1 | ! radiation_ecckd.F90 - ecCKD generalized gas optics model |
---|
2 | ! |
---|
3 | ! (C) Copyright 2020- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! License: see the COPYING file for details |
---|
15 | ! |
---|
16 | |
---|
17 | module radiation_ecckd |
---|
18 | |
---|
19 | use parkind1, only : jprb |
---|
20 | use radiation_gas_constants |
---|
21 | use radiation_ecckd_gas |
---|
22 | use radiation_spectral_definition, only : spectral_definition_type |
---|
23 | |
---|
24 | implicit none |
---|
25 | |
---|
26 | public |
---|
27 | |
---|
28 | !--------------------------------------------------------------------- |
---|
29 | ! This derived type contains all the data needed to describe a |
---|
30 | ! correlated k-distribution gas optics model created using the ecCKD |
---|
31 | ! tool |
---|
32 | type ckd_model_type |
---|
33 | |
---|
34 | ! Gas information |
---|
35 | |
---|
36 | ! Number of gases |
---|
37 | integer :: ngas = 0 |
---|
38 | ! Array of individual-gas data objects |
---|
39 | type(ckd_gas_type), allocatable :: single_gas(:) |
---|
40 | ! Mapping from the "gas codes" in the radiation_gas_constants |
---|
41 | ! module to an index to the single_gas array, where zero means gas |
---|
42 | ! not present (or part of a composite gas) |
---|
43 | integer :: i_gas_mapping(0:NMaxGases) |
---|
44 | |
---|
45 | ! Coordinates of main look-up table for absorption coeffts |
---|
46 | |
---|
47 | ! Number of pressure and temperature points |
---|
48 | integer :: npress = 0 |
---|
49 | integer :: ntemp = 0 |
---|
50 | ! Natural logarithm of first (lowest) pressure (Pa) and increment |
---|
51 | real(jprb) :: log_pressure1, d_log_pressure |
---|
52 | ! First temperature profile (K), dimensioned (npress) |
---|
53 | real(jprb), allocatable :: temperature1(:) |
---|
54 | ! Temperature increment (K) |
---|
55 | real(jprb) :: d_temperature |
---|
56 | |
---|
57 | ! Look-up table for Planck function |
---|
58 | |
---|
59 | ! Number of entries |
---|
60 | integer :: nplanck = 0 |
---|
61 | ! Temperature of first element of look-up table and increment (K) |
---|
62 | real(jprb), allocatable :: temperature1_planck |
---|
63 | real(jprb), allocatable :: d_temperature_planck |
---|
64 | ! Planck function (black body flux into a horizontal plane) in W |
---|
65 | ! m-2, dimensioned (ng,nplanck) |
---|
66 | real(jprb), allocatable :: planck_function(:,:) |
---|
67 | |
---|
68 | ! Normalized solar irradiance in each g point dimensioned (ng) |
---|
69 | real(jprb), allocatable :: norm_solar_irradiance(:) |
---|
70 | |
---|
71 | ! Rayleigh molar scattering coefficient in m2 mol-1 in each g |
---|
72 | ! point |
---|
73 | real(jprb), allocatable :: rayleigh_molar_scat(:) |
---|
74 | |
---|
75 | ! ! Spectral mapping of g points |
---|
76 | |
---|
77 | ! ! Number of wavenumber intervals |
---|
78 | ! integer :: nwav = 0 |
---|
79 | |
---|
80 | ! Number of k terms / g points |
---|
81 | integer :: ng = 0 |
---|
82 | |
---|
83 | ! Spectral definition describing bands and g points |
---|
84 | type(spectral_definition_type) :: spectral_def |
---|
85 | |
---|
86 | ! Shortwave: true, longwave: false |
---|
87 | logical :: is_sw |
---|
88 | |
---|
89 | contains |
---|
90 | |
---|
91 | procedure :: read => read_ckd_model |
---|
92 | procedure :: calc_optical_depth => calc_optical_depth_ckd_model |
---|
93 | procedure :: print => print_ckd_model |
---|
94 | procedure :: calc_planck_function |
---|
95 | procedure :: calc_incoming_sw |
---|
96 | ! procedure :: deallocate => deallocate_ckd_model |
---|
97 | |
---|
98 | end type ckd_model_type |
---|
99 | |
---|
100 | |
---|
101 | contains |
---|
102 | |
---|
103 | !--------------------------------------------------------------------- |
---|
104 | ! Read a complete ecCKD gas optics model from a NetCDF file |
---|
105 | ! "filename" |
---|
106 | subroutine read_ckd_model(this, filename, iverbose) |
---|
107 | |
---|
108 | use easy_netcdf, only : netcdf_file |
---|
109 | !use radiation_io, only : nulerr, radiation_abort |
---|
110 | use yomhook, only : lhook, dr_hook |
---|
111 | |
---|
112 | class(ckd_model_type), intent(inout) :: this |
---|
113 | character(len=*), intent(in) :: filename |
---|
114 | integer, optional, intent(in) :: iverbose |
---|
115 | |
---|
116 | type(netcdf_file) :: file |
---|
117 | |
---|
118 | real(jprb), allocatable :: pressure_lut(:) |
---|
119 | real(jprb), allocatable :: temperature_full(:,:) |
---|
120 | real(jprb), allocatable :: temperature_planck(:) |
---|
121 | |
---|
122 | character(len=512) :: constituent_id |
---|
123 | |
---|
124 | integer :: iverbose_local |
---|
125 | |
---|
126 | ! Loop counters |
---|
127 | integer :: jgas, jjgas |
---|
128 | |
---|
129 | integer :: istart, inext, nchar, i_gas_code |
---|
130 | |
---|
131 | real(jprb) :: hook_handle |
---|
132 | |
---|
133 | if (lhook) call dr_hook('radiation_ecckd:read_ckd_model',0,hook_handle) |
---|
134 | |
---|
135 | if (present(iverbose)) then |
---|
136 | iverbose_local = iverbose |
---|
137 | else |
---|
138 | iverbose_local = 3 |
---|
139 | end if |
---|
140 | |
---|
141 | call file%open(trim(filename), iverbose=iverbose_local) |
---|
142 | |
---|
143 | ! Read temperature and pressure coordinate variables |
---|
144 | call file%get('pressure', pressure_lut) |
---|
145 | this%log_pressure1 = log(pressure_lut(1)) |
---|
146 | this%npress = size(pressure_lut) |
---|
147 | this%d_log_pressure = log(pressure_lut(2)) - this%log_pressure1 |
---|
148 | call file%get('temperature', temperature_full) |
---|
149 | allocate(this%temperature1(this%npress)); |
---|
150 | this%temperature1 = temperature_full(:,1) |
---|
151 | this%d_temperature = temperature_full(1,2)-temperature_full(1,1) |
---|
152 | this%ntemp = size(temperature_full,2) |
---|
153 | deallocate(temperature_full) |
---|
154 | |
---|
155 | ! Read Planck function, or solar irradiance and Rayleigh |
---|
156 | ! scattering coefficient |
---|
157 | if (file%exists('solar_irradiance')) then |
---|
158 | this%is_sw = .true. |
---|
159 | call file%get('solar_irradiance', this%norm_solar_irradiance) |
---|
160 | this%norm_solar_irradiance = this%norm_solar_irradiance & |
---|
161 | & / sum(this%norm_solar_irradiance) |
---|
162 | call file%get('rayleigh_molar_scattering_coeff', & |
---|
163 | & this%rayleigh_molar_scat) |
---|
164 | else |
---|
165 | this%is_sw = .false. |
---|
166 | call file%get('temperature_planck', temperature_planck) |
---|
167 | this%nplanck = size(temperature_planck) |
---|
168 | this%temperature1_planck = temperature_planck(1) |
---|
169 | this%d_temperature_planck = temperature_planck(2) - temperature_planck(1) |
---|
170 | deallocate(temperature_planck) |
---|
171 | call file%get('planck_function', this%planck_function) |
---|
172 | end if |
---|
173 | |
---|
174 | ! Read the spectral definition information into a separate |
---|
175 | ! derived type |
---|
176 | call this%spectral_def%read(file); |
---|
177 | this%ng = this%spectral_def%ng |
---|
178 | |
---|
179 | ! Read gases |
---|
180 | call file%get('n_gases', this%ngas) |
---|
181 | allocate(this%single_gas(this%ngas)) |
---|
182 | call file%get_global_attribute('constituent_id', constituent_id) |
---|
183 | nchar = len(trim(constituent_id)) |
---|
184 | istart = 1 |
---|
185 | this%i_gas_mapping = 0 |
---|
186 | do jgas = 1, this%ngas |
---|
187 | if (jgas < this%ngas) then |
---|
188 | inext = istart + scan(constituent_id(istart:nchar), ' ') |
---|
189 | else |
---|
190 | inext = nchar+2 |
---|
191 | end if |
---|
192 | ! Find gas code |
---|
193 | i_gas_code = 0 |
---|
194 | do jjgas = 1, NMaxGases |
---|
195 | if (constituent_id(istart:inext-2) == trim(GasLowerCaseName(jjgas))) then |
---|
196 | i_gas_code = jjgas |
---|
197 | exit |
---|
198 | end if |
---|
199 | end do |
---|
200 | ! if (i_gas_code == 0) then |
---|
201 | ! write(nulerr,'(a,a,a)') '*** Error: Gas "', constituent_id(istart:inext-2), & |
---|
202 | ! & '" not understood' |
---|
203 | ! call radiation_abort('Radiation configuration error') |
---|
204 | ! end if |
---|
205 | this%i_gas_mapping(i_gas_code) = jgas; |
---|
206 | call this%single_gas(jgas)%read(file, constituent_id(istart:inext-2), i_gas_code) |
---|
207 | istart = inext |
---|
208 | end do |
---|
209 | |
---|
210 | if (lhook) call dr_hook('radiation_ecckd:read_ckd_model',1,hook_handle) |
---|
211 | |
---|
212 | end subroutine read_ckd_model |
---|
213 | |
---|
214 | !--------------------------------------------------------------------- |
---|
215 | ! Print a description of the correlated k-distribution model to the |
---|
216 | ! "nulout" unit |
---|
217 | subroutine print_ckd_model(this) |
---|
218 | |
---|
219 | use radiation_io, only : nulout |
---|
220 | use radiation_gas_constants |
---|
221 | |
---|
222 | class(ckd_model_type), intent(in) :: this |
---|
223 | |
---|
224 | integer :: jgas |
---|
225 | |
---|
226 | if (this%is_sw) then |
---|
227 | write(nulout,'(a)',advance='no') 'ecCKD shortwave gas optics model: ' |
---|
228 | else |
---|
229 | write(nulout,'(a)',advance='no') 'ecCKD longwave gas optics model: ' |
---|
230 | end if |
---|
231 | |
---|
232 | write(nulout,'(i0,a,i0,a,i0,a,i0,a)') & |
---|
233 | & nint(this%spectral_def%wavenumber1(1)), '-', & |
---|
234 | & nint(this%spectral_def%wavenumber2(size(this%spectral_def%wavenumber2))), & |
---|
235 | & ' cm-1, ', this%ng, ' g-points in ', this%spectral_def%nband, ' bands' |
---|
236 | write(nulout,'(a,i0,a,i0,a,i0,a)') ' Look-up table sizes: ', this%npress, ' pressures, ', & |
---|
237 | & this%ntemp, ' temperatures, ', this%nplanck, ' planck-function entries' |
---|
238 | write(nulout, '(a)') ' Gases:' |
---|
239 | do jgas = 1,this%ngas |
---|
240 | if (this%single_gas(jgas)%i_gas_code > 0) then |
---|
241 | write(nulout, '(a,a,a)', advance='no') ' ', & |
---|
242 | & trim(GasName(this%single_gas(jgas)%i_gas_code)), ': ' |
---|
243 | else |
---|
244 | write(nulout, '(a)', advance='no') ' Composite of well-mixed background gases: ' |
---|
245 | end if |
---|
246 | select case (this%single_gas(jgas)%i_conc_dependence) |
---|
247 | case (IConcDependenceNone) |
---|
248 | write(nulout, '(a)') 'no concentration dependence' |
---|
249 | case (IConcDependenceLinear) |
---|
250 | write(nulout, '(a)') 'linear concentration dependence' |
---|
251 | case (IConcDependenceRelativeLinear) |
---|
252 | write(nulout, '(a,e14.6)') 'linear concentration dependence relative to a mole fraction of ', & |
---|
253 | & this%single_gas(jgas)%reference_mole_frac |
---|
254 | case (IConcDependenceLUT) |
---|
255 | write(nulout, '(a,i0,a,e14.6,a,e13.6)') 'look-up table with ', this%single_gas(jgas)%n_mole_frac, & |
---|
256 | & ' log-spaced mole fractions in range ', exp(this%single_gas(jgas)%log_mole_frac1), & |
---|
257 | & ' to ', exp(this%single_gas(jgas)%log_mole_frac1 & |
---|
258 | & + this%single_gas(jgas)%n_mole_frac*this%single_gas(jgas)%d_log_mole_frac) |
---|
259 | end select |
---|
260 | end do |
---|
261 | |
---|
262 | end subroutine print_ckd_model |
---|
263 | |
---|
264 | |
---|
265 | !--------------------------------------------------------------------- |
---|
266 | ! Compute layerwise optical depth for each g point for ncol columns |
---|
267 | ! at nlev layers |
---|
268 | subroutine calc_optical_depth_ckd_model(this, ncol, nlev, istartcol, iendcol, nmaxgas, & |
---|
269 | & pressure_hl, temperature_fl, mole_fraction_fl, & |
---|
270 | & optical_depth_fl, rayleigh_od_fl) |
---|
271 | |
---|
272 | use yomhook, only : lhook, dr_hook |
---|
273 | use radiation_constants, only : AccelDueToGravity |
---|
274 | |
---|
275 | ! Input variables |
---|
276 | |
---|
277 | class(ckd_model_type), intent(in), target :: this |
---|
278 | ! Number of columns, levels and input gases |
---|
279 | integer, intent(in) :: ncol, nlev, nmaxgas, istartcol, iendcol |
---|
280 | ! Pressure at half levels (Pa), dimensioned (ncol,nlev+1) |
---|
281 | real(jprb), intent(in) :: pressure_hl(ncol,nlev+1) |
---|
282 | ! Temperature at full levels (K), dimensioned (ncol,nlev) |
---|
283 | real(jprb), intent(in) :: temperature_fl(istartcol:iendcol,nlev) |
---|
284 | ! Gas mole fractions at full levels (mol mol-1), dimensioned (ncol,nlev,nmaxgas) |
---|
285 | real(jprb), intent(in) :: mole_fraction_fl(ncol,nlev,nmaxgas) |
---|
286 | |
---|
287 | ! Output variables |
---|
288 | |
---|
289 | ! Layer absorption optical depth for each g point |
---|
290 | real(jprb), intent(out) :: optical_depth_fl(this%ng,nlev,istartcol:iendcol) |
---|
291 | ! In the shortwave only, the Rayleigh scattering optical depth |
---|
292 | real(jprb), optional, intent(out) :: rayleigh_od_fl(this%ng,nlev,istartcol:iendcol) |
---|
293 | |
---|
294 | ! Local variables |
---|
295 | |
---|
296 | real(jprb), pointer :: molar_abs(:,:,:), molar_abs_conc(:,:,:,:) |
---|
297 | |
---|
298 | ! Natural logarithm of pressure at full levels |
---|
299 | real(jprb) :: log_pressure_fl(nlev) |
---|
300 | |
---|
301 | ! Optical depth of single gas at one point in space versus |
---|
302 | ! spectral interval |
---|
303 | !real(jprb) :: od_single_gas(this%ng) |
---|
304 | |
---|
305 | real(jprb) :: multiplier(nlev), simple_multiplier(nlev), global_multiplier, temperature1 |
---|
306 | |
---|
307 | ! Indices and weights in temperature, pressure and concentration interpolation |
---|
308 | real(jprb) :: pindex1, tindex1, cindex1 |
---|
309 | real(jprb) :: pw1(nlev), pw2(nlev), tw1(nlev), tw2(nlev), cw1(nlev), cw2(nlev) |
---|
310 | integer :: ip1(nlev), it1(nlev), ic1(nlev) |
---|
311 | |
---|
312 | ! Natural logarithm of mole fraction at one point |
---|
313 | real(jprb) :: log_conc |
---|
314 | |
---|
315 | ! Minimum mole fraction in look-up-table |
---|
316 | real(jprb) :: mole_frac1 |
---|
317 | |
---|
318 | integer :: jcol, jlev, jgas, igascode |
---|
319 | |
---|
320 | real(jprb) :: hook_handle |
---|
321 | |
---|
322 | if (lhook) call dr_hook('radiation_ecckd:calc_optical_depth',0,hook_handle) |
---|
323 | |
---|
324 | global_multiplier = 1.0_jprb / (AccelDueToGravity * 0.001_jprb * AirMolarMass) |
---|
325 | |
---|
326 | do jcol = istartcol,iendcol |
---|
327 | |
---|
328 | log_pressure_fl = log(0.5_jprb * (pressure_hl(jcol,1:nlev)+pressure_hl(jcol,2:nlev+1))) |
---|
329 | |
---|
330 | do jlev = 1,nlev |
---|
331 | ! Find interpolation points in pressure |
---|
332 | pindex1 = (log_pressure_fl(jlev)-this%log_pressure1) & |
---|
333 | & / this%d_log_pressure |
---|
334 | pindex1 = 1.0_jprb + max(0.0_jprb, min(pindex1, this%npress-1.0001_jprb)) |
---|
335 | ip1(jlev) = int(pindex1) |
---|
336 | pw2(jlev) = pindex1 - ip1(jlev) |
---|
337 | pw1(jlev) = 1.0_jprb - pw2(jlev) |
---|
338 | |
---|
339 | ! Find interpolation points in temperature |
---|
340 | temperature1 = pw1(jlev)*this%temperature1(ip1(jlev)) & |
---|
341 | & + pw2(jlev)*this%temperature1(ip1(jlev)+1) |
---|
342 | tindex1 = (temperature_fl(jcol,jlev) - temperature1) & |
---|
343 | & / this%d_temperature |
---|
344 | tindex1 = 1.0_jprb + max(0.0_jprb, min(tindex1, this%ntemp-1.0001_jprb)) |
---|
345 | it1(jlev) = int(tindex1) |
---|
346 | tw2(jlev) = tindex1 - it1(jlev) |
---|
347 | tw1(jlev) = 1.0_jprb - tw2(jlev) |
---|
348 | |
---|
349 | ! Concentration multiplier |
---|
350 | simple_multiplier(jlev) = global_multiplier & |
---|
351 | & * (pressure_hl(jcol,jlev+1) - pressure_hl(jcol,jlev)) |
---|
352 | end do |
---|
353 | |
---|
354 | optical_depth_fl(:,:,jcol) = 0.0_jprb |
---|
355 | |
---|
356 | do jgas = 1,this%ngas |
---|
357 | |
---|
358 | associate (single_gas => this%single_gas(jgas)) |
---|
359 | igascode = this%single_gas(jgas)%i_gas_code |
---|
360 | |
---|
361 | select case (single_gas%i_conc_dependence) |
---|
362 | |
---|
363 | case (IConcDependenceLinear) |
---|
364 | molar_abs => this%single_gas(jgas)%molar_abs |
---|
365 | multiplier = simple_multiplier * mole_fraction_fl(jcol,:,igascode) |
---|
366 | |
---|
367 | do jlev = 1,nlev |
---|
368 | optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & |
---|
369 | & + (multiplier(jlev)*tw1(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)) & |
---|
370 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev))) & |
---|
371 | & + (multiplier(jlev)*tw2(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)+1) & |
---|
372 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev)+1)) |
---|
373 | end do |
---|
374 | |
---|
375 | case (IConcDependenceRelativeLinear) |
---|
376 | molar_abs => this%single_gas(jgas)%molar_abs |
---|
377 | multiplier = simple_multiplier * (mole_fraction_fl(jcol,:,igascode) & |
---|
378 | & - single_gas%reference_mole_frac) |
---|
379 | do jlev = 1,nlev |
---|
380 | optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & |
---|
381 | & + (multiplier(jlev)*tw1(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)) & |
---|
382 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev))) & |
---|
383 | & + (multiplier(jlev)*tw2(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)+1) & |
---|
384 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev)+1)) |
---|
385 | end do |
---|
386 | |
---|
387 | case (IConcDependenceNone) |
---|
388 | ! Composite gases |
---|
389 | molar_abs => this%single_gas(jgas)%molar_abs |
---|
390 | do jlev = 1,nlev |
---|
391 | optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & |
---|
392 | & + (simple_multiplier(jlev)*tw1(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)) & |
---|
393 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev))) & |
---|
394 | & + (simple_multiplier(jlev)*tw2(jlev)) * (pw1(jlev) * molar_abs(:,ip1(jlev),it1(jlev)+1) & |
---|
395 | & +pw2(jlev) * molar_abs(:,ip1(jlev)+1,it1(jlev)+1)) |
---|
396 | end do |
---|
397 | |
---|
398 | case (IConcDependenceLUT) |
---|
399 | ! Logarithmic interpolation in concentration space |
---|
400 | molar_abs_conc => this%single_gas(jgas)%molar_abs_conc |
---|
401 | mole_frac1 = exp(single_gas%log_mole_frac1) |
---|
402 | do jlev = 1,nlev |
---|
403 | ! Take care of mole_fraction == 0 |
---|
404 | log_conc = log(max(mole_fraction_fl(jcol,jlev,igascode), mole_frac1)) |
---|
405 | cindex1 = (log_conc - single_gas%log_mole_frac1) / single_gas%d_log_mole_frac |
---|
406 | cindex1 = 1.0_jprb + max(0.0_jprb, min(cindex1, single_gas%n_mole_frac-1.0001_jprb)) |
---|
407 | ic1(jlev) = int(cindex1) |
---|
408 | cw2(jlev) = cindex1 - ic1(jlev) |
---|
409 | cw1(jlev) = 1.0_jprb - cw2(jlev) |
---|
410 | end do |
---|
411 | ! od_single_gas = cw1 * (tw1 * (pw1 * molar_abs_conc(:,ip1,it1,ic1) & |
---|
412 | ! & +pw2 * molar_abs_conc(:,ip1+1,it1,ic1)) & |
---|
413 | ! & +tw2 * (pw1 * molar_abs_conc(:,ip1,it1+1,ic1) & |
---|
414 | ! & +pw2 * molar_abs_conc(:,ip1+1,it1+1,ic1))) & |
---|
415 | ! & +cw2 * (tw1 * (pw1 * molar_abs_conc(:,ip1,it1,ic1+1) & |
---|
416 | ! & +pw2 * molar_abs_conc(:,ip1+1,it1,ic1+1)) & |
---|
417 | ! & +tw2 * (pw1 * molar_abs_conc(:,ip1,it1+1,ic1+1) & |
---|
418 | ! & +pw2 * molar_abs_conc(:,ip1+1,it1+1,ic1+1))) |
---|
419 | do jlev = 1,nlev |
---|
420 | optical_depth_fl(:,jlev,jcol) = optical_depth_fl(:,jlev,jcol) & |
---|
421 | & + (simple_multiplier(jlev) * mole_fraction_fl(jcol,jlev,igascode)) * ( & |
---|
422 | & (cw1(jlev) * tw1(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev),ic1(jlev)) & |
---|
423 | & +(cw1(jlev) * tw1(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev),ic1(jlev)) & |
---|
424 | & +(cw1(jlev) * tw2(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev)+1,ic1(jlev)) & |
---|
425 | & +(cw1(jlev) * tw2(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev)+1,ic1(jlev)) & |
---|
426 | & +(cw2(jlev) * tw1(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev),ic1(jlev)+1) & |
---|
427 | & +(cw2(jlev) * tw1(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev),ic1(jlev)+1) & |
---|
428 | & +(cw2(jlev) * tw2(jlev) * pw1(jlev)) * molar_abs_conc(:,ip1(jlev),it1(jlev)+1,ic1(jlev)+1) & |
---|
429 | & +(cw2(jlev) * tw2(jlev) * pw2(jlev)) * molar_abs_conc(:,ip1(jlev)+1,it1(jlev)+1,ic1(jlev)+1)) |
---|
430 | end do |
---|
431 | end select |
---|
432 | |
---|
433 | end associate |
---|
434 | |
---|
435 | end do |
---|
436 | |
---|
437 | ! Ensure the optical depth is not negative |
---|
438 | optical_depth_fl(:,:,jcol) = max(0.0_jprb, optical_depth_fl(:,:,jcol)) |
---|
439 | |
---|
440 | ! Rayleigh scattering |
---|
441 | if (this%is_sw .and. present(rayleigh_od_fl)) then |
---|
442 | do jlev = 1,nlev |
---|
443 | rayleigh_od_fl(:,jlev,jcol) = global_multiplier & |
---|
444 | & * (pressure_hl(jcol,jlev+1) - pressure_hl(jcol,jlev)) * this%rayleigh_molar_scat |
---|
445 | end do |
---|
446 | end if |
---|
447 | |
---|
448 | end do |
---|
449 | |
---|
450 | if (lhook) call dr_hook('radiation_ecckd:calc_optical_depth',1,hook_handle) |
---|
451 | |
---|
452 | end subroutine calc_optical_depth_ckd_model |
---|
453 | |
---|
454 | !--------------------------------------------------------------------- |
---|
455 | ! Calculate the Planck function integrated across each of the g |
---|
456 | ! points of this correlated k-distribution model, for a given |
---|
457 | ! temperature, where Planck function is defined as the flux emitted |
---|
458 | ! by a black body (rather than radiance) |
---|
459 | subroutine calc_planck_function(this, nt, temperature, planck) |
---|
460 | |
---|
461 | class(ckd_model_type), intent(in) :: this |
---|
462 | integer, intent(in) :: nt |
---|
463 | real(jprb), intent(in) :: temperature(:) ! K |
---|
464 | real(jprb), intent(out) :: planck(this%ng,nt) ! W m-2 |
---|
465 | |
---|
466 | real(jprb) :: tindex1, tw1, tw2 |
---|
467 | integer :: it1, jt |
---|
468 | |
---|
469 | do jt = 1,nt |
---|
470 | tindex1 = (temperature(jt) - this%temperature1_planck) & |
---|
471 | & * (1.0_jprb / this%d_temperature_planck) |
---|
472 | if (tindex1 >= 0) then |
---|
473 | ! Normal interpolation, and extrapolation for high temperatures |
---|
474 | tindex1 = 1.0_jprb + tindex1 |
---|
475 | it1 = min(int(tindex1), this%nplanck-1) |
---|
476 | tw2 = tindex1 - it1 |
---|
477 | tw1 = 1.0_jprb - tw2 |
---|
478 | planck(:,jt) = tw1 * this%planck_function(:,it1) & |
---|
479 | & + tw2 * this%planck_function(:,it1+1) |
---|
480 | else |
---|
481 | ! Interpolate linearly to zero |
---|
482 | planck(:,jt) = this%planck_function(:,1) & |
---|
483 | & * (temperature(jt)/this%temperature1_planck) |
---|
484 | end if |
---|
485 | end do |
---|
486 | |
---|
487 | end subroutine calc_planck_function |
---|
488 | |
---|
489 | |
---|
490 | !--------------------------------------------------------------------- |
---|
491 | ! Return the spectral solar irradiance integrated over each g point |
---|
492 | ! of a solar correlated k-distribution model, given the |
---|
493 | ! total_solar_irradiance |
---|
494 | subroutine calc_incoming_sw(this, total_solar_irradiance, & |
---|
495 | & spectral_solar_irradiance) |
---|
496 | |
---|
497 | class(ckd_model_type), intent(in) :: this |
---|
498 | real(jprb), intent(in) :: total_solar_irradiance ! W m-2 |
---|
499 | real(jprb), intent(inout) :: spectral_solar_irradiance(:,:) ! W m-2 |
---|
500 | |
---|
501 | spectral_solar_irradiance & |
---|
502 | & = spread(total_solar_irradiance * this%norm_solar_irradiance, & |
---|
503 | & 2, size(spectral_solar_irradiance,2)) |
---|
504 | |
---|
505 | end subroutine calc_incoming_sw |
---|
506 | |
---|
507 | end module radiation_ecckd |
---|