---|
34 | ! fractional standard deviations. |
---|
35 | subroutine calc_region_properties(nlev, nreg, istartcol, iendcol, do_gamma, & |
---|
36 | & cloud_fraction, frac_std, reg_fracs, od_scaling, cloud_fraction_threshold) |
---|
37 | |
---|
38 | use parkind1, only : jprb |
---|
39 | use yomhook, only : lhook, dr_hook |
---|
40 | use radiation_io, only : nulerr, radiation_abort |
---|
41 | |
---|
42 | ! Minimum od_scaling in the case of a Gamma distribution |
---|
43 | real(jprb), parameter :: MinGammaODScaling = 0.025_jprb |
---|
44 | |
---|
45 | ! At large fractional standard deviations (FSDs), we cannot |
---|
46 | ! capture the behaviour of a gamma distribution with two equally |
---|
47 | ! weighted points; we need to weight the first ("lower") point |
---|
48 | ! more. The weight of the first point is normally 0.5, but for |
---|
49 | ! FSDs between 1.5 and 3.725 it rises linearly to 0.9, and for |
---|
50 | ! higher FSD it is capped at this value. The weight of the second |
---|
51 | ! point is one minus the first point. |
---|
52 | real(jprb), parameter :: MinLowerFrac = 0.5_jprb |
---|
53 | real(jprb), parameter :: MaxLowerFrac = 0.9_jprb |
---|
54 | real(jprb), parameter :: FSDAtMinLowerFrac = 1.5_jprb |
---|
55 | real(jprb), parameter :: FSDAtMaxLowerFrac = 3.725_jprb |
---|
56 | ! Between FSDAtMinLowerFrac and FSDAtMaxLowerFrac, |
---|
57 | ! LowerFrac=LowerFracFSDIntercept+FSD*LowerFracFSDGradient |
---|
58 | real(jprb), parameter :: LowerFracFSDGradient & |
---|
59 | & = (MaxLowerFrac-MinLowerFrac) / (FSDAtMaxLowerFrac-FSDAtMinLowerFrac) |
---|
60 | real(jprb), parameter :: LowerFracFSDIntercept & |
---|
61 | & = MinLowerFrac - FSDAtMinLowerFrac*LowerFracFSDGradient |
---|
62 | |
---|
63 | ! Number of levels and regions |
---|
64 | integer, intent(in) :: nlev, nreg |
---|
65 | |
---|
66 | ! Range of columns to process |
---|
67 | integer, intent(in) :: istartcol, iendcol |
---|
68 | |
---|
69 | ! Do we do a lognormal or gamma distribution? |
---|
70 | logical, intent(in) :: do_gamma |
---|
71 | |
---|
72 | ! Cloud fraction, i.e. the fraction of the gridbox assigned to all |
---|
73 | ! regions numbered 2 and above (region 1 is clear sky) |
---|
74 | real(jprb), intent(in), dimension(:,:) :: cloud_fraction ! (ncol,nlev) |
---|
75 | |
---|
76 | ! Fractional standard deviation of in-cloud water content |
---|
77 | real(jprb), intent(in), dimension(:,:) :: frac_std ! (ncol,nlev) |
---|
78 | |
---|
79 | ! Fractional area coverage of each region |
---|
80 | real(jprb), intent(out) :: reg_fracs(1:nreg,nlev,istartcol:iendcol) |
---|
81 | |
---|
82 | ! Optical depth scaling for the cloudy regions |
---|
83 | real(jprb), intent(out) :: od_scaling(2:nreg,nlev,istartcol:iendcol) |
---|
84 | |
---|
85 | ! Regions smaller than this are ignored |
---|
86 | real(jprb), intent(in), optional :: cloud_fraction_threshold |
---|
87 | |
---|
88 | ! In case the user doesn't supply cloud_fraction_threshold we use |
---|
89 | ! a default value |
---|
90 | real(jprb) :: frac_threshold |
---|
91 | |
---|
92 | ! Loop indices |
---|
93 | integer :: jcol, jlev |
---|
94 | |
---|
95 | real(jprb) :: hook_handle |
---|
96 | |
---|
97 | if (lhook) call dr_hook('radiation_region_properties:calc_region_properties',0,hook_handle) |
---|
98 | |
---|
99 | if (present(cloud_fraction_threshold)) then |
---|
100 | frac_threshold = cloud_fraction_threshold |
---|
101 | else |
---|
102 | frac_threshold = 1.0e-20_jprb |
---|
103 | end if |
---|
104 | |
---|
105 | if (nreg == 2) then |
---|
106 | ! Only one clear-sky and one cloudy region: cloudy region is |
---|
107 | ! homogeneous |
---|
108 | reg_fracs(2,1:nlev,istartcol:iendcol) = transpose(cloud_fraction(istartcol:iendcol,1:nlev)) |
---|
109 | reg_fracs(1,1:nlev,istartcol:iendcol) = 1.0_jprb - reg_fracs(2,1:nlev,istartcol:iendcol) |
---|
110 | od_scaling(2,1:nlev,istartcol:iendcol) = 1.0_jprb |
---|
111 | |
---|
112 | else if (nreg == 3) then |
---|
113 | ! Two cloudy regions with optical depth scaled by 1-x and |
---|
114 | ! 1+x. |
---|
115 | ! Simple version which fails when fractional_std >= 1: |
---|
116 | !od_scaling(2) = 1.0_jprb-cloud%fractional_std(jcol,jlev) |
---|
117 | ! According to Shonk and Hogan (2008), 1-FSD should correspond to |
---|
118 | ! the 16th percentile. |
---|
119 | if (.not. do_gamma) then |
---|
120 | ! If we treat the distribution as a lognormal such that the |
---|
121 | ! equivalent Normal has a mean mu and standard deviation |
---|
122 | ! sigma, then the 16th percentile of the lognormal is very |
---|
123 | ! close to exp(mu-sigma). |
---|
124 | do jcol = istartcol,iendcol |
---|
125 | do jlev = 1,nlev |
---|
126 | if (cloud_fraction(jcol,jlev) < frac_threshold) then |
---|
127 | reg_fracs(1,jlev,jcol) = 1.0_jprb |
---|
128 | reg_fracs(2:3,jlev,jcol) = 0.0_jprb |
---|
129 | od_scaling(2:3,jlev,jcol) = 1.0_jprb |
---|
130 | else |
---|
131 | reg_fracs(1,jlev,jcol) = 1.0_jprb - cloud_fraction(jcol,jlev) |
---|
132 | reg_fracs(2:3,jlev,jcol) = cloud_fraction(jcol,jlev)*0.5_jprb |
---|
133 | od_scaling(2,jlev,jcol) & |
---|
134 | & = exp(-sqrt(log(frac_std(jcol,jlev)**2+1))) & |
---|
135 | & / sqrt(frac_std(jcol,jlev)**2+1) |
---|
136 | od_scaling(3,jlev,jcol) = 2.0_jprb - od_scaling(2,jlev,jcol) |
---|
137 | end if |
---|
138 | end do |
---|
139 | end do |
---|
140 | else |
---|
141 | ! If we treat the distribution as a gamma then the 16th |
---|
142 | ! percentile is close to the following. Note that because it |
---|
143 | ! becomes vanishingly small for FSD >~ 2, we have a lower |
---|
144 | ! limit of 1/40, and for higher FSDs reduce the fractional |
---|
145 | ! cover of the denser region - see region_fractions routine |
---|
146 | ! below |
---|
147 | do jcol = istartcol,iendcol |
---|
148 | do jlev = 1,nlev |
---|
149 | if (cloud_fraction(jcol,jlev) < frac_threshold) then |
---|
150 | reg_fracs(1,jlev,jcol) = 1.0_jprb |
---|
151 | reg_fracs(2:3,jlev,jcol) = 0.0_jprb |
---|
152 | od_scaling(2:3,jlev,jcol) = 1.0_jprb |
---|
153 | else |
---|
154 | ! Fraction of the clear-sky region |
---|
155 | reg_fracs(1,jlev,jcol) = 1.0_jprb - cloud_fraction(jcol,jlev) |
---|
156 | !#define OLD_GAMMA_REGION_BEHAVIOUR 1 |
---|
157 | #ifdef OLD_GAMMA_REGION_BEHAVIOUR |
---|
158 | ! Use previous behaviour (ecRad version 1.1.5 and |
---|
159 | ! earlier): cloudy fractions are the same and there is |
---|
160 | ! no minimum optical depth scaling; this tends to lead |
---|
161 | ! to an overprediction of the reflection from scenes |
---|
162 | ! with a large fractional standard deviation of optical |
---|
163 | ! depth. |
---|
164 | ! Fraction and optical-depth scaling of the lower of the |
---|
165 | ! two cloudy regions |
---|
166 | reg_fracs(2,jlev,jcol) = cloud_fraction(jcol,jlev) * 0.5_jprb |
---|
167 | od_scaling(2,jlev,jcol) = & |
---|
168 | & exp(-frac_std(jcol,jlev)*(1.0_jprb + 0.5_jprb*frac_std(jcol,jlev) & |
---|
169 | & *(1.0_jprb+0.5_jprb*frac_std(jcol,jlev)))) |
---|
170 | |
---|
171 | #else |
---|
172 | ! Improved behaviour. |
---|
173 | ! Fraction and optical-depth scaling of the lower of the |
---|
174 | ! two cloudy regions |
---|
175 | reg_fracs(2,jlev,jcol) = cloud_fraction(jcol,jlev) & |
---|
176 | & * max(MinLowerFrac, min(MaxLowerFrac, & |
---|
177 | & LowerFracFSDIntercept + frac_std(jcol,jlev)*LowerFracFSDGradient)) |
---|
178 | od_scaling(2,jlev,jcol) = MinGammaODScaling & |
---|
179 | & + (1.0_jprb - MinGammaODScaling) & |
---|
180 | & * exp(-frac_std(jcol,jlev)*(1.0_jprb + 0.5_jprb*frac_std(jcol,jlev) & |
---|
181 | & *(1.0_jprb+0.5_jprb*frac_std(jcol,jlev)))) |
---|
182 | #endif |
---|
183 | ! Fraction of the upper of the two cloudy regions |
---|
184 | reg_fracs(3,jlev,jcol) = 1.0_jprb-reg_fracs(1,jlev,jcol)-reg_fracs(2,jlev,jcol) |
---|
185 | ! Ensure conservation of the mean optical depth |
---|
186 | od_scaling(3,jlev,jcol) = (cloud_fraction(jcol,jlev) & |
---|
187 | & -reg_fracs(2,jlev,jcol)*od_scaling(2,jlev,jcol)) / reg_fracs(3,jlev,jcol) |
---|
188 | end if |
---|
189 | end do |
---|
190 | end do |
---|
191 | end if |
---|
192 | else ! nreg > 3 |
---|
193 | write(nulerr,'(a)') '*** Error: only 2 or 3 regions may be specified' |
---|
194 | call radiation_abort() |
---|
195 | end if |
---|
196 | |
---|
197 | if (lhook) call dr_hook('radiation_region_properties:calc_region_properties',1,hook_handle) |
---|
198 | |
---|
199 | end subroutine calc_region_properties |
---|
200 | |
---|
201 | end module radiation_regions |
---|
202 | |
---|