1 | ! radiation_ice_optics_fu.F90 - Fu's scheme for ice optical properties |
---|
2 | ! |
---|
3 | ! (C) Copyright 2014- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! Modifications |
---|
16 | ! 2020-08-10 R. Hogan Bounded re to be <= 100um and g to be < 1.0 |
---|
17 | |
---|
18 | module radiation_ice_optics_fu |
---|
19 | |
---|
20 | use parkind1, only : jprb |
---|
21 | |
---|
22 | implicit none |
---|
23 | public |
---|
24 | |
---|
25 | ! The number of ice coefficients depends on the parameterization |
---|
26 | integer, parameter :: NIceOpticsCoeffsFuSW = 10 |
---|
27 | integer, parameter :: NIceOpticsCoeffsFuLW = 11 |
---|
28 | |
---|
29 | ! Limits based on the range of validity of the parameterizations |
---|
30 | real(jprb), parameter :: MaxAsymmetryFactor = 1.0_jprb - 10.0_jprb*epsilon(1.0_jprb) |
---|
31 | real(jprb), parameter :: MaxEffectiveRadius = 100.0e-6_jprb ! metres |
---|
32 | |
---|
33 | contains |
---|
34 | |
---|
35 | !--------------------------------------------------------------------- |
---|
36 | ! Compute shortwave ice-particle scattering properties using Fu |
---|
37 | ! (1996) parameterization. The asymmetry factor in band 14 goes |
---|
38 | ! larger than one for re > 100.8 um, so we cap re at 100 um. |
---|
39 | ! Asymmetry factor is capped at just less than 1 because if it is |
---|
40 | ! exactly 1 then delta-Eddington scaling leads to a zero scattering |
---|
41 | ! optical depth and then division by zero. |
---|
42 | subroutine calc_ice_optics_fu_sw(nb, coeff, ice_wp, & |
---|
43 | & re, od, scat_od, g) |
---|
44 | |
---|
45 | !use yomhook, only : lhook, dr_hook |
---|
46 | |
---|
47 | ! Number of bands |
---|
48 | integer, intent(in) :: nb |
---|
49 | ! Coefficients read from a data file |
---|
50 | real(jprb), intent(in) :: coeff(:,:) |
---|
51 | ! Ice water path (kg m-2) |
---|
52 | real(jprb), intent(in) :: ice_wp |
---|
53 | ! Effective radius (m) |
---|
54 | real(jprb), intent(in) :: re |
---|
55 | ! Total optical depth, scattering optical depth and asymmetry factor |
---|
56 | real(jprb), intent(out) :: od(nb), scat_od(nb), g(nb) |
---|
57 | |
---|
58 | ! Fu's effective diameter (microns) and its inverse |
---|
59 | real(jprb) :: de_um, inv_de_um |
---|
60 | ! Ice water path in g m-2 |
---|
61 | real (jprb) :: iwp_gm_2 |
---|
62 | |
---|
63 | !real(jprb) :: hook_handle |
---|
64 | |
---|
65 | !if (lhook) call dr_hook('radiation_ice_optics:calc_ice_optics_fu_sw',0,hook_handle) |
---|
66 | |
---|
67 | ! Convert to effective diameter using the relationship in the IFS |
---|
68 | de_um = min(re, MaxEffectiveRadius) * (1.0e6_jprb / 0.64952_jprb) |
---|
69 | inv_de_um = 1.0_jprb / de_um |
---|
70 | iwp_gm_2 = ice_wp * 1000.0_jprb |
---|
71 | |
---|
72 | od = iwp_gm_2 * (coeff(1:nb,1) + coeff(1:nb,2) * inv_de_um) |
---|
73 | scat_od = od * (1.0_jprb - (coeff(1:nb,3) + de_um*(coeff(1:nb,4) & |
---|
74 | & + de_um*(coeff(1:nb,5) + de_um*coeff(1:nb,6))))) |
---|
75 | g = min(coeff(1:nb,7) + de_um*(coeff(1:nb,8) & |
---|
76 | & + de_um*(coeff(1:nb,9) + de_um*coeff(1:nb,10))), & |
---|
77 | & MaxAsymmetryFactor) |
---|
78 | |
---|
79 | !if (lhook) call dr_hook('radiation_ice_optics:calc_ice_optics_fu_sw',1,hook_handle) |
---|
80 | |
---|
81 | end subroutine calc_ice_optics_fu_sw |
---|
82 | |
---|
83 | |
---|
84 | !--------------------------------------------------------------------- |
---|
85 | ! Compute longwave ice-particle scattering properties using Fu et |
---|
86 | ! al. (1998) parameterization |
---|
87 | subroutine calc_ice_optics_fu_lw(nb, coeff, ice_wp, & |
---|
88 | & re, od, scat_od, g) |
---|
89 | |
---|
90 | !use yomhook, only : lhook, dr_hook |
---|
91 | |
---|
92 | ! Number of bands |
---|
93 | integer, intent(in) :: nb |
---|
94 | ! Coefficients read from a data file |
---|
95 | real(jprb), intent(in) :: coeff(:,:) |
---|
96 | ! Ice water path (kg m-2) |
---|
97 | real(jprb), intent(in) :: ice_wp |
---|
98 | ! Effective radius (m) |
---|
99 | real(jprb), intent(in) :: re |
---|
100 | ! Total optical depth, scattering optical depth and asymmetry factor |
---|
101 | real(jprb), intent(out) :: od(nb), scat_od(nb), g(nb) |
---|
102 | |
---|
103 | ! Fu's effective diameter (microns) and its inverse |
---|
104 | real(jprb) :: de_um, inv_de_um |
---|
105 | ! Ice water path in g m-2 |
---|
106 | real (jprb) :: iwp_gm_2 |
---|
107 | |
---|
108 | !real(jprb) :: hook_handle |
---|
109 | |
---|
110 | !if (lhook) call dr_hook('radiation_ice_optics:calc_ice_optics_fu_lw',0,hook_handle) |
---|
111 | |
---|
112 | ! Convert to effective diameter using the relationship in the IFS |
---|
113 | de_um = min(re, MaxEffectiveRadius) * (1.0e6_jprb / 0.64952_jprb) |
---|
114 | |
---|
115 | inv_de_um = 1.0_jprb / de_um |
---|
116 | iwp_gm_2 = ice_wp * 1000.0_jprb |
---|
117 | |
---|
118 | od = iwp_gm_2 * (coeff(1:nb,1) + inv_de_um*(coeff(1:nb,2) & |
---|
119 | & + inv_de_um*coeff(1:nb,3))) |
---|
120 | scat_od = od - iwp_gm_2*inv_de_um*(coeff(1:nb,4) + de_um*(coeff(1:nb,5) & |
---|
121 | & + de_um*(coeff(1:nb,6) + de_um*coeff(1:nb,7)))) |
---|
122 | g = min(coeff(1:nb,8) + de_um*(coeff(1:nb,9) & |
---|
123 | & + de_um*(coeff(1:nb,10) + de_um*coeff(1:nb,11))), & |
---|
124 | & MaxAsymmetryFactor) |
---|
125 | |
---|
126 | !if (lhook) call dr_hook('radiation_ice_optics:calc_ice_optics_fu_lw',1,hook_handle) |
---|
127 | |
---|
128 | end subroutine calc_ice_optics_fu_lw |
---|
129 | |
---|
130 | end module radiation_ice_optics_fu |
---|