1 | ! radiation_config.F90 - Derived type to configure the radiation scheme |
---|
2 | ! |
---|
3 | ! (C) Copyright 2014- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! Modifications |
---|
16 | ! 2017-07-22 R. Hogan Added Yi et al. ice optics model |
---|
17 | ! 2017-10-23 R. Hogan Renamed single-character variables |
---|
18 | ! 2018-03-15 R. Hogan Added logicals controlling surface spectral treatment |
---|
19 | ! 2018-08-29 R. Hogan Added monochromatic single-scattering albedo / asymmetry factor |
---|
20 | ! 2018-09-03 R. Hogan Added min_cloud_effective_size |
---|
21 | ! 2018-09-04 R. Hogan Added encroachment_scaling |
---|
22 | ! 2018-09-13 R. Hogan Added IEncroachmentFractal |
---|
23 | ! 2019-01-02 R. Hogan Added Cloudless solvers |
---|
24 | ! 2019-01-14 R. Hogan Added out_of_bounds_[1,2,3]d for checker routines |
---|
25 | ! 2019-01-18 R. Hogan Added albedo weighting |
---|
26 | ! 2019-02-03 R. Hogan Added ability to fix out-of-physical-bounds inputs |
---|
27 | ! 2019-02-10 R. Hogan Renamed "encroachment" to "entrapment" |
---|
28 | ! 2020-05-18 R. Hogan Moved out_of_bounds_* to radiation_check.F90 |
---|
29 | ! 2021-07-04 R. Hogan Numerous changes for ecCKD and general cloud/aerosol optics |
---|
30 | ! |
---|
31 | ! Note: The aim is for ecRad in the IFS to be as similar as possible |
---|
32 | ! to the offline version, so if you make any changes to this or any |
---|
33 | ! files in this directory, please inform Robin Hogan. |
---|
34 | ! |
---|
35 | |
---|
36 | module radiation_config |
---|
37 | |
---|
38 | use parkind1, only : jprb |
---|
39 | |
---|
40 | use radiation_cloud_optics_data, only : cloud_optics_type |
---|
41 | use radiation_general_cloud_optics_data, only : general_cloud_optics_type |
---|
42 | use radiation_aerosol_optics_data, only : aerosol_optics_type |
---|
43 | use radiation_pdf_sampler, only : pdf_sampler_type |
---|
44 | use radiation_cloud_cover, only : OverlapName, & |
---|
45 | & IOverlapMaximumRandom, IOverlapExponentialRandom, IOverlapExponential |
---|
46 | use radiation_ecckd, only : ckd_model_type |
---|
47 | |
---|
48 | implicit none |
---|
49 | public |
---|
50 | |
---|
51 | ! Configuration codes: use C-style enumerators to avoid having to |
---|
52 | ! remember the numbers |
---|
53 | |
---|
54 | ! Solvers: can be specified for longwave and shortwave |
---|
55 | ! independently, except for "Homogeneous", which must be the same |
---|
56 | ! for both |
---|
57 | enum, bind(c) |
---|
58 | enumerator ISolverCloudless, ISolverHomogeneous, ISolverMcICA, & |
---|
59 | & ISolverSpartacus, ISolverTripleclouds |
---|
60 | end enum |
---|
61 | character(len=*), parameter :: SolverName(0:4) = (/ 'Cloudless ', & |
---|
62 | & 'Homogeneous ', & |
---|
63 | & 'McICA ', & |
---|
64 | & 'SPARTACUS ', & |
---|
65 | & 'Tripleclouds' /) |
---|
66 | |
---|
67 | ! SPARTACUS shortwave solver can treat the reflection of radiation |
---|
68 | ! back up into different regions in various ways |
---|
69 | enum, bind(c) |
---|
70 | enumerator & |
---|
71 | & IEntrapmentZero, & ! No entrapment, as Tripleclouds |
---|
72 | & IEntrapmentEdgeOnly, & ! Only radiation passed through cloud edge is horizontally homogenized |
---|
73 | & IEntrapmentExplicit, & ! Estimate horiz migration dist, account for fractal clouds |
---|
74 | & IEntrapmentExplicitNonFractal, & ! As above but ignore fractal nature of clouds |
---|
75 | & IEntrapmentMaximum ! Complete horizontal homogenization within regions (old SPARTACUS assumption) |
---|
76 | end enum |
---|
77 | |
---|
78 | ! Names available in the radiation namelist for variable |
---|
79 | ! sw_entrapment_name |
---|
80 | character(len=*), parameter :: EntrapmentName(0:4) = [ 'Zero ', & |
---|
81 | & 'Edge-only ', & |
---|
82 | & 'Explicit ', & |
---|
83 | & 'Non-fractal', & |
---|
84 | & 'Maximum ' ] |
---|
85 | ! For backwards compatibility, the radiation namelist also supports |
---|
86 | ! the equivalent variable sw_encroachment_name with the following |
---|
87 | ! names |
---|
88 | character(len=*), parameter :: EncroachmentName(0:4) = [ 'Zero ', & |
---|
89 | & 'Minimum ', & |
---|
90 | & 'Fractal ', & |
---|
91 | & 'Computed', & |
---|
92 | & 'Maximum ' ] |
---|
93 | |
---|
94 | ! Two-stream models |
---|
95 | ! This is not configurable at run-time |
---|
96 | |
---|
97 | ! Gas models |
---|
98 | enum, bind(c) |
---|
99 | enumerator IGasModelMonochromatic, IGasModelIFSRRTMG, IGasModelECCKD |
---|
100 | end enum |
---|
101 | character(len=*), parameter :: GasModelName(0:2) = (/ 'Monochromatic', & |
---|
102 | & 'RRTMG-IFS ', & |
---|
103 | & 'ECCKD '/) |
---|
104 | |
---|
105 | ! Hydrometeor scattering models |
---|
106 | enum, bind(c) |
---|
107 | enumerator ILiquidModelMonochromatic, & |
---|
108 | & ILiquidModelSOCRATES, ILiquidModelSlingo |
---|
109 | end enum |
---|
110 | character(len=*), parameter :: LiquidModelName(0:2) = (/ 'Monochromatic', & |
---|
111 | & 'SOCRATES ', & |
---|
112 | & 'Slingo ' /) |
---|
113 | |
---|
114 | enum, bind(c) |
---|
115 | enumerator IIceModelMonochromatic, IIceModelFu, & |
---|
116 | & IIceModelBaran, IIceModelBaran2016, IIceModelBaran2017, & |
---|
117 | & IIceModelYi |
---|
118 | end enum |
---|
119 | character(len=*), parameter :: IceModelName(0:5) = (/ 'Monochromatic', & |
---|
120 | & 'Fu-IFS ', & |
---|
121 | & 'Baran ', & |
---|
122 | & 'Baran2016 ', & |
---|
123 | & 'Baran2017 ', & |
---|
124 | & 'Yi ' /) |
---|
125 | |
---|
126 | ! Cloud PDF distribution shapes |
---|
127 | enum, bind(c) |
---|
128 | enumerator IPdfShapeLognormal, IPdfShapeGamma |
---|
129 | end enum |
---|
130 | character(len=*), parameter :: PdfShapeName(0:1) = (/ 'Lognormal', & |
---|
131 | & 'Gamma ' /) |
---|
132 | |
---|
133 | ! Maximum number of different aerosol types that can be provided |
---|
134 | integer, parameter :: NMaxAerosolTypes = 256 |
---|
135 | |
---|
136 | ! Maximum number of different cloud types that can be provided |
---|
137 | integer, parameter :: NMaxCloudTypes = 12 |
---|
138 | |
---|
139 | ! Maximum number of shortwave albedo and longwave emissivity |
---|
140 | ! intervals |
---|
141 | integer, parameter :: NMaxAlbedoIntervals = 256 |
---|
142 | |
---|
143 | ! Length of string buffer for printing config information |
---|
144 | integer, parameter :: NPrintStringLen = 60 |
---|
145 | |
---|
146 | !--------------------------------------------------------------------- |
---|
147 | ! Derived type containing all the configuration information needed |
---|
148 | ! to run the radiation scheme. The intention is that this is fixed |
---|
149 | ! for a given model run. The parameters are to list first those |
---|
150 | ! quantities that can be set directly by the user, for example using a |
---|
151 | ! namelist, and second those quantities that are computed afterwards |
---|
152 | ! from the user-supplied numbers, especially the details of the gas |
---|
153 | ! optics model. |
---|
154 | type config_type |
---|
155 | ! USER-CONFIGURABLE PARAMETERS |
---|
156 | |
---|
157 | ! Override default solar spectrum |
---|
158 | logical :: use_spectral_solar_scaling = .false. |
---|
159 | |
---|
160 | ! Directory in which gas, cloud and aerosol data files are to be |
---|
161 | ! found |
---|
162 | character(len=511) :: directory_name = '.' |
---|
163 | |
---|
164 | ! If this is true then support arbitrary hydrometeor types (not |
---|
165 | ! just ice and liquid) and arbitrary spectral discretization (not |
---|
166 | ! just RRTMG). It is required that this is true if the ecCKD gas |
---|
167 | ! optics model is selected. General cloud optics has only been |
---|
168 | ! available from ecRad version 1.5. |
---|
169 | logical :: use_general_cloud_optics = .true. |
---|
170 | |
---|
171 | ! If this is true then support aerosol properties at an arbitrary |
---|
172 | ! spectral discretization (not just RRTMG). It is required that |
---|
173 | ! this is true if the ecCKD gas optics model is selected. |
---|
174 | logical :: use_general_aerosol_optics = .true. |
---|
175 | |
---|
176 | ! Cloud is deemed to be present in a layer if cloud fraction |
---|
177 | ! exceeds this value |
---|
178 | real(jprb) :: cloud_fraction_threshold = 1.0e-6_jprb |
---|
179 | ! ...and total cloud water mixing ratio exceeds this value |
---|
180 | real(jprb) :: cloud_mixing_ratio_threshold = 1.0e-9_jprb |
---|
181 | |
---|
182 | ! Overlap scheme |
---|
183 | integer :: i_overlap_scheme = IOverlapExponentialRandom |
---|
184 | |
---|
185 | ! Use the Shonk et al. (2010) "beta" overlap parameter, rather |
---|
186 | ! than the "alpha" overlap parameter of Hogan and Illingworth |
---|
187 | ! (2000)? |
---|
188 | logical :: use_beta_overlap = .false. |
---|
189 | |
---|
190 | ! Use a more vectorizable McICA cloud generator, at the expense of |
---|
191 | ! more random numbers being generated? This is the default on NEC |
---|
192 | ! SX. |
---|
193 | #ifdef __SX__ |
---|
194 | logical :: use_vectorizable_generator = .true. |
---|
195 | #else |
---|
196 | logical :: use_vectorizable_generator = .false. |
---|
197 | #endif |
---|
198 | |
---|
199 | ! Shape of sub-grid cloud water PDF |
---|
200 | integer :: i_cloud_pdf_shape = IPdfShapeGamma |
---|
201 | |
---|
202 | ! The ratio of the overlap decorrelation length for cloud |
---|
203 | ! inhomogeneities to the overlap decorrelation length for cloud |
---|
204 | ! boundaries. Observations suggest this has a value of 0.5 |
---|
205 | ! (e.g. from the decorrelation lengths of Hogan and Illingworth |
---|
206 | ! 2003 and Hogan and Illingworth 2000). |
---|
207 | real(jprb) :: cloud_inhom_decorr_scaling = 0.5_jprb |
---|
208 | |
---|
209 | ! Factor controlling how much of the cloud edge length interfaces |
---|
210 | ! directly between the clear-sky region (region a) and the |
---|
211 | ! optically thick cloudy region (region c). If Lxy is the length |
---|
212 | ! of the interfaces between regions x and y, and Lab and Lbc have |
---|
213 | ! been computed already, then |
---|
214 | ! Lac=clear_to_thick_fraction*min(Lab,Lbc). |
---|
215 | real(jprb) :: clear_to_thick_fraction = 0.0_jprb |
---|
216 | |
---|
217 | ! Factor allowing lateral transport when the sun is close to |
---|
218 | ! overhead; consider atand(overhead_sun_factor) to be the number |
---|
219 | ! of degrees that the sun angle is perturbed from zenith for the |
---|
220 | ! purposes of computing lateral transport. A value of up to 0.1 |
---|
221 | ! seems to be necessary to account for the fact that some forward |
---|
222 | ! scattered radiation is treated as unscattered by delta-Eddington |
---|
223 | ! scaling; therefore it ought to have the chance to escape. |
---|
224 | real(jprb) :: overhead_sun_factor = 0.0_jprb |
---|
225 | |
---|
226 | ! Minimum gas optical depth in a single layer at any wavelength, |
---|
227 | ! for stability |
---|
228 | real(jprb) :: min_gas_od_lw = 1.0e-15_jprb |
---|
229 | real(jprb) :: min_gas_od_sw = 0.0_jprb |
---|
230 | |
---|
231 | ! Maximum gas optical depth in a layer before that g-point will |
---|
232 | ! not be considered for 3D treatment: a limit is required to avoid |
---|
233 | ! expensive computation of matrix exponentials on matrices with |
---|
234 | ! large elements |
---|
235 | real(jprb) :: max_gas_od_3d = 8.0_jprb |
---|
236 | |
---|
237 | ! Maximum total optical depth of a cloudy region for stability: |
---|
238 | ! optical depth will be capped at this value in the SPARTACUS |
---|
239 | ! solvers |
---|
240 | real(jprb) :: max_cloud_od = 16.0_jprb |
---|
241 | |
---|
242 | ! How much longwave scattering is included? |
---|
243 | logical :: do_lw_cloud_scattering = .true. |
---|
244 | logical :: do_lw_aerosol_scattering = .true. |
---|
245 | |
---|
246 | ! Number of regions used to describe clouds and clear skies. A |
---|
247 | ! value of 2 means one clear and one cloudy region, so clouds are |
---|
248 | ! horizontally homogeneous, while a value of 3 means two cloudy |
---|
249 | ! regions with different optical depth, thereby representing |
---|
250 | ! inhomogeneity via the Shonk & Hogan (2008) "Tripleclouds" |
---|
251 | ! method. |
---|
252 | integer :: nregions = 3 |
---|
253 | |
---|
254 | ! Code specifying the solver to be used: use the enumerations |
---|
255 | ! defined above |
---|
256 | integer :: i_solver_sw = ISolverMcICA |
---|
257 | integer :: i_solver_lw = ISolverMcICA |
---|
258 | |
---|
259 | ! Do shortwave delta-Eddington scaling on the cloud-aerosol-gas |
---|
260 | ! mixture (as in the original IFS scheme), rather than the more |
---|
261 | ! correct approach of separately scaling the cloud and aerosol |
---|
262 | ! scattering properties before merging with gases. Note that |
---|
263 | ! .true. is not compatible with the SPARTACUS solver. |
---|
264 | logical :: do_sw_delta_scaling_with_gases = .false. |
---|
265 | |
---|
266 | ! Codes describing the gas model |
---|
267 | integer :: i_gas_model = IGasModelIFSRRTMG |
---|
268 | |
---|
269 | ! Optics if i_gas_model==IGasModelMonochromatic. |
---|
270 | ! The wavelength to use for the Planck function in metres. If this |
---|
271 | ! is positive then the output longwave fluxes will be in units of |
---|
272 | ! W m-2 um-1. If this is zero or negative (the default) then |
---|
273 | ! sigma*T^4 will be used and the output longwave fluxes will be in |
---|
274 | ! W m-2. |
---|
275 | real(jprb) :: mono_lw_wavelength = -1.0_jprb |
---|
276 | ! Total zenith optical depth of the atmosphere in the longwave and |
---|
277 | ! shortwave, distributed vertically according to the pressure. |
---|
278 | ! Default is zero. |
---|
279 | real(jprb) :: mono_lw_total_od = 0.0_jprb |
---|
280 | real(jprb) :: mono_sw_total_od = 0.0_jprb |
---|
281 | ! Single-scattering albedo and asymmetry factor: values typical |
---|
282 | ! for liquid clouds with effective radius of 10 microns, at (SW) |
---|
283 | ! 0.55 micron wavelength and (LW) 10.7 microns wavelength |
---|
284 | real(jprb) :: mono_sw_single_scattering_albedo = 0.999999_jprb |
---|
285 | real(jprb) :: mono_sw_asymmetry_factor = 0.86_jprb |
---|
286 | real(jprb) :: mono_lw_single_scattering_albedo = 0.538_jprb |
---|
287 | real(jprb) :: mono_lw_asymmetry_factor = 0.925_jprb |
---|
288 | |
---|
289 | ! Codes describing particle scattering models |
---|
290 | integer :: i_liq_model = ILiquidModelSOCRATES |
---|
291 | integer :: i_ice_model = IIceModelBaran |
---|
292 | |
---|
293 | ! The mapping from albedo/emissivity intervals to SW/LW bands can |
---|
294 | ! either be done by finding the interval containing the central |
---|
295 | ! wavenumber of the band (nearest neighbour), or by a weighting |
---|
296 | ! according to the spectral overlap of each interval with each |
---|
297 | ! band |
---|
298 | logical :: do_nearest_spectral_sw_albedo = .false. |
---|
299 | logical :: do_nearest_spectral_lw_emiss = .false. |
---|
300 | |
---|
301 | ! User-defined monotonically increasing wavelength bounds (m) |
---|
302 | ! between input surface albedo/emissivity intervals. Implicitly |
---|
303 | ! the first interval starts at zero and the last ends at |
---|
304 | ! infinity. These must be set with define_sw_albedo_intervals and |
---|
305 | ! define_lw_emiss_intervals. |
---|
306 | real(jprb) :: sw_albedo_wavelength_bound(NMaxAlbedoIntervals-1) = -1.0_jprb |
---|
307 | real(jprb) :: lw_emiss_wavelength_bound( NMaxAlbedoIntervals-1) = -1.0_jprb |
---|
308 | |
---|
309 | ! The index to the surface albedo/emissivity intervals for each of |
---|
310 | ! the wavelength bounds specified in sw_albedo_wavelength_bound |
---|
311 | ! and lw_emiss_wavelength_bound |
---|
312 | integer :: i_sw_albedo_index(NMaxAlbedoIntervals) = 0 |
---|
313 | integer :: i_lw_emiss_index (NMaxAlbedoIntervals) = 0 |
---|
314 | |
---|
315 | ! Do we compute longwave and/or shortwave radiation? |
---|
316 | logical :: do_lw = .true. |
---|
317 | logical :: do_sw = .true. |
---|
318 | |
---|
319 | ! Do we compute clear-sky fluxes and/or solar direct fluxes? |
---|
320 | logical :: do_clear = .true. |
---|
321 | logical :: do_sw_direct = .true. |
---|
322 | |
---|
323 | ! Do we include 3D effects? |
---|
324 | logical :: do_3d_effects = .true. |
---|
325 | |
---|
326 | character(len=511) :: cloud_type_name(NMaxCloudTypes) = ["","","","","","","","","","","",""] |
---|
327 | ! & |
---|
328 | ! & = ["mie_droplet ", & |
---|
329 | ! & "baum-general-habit-mixture_ice"] |
---|
330 | |
---|
331 | ! Spectral averaging method to use with generalized cloud optics; |
---|
332 | ! see Edwards & Slingo (1996) for definition. Experimentation |
---|
333 | ! with ecRad suggests that "thick" averaging is more accurate for |
---|
334 | ! both liquid and ice clouds. |
---|
335 | logical :: use_thick_cloud_spectral_averaging(NMaxCloudTypes) & |
---|
336 | & = [.true.,.true.,.true.,.true.,.true.,.true., & |
---|
337 | & .true.,.true.,.true.,.true.,.true.,.true.] |
---|
338 | |
---|
339 | ! To what extent do we include "entrapment" effects in the |
---|
340 | ! SPARTACUS solver? This essentially means that in a situation |
---|
341 | ! like this |
---|
342 | ! |
---|
343 | ! 000111 |
---|
344 | ! 222222 |
---|
345 | ! |
---|
346 | ! Radiation downwelling from region 1 may be reflected back into |
---|
347 | ! region 0 due to some degree of homogenization of the radiation |
---|
348 | ! in region 2. Hogan and Shonk (2013) referred to this as |
---|
349 | ! "anomalous horizontal transport" for a 1D model, although for 3D |
---|
350 | ! calculations it is desirable to include at least some of it. The |
---|
351 | ! options are described by the IEntrapment* parameters above. |
---|
352 | integer :: i_3d_sw_entrapment = IEntrapmentExplicit |
---|
353 | |
---|
354 | ! In the longwave, the equivalent process it either "on" (like |
---|
355 | ! maximum entrapment) or "off" (like zero entrapment): |
---|
356 | logical :: do_3d_lw_multilayer_effects = .false. |
---|
357 | |
---|
358 | ! Do we account for the effective emissivity of the side of |
---|
359 | ! clouds? |
---|
360 | logical :: do_lw_side_emissivity = .true. |
---|
361 | |
---|
362 | ! The 3D transfer rate "X" is such that if transport out of a |
---|
363 | ! region was the only process occurring then by the base of a |
---|
364 | ! layer only exp(-X) of the original flux would remain in that |
---|
365 | ! region. The transfer rate computed geometrically can be very |
---|
366 | ! high for the clear-sky regions in layers with high cloud |
---|
367 | ! fraction. For stability reasons it is necessary to provide a |
---|
368 | ! maximum possible 3D transfer rate. |
---|
369 | real(jprb) :: max_3d_transfer_rate = 10.0_jprb |
---|
370 | |
---|
371 | ! It has also sometimes been found necessary to set a minimum |
---|
372 | ! cloud effective size for stability (metres) |
---|
373 | real(jprb) :: min_cloud_effective_size = 100.0_jprb |
---|
374 | |
---|
375 | ! Given a horizontal migration distance, there is still |
---|
376 | ! uncertainty about how much entrapment occurs associated with how |
---|
377 | ! one assumes cloud boundaries line up in adjacent layers. This |
---|
378 | ! factor can be varied between 0.0 (the boundaries line up to the |
---|
379 | ! greatest extent possible given the overlap parameter) and 1.0 |
---|
380 | ! (the boundaries line up to the minimum extent possible). In the |
---|
381 | ! Hogan et al. entrapment paper it is referred to as the overhang |
---|
382 | ! factor zeta, and a value of 0 matches the Monte Carlo |
---|
383 | ! calculations best. |
---|
384 | real(jprb) :: overhang_factor = 0.0_jprb |
---|
385 | |
---|
386 | ! By default, the Meador & Weaver (1980) expressions are used |
---|
387 | ! instead of the matrix exponential whenever 3D effects can be |
---|
388 | ! neglected (e.g. cloud-free layers or clouds with infinitely |
---|
389 | ! large effective cloud size), but setting the following to true |
---|
390 | ! uses the matrix exponential everywhere, enabling the two |
---|
391 | ! methods to be compared. Note that Meador & Weaver will still be |
---|
392 | ! used for very optically thick g points where the matrix |
---|
393 | ! exponential can produce incorrect results. |
---|
394 | logical :: use_expm_everywhere = .false. |
---|
395 | |
---|
396 | ! Aerosol descriptors: aerosol_type_mapping must be of length |
---|
397 | ! n_aerosol_types, and contains 0 if that type is to be ignored, |
---|
398 | ! positive numbers to map on to the indices of hydrophobic |
---|
399 | ! aerosols in the aerosol optics configuration file, and negative |
---|
400 | ! numbers to map on to (the negative of) the indices of |
---|
401 | ! hydrophilic aerosols in the configuration file. |
---|
402 | logical :: use_aerosols = .false. |
---|
403 | integer :: n_aerosol_types = 0 |
---|
404 | integer :: i_aerosol_type_map(NMaxAerosolTypes) |
---|
405 | |
---|
406 | ! Save the gas and cloud optical properties for each g point in |
---|
407 | ! "radiative_properties.nc"? |
---|
408 | logical :: do_save_radiative_properties = .false. |
---|
409 | |
---|
410 | ! Save the flux profiles in each band? |
---|
411 | logical :: do_save_spectral_flux = .false. |
---|
412 | |
---|
413 | ! Save the surface downwelling shortwave fluxes in each band? |
---|
414 | logical :: do_surface_sw_spectral_flux = .true. |
---|
415 | |
---|
416 | ! Compute the longwave derivatives needed to apply the approximate |
---|
417 | ! radiation updates of Hogan and Bozzo (2015) |
---|
418 | logical :: do_lw_derivatives = .false. |
---|
419 | |
---|
420 | ! Save the flux profiles in each g-point (overrides |
---|
421 | ! do_save_spectral_flux if TRUE)? |
---|
422 | logical :: do_save_gpoint_flux = .false. |
---|
423 | |
---|
424 | ! In the IFS environment, setting up RRTM has already been done |
---|
425 | ! so not needed to do it again |
---|
426 | logical :: do_setup_ifsrrtm = .true. |
---|
427 | |
---|
428 | ! In the IFS environment the old scheme has a bug in the Fu |
---|
429 | ! longwave ice optics whereby the single scattering albedo is one |
---|
430 | ! minus what it should be. Unfortunately fixing it makes |
---|
431 | ! forecasts worse. Setting the following to true reproduces the |
---|
432 | ! bug. |
---|
433 | logical :: do_fu_lw_ice_optics_bug = .false. |
---|
434 | |
---|
435 | ! Control verbosity: 0=none (no output to standard output; write |
---|
436 | ! to standard error only if an error occurs), 1=warning, 2=info, |
---|
437 | ! 3=progress, 4=detailed, 5=debug. Separate settings for the |
---|
438 | ! setup of the scheme and the execution of it. |
---|
439 | integer :: iverbosesetup = 2 |
---|
440 | integer :: iverbose = 1 |
---|
441 | |
---|
442 | ! Are we doing radiative transfer in complex surface canopies |
---|
443 | ! (streets/vegetation), in which case tailored downward fluxes are |
---|
444 | ! needed at the top of the canopy? |
---|
445 | logical :: do_canopy_fluxes_sw = .false. |
---|
446 | logical :: do_canopy_fluxes_lw = .false. |
---|
447 | ! If so, do we use the full spectrum as in the atmosphere, or just |
---|
448 | ! the reduced spectrum in which the shortwave albedo and longwave |
---|
449 | ! emissivity are provided? |
---|
450 | logical :: use_canopy_full_spectrum_sw = .false. |
---|
451 | logical :: use_canopy_full_spectrum_lw = .false. |
---|
452 | ! Do we treat gas radiative transfer in streets/vegetation? |
---|
453 | logical :: do_canopy_gases_sw = .false. |
---|
454 | logical :: do_canopy_gases_lw = .false. |
---|
455 | |
---|
456 | ! Optics file names for overriding the ones generated from the |
---|
457 | ! other options. If these remain empty then the generated names |
---|
458 | ! will be used (see the "consolidate_config" routine below). If |
---|
459 | ! the user assigns one of these and it starts with a '/' character |
---|
460 | ! then that will be used instead. If the user assigns one and it |
---|
461 | ! doesn't start with a '/' character then it will be prepended by |
---|
462 | ! the contents of directory_name. |
---|
463 | character(len=511) :: ice_optics_override_file_name = '' |
---|
464 | character(len=511) :: liq_optics_override_file_name = '' |
---|
465 | character(len=511) :: aerosol_optics_override_file_name = '' |
---|
466 | character(len=511) :: gas_optics_sw_override_file_name = '' |
---|
467 | character(len=511) :: gas_optics_lw_override_file_name = '' |
---|
468 | |
---|
469 | ! Optionally override the look-up table file for the cloud-water |
---|
470 | ! PDF used by the McICA solver |
---|
471 | character(len=511) :: cloud_pdf_override_file_name = '' |
---|
472 | |
---|
473 | ! Do we compute cloud, aerosol and surface optical properties per |
---|
474 | ! g point? Not available with RRTMG gas optics model. |
---|
475 | logical :: do_cloud_aerosol_per_sw_g_point = .true. |
---|
476 | logical :: do_cloud_aerosol_per_lw_g_point = .true. |
---|
477 | |
---|
478 | ! Do we weight the mapping from surface emissivity/albedo to |
---|
479 | ! g-point/band weighting by a reference Planck function (more |
---|
480 | ! accurate) or weighting each wavenumber equally (less accurate |
---|
481 | ! but consistent with IFS Cycle 48r1 and earlier)? |
---|
482 | logical :: do_weighted_surface_mapping = .true. |
---|
483 | |
---|
484 | ! COMPUTED PARAMETERS |
---|
485 | |
---|
486 | ! Users of this library should not edit these parameters directly; |
---|
487 | ! they are set by the "consolidate" routine |
---|
488 | |
---|
489 | ! Has "consolidate" been called? |
---|
490 | logical :: is_consolidated = .false. |
---|
491 | |
---|
492 | ! Fraction of each g point in each wavenumber interval, |
---|
493 | ! dimensioned (n_wav_frac_[l|s]w, n_g_[l|s]w) |
---|
494 | real(jprb), allocatable, dimension(:,:) :: g_frac_sw, g_frac_lw |
---|
495 | |
---|
496 | ! If the nearest surface albedo/emissivity interval is to be used |
---|
497 | ! for each SW/LW band then the following arrays will be allocated |
---|
498 | ! to the length of the number of bands and contain the index to |
---|
499 | ! the relevant interval |
---|
500 | integer, allocatable, dimension(:) :: i_albedo_from_band_sw |
---|
501 | integer, allocatable, dimension(:) :: i_emiss_from_band_lw |
---|
502 | |
---|
503 | ! ...alternatively, this matrix dimensioned |
---|
504 | ! (n_albedo_intervals,n_bands_sw) providing the weights needed for |
---|
505 | ! computing the albedo in each ecRad band from the albedo in each |
---|
506 | ! native albedo band - see radiation_single_level.F90 |
---|
507 | real(jprb), allocatable, dimension(:,:) :: sw_albedo_weights |
---|
508 | ! ...and similarly in the longwave, dimensioned |
---|
509 | ! (n_emiss_intervals,n_bands_lw) |
---|
510 | real(jprb), allocatable, dimension(:,:) :: lw_emiss_weights |
---|
511 | |
---|
512 | ! Arrays of length the number of g-points that convert from |
---|
513 | ! g-point to the band index |
---|
514 | integer, allocatable, dimension(:) :: i_band_from_g_lw |
---|
515 | integer, allocatable, dimension(:) :: i_band_from_g_sw |
---|
516 | |
---|
517 | ! We allow for the possibility for g-points to be ordered in terms |
---|
518 | ! of likely absorption (weakest to strongest) across the shortwave |
---|
519 | ! or longwave spectrum, in order that in SPARTACUS we select only |
---|
520 | ! the first n g-points that will not have too large an absorption, |
---|
521 | ! and therefore matrix exponentials that are both finite and not |
---|
522 | ! too expensive to compute. The following two arrays map the |
---|
523 | ! reordered g-points to the original ones. |
---|
524 | integer, allocatable, dimension(:) :: i_g_from_reordered_g_lw |
---|
525 | integer, allocatable, dimension(:) :: i_g_from_reordered_g_sw |
---|
526 | |
---|
527 | ! The following map the reordered g-points to the bands |
---|
528 | integer, allocatable, dimension(:) :: i_band_from_reordered_g_lw |
---|
529 | integer, allocatable, dimension(:) :: i_band_from_reordered_g_sw |
---|
530 | |
---|
531 | ! The following map the reordered g-points to the spectral |
---|
532 | ! information being saved: if do_save_gpoint_flux==TRUE then this |
---|
533 | ! will map on to the original g points, but if only |
---|
534 | ! do_save_spectral_flux==TRUE then this will map on to the bands |
---|
535 | integer, pointer, dimension(:) :: i_spec_from_reordered_g_lw |
---|
536 | integer, pointer, dimension(:) :: i_spec_from_reordered_g_sw |
---|
537 | |
---|
538 | ! Number of spectral intervals used for the canopy radiative |
---|
539 | ! transfer calculation; they are either equal to |
---|
540 | ! n_albedo_intervals/n_emiss_intervals or n_g_sw/n_g_lw |
---|
541 | integer :: n_canopy_bands_sw = 1 |
---|
542 | integer :: n_canopy_bands_lw = 1 |
---|
543 | |
---|
544 | ! Data structures containing gas optics description in the case of |
---|
545 | ! ecCKD |
---|
546 | type(ckd_model_type) :: gas_optics_sw, gas_optics_lw |
---|
547 | |
---|
548 | ! Data structure containing cloud scattering data |
---|
549 | type(cloud_optics_type) :: cloud_optics |
---|
550 | |
---|
551 | ! Number of general cloud types, default liquid and ice |
---|
552 | integer :: n_cloud_types = 2 |
---|
553 | |
---|
554 | ! List of data structures (one per cloud type) containing cloud |
---|
555 | ! scattering data |
---|
556 | type(general_cloud_optics_type), allocatable :: cloud_optics_sw(:) |
---|
557 | type(general_cloud_optics_type), allocatable :: cloud_optics_lw(:) |
---|
558 | |
---|
559 | ! Data structure containing aerosol scattering data |
---|
560 | type(aerosol_optics_type) :: aerosol_optics |
---|
561 | |
---|
562 | ! Object for sampling from a gamma or lognormal distribution |
---|
563 | type(pdf_sampler_type) :: pdf_sampler |
---|
564 | |
---|
565 | ! Optics file names |
---|
566 | character(len=511) :: ice_optics_file_name, & |
---|
567 | & liq_optics_file_name, & |
---|
568 | & aerosol_optics_file_name, & |
---|
569 | & gas_optics_sw_file_name, & |
---|
570 | & gas_optics_lw_file_name |
---|
571 | |
---|
572 | ! McICA PDF look-up table file name |
---|
573 | character(len=511) :: cloud_pdf_file_name |
---|
574 | |
---|
575 | ! Number of gpoints and bands in the shortwave and longwave - set |
---|
576 | ! to zero as will be set properly later |
---|
577 | integer :: n_g_sw = 0, n_g_lw = 0 |
---|
578 | integer :: n_bands_sw = 0, n_bands_lw = 0 |
---|
579 | |
---|
580 | ! Number of spectral points to save (equal either to the number of |
---|
581 | ! g points or the number of bands |
---|
582 | integer :: n_spec_sw = 0, n_spec_lw = 0 |
---|
583 | |
---|
584 | ! Number of wavenumber intervals used to describe the mapping from |
---|
585 | ! g-points to wavenumber space |
---|
586 | integer :: n_wav_frac_sw = 0, n_wav_frac_lw = 0 |
---|
587 | |
---|
588 | ! Dimensions to store variables that are only needed if longwave |
---|
589 | ! scattering is included. "n_g_lw_if_scattering" is equal to |
---|
590 | ! "n_g_lw" if aerosols are allowed to scatter in the longwave, |
---|
591 | ! and zero otherwise. "n_bands_lw_if_scattering" is equal to |
---|
592 | ! "n_bands_lw" if clouds are allowed to scatter in the longwave, |
---|
593 | ! and zero otherwise. |
---|
594 | integer :: n_g_lw_if_scattering = 0, n_bands_lw_if_scattering = 0 |
---|
595 | |
---|
596 | ! Treat clouds as horizontally homogeneous within the gribox |
---|
597 | logical :: is_homogeneous = .false. |
---|
598 | |
---|
599 | ! If the solvers are both "Cloudless" then we don't need to do any |
---|
600 | ! cloud processing |
---|
601 | logical :: do_clouds = .true. |
---|
602 | |
---|
603 | contains |
---|
604 | procedure :: read => read_config_from_namelist |
---|
605 | procedure :: consolidate => consolidate_config |
---|
606 | procedure :: set => set_config |
---|
607 | procedure :: print => print_config |
---|
608 | procedure :: get_sw_weights |
---|
609 | procedure :: define_sw_albedo_intervals |
---|
610 | procedure :: define_lw_emiss_intervals |
---|
611 | procedure :: set_aerosol_wavelength_mono |
---|
612 | procedure :: consolidate_sw_albedo_intervals |
---|
613 | procedure :: consolidate_lw_emiss_intervals |
---|
614 | |
---|
615 | end type config_type |
---|
616 | |
---|
617 | ! procedure, private :: print_logical, print_real, print_int |
---|
618 | |
---|
619 | contains |
---|
620 | |
---|
621 | |
---|
622 | !--------------------------------------------------------------------- |
---|
623 | ! This subroutine reads configuration data from a namelist file, and |
---|
624 | ! anything that is not in the namelists will be set to default |
---|
625 | ! values. If optional output argument "is_success" is present, then |
---|
626 | ! on error (e.g. missing file) it will be set to .false.; if this |
---|
627 | ! argument is missing then on error the program will be aborted. You |
---|
628 | ! may either specify the file_name or the unit of an open file to |
---|
629 | ! read, but not both. |
---|
630 | subroutine read_config_from_namelist(this, file_name, unit, is_success) |
---|
631 | |
---|
632 | use yomhook, only : lhook, dr_hook |
---|
633 | use radiation_io, only : nulout, nulerr, nulrad, radiation_abort |
---|
634 | |
---|
635 | class(config_type), intent(inout) :: this |
---|
636 | character(*), intent(in), optional :: file_name |
---|
637 | integer, intent(in), optional :: unit |
---|
638 | logical, intent(out), optional :: is_success |
---|
639 | |
---|
640 | integer :: iosopen, iosread ! Status after calling open and read |
---|
641 | |
---|
642 | ! The following variables are read from the namelists and map |
---|
643 | ! directly onto members of the config_type derived type |
---|
644 | |
---|
645 | ! To be read from the radiation_config namelist |
---|
646 | logical :: do_sw, do_lw, do_clear, do_sw_direct |
---|
647 | logical :: do_3d_effects, use_expm_everywhere, use_aerosols |
---|
648 | logical :: use_general_cloud_optics, use_general_aerosol_optics |
---|
649 | logical :: do_lw_side_emissivity |
---|
650 | logical :: do_3d_lw_multilayer_effects, do_fu_lw_ice_optics_bug |
---|
651 | logical :: do_lw_aerosol_scattering, do_lw_cloud_scattering |
---|
652 | logical :: do_save_radiative_properties, do_save_spectral_flux |
---|
653 | logical :: do_save_gpoint_flux, do_surface_sw_spectral_flux |
---|
654 | logical :: use_beta_overlap, do_lw_derivatives, use_vectorizable_generator |
---|
655 | logical :: do_sw_delta_scaling_with_gases |
---|
656 | logical :: do_canopy_fluxes_sw, do_canopy_fluxes_lw |
---|
657 | logical :: use_canopy_full_spectrum_sw, use_canopy_full_spectrum_lw |
---|
658 | logical :: do_canopy_gases_sw, do_canopy_gases_lw |
---|
659 | logical :: do_cloud_aerosol_per_sw_g_point, do_cloud_aerosol_per_lw_g_point |
---|
660 | logical :: do_weighted_surface_mapping |
---|
661 | integer :: n_regions, iverbose, iverbosesetup, n_aerosol_types |
---|
662 | real(jprb):: mono_lw_wavelength, mono_lw_total_od, mono_sw_total_od |
---|
663 | real(jprb):: mono_lw_single_scattering_albedo, mono_sw_single_scattering_albedo |
---|
664 | real(jprb):: mono_lw_asymmetry_factor, mono_sw_asymmetry_factor |
---|
665 | real(jprb):: cloud_inhom_decorr_scaling, cloud_fraction_threshold |
---|
666 | real(jprb):: clear_to_thick_fraction, max_gas_od_3d, max_cloud_od |
---|
667 | real(jprb):: cloud_mixing_ratio_threshold, overhead_sun_factor |
---|
668 | real(jprb):: max_3d_transfer_rate, min_cloud_effective_size |
---|
669 | real(jprb):: overhang_factor, encroachment_scaling |
---|
670 | character(511) :: directory_name, aerosol_optics_override_file_name |
---|
671 | character(511) :: liq_optics_override_file_name, ice_optics_override_file_name |
---|
672 | character(511) :: cloud_pdf_override_file_name |
---|
673 | character(511) :: gas_optics_sw_override_file_name, gas_optics_lw_override_file_name |
---|
674 | character(63) :: liquid_model_name, ice_model_name, gas_model_name |
---|
675 | character(63) :: sw_solver_name, lw_solver_name, overlap_scheme_name |
---|
676 | character(63) :: sw_entrapment_name, sw_encroachment_name, cloud_pdf_shape_name |
---|
677 | character(len=511) :: cloud_type_name(NMaxCloudTypes) = ["","","","","","","","","","","",""] |
---|
678 | logical :: use_thick_cloud_spectral_averaging(NMaxCloudTypes) & |
---|
679 | & = [.false.,.false.,.false.,.false.,.false.,.false., & |
---|
680 | & .false.,.false.,.false.,.false.,.false.,.false.] |
---|
681 | integer :: i_aerosol_type_map(NMaxAerosolTypes) ! More than 256 is an error |
---|
682 | |
---|
683 | logical :: do_nearest_spectral_sw_albedo |
---|
684 | logical :: do_nearest_spectral_lw_emiss |
---|
685 | real(jprb) :: sw_albedo_wavelength_bound(NMaxAlbedoIntervals-1) |
---|
686 | real(jprb) :: lw_emiss_wavelength_bound( NMaxAlbedoIntervals-1) |
---|
687 | integer :: i_sw_albedo_index(NMaxAlbedoIntervals) |
---|
688 | integer :: i_lw_emiss_index (NMaxAlbedoIntervals) |
---|
689 | |
---|
690 | integer :: iunit ! Unit number of namelist file |
---|
691 | |
---|
692 | namelist /radiation/ do_sw, do_lw, do_sw_direct, & |
---|
693 | & do_3d_effects, do_lw_side_emissivity, do_clear, & |
---|
694 | & do_save_radiative_properties, sw_entrapment_name, sw_encroachment_name, & |
---|
695 | & do_3d_lw_multilayer_effects, do_fu_lw_ice_optics_bug, & |
---|
696 | & do_save_spectral_flux, do_save_gpoint_flux, & |
---|
697 | & do_surface_sw_spectral_flux, do_lw_derivatives, & |
---|
698 | & do_lw_aerosol_scattering, do_lw_cloud_scattering, & |
---|
699 | & n_regions, directory_name, gas_model_name, & |
---|
700 | & ice_optics_override_file_name, liq_optics_override_file_name, & |
---|
701 | & aerosol_optics_override_file_name, cloud_pdf_override_file_name, & |
---|
702 | & gas_optics_sw_override_file_name, gas_optics_lw_override_file_name, & |
---|
703 | & liquid_model_name, ice_model_name, max_3d_transfer_rate, & |
---|
704 | & min_cloud_effective_size, overhang_factor, encroachment_scaling, & |
---|
705 | & use_canopy_full_spectrum_sw, use_canopy_full_spectrum_lw, & |
---|
706 | & do_canopy_fluxes_sw, do_canopy_fluxes_lw, & |
---|
707 | & do_canopy_gases_sw, do_canopy_gases_lw, & |
---|
708 | & use_general_cloud_optics, use_general_aerosol_optics, & |
---|
709 | & do_sw_delta_scaling_with_gases, overlap_scheme_name, & |
---|
710 | & sw_solver_name, lw_solver_name, use_beta_overlap, use_vectorizable_generator, & |
---|
711 | & use_expm_everywhere, iverbose, iverbosesetup, & |
---|
712 | & cloud_inhom_decorr_scaling, cloud_fraction_threshold, & |
---|
713 | & clear_to_thick_fraction, max_gas_od_3d, max_cloud_od, & |
---|
714 | & cloud_mixing_ratio_threshold, overhead_sun_factor, & |
---|
715 | & n_aerosol_types, i_aerosol_type_map, use_aerosols, & |
---|
716 | & mono_lw_wavelength, mono_lw_total_od, mono_sw_total_od, & |
---|
717 | & mono_lw_single_scattering_albedo, mono_sw_single_scattering_albedo, & |
---|
718 | & mono_lw_asymmetry_factor, mono_sw_asymmetry_factor, & |
---|
719 | & cloud_pdf_shape_name, cloud_type_name, use_thick_cloud_spectral_averaging, & |
---|
720 | & do_nearest_spectral_sw_albedo, do_nearest_spectral_lw_emiss, & |
---|
721 | & sw_albedo_wavelength_bound, lw_emiss_wavelength_bound, & |
---|
722 | & i_sw_albedo_index, i_lw_emiss_index, & |
---|
723 | & do_cloud_aerosol_per_lw_g_point, & |
---|
724 | & do_cloud_aerosol_per_sw_g_point, do_weighted_surface_mapping |
---|
725 | |
---|
726 | real(jprb) :: hook_handle |
---|
727 | |
---|
728 | if (lhook) call dr_hook('radiation_config:read',0,hook_handle) |
---|
729 | |
---|
730 | ! Copy default values from the original structure |
---|
731 | do_sw = this%do_sw |
---|
732 | do_lw = this%do_lw |
---|
733 | do_sw_direct = this%do_sw_direct |
---|
734 | do_3d_effects = this%do_3d_effects |
---|
735 | do_3d_lw_multilayer_effects = this%do_3d_lw_multilayer_effects |
---|
736 | do_lw_side_emissivity = this%do_lw_side_emissivity |
---|
737 | do_clear = this%do_clear |
---|
738 | do_lw_aerosol_scattering = this%do_lw_aerosol_scattering |
---|
739 | do_lw_cloud_scattering = this%do_lw_cloud_scattering |
---|
740 | do_sw_delta_scaling_with_gases = this%do_sw_delta_scaling_with_gases |
---|
741 | do_fu_lw_ice_optics_bug = this%do_fu_lw_ice_optics_bug |
---|
742 | do_canopy_fluxes_sw = this%do_canopy_fluxes_sw |
---|
743 | do_canopy_fluxes_lw = this%do_canopy_fluxes_lw |
---|
744 | use_canopy_full_spectrum_sw = this%use_canopy_full_spectrum_sw |
---|
745 | use_canopy_full_spectrum_lw = this%use_canopy_full_spectrum_lw |
---|
746 | do_canopy_gases_sw = this%do_canopy_gases_sw |
---|
747 | do_canopy_gases_lw = this%do_canopy_gases_lw |
---|
748 | n_regions = this%nregions |
---|
749 | directory_name = this%directory_name |
---|
750 | cloud_pdf_override_file_name = this%cloud_pdf_override_file_name |
---|
751 | liq_optics_override_file_name = this%liq_optics_override_file_name |
---|
752 | ice_optics_override_file_name = this%ice_optics_override_file_name |
---|
753 | aerosol_optics_override_file_name = this%aerosol_optics_override_file_name |
---|
754 | gas_optics_sw_override_file_name = this%gas_optics_sw_override_file_name |
---|
755 | gas_optics_lw_override_file_name = this%gas_optics_lw_override_file_name |
---|
756 | use_expm_everywhere = this%use_expm_everywhere |
---|
757 | use_aerosols = this%use_aerosols |
---|
758 | do_save_radiative_properties = this%do_save_radiative_properties |
---|
759 | do_save_spectral_flux = this%do_save_spectral_flux |
---|
760 | do_save_gpoint_flux = this%do_save_gpoint_flux |
---|
761 | do_lw_derivatives = this%do_lw_derivatives |
---|
762 | do_surface_sw_spectral_flux = this%do_surface_sw_spectral_flux |
---|
763 | iverbose = this%iverbose |
---|
764 | iverbosesetup = this%iverbosesetup |
---|
765 | use_general_cloud_optics = this%use_general_cloud_optics |
---|
766 | use_general_aerosol_optics = this%use_general_aerosol_optics |
---|
767 | cloud_fraction_threshold = this%cloud_fraction_threshold |
---|
768 | cloud_mixing_ratio_threshold = this%cloud_mixing_ratio_threshold |
---|
769 | use_beta_overlap = this%use_beta_overlap |
---|
770 | use_vectorizable_generator = this%use_vectorizable_generator |
---|
771 | cloud_inhom_decorr_scaling = this%cloud_inhom_decorr_scaling |
---|
772 | clear_to_thick_fraction = this%clear_to_thick_fraction |
---|
773 | overhead_sun_factor = this%overhead_sun_factor |
---|
774 | max_gas_od_3d = this%max_gas_od_3d |
---|
775 | max_cloud_od = this%max_cloud_od |
---|
776 | max_3d_transfer_rate = this%max_3d_transfer_rate |
---|
777 | min_cloud_effective_size = this%min_cloud_effective_size |
---|
778 | cloud_type_name = this%cloud_type_name |
---|
779 | use_thick_cloud_spectral_averaging = this%use_thick_cloud_spectral_averaging |
---|
780 | |
---|
781 | overhang_factor = this%overhang_factor |
---|
782 | encroachment_scaling = -1.0_jprb |
---|
783 | gas_model_name = '' !DefaultGasModelName |
---|
784 | liquid_model_name = '' !DefaultLiquidModelName |
---|
785 | ice_model_name = '' !DefaultIceModelName |
---|
786 | sw_solver_name = '' !DefaultSwSolverName |
---|
787 | lw_solver_name = '' !DefaultLwSolverName |
---|
788 | sw_entrapment_name = '' |
---|
789 | sw_encroachment_name = '' |
---|
790 | overlap_scheme_name = '' |
---|
791 | cloud_pdf_shape_name = '' |
---|
792 | n_aerosol_types = this%n_aerosol_types |
---|
793 | mono_lw_wavelength = this%mono_lw_wavelength |
---|
794 | mono_lw_total_od = this%mono_lw_total_od |
---|
795 | mono_sw_total_od = this%mono_sw_total_od |
---|
796 | mono_lw_single_scattering_albedo = this%mono_lw_single_scattering_albedo |
---|
797 | mono_sw_single_scattering_albedo = this%mono_sw_single_scattering_albedo |
---|
798 | mono_lw_asymmetry_factor = this%mono_lw_asymmetry_factor |
---|
799 | mono_sw_asymmetry_factor = this%mono_sw_asymmetry_factor |
---|
800 | i_aerosol_type_map = this%i_aerosol_type_map |
---|
801 | do_nearest_spectral_sw_albedo = this%do_nearest_spectral_sw_albedo |
---|
802 | do_nearest_spectral_lw_emiss = this%do_nearest_spectral_lw_emiss |
---|
803 | sw_albedo_wavelength_bound = this%sw_albedo_wavelength_bound |
---|
804 | lw_emiss_wavelength_bound = this%lw_emiss_wavelength_bound |
---|
805 | i_sw_albedo_index = this%i_sw_albedo_index |
---|
806 | i_lw_emiss_index = this%i_lw_emiss_index |
---|
807 | do_cloud_aerosol_per_lw_g_point = this%do_cloud_aerosol_per_lw_g_point |
---|
808 | do_cloud_aerosol_per_sw_g_point = this%do_cloud_aerosol_per_sw_g_point |
---|
809 | do_weighted_surface_mapping = this%do_weighted_surface_mapping |
---|
810 | |
---|
811 | if (present(file_name) .and. present(unit)) then |
---|
812 | write(nulerr,'(a)') '*** Error: cannot specify both file_name and unit in call to config_type%read' |
---|
813 | call radiation_abort('Radiation configuration error') |
---|
814 | else if (.not. present(file_name) .and. .not. present(unit)) then |
---|
815 | write(nulerr,'(a)') '*** Error: neither file_name nor unit specified in call to config_type%read' |
---|
816 | call radiation_abort('Radiation configuration error') |
---|
817 | end if |
---|
818 | |
---|
819 | if (present(file_name)) then |
---|
820 | ! Open the namelist file |
---|
821 | iunit = nulrad |
---|
822 | open(unit=iunit, iostat=iosopen, file=trim(file_name)) |
---|
823 | else |
---|
824 | ! Assume that iunit represents and open file |
---|
825 | iosopen = 0 |
---|
826 | iunit = unit |
---|
827 | end if |
---|
828 | |
---|
829 | if (iosopen /= 0) then |
---|
830 | ! An error occurred opening the file |
---|
831 | if (present(is_success)) then |
---|
832 | is_success = .false. |
---|
833 | ! We now continue the subroutine so that the default values |
---|
834 | ! are placed in the config structure |
---|
835 | else |
---|
836 | write(nulerr,'(a,a,a)') '*** Error: namelist file "', & |
---|
837 | & trim(file_name), '" not found' |
---|
838 | call radiation_abort('Radiation configuration error') |
---|
839 | end if |
---|
840 | else |
---|
841 | |
---|
842 | ! This version exits correctly, but provides less information |
---|
843 | ! about how the namelist was incorrect |
---|
844 | read(unit=iunit, iostat=iosread, nml=radiation) |
---|
845 | |
---|
846 | ! Depending on compiler this version provides more information |
---|
847 | ! about the error in the namelist |
---|
848 | !read(unit=iunit, nml=radiation) |
---|
849 | |
---|
850 | if (iosread /= 0) then |
---|
851 | ! An error occurred reading the file |
---|
852 | if (present(is_success)) then |
---|
853 | is_success = .false. |
---|
854 | ! We now continue the subroutine so that the default values |
---|
855 | ! are placed in the config structure |
---|
856 | else if (present(file_name)) then |
---|
857 | write(nulerr,'(a,a,a)') '*** Error reading namelist "radiation" from file "', & |
---|
858 | & trim(file_name), '"' |
---|
859 | close(unit=iunit) |
---|
860 | call radiation_abort('Radiation configuration error') |
---|
861 | else |
---|
862 | write(nulerr,'(a,i0)') '*** Error reading namelist "radiation" from unit ', & |
---|
863 | & iunit |
---|
864 | call radiation_abort('Radiation configuration error') |
---|
865 | end if |
---|
866 | end if |
---|
867 | |
---|
868 | if (present(file_name)) then |
---|
869 | close(unit=iunit) |
---|
870 | end if |
---|
871 | end if |
---|
872 | |
---|
873 | ! Copy namelist data into configuration object |
---|
874 | |
---|
875 | ! Start with verbosity levels, which should be within limits |
---|
876 | if (iverbose < 0) then |
---|
877 | iverbose = 0 |
---|
878 | end if |
---|
879 | this%iverbose = iverbose |
---|
880 | |
---|
881 | if (iverbosesetup < 0) then |
---|
882 | iverbosesetup = 0 |
---|
883 | end if |
---|
884 | this%iverbosesetup = iverbosesetup |
---|
885 | |
---|
886 | this%do_lw = do_lw |
---|
887 | this%do_sw = do_sw |
---|
888 | this%do_clear = do_clear |
---|
889 | this%do_sw_direct = do_sw_direct |
---|
890 | this%do_3d_effects = do_3d_effects |
---|
891 | this%do_3d_lw_multilayer_effects = do_3d_lw_multilayer_effects |
---|
892 | this%do_lw_side_emissivity = do_lw_side_emissivity |
---|
893 | this%use_expm_everywhere = use_expm_everywhere |
---|
894 | this%use_aerosols = use_aerosols |
---|
895 | this%do_lw_cloud_scattering = do_lw_cloud_scattering |
---|
896 | this%do_lw_aerosol_scattering = do_lw_aerosol_scattering |
---|
897 | this%nregions = n_regions |
---|
898 | this%do_surface_sw_spectral_flux = do_surface_sw_spectral_flux |
---|
899 | this%do_sw_delta_scaling_with_gases = do_sw_delta_scaling_with_gases |
---|
900 | this%do_fu_lw_ice_optics_bug = do_fu_lw_ice_optics_bug |
---|
901 | this%do_canopy_fluxes_sw = do_canopy_fluxes_sw |
---|
902 | this%do_canopy_fluxes_lw = do_canopy_fluxes_lw |
---|
903 | this%use_canopy_full_spectrum_sw = use_canopy_full_spectrum_sw |
---|
904 | this%use_canopy_full_spectrum_lw = use_canopy_full_spectrum_lw |
---|
905 | this%do_canopy_gases_sw = do_canopy_gases_sw |
---|
906 | this%do_canopy_gases_lw = do_canopy_gases_lw |
---|
907 | this%mono_lw_wavelength = mono_lw_wavelength |
---|
908 | this%mono_lw_total_od = mono_lw_total_od |
---|
909 | this%mono_sw_total_od = mono_sw_total_od |
---|
910 | this%mono_lw_single_scattering_albedo = mono_lw_single_scattering_albedo |
---|
911 | this%mono_sw_single_scattering_albedo = mono_sw_single_scattering_albedo |
---|
912 | this%mono_lw_asymmetry_factor = mono_lw_asymmetry_factor |
---|
913 | this%mono_sw_asymmetry_factor = mono_sw_asymmetry_factor |
---|
914 | this%use_beta_overlap = use_beta_overlap |
---|
915 | this%use_vectorizable_generator = use_vectorizable_generator |
---|
916 | this%cloud_inhom_decorr_scaling = cloud_inhom_decorr_scaling |
---|
917 | this%clear_to_thick_fraction = clear_to_thick_fraction |
---|
918 | this%overhead_sun_factor = overhead_sun_factor |
---|
919 | this%max_gas_od_3d = max_gas_od_3d |
---|
920 | this%max_cloud_od = max_cloud_od |
---|
921 | this%max_3d_transfer_rate = max_3d_transfer_rate |
---|
922 | this%min_cloud_effective_size = max(1.0e-6_jprb, min_cloud_effective_size) |
---|
923 | this%cloud_type_name = cloud_type_name |
---|
924 | this%use_thick_cloud_spectral_averaging = use_thick_cloud_spectral_averaging |
---|
925 | if (encroachment_scaling >= 0.0_jprb) then |
---|
926 | this%overhang_factor = encroachment_scaling |
---|
927 | if (iverbose >= 1) then |
---|
928 | write(nulout, '(a)') 'Warning: radiation namelist parameter "encroachment_scaling" is deprecated: use "overhang_factor"' |
---|
929 | end if |
---|
930 | else |
---|
931 | this%overhang_factor = overhang_factor |
---|
932 | end if |
---|
933 | this%directory_name = directory_name |
---|
934 | this%cloud_pdf_override_file_name = cloud_pdf_override_file_name |
---|
935 | this%liq_optics_override_file_name = liq_optics_override_file_name |
---|
936 | this%ice_optics_override_file_name = ice_optics_override_file_name |
---|
937 | this%aerosol_optics_override_file_name = aerosol_optics_override_file_name |
---|
938 | this%gas_optics_sw_override_file_name = gas_optics_sw_override_file_name |
---|
939 | this%gas_optics_lw_override_file_name = gas_optics_lw_override_file_name |
---|
940 | this%use_general_cloud_optics = use_general_cloud_optics |
---|
941 | this%use_general_aerosol_optics = use_general_aerosol_optics |
---|
942 | this%cloud_fraction_threshold = cloud_fraction_threshold |
---|
943 | this%cloud_mixing_ratio_threshold = cloud_mixing_ratio_threshold |
---|
944 | this%n_aerosol_types = n_aerosol_types |
---|
945 | this%do_save_radiative_properties = do_save_radiative_properties |
---|
946 | this%do_lw_derivatives = do_lw_derivatives |
---|
947 | this%do_save_spectral_flux = do_save_spectral_flux |
---|
948 | this%do_save_gpoint_flux = do_save_gpoint_flux |
---|
949 | this%do_nearest_spectral_sw_albedo = do_nearest_spectral_sw_albedo |
---|
950 | this%do_nearest_spectral_lw_emiss = do_nearest_spectral_lw_emiss |
---|
951 | this%sw_albedo_wavelength_bound = sw_albedo_wavelength_bound |
---|
952 | this%lw_emiss_wavelength_bound = lw_emiss_wavelength_bound |
---|
953 | this%i_sw_albedo_index = i_sw_albedo_index |
---|
954 | this%i_lw_emiss_index = i_lw_emiss_index |
---|
955 | this%do_cloud_aerosol_per_lw_g_point = do_cloud_aerosol_per_lw_g_point |
---|
956 | this%do_cloud_aerosol_per_sw_g_point = do_cloud_aerosol_per_sw_g_point |
---|
957 | this%do_weighted_surface_mapping = do_weighted_surface_mapping |
---|
958 | |
---|
959 | if (do_save_gpoint_flux) then |
---|
960 | ! Saving the fluxes every g-point overrides saving as averaged |
---|
961 | ! in a band, but this%do_save_spectral_flux needs to be TRUE as |
---|
962 | ! it is tested inside the solver routines to decide whether to |
---|
963 | ! save anything |
---|
964 | this%do_save_spectral_flux = .true. |
---|
965 | end if |
---|
966 | |
---|
967 | ! Determine liquid optics model |
---|
968 | call get_enum_code(liquid_model_name, LiquidModelName, & |
---|
969 | & 'liquid_model_name', this%i_liq_model) |
---|
970 | |
---|
971 | ! Determine ice optics model |
---|
972 | call get_enum_code(ice_model_name, IceModelName, & |
---|
973 | & 'ice_model_name', this%i_ice_model) |
---|
974 | |
---|
975 | ! Determine gas optics model |
---|
976 | call get_enum_code(gas_model_name, GasModelName, & |
---|
977 | & 'gas_model_name', this%i_gas_model) |
---|
978 | |
---|
979 | ! Determine solvers |
---|
980 | call get_enum_code(sw_solver_name, SolverName, & |
---|
981 | & 'sw_solver_name', this%i_solver_sw) |
---|
982 | call get_enum_code(lw_solver_name, SolverName, & |
---|
983 | & 'lw_solver_name', this%i_solver_lw) |
---|
984 | |
---|
985 | if (len_trim(sw_encroachment_name) > 1) then |
---|
986 | call get_enum_code(sw_encroachment_name, EncroachmentName, & |
---|
987 | & 'sw_encroachment_name', this%i_3d_sw_entrapment) |
---|
988 | write(nulout, '(a)') 'Warning: radiation namelist string "sw_encroachment_name" is deprecated: use "sw_entrapment_name"' |
---|
989 | else |
---|
990 | call get_enum_code(sw_entrapment_name, EntrapmentName, & |
---|
991 | & 'sw_entrapment_name', this%i_3d_sw_entrapment) |
---|
992 | end if |
---|
993 | |
---|
994 | ! Determine overlap scheme |
---|
995 | call get_enum_code(overlap_scheme_name, OverlapName, & |
---|
996 | & 'overlap_scheme_name', this%i_overlap_scheme) |
---|
997 | |
---|
998 | ! Determine cloud PDF shape |
---|
999 | call get_enum_code(cloud_pdf_shape_name, PdfShapeName, & |
---|
1000 | & 'cloud_pdf_shape_name', this%i_cloud_pdf_shape) |
---|
1001 | |
---|
1002 | this%i_aerosol_type_map = 0 |
---|
1003 | if (this%use_aerosols) then |
---|
1004 | this%i_aerosol_type_map(1:n_aerosol_types) & |
---|
1005 | & = i_aerosol_type_map(1:n_aerosol_types) |
---|
1006 | end if |
---|
1007 | |
---|
1008 | ! Will clouds be used at all? |
---|
1009 | if ((this%do_sw .and. this%i_solver_sw /= ISolverCloudless) & |
---|
1010 | & .or. (this%do_lw .and. this%i_solver_lw /= ISolverCloudless)) then |
---|
1011 | this%do_clouds = .true. |
---|
1012 | else |
---|
1013 | this%do_clouds = .false. |
---|
1014 | end if |
---|
1015 | |
---|
1016 | if (this%i_gas_model == IGasModelIFSRRTMG & |
---|
1017 | & .and. (this%use_general_cloud_optics & |
---|
1018 | & .or. this%use_general_aerosol_optics)) then |
---|
1019 | if (this%do_sw .and. this%do_cloud_aerosol_per_sw_g_point) then |
---|
1020 | write(nulout,'(a)') 'Warning: RRTMG SW only supports cloud/aerosol/surface optical properties per band, not per g-point' |
---|
1021 | this%do_cloud_aerosol_per_sw_g_point = .false. |
---|
1022 | end if |
---|
1023 | if (this%do_lw .and. this%do_cloud_aerosol_per_lw_g_point) then |
---|
1024 | write(nulout,'(a)') 'Warning: RRTMG LW only supports cloud/aerosol/surface optical properties per band, not per g-point' |
---|
1025 | this%do_cloud_aerosol_per_lw_g_point = .false. |
---|
1026 | end if |
---|
1027 | end if |
---|
1028 | |
---|
1029 | |
---|
1030 | ! Normal subroutine exit |
---|
1031 | if (present(is_success)) then |
---|
1032 | is_success = .true. |
---|
1033 | end if |
---|
1034 | |
---|
1035 | if (lhook) call dr_hook('radiation_config:read',1,hook_handle) |
---|
1036 | |
---|
1037 | end subroutine read_config_from_namelist |
---|
1038 | |
---|
1039 | |
---|
1040 | !--------------------------------------------------------------------- |
---|
1041 | ! This routine is called by radiation_interface:setup_radiation and |
---|
1042 | ! it converts the user specified options into some more specific |
---|
1043 | ! data such as data file names |
---|
1044 | subroutine consolidate_config(this) |
---|
1045 | |
---|
1046 | use parkind1, only : jprd |
---|
1047 | use yomhook, only : lhook, dr_hook |
---|
1048 | use radiation_io, only : nulout, nulerr, radiation_abort |
---|
1049 | |
---|
1050 | class(config_type), intent(inout) :: this |
---|
1051 | |
---|
1052 | real(jprb) :: hook_handle |
---|
1053 | |
---|
1054 | if (lhook) call dr_hook('radiation_config:consolidate',0,hook_handle) |
---|
1055 | |
---|
1056 | ! Check consistency of models |
---|
1057 | if (this%do_canopy_fluxes_sw .and. .not. this%do_surface_sw_spectral_flux) then |
---|
1058 | if (this%iverbosesetup >= 1) then |
---|
1059 | write(nulout,'(a)') 'Warning: turning on do_surface_sw_spectral_flux as required by do_canopy_fluxes_sw' |
---|
1060 | end if |
---|
1061 | this%do_surface_sw_spectral_flux = .true. |
---|
1062 | end if |
---|
1063 | |
---|
1064 | ! Will clouds be used at all? |
---|
1065 | if ((this%do_sw .and. this%i_solver_sw /= ISolverCloudless) & |
---|
1066 | & .or. (this%do_lw .and. this%i_solver_lw /= ISolverCloudless)) then |
---|
1067 | this%do_clouds = .true. |
---|
1068 | else |
---|
1069 | this%do_clouds = .false. |
---|
1070 | end if |
---|
1071 | |
---|
1072 | ! SPARTACUS only works with Exp-Ran overlap scheme |
---|
1073 | if (( this%i_solver_sw == ISolverSPARTACUS & |
---|
1074 | & .or. this%i_solver_lw == ISolverSPARTACUS & |
---|
1075 | & .or. this%i_solver_sw == ISolverTripleclouds & |
---|
1076 | & .or. this%i_solver_lw == ISolverTripleclouds) & |
---|
1077 | & .and. this%i_overlap_scheme /= IOverlapExponentialRandom) then |
---|
1078 | write(nulerr,'(a)') '*** Error: SPARTACUS/Tripleclouds solvers can only do Exponential-Random overlap' |
---|
1079 | call radiation_abort('Radiation configuration error') |
---|
1080 | end if |
---|
1081 | |
---|
1082 | if (jprb < jprd .and. this%iverbosesetup >= 1 & |
---|
1083 | & .and. (this%i_solver_sw == ISolverSPARTACUS & |
---|
1084 | & .or. this%i_solver_lw == ISolverSPARTACUS)) then |
---|
1085 | write(nulout,'(a)') 'Warning: the SPARTACUS solver may be unstable in single precision' |
---|
1086 | end if |
---|
1087 | |
---|
1088 | ! If ecCKD gas optics model is being used set relevant file names |
---|
1089 | if (this%i_gas_model == IGasModelECCKD) then |
---|
1090 | |
---|
1091 | ! This gas optics model requires the general cloud and |
---|
1092 | ! aerosol optics settings |
---|
1093 | if (.not. this%use_general_cloud_optics) then |
---|
1094 | write(nulerr,'(a)') '*** Error: ecCKD gas optics model requires general cloud optics' |
---|
1095 | call radiation_abort('Radiation configuration error') |
---|
1096 | end if |
---|
1097 | if (.not. this%use_general_aerosol_optics) then |
---|
1098 | write(nulerr,'(a)') '*** Error: ecCKD gas optics model requires general aerosol optics' |
---|
1099 | call radiation_abort('Radiation configuration error') |
---|
1100 | end if |
---|
1101 | |
---|
1102 | if (len_trim(this%gas_optics_sw_override_file_name) > 0) then |
---|
1103 | if (this%gas_optics_sw_override_file_name(1:1) == '/') then |
---|
1104 | this%gas_optics_sw_file_name = trim(this%gas_optics_sw_override_file_name) |
---|
1105 | else |
---|
1106 | this%gas_optics_sw_file_name = trim(this%directory_name) & |
---|
1107 | & // '/' // trim(this%gas_optics_sw_override_file_name) |
---|
1108 | end if |
---|
1109 | else |
---|
1110 | ! In the IFS, the gas optics files should be specified in |
---|
1111 | ! ifs/module/radiation_setup.F90, not here |
---|
1112 | this%gas_optics_sw_file_name = trim(this%directory_name) & |
---|
1113 | & // "/ecckd-1.0_sw_climate_rgb-32b_ckd-definition.nc" |
---|
1114 | end if |
---|
1115 | |
---|
1116 | if (len_trim(this%gas_optics_lw_override_file_name) > 0) then |
---|
1117 | if (this%gas_optics_lw_override_file_name(1:1) == '/') then |
---|
1118 | this%gas_optics_lw_file_name = trim(this%gas_optics_lw_override_file_name) |
---|
1119 | else |
---|
1120 | this%gas_optics_lw_file_name = trim(this%directory_name) & |
---|
1121 | & // '/' // trim(this%gas_optics_lw_override_file_name) |
---|
1122 | end if |
---|
1123 | else |
---|
1124 | ! In the IFS, the gas optics files should be specified in |
---|
1125 | ! ifs/module/radiation_setup.F90, not here |
---|
1126 | this%gas_optics_lw_file_name = trim(this%directory_name) & |
---|
1127 | & // "/ecckd-1.0_lw_climate_fsck-32b_ckd-definition.nc" |
---|
1128 | end if |
---|
1129 | |
---|
1130 | end if |
---|
1131 | |
---|
1132 | ! Set aerosol optics file name |
---|
1133 | if (len_trim(this%aerosol_optics_override_file_name) > 0) then |
---|
1134 | if (this%aerosol_optics_override_file_name(1:1) == '/') then |
---|
1135 | this%aerosol_optics_file_name = trim(this%aerosol_optics_override_file_name) |
---|
1136 | else |
---|
1137 | this%aerosol_optics_file_name = trim(this%directory_name) & |
---|
1138 | & // '/' // trim(this%aerosol_optics_override_file_name) |
---|
1139 | end if |
---|
1140 | else |
---|
1141 | ! In the IFS, the aerosol optics file should be specified in |
---|
1142 | ! ifs/module/radiation_setup.F90, not here |
---|
1143 | if (this%use_general_aerosol_optics) then |
---|
1144 | this%aerosol_optics_file_name & |
---|
1145 | & = trim(this%directory_name) // "/aerosol_ifs_48R1.nc" |
---|
1146 | else |
---|
1147 | this%aerosol_optics_file_name & |
---|
1148 | & = trim(this%directory_name) // "/aerosol_ifs_rrtm_46R1_with_NI_AM.nc" |
---|
1149 | end if |
---|
1150 | end if |
---|
1151 | |
---|
1152 | ! Set liquid optics file name |
---|
1153 | if (len_trim(this%liq_optics_override_file_name) > 0) then |
---|
1154 | if (this%liq_optics_override_file_name(1:1) == '/') then |
---|
1155 | this%liq_optics_file_name = trim(this%liq_optics_override_file_name) |
---|
1156 | else |
---|
1157 | this%liq_optics_file_name = trim(this%directory_name) & |
---|
1158 | & // '/' // trim(this%liq_optics_override_file_name) |
---|
1159 | end if |
---|
1160 | else if (this%i_liq_model == ILiquidModelSOCRATES) then |
---|
1161 | this%liq_optics_file_name & |
---|
1162 | & = trim(this%directory_name) // "/socrates_droplet_scattering_rrtm.nc" |
---|
1163 | else if (this%i_liq_model == ILiquidModelSlingo) then |
---|
1164 | this%liq_optics_file_name & |
---|
1165 | & = trim(this%directory_name) // "/slingo_droplet_scattering_rrtm.nc" |
---|
1166 | end if |
---|
1167 | |
---|
1168 | ! Set ice optics file name |
---|
1169 | if (len_trim(this%ice_optics_override_file_name) > 0) then |
---|
1170 | if (this%ice_optics_override_file_name(1:1) == '/') then |
---|
1171 | this%ice_optics_file_name = trim(this%ice_optics_override_file_name) |
---|
1172 | else |
---|
1173 | this%ice_optics_file_name = trim(this%directory_name) & |
---|
1174 | & // '/' // trim(this%ice_optics_override_file_name) |
---|
1175 | end if |
---|
1176 | else if (this%i_ice_model == IIceModelFu) then |
---|
1177 | this%ice_optics_file_name & |
---|
1178 | & = trim(this%directory_name) // "/fu_ice_scattering_rrtm.nc" |
---|
1179 | else if (this%i_ice_model == IIceModelBaran) then |
---|
1180 | this%ice_optics_file_name & |
---|
1181 | & = trim(this%directory_name) // "/baran_ice_scattering_rrtm.nc" |
---|
1182 | else if (this%i_ice_model == IIceModelBaran2016) then |
---|
1183 | this%ice_optics_file_name & |
---|
1184 | & = trim(this%directory_name) // "/baran2016_ice_scattering_rrtm.nc" |
---|
1185 | else if (this%i_ice_model == IIceModelBaran2017) then |
---|
1186 | this%ice_optics_file_name & |
---|
1187 | & = trim(this%directory_name) // "/baran2017_ice_scattering_rrtm.nc" |
---|
1188 | else if (this%i_ice_model == IIceModelYi) then |
---|
1189 | this%ice_optics_file_name & |
---|
1190 | & = trim(this%directory_name) // "/yi_ice_scattering_rrtm.nc" |
---|
1191 | end if |
---|
1192 | |
---|
1193 | ! Set cloud-water PDF look-up table file name |
---|
1194 | if (len_trim(this%cloud_pdf_override_file_name) > 0) then |
---|
1195 | if (this%cloud_pdf_override_file_name(1:1) == '/') then |
---|
1196 | this%cloud_pdf_file_name = trim(this%cloud_pdf_override_file_name) |
---|
1197 | else |
---|
1198 | this%cloud_pdf_file_name = trim(this%directory_name) & |
---|
1199 | & // '/' // trim(this%cloud_pdf_override_file_name) |
---|
1200 | end if |
---|
1201 | elseif (this%i_cloud_pdf_shape == IPdfShapeLognormal) then |
---|
1202 | this%cloud_pdf_file_name = trim(this%directory_name) // "/mcica_lognormal.nc" |
---|
1203 | else |
---|
1204 | this%cloud_pdf_file_name = trim(this%directory_name) // "/mcica_gamma.nc" |
---|
1205 | end if |
---|
1206 | |
---|
1207 | ! Aerosol data |
---|
1208 | if (this%n_aerosol_types < 0 & |
---|
1209 | & .or. this%n_aerosol_types > NMaxAerosolTypes) then |
---|
1210 | write(nulerr,'(a,i0)') '*** Error: number of aerosol types must be between 0 and ', & |
---|
1211 | & NMaxAerosolTypes |
---|
1212 | call radiation_abort('Radiation configuration error') |
---|
1213 | end if |
---|
1214 | |
---|
1215 | if (this%use_aerosols .and. this%n_aerosol_types == 0) then |
---|
1216 | if (this%iverbosesetup >= 2) then |
---|
1217 | write(nulout, '(a)') 'Aerosols on but n_aerosol_types=0: optical properties to be computed outside ecRad' |
---|
1218 | end if |
---|
1219 | end if |
---|
1220 | |
---|
1221 | ! In the monochromatic case we need to override the liquid, ice |
---|
1222 | ! and aerosol models to ensure compatibility |
---|
1223 | if (this%i_gas_model == IGasModelMonochromatic) then |
---|
1224 | this%i_liq_model = ILiquidModelMonochromatic |
---|
1225 | this%i_ice_model = IIceModelMonochromatic |
---|
1226 | this%use_aerosols = .false. |
---|
1227 | end if |
---|
1228 | |
---|
1229 | ! McICA solver currently can't store full profiles of spectral fluxes |
---|
1230 | if (this%i_solver_sw == ISolverMcICA) then |
---|
1231 | this%do_save_spectral_flux = .false. |
---|
1232 | end if |
---|
1233 | |
---|
1234 | if (this%i_solver_sw == ISolverSPARTACUS .and. this%do_sw_delta_scaling_with_gases) then |
---|
1235 | write(nulerr,'(a)') '*** Error: SW delta-Eddington scaling with gases not possible with SPARTACUS solver' |
---|
1236 | call radiation_abort('Radiation configuration error') |
---|
1237 | end if |
---|
1238 | |
---|
1239 | if ((this%do_lw .and. this%do_sw) .and. & |
---|
1240 | & ( ( this%i_solver_sw == ISolverHomogeneous & |
---|
1241 | & .and. this%i_solver_lw /= ISolverHomogeneous) & |
---|
1242 | & .or. ( this%i_solver_sw /= ISolverHomogeneous & |
---|
1243 | & .and. this%i_solver_lw == ISolverHomogeneous) & |
---|
1244 | & ) ) then |
---|
1245 | write(nulerr,'(a)') '*** Error: if one solver is "Homogeneous" then the other must be' |
---|
1246 | call radiation_abort('Radiation configuration error') |
---|
1247 | end if |
---|
1248 | |
---|
1249 | ! Set is_homogeneous if the active solvers are homogeneous, since |
---|
1250 | ! this affects how "in-cloud" water contents are computed |
---|
1251 | if ( (this%do_sw .and. this%i_solver_sw == ISolverHomogeneous) & |
---|
1252 | & .or. (this%do_lw .and. this%i_solver_lw == ISolverHomogeneous)) then |
---|
1253 | this%is_homogeneous = .true. |
---|
1254 | end if |
---|
1255 | |
---|
1256 | this%is_consolidated = .true. |
---|
1257 | |
---|
1258 | if (lhook) call dr_hook('radiation_config:consolidate',1,hook_handle) |
---|
1259 | |
---|
1260 | end subroutine consolidate_config |
---|
1261 | |
---|
1262 | |
---|
1263 | !--------------------------------------------------------------------- |
---|
1264 | ! This subroutine sets members of the configuration object via |
---|
1265 | ! optional arguments, and any member not specified is left |
---|
1266 | ! untouched. Therefore, this should be called after taking data from |
---|
1267 | ! the namelist. |
---|
1268 | subroutine set_config(config, directory_name, & |
---|
1269 | & do_lw, do_sw, & |
---|
1270 | & do_lw_aerosol_scattering, do_lw_cloud_scattering, & |
---|
1271 | & do_sw_direct) |
---|
1272 | |
---|
1273 | class(config_type), intent(inout):: config |
---|
1274 | character(len=*), intent(in), optional :: directory_name |
---|
1275 | logical, intent(in), optional :: do_lw, do_sw |
---|
1276 | logical, intent(in), optional :: do_lw_aerosol_scattering |
---|
1277 | logical, intent(in), optional :: do_lw_cloud_scattering |
---|
1278 | logical, intent(in), optional :: do_sw_direct |
---|
1279 | |
---|
1280 | if (present(do_lw)) then |
---|
1281 | config%do_lw = do_lw |
---|
1282 | end if |
---|
1283 | |
---|
1284 | if(present(do_sw)) then |
---|
1285 | config%do_sw = do_sw |
---|
1286 | end if |
---|
1287 | |
---|
1288 | if (present(do_sw_direct)) then |
---|
1289 | config%do_sw_direct = do_sw_direct |
---|
1290 | end if |
---|
1291 | |
---|
1292 | if (present(directory_name)) then |
---|
1293 | config%directory_name = trim(directory_name) |
---|
1294 | end if |
---|
1295 | |
---|
1296 | if (present(do_lw_aerosol_scattering)) then |
---|
1297 | config%do_lw_aerosol_scattering = .true. |
---|
1298 | end if |
---|
1299 | |
---|
1300 | if (present(do_lw_cloud_scattering)) then |
---|
1301 | config%do_lw_cloud_scattering = .true. |
---|
1302 | end if |
---|
1303 | |
---|
1304 | end subroutine set_config |
---|
1305 | |
---|
1306 | |
---|
1307 | !--------------------------------------------------------------------- |
---|
1308 | ! Print configuration information to standard output |
---|
1309 | subroutine print_config(this, iverbose) |
---|
1310 | |
---|
1311 | use radiation_io, only : nulout |
---|
1312 | |
---|
1313 | class(config_type), intent(in) :: this |
---|
1314 | |
---|
1315 | integer, optional, intent(in) :: iverbose |
---|
1316 | integer :: i_local_verbose |
---|
1317 | |
---|
1318 | if (present(iverbose)) then |
---|
1319 | i_local_verbose = iverbose |
---|
1320 | else |
---|
1321 | i_local_verbose = this%iverbose |
---|
1322 | end if |
---|
1323 | |
---|
1324 | if (i_local_verbose >= 2) then |
---|
1325 | !--------------------------------------------------------------------- |
---|
1326 | write(nulout, '(a)') 'General settings:' |
---|
1327 | write(nulout, '(a,a,a)') ' Data files expected in "', & |
---|
1328 | & trim(this%directory_name), '"' |
---|
1329 | call print_logical(' Clear-sky calculations are', 'do_clear', this%do_clear) |
---|
1330 | call print_logical(' Saving intermediate radiative properties', & |
---|
1331 | & 'do_save_radiative_properties', this%do_save_radiative_properties) |
---|
1332 | call print_logical(' Saving spectral flux profiles', & |
---|
1333 | & 'do_save_spectral_flux', this%do_save_spectral_flux) |
---|
1334 | call print_enum(' Gas model is', GasModelName, 'i_gas_model', & |
---|
1335 | & this%i_gas_model) |
---|
1336 | call print_logical(' Aerosols are', 'use_aerosols', this%use_aerosols) |
---|
1337 | if (this%use_aerosols) then |
---|
1338 | call print_logical(' General aerosol optics', & |
---|
1339 | & 'use_general_aerosol_optics', this%use_general_aerosol_optics) |
---|
1340 | end if |
---|
1341 | if (this%do_clouds) then |
---|
1342 | write(nulout,'(a)') ' Clouds are ON' |
---|
1343 | else |
---|
1344 | write(nulout,'(a)') ' Clouds are OFF' |
---|
1345 | end if |
---|
1346 | if (this%do_sw) then |
---|
1347 | call print_logical(' Do cloud/aerosol/surface SW properties per g-point', & |
---|
1348 | & 'do_cloud_aerosol_per_sw_g_point', this%do_cloud_aerosol_per_sw_g_point) |
---|
1349 | end if |
---|
1350 | if (this%do_lw) then |
---|
1351 | call print_logical(' Do cloud/aerosol/surface LW properties per g-point', & |
---|
1352 | & 'do_cloud_aerosol_per_lw_g_point', this%do_cloud_aerosol_per_lw_g_point) |
---|
1353 | end if |
---|
1354 | |
---|
1355 | !--------------------------------------------------------------------- |
---|
1356 | write(nulout, '(a)') 'Surface settings:' |
---|
1357 | if (this%do_sw) then |
---|
1358 | call print_logical(' Saving surface shortwave spectral fluxes', & |
---|
1359 | & 'do_surface_sw_spectral_flux', this%do_surface_sw_spectral_flux) |
---|
1360 | call print_logical(' Saving surface shortwave fluxes in abledo bands', & |
---|
1361 | & 'do_canopy_fluxes_sw', this%do_canopy_fluxes_sw) |
---|
1362 | end if |
---|
1363 | if (this%do_lw) then |
---|
1364 | call print_logical(' Saving surface longwave fluxes in emissivity bands', & |
---|
1365 | & 'do_canopy_fluxes_lw', this%do_canopy_fluxes_lw) |
---|
1366 | call print_logical(' Longwave derivative calculation is', & |
---|
1367 | & 'do_lw_derivatives',this%do_lw_derivatives) |
---|
1368 | end if |
---|
1369 | if (this%do_sw) then |
---|
1370 | call print_logical(' Nearest-neighbour spectral albedo mapping', & |
---|
1371 | & 'do_nearest_spectral_sw_albedo', this%do_nearest_spectral_sw_albedo) |
---|
1372 | end if |
---|
1373 | if (this%do_lw) then |
---|
1374 | call print_logical(' Nearest-neighbour spectral emissivity mapping', & |
---|
1375 | & 'do_nearest_spectral_lw_emiss', this%do_nearest_spectral_lw_emiss) |
---|
1376 | end if |
---|
1377 | call print_logical(' Planck-weighted surface albedo/emiss mapping', & |
---|
1378 | & 'do_weighted_surface_mapping', this%do_weighted_surface_mapping) |
---|
1379 | |
---|
1380 | !--------------------------------------------------------------------- |
---|
1381 | if (this%do_clouds) then |
---|
1382 | write(nulout, '(a)') 'Cloud settings:' |
---|
1383 | call print_real(' Cloud fraction threshold', & |
---|
1384 | & 'cloud_fraction_threshold', this%cloud_fraction_threshold) |
---|
1385 | call print_real(' Cloud mixing-ratio threshold', & |
---|
1386 | & 'cloud_mixing_ratio_threshold', this%cloud_mixing_ratio_threshold) |
---|
1387 | call print_logical(' General cloud optics', & |
---|
1388 | & 'use_general_cloud_optics', this%use_general_cloud_optics) |
---|
1389 | if (.not. this%use_general_cloud_optics) then |
---|
1390 | call print_enum(' Liquid optics scheme is', LiquidModelName, & |
---|
1391 | & 'i_liq_model',this%i_liq_model) |
---|
1392 | call print_enum(' Ice optics scheme is', IceModelName, & |
---|
1393 | & 'i_ice_model',this%i_ice_model) |
---|
1394 | if (this%i_ice_model == IIceModelFu) then |
---|
1395 | call print_logical(' Longwave ice optics bug in Fu scheme is', & |
---|
1396 | & 'do_fu_lw_ice_optics_bug',this%do_fu_lw_ice_optics_bug) |
---|
1397 | end if |
---|
1398 | end if |
---|
1399 | call print_enum(' Cloud overlap scheme is', OverlapName, & |
---|
1400 | & 'i_overlap_scheme',this%i_overlap_scheme) |
---|
1401 | call print_logical(' Use "beta" overlap parameter is', & |
---|
1402 | & 'use_beta_overlap', this%use_beta_overlap) |
---|
1403 | call print_enum(' Cloud PDF shape is', PdfShapeName, & |
---|
1404 | & 'i_cloud_pdf_shape',this%i_cloud_pdf_shape) |
---|
1405 | call print_real(' Cloud inhom decorrelation scaling', & |
---|
1406 | & 'cloud_inhom_decorr_scaling', this%cloud_inhom_decorr_scaling) |
---|
1407 | end if |
---|
1408 | |
---|
1409 | !--------------------------------------------------------------------- |
---|
1410 | write(nulout, '(a)') 'Solver settings:' |
---|
1411 | if (this%do_sw) then |
---|
1412 | call print_enum(' Shortwave solver is', SolverName, & |
---|
1413 | & 'i_solver_sw', this%i_solver_sw) |
---|
1414 | |
---|
1415 | if (this%i_gas_model == IGasModelMonochromatic) then |
---|
1416 | call print_real(' Shortwave atmospheric optical depth', & |
---|
1417 | & 'mono_sw_total_od', this%mono_sw_total_od) |
---|
1418 | call print_real(' Shortwave particulate single-scattering albedo', & |
---|
1419 | & 'mono_sw_single_scattering_albedo', & |
---|
1420 | & this%mono_sw_single_scattering_albedo) |
---|
1421 | call print_real(' Shortwave particulate asymmetry factor', & |
---|
1422 | & 'mono_sw_asymmetry_factor', & |
---|
1423 | & this%mono_sw_asymmetry_factor) |
---|
1424 | end if |
---|
1425 | call print_logical(' Shortwave delta scaling after merge with gases', & |
---|
1426 | & 'do_sw_delta_scaling_with_gases', & |
---|
1427 | & this%do_sw_delta_scaling_with_gases) |
---|
1428 | else |
---|
1429 | call print_logical(' Shortwave calculations are','do_sw',this%do_sw) |
---|
1430 | end if |
---|
1431 | |
---|
1432 | if (this%do_lw) then |
---|
1433 | call print_enum(' Longwave solver is', SolverName, 'i_solver_lw', & |
---|
1434 | & this%i_solver_lw) |
---|
1435 | |
---|
1436 | if (this%i_gas_model == IGasModelMonochromatic) then |
---|
1437 | if (this%mono_lw_wavelength > 0.0_jprb) then |
---|
1438 | call print_real(' Longwave effective wavelength (m)', & |
---|
1439 | & 'mono_lw_wavelength', this%mono_lw_wavelength) |
---|
1440 | else |
---|
1441 | write(nulout,'(a)') ' Longwave fluxes are broadband (mono_lw_wavelength<=0)' |
---|
1442 | end if |
---|
1443 | call print_real(' Longwave atmospheric optical depth', & |
---|
1444 | & 'mono_lw_total_od', this%mono_lw_total_od) |
---|
1445 | call print_real(' Longwave particulate single-scattering albedo', & |
---|
1446 | & 'mono_lw_single_scattering_albedo', & |
---|
1447 | & this%mono_lw_single_scattering_albedo) |
---|
1448 | call print_real(' Longwave particulate asymmetry factor', & |
---|
1449 | & 'mono_lw_asymmetry_factor', & |
---|
1450 | & this%mono_lw_asymmetry_factor) |
---|
1451 | end if |
---|
1452 | call print_logical(' Longwave cloud scattering is', & |
---|
1453 | & 'do_lw_cloud_scattering',this%do_lw_cloud_scattering) |
---|
1454 | call print_logical(' Longwave aerosol scattering is', & |
---|
1455 | & 'do_lw_aerosol_scattering',this%do_lw_aerosol_scattering) |
---|
1456 | else |
---|
1457 | call print_logical(' Longwave calculations are','do_lw', this%do_lw) |
---|
1458 | end if |
---|
1459 | |
---|
1460 | if (this%i_solver_sw == ISolverSpartacus & |
---|
1461 | & .or. this%i_solver_lw == ISolverSpartacus) then |
---|
1462 | write(nulout, '(a)') ' SPARTACUS options:' |
---|
1463 | call print_integer(' Number of regions', 'n_regions', this%nregions) |
---|
1464 | call print_real(' Max cloud optical depth per layer', & |
---|
1465 | & 'max_cloud_od', this%max_cloud_od) |
---|
1466 | call print_enum(' Shortwave entrapment is', EntrapmentName, & |
---|
1467 | & 'i_3d_sw_entrapment', this%i_3d_sw_entrapment) |
---|
1468 | call print_logical(' Multilayer longwave horizontal transport is', & |
---|
1469 | 'do_3d_lw_multilayer_effects', this%do_3d_lw_multilayer_effects) |
---|
1470 | call print_logical(' Use matrix exponential everywhere is', & |
---|
1471 | & 'use_expm_everywhere', this%use_expm_everywhere) |
---|
1472 | call print_logical(' 3D effects are', 'do_3d_effects', & |
---|
1473 | & this%do_3d_effects) |
---|
1474 | |
---|
1475 | if (this%do_3d_effects) then |
---|
1476 | call print_logical(' Longwave side emissivity parameterization is', & |
---|
1477 | & 'do_lw_side_emissivity', this%do_lw_side_emissivity) |
---|
1478 | call print_real(' Clear-to-thick edge fraction is', & |
---|
1479 | & 'clear_to_thick_fraction', this%clear_to_thick_fraction) |
---|
1480 | call print_real(' Overhead sun factor is', & |
---|
1481 | & 'overhead_sun_factor', this%overhead_sun_factor) |
---|
1482 | call print_real(' Max gas optical depth for 3D effects', & |
---|
1483 | & 'max_gas_od_3d', this%max_gas_od_3d) |
---|
1484 | call print_real(' Max 3D transfer rate', & |
---|
1485 | & 'max_3d_transfer_rate', this%max_3d_transfer_rate) |
---|
1486 | call print_real(' Min cloud effective size (m)', & |
---|
1487 | & 'min_cloud_effective_size', this%min_cloud_effective_size) |
---|
1488 | call print_real(' Overhang factor', & |
---|
1489 | & 'overhang_factor', this%overhang_factor) |
---|
1490 | end if |
---|
1491 | |
---|
1492 | else if (this%i_solver_sw == ISolverMcICA & |
---|
1493 | & .or. this%i_solver_lw == ISolverMcICA) then |
---|
1494 | call print_logical(' Use vectorizable McICA cloud generator', & |
---|
1495 | & 'use_vectorizable_generator', this%use_vectorizable_generator) |
---|
1496 | end if |
---|
1497 | |
---|
1498 | end if |
---|
1499 | |
---|
1500 | end subroutine print_config |
---|
1501 | |
---|
1502 | |
---|
1503 | |
---|
1504 | !--------------------------------------------------------------------- |
---|
1505 | ! In order to estimate UV and photosynthetically active radiation, |
---|
1506 | ! we need weighted sum of fluxes considering wavelength range |
---|
1507 | ! required. This routine returns information for how to correctly |
---|
1508 | ! weight output spectral fluxes for a range of input wavelengths. |
---|
1509 | ! Note that this is approximate; internally it may be assumed that |
---|
1510 | ! the energy is uniformly distributed in wavenumber space, for |
---|
1511 | ! example. If the character string "weighting_name" is present, and |
---|
1512 | ! iverbose>=2, then information on the weighting will be provided on |
---|
1513 | ! nulout. |
---|
1514 | subroutine get_sw_weights(this, wavelength1, wavelength2, & |
---|
1515 | & nweights, iband, weight, weighting_name) |
---|
1516 | |
---|
1517 | use parkind1, only : jprb |
---|
1518 | use radiation_io, only : nulout, nulerr, radiation_abort |
---|
1519 | use radiation_spectral_definition, only : SolarReferenceTemperature |
---|
1520 | |
---|
1521 | class(config_type), intent(in) :: this |
---|
1522 | ! Range of wavelengths to get weights for (m) |
---|
1523 | real(jprb), intent(in) :: wavelength1, wavelength2 |
---|
1524 | ! Output number of weights needed |
---|
1525 | integer, intent(out) :: nweights |
---|
1526 | ! Only write to the first nweights of these arrays: they contain |
---|
1527 | ! the indices to the non-zero bands, and the weight in each of |
---|
1528 | ! those bands |
---|
1529 | integer, intent(out) :: iband(:) |
---|
1530 | real(jprb), intent(out) :: weight(:) |
---|
1531 | character(len=*), optional, intent(in) :: weighting_name |
---|
1532 | |
---|
1533 | real(jprb), allocatable :: mapping(:,:) |
---|
1534 | |
---|
1535 | ! Internally we deal with wavenumber |
---|
1536 | real(jprb) :: wavenumber1, wavenumber2 ! cm-1 |
---|
1537 | |
---|
1538 | real(jprb) :: wavenumber1_band, wavenumber2_band ! cm-1 |
---|
1539 | |
---|
1540 | integer :: jband ! Loop index for spectral band |
---|
1541 | |
---|
1542 | if (this%n_bands_sw <= 0) then |
---|
1543 | write(nulerr,'(a)') '*** Error: get_sw_weights called before number of shortwave bands set' |
---|
1544 | call radiation_abort('Radiation configuration error') |
---|
1545 | end if |
---|
1546 | |
---|
1547 | ! Convert wavelength range (m) to wavenumber (cm-1) |
---|
1548 | wavenumber1 = 0.01_jprb / wavelength2 |
---|
1549 | wavenumber2 = 0.01_jprb / wavelength1 |
---|
1550 | |
---|
1551 | call this%gas_optics_sw%spectral_def%calc_mapping_from_bands(SolarReferenceTemperature, & |
---|
1552 | & [wavelength1, wavelength2], [1, 2, 3], mapping, & |
---|
1553 | & use_bands=(.not. this%do_cloud_aerosol_per_sw_g_point), use_fluxes=.true.) |
---|
1554 | |
---|
1555 | ! "mapping" now contains a 3*nband matrix, where mapping(2,:) |
---|
1556 | ! contains the weights of interest. We now find the non-zero weights |
---|
1557 | nweights = 0 |
---|
1558 | do jband = 1,size(mapping,2) |
---|
1559 | if (mapping(2,jband) > 0.0_jprb) then |
---|
1560 | nweights = nweights+1 |
---|
1561 | iband(nweights) = jband; |
---|
1562 | weight(nweights) = mapping(2,jband) |
---|
1563 | end if |
---|
1564 | end do |
---|
1565 | |
---|
1566 | if (nweights == 0) then |
---|
1567 | write(nulerr,'(a,e8.4,a,e8.4,a)') '*** Error: wavelength range ', & |
---|
1568 | & wavelength1, ' to ', wavelength2, ' m is outside shortwave band' |
---|
1569 | call radiation_abort('Radiation configuration error') |
---|
1570 | else if (this%iverbosesetup >= 2 .and. present(weighting_name)) then |
---|
1571 | write(nulout,'(a,a,a,f6.0,a,f6.0,a)') 'Spectral weights for ', & |
---|
1572 | & weighting_name, ' (', wavenumber1, ' to ', & |
---|
1573 | & wavenumber2, ' cm-1):' |
---|
1574 | if (this%do_cloud_aerosol_per_sw_g_point) then |
---|
1575 | do jband = 1, nweights |
---|
1576 | write(nulout, '(a,i0,a,f8.4)') ' Shortwave g point ', iband(jband), ': ', weight(jband) |
---|
1577 | end do |
---|
1578 | else |
---|
1579 | do jband = 1, nweights |
---|
1580 | wavenumber1_band = this%gas_optics_sw%spectral_def%wavenumber1_band(iband(jband)) |
---|
1581 | wavenumber2_band = this%gas_optics_sw%spectral_def%wavenumber2_band(iband(jband)) |
---|
1582 | write(nulout, '(a,i0,a,f6.0,a,f6.0,a,f8.4)') ' Shortwave band ', & |
---|
1583 | & iband(jband), ' (', wavenumber1_band, ' to ', & |
---|
1584 | & wavenumber2_band, ' cm-1): ', weight(jband) |
---|
1585 | end do |
---|
1586 | end if |
---|
1587 | end if |
---|
1588 | |
---|
1589 | end subroutine get_sw_weights |
---|
1590 | |
---|
1591 | |
---|
1592 | !--------------------------------------------------------------------- |
---|
1593 | ! The input shortwave surface albedo coming in is likely to be in |
---|
1594 | ! different spectral intervals to the gas model in the radiation |
---|
1595 | ! scheme. We assume that the input albedo is defined within |
---|
1596 | ! "ninterval" spectral intervals covering the wavelength range 0 to |
---|
1597 | ! infinity, but allow for the possibility that two intervals may be |
---|
1598 | ! indexed back to the same albedo band. |
---|
1599 | subroutine define_sw_albedo_intervals(this, ninterval, wavelength_bound, & |
---|
1600 | & i_intervals, do_nearest) |
---|
1601 | |
---|
1602 | use radiation_io, only : nulerr, radiation_abort |
---|
1603 | use radiation_spectral_definition, only : SolarReferenceTemperature |
---|
1604 | |
---|
1605 | class(config_type), intent(inout) :: this |
---|
1606 | ! Number of spectral intervals in which albedo is defined |
---|
1607 | integer, intent(in) :: ninterval |
---|
1608 | ! Monotonically increasing wavelength bounds between intervals, |
---|
1609 | ! not including the outer bounds (which are assumed to be zero and |
---|
1610 | ! infinity) |
---|
1611 | real(jprb), intent(in) :: wavelength_bound(ninterval-1) |
---|
1612 | ! The albedo indices corresponding to each interval |
---|
1613 | integer, intent(in) :: i_intervals(ninterval) |
---|
1614 | logical, optional, intent(in) :: do_nearest |
---|
1615 | |
---|
1616 | if (ninterval > NMaxAlbedoIntervals) then |
---|
1617 | write(nulerr,'(a,i0,a,i0)') '*** Error: ', ninterval, & |
---|
1618 | & ' albedo intervals exceeds maximum of ', NMaxAlbedoIntervals |
---|
1619 | call radiation_abort('Radiation configuration error') |
---|
1620 | end if |
---|
1621 | |
---|
1622 | if (present(do_nearest)) then |
---|
1623 | this%do_nearest_spectral_sw_albedo = do_nearest |
---|
1624 | else |
---|
1625 | this%do_nearest_spectral_sw_albedo = .false. |
---|
1626 | end if |
---|
1627 | this%sw_albedo_wavelength_bound(1:ninterval-1) = wavelength_bound(1:ninterval-1) |
---|
1628 | this%sw_albedo_wavelength_bound(ninterval:) = -1.0_jprb |
---|
1629 | this%i_sw_albedo_index(1:ninterval) = i_intervals(1:ninterval) |
---|
1630 | this%i_sw_albedo_index(ninterval+1:) = 0 |
---|
1631 | |
---|
1632 | ! If this routine is called before setup_radiation then the |
---|
1633 | ! spectral intervals are not yet known |
---|
1634 | ! consolidate_sw_albedo_intervals is called later. Otherwise it |
---|
1635 | ! is called immediately and overwrites any existing mapping. |
---|
1636 | if (this%is_consolidated) then |
---|
1637 | call this%consolidate_sw_albedo_intervals |
---|
1638 | end if |
---|
1639 | |
---|
1640 | end subroutine define_sw_albedo_intervals |
---|
1641 | |
---|
1642 | |
---|
1643 | !--------------------------------------------------------------------- |
---|
1644 | ! As define_sw_albedo_intervals but for longwave emissivity |
---|
1645 | subroutine define_lw_emiss_intervals(this, ninterval, wavelength_bound, & |
---|
1646 | & i_intervals, do_nearest) |
---|
1647 | |
---|
1648 | use radiation_io, only : nulerr, radiation_abort |
---|
1649 | use radiation_spectral_definition, only : TerrestrialReferenceTemperature |
---|
1650 | |
---|
1651 | class(config_type), intent(inout) :: this |
---|
1652 | ! Number of spectral intervals in which emissivity is defined |
---|
1653 | integer, intent(in) :: ninterval |
---|
1654 | ! Monotonically increasing wavelength bounds between intervals, |
---|
1655 | ! not including the outer bounds (which are assumed to be zero and |
---|
1656 | ! infinity) |
---|
1657 | real(jprb), intent(in) :: wavelength_bound(ninterval-1) |
---|
1658 | ! The emissivity indices corresponding to each interval |
---|
1659 | integer, intent(in) :: i_intervals(ninterval) |
---|
1660 | logical, optional, intent(in) :: do_nearest |
---|
1661 | |
---|
1662 | if (ninterval > NMaxAlbedoIntervals) then |
---|
1663 | write(nulerr,'(a,i0,a,i0)') '*** Error: ', ninterval, & |
---|
1664 | & ' emissivity intervals exceeds maximum of ', NMaxAlbedoIntervals |
---|
1665 | call radiation_abort('Radiation configuration error') |
---|
1666 | end if |
---|
1667 | |
---|
1668 | if (present(do_nearest)) then |
---|
1669 | this%do_nearest_spectral_lw_emiss = do_nearest |
---|
1670 | else |
---|
1671 | this%do_nearest_spectral_lw_emiss = .false. |
---|
1672 | end if |
---|
1673 | this%lw_emiss_wavelength_bound(1:ninterval-1) = wavelength_bound(1:ninterval-1) |
---|
1674 | this%lw_emiss_wavelength_bound(ninterval:) = -1.0_jprb |
---|
1675 | this%i_lw_emiss_index(1:ninterval) = i_intervals(1:ninterval) |
---|
1676 | this%i_lw_emiss_index(ninterval+1:) = 0 |
---|
1677 | |
---|
1678 | if (this%is_consolidated) then |
---|
1679 | call this%consolidate_lw_emiss_intervals |
---|
1680 | end if |
---|
1681 | |
---|
1682 | end subroutine define_lw_emiss_intervals |
---|
1683 | |
---|
1684 | |
---|
1685 | !--------------------------------------------------------------------- |
---|
1686 | ! Set the wavelengths (m) at which monochromatic aerosol properties |
---|
1687 | ! are required. This routine must be called before consolidation of |
---|
1688 | ! settings. |
---|
1689 | subroutine set_aerosol_wavelength_mono(this, wavelength_mono) |
---|
1690 | |
---|
1691 | use radiation_io, only : nulerr, radiation_abort |
---|
1692 | |
---|
1693 | class(config_type), intent(inout) :: this |
---|
1694 | real(jprb), intent(in) :: wavelength_mono(:) |
---|
1695 | |
---|
1696 | if (this%is_consolidated) then |
---|
1697 | write(nulerr,'(a)') '*** Errror: set_aerosol_wavelength_mono must be called before setup_radiation' |
---|
1698 | call radiation_abort('Radiation configuration error') |
---|
1699 | end if |
---|
1700 | |
---|
1701 | if (allocated(this%aerosol_optics%wavelength_mono)) then |
---|
1702 | deallocate(this%aerosol_optics%wavelength_mono) |
---|
1703 | end if |
---|
1704 | allocate(this%aerosol_optics%wavelength_mono(size(wavelength_mono))) |
---|
1705 | this%aerosol_optics%wavelength_mono = wavelength_mono |
---|
1706 | |
---|
1707 | end subroutine set_aerosol_wavelength_mono |
---|
1708 | |
---|
1709 | |
---|
1710 | !--------------------------------------------------------------------- |
---|
1711 | ! Consolidate the surface shortwave albedo intervals with the |
---|
1712 | ! band/g-point intervals |
---|
1713 | subroutine consolidate_sw_albedo_intervals(this) |
---|
1714 | |
---|
1715 | use radiation_io, only : nulout |
---|
1716 | use radiation_spectral_definition, only : SolarReferenceTemperature |
---|
1717 | |
---|
1718 | class(config_type), intent(inout) :: this |
---|
1719 | |
---|
1720 | integer :: ninterval, jint, jband |
---|
1721 | |
---|
1722 | ! Count the number of albedo/emissivity intervals |
---|
1723 | ninterval = 0 |
---|
1724 | do jint = 1,NMaxAlbedoIntervals |
---|
1725 | if (this%i_sw_albedo_index(jint) > 0) then |
---|
1726 | ninterval = jint |
---|
1727 | else |
---|
1728 | exit |
---|
1729 | end if |
---|
1730 | end do |
---|
1731 | |
---|
1732 | if (ninterval < 1) then |
---|
1733 | ! The user has not specified shortwave albedo bands - assume |
---|
1734 | ! only one |
---|
1735 | ninterval = 1 |
---|
1736 | this%i_sw_albedo_index(1) = 1 |
---|
1737 | this%i_sw_albedo_index(2:) = 0 |
---|
1738 | if (this%use_canopy_full_spectrum_sw) then |
---|
1739 | this%n_canopy_bands_sw = this%n_g_sw |
---|
1740 | else |
---|
1741 | this%n_canopy_bands_sw = 1 |
---|
1742 | end if |
---|
1743 | else |
---|
1744 | if (this%use_canopy_full_spectrum_sw) then |
---|
1745 | this%n_canopy_bands_sw = this%n_g_sw |
---|
1746 | else |
---|
1747 | this%n_canopy_bands_sw = maxval(this%i_sw_albedo_index(1:ninterval)) |
---|
1748 | end if |
---|
1749 | end if |
---|
1750 | |
---|
1751 | if (this%do_weighted_surface_mapping) then |
---|
1752 | call this%gas_optics_sw%spectral_def%calc_mapping_from_bands(SolarReferenceTemperature, & |
---|
1753 | & this%sw_albedo_wavelength_bound(1:ninterval-1), this%i_sw_albedo_index(1:ninterval), & |
---|
1754 | & this%sw_albedo_weights, use_bands=(.not. this%do_cloud_aerosol_per_sw_g_point)) |
---|
1755 | else |
---|
1756 | ! Weight each wavenumber equally as in IFS Cycles 48 and earlier |
---|
1757 | call this%gas_optics_sw%spectral_def%calc_mapping_from_bands(-1.0_jprb, & |
---|
1758 | & this%sw_albedo_wavelength_bound(1:ninterval-1), this%i_sw_albedo_index(1:ninterval), & |
---|
1759 | & this%sw_albedo_weights, use_bands=(.not. this%do_cloud_aerosol_per_sw_g_point)) |
---|
1760 | end if |
---|
1761 | |
---|
1762 | ! Legacy method uses input band with largest weight |
---|
1763 | if (this%do_nearest_spectral_sw_albedo) then |
---|
1764 | allocate(this%i_albedo_from_band_sw(this%n_bands_sw)) |
---|
1765 | this%i_albedo_from_band_sw = maxloc(this%sw_albedo_weights, dim=1) |
---|
1766 | end if |
---|
1767 | |
---|
1768 | if (this%iverbosesetup >= 2) then |
---|
1769 | write(nulout, '(a)') 'Surface shortwave albedo' |
---|
1770 | if (.not. this%do_nearest_spectral_sw_albedo) then |
---|
1771 | call this%gas_optics_sw%spectral_def%print_mapping_from_bands(this%sw_albedo_weights, & |
---|
1772 | & use_bands=(.not. this%do_cloud_aerosol_per_sw_g_point)) |
---|
1773 | else if (ninterval <= 1) then |
---|
1774 | write(nulout, '(a)') 'All shortwave bands will use the same albedo' |
---|
1775 | else |
---|
1776 | write(nulout, '(a,i0,a)',advance='no') 'Mapping from ', size(this%i_albedo_from_band_sw), & |
---|
1777 | & ' shortwave intervals to albedo intervals:' |
---|
1778 | do jband = 1,size(this%i_albedo_from_band_sw) |
---|
1779 | write(nulout,'(a,i0)',advance='no') ' ', this%i_albedo_from_band_sw(jband) |
---|
1780 | end do |
---|
1781 | write(nulout, '()') |
---|
1782 | end if |
---|
1783 | end if |
---|
1784 | |
---|
1785 | end subroutine consolidate_sw_albedo_intervals |
---|
1786 | |
---|
1787 | |
---|
1788 | !--------------------------------------------------------------------- |
---|
1789 | ! Consolidate the surface longwave emissivity intervals with the |
---|
1790 | ! band/g-point intervals |
---|
1791 | subroutine consolidate_lw_emiss_intervals(this) |
---|
1792 | |
---|
1793 | use radiation_io, only : nulout |
---|
1794 | use radiation_spectral_definition, only : TerrestrialReferenceTemperature |
---|
1795 | |
---|
1796 | class(config_type), intent(inout) :: this |
---|
1797 | |
---|
1798 | integer :: ninterval, jint, jband |
---|
1799 | |
---|
1800 | ! Count the number of albedo/emissivity intervals |
---|
1801 | ninterval = 0 |
---|
1802 | do jint = 1,NMaxAlbedoIntervals |
---|
1803 | if (this%i_lw_emiss_index(jint) > 0) then |
---|
1804 | ninterval = jint |
---|
1805 | else |
---|
1806 | exit |
---|
1807 | end if |
---|
1808 | end do |
---|
1809 | |
---|
1810 | if (ninterval < 1) then |
---|
1811 | ! The user has not specified longwave emissivity bands - assume |
---|
1812 | ! only one |
---|
1813 | ninterval = 1 |
---|
1814 | this%i_lw_emiss_index(1) = 1 |
---|
1815 | this%i_lw_emiss_index(2:) = 0 |
---|
1816 | if (this%use_canopy_full_spectrum_sw) then |
---|
1817 | this%n_canopy_bands_lw = this%n_g_lw |
---|
1818 | else |
---|
1819 | this%n_canopy_bands_lw = 1 |
---|
1820 | end if |
---|
1821 | else |
---|
1822 | if (this%use_canopy_full_spectrum_lw) then |
---|
1823 | this%n_canopy_bands_lw = this%n_g_lw |
---|
1824 | else |
---|
1825 | this%n_canopy_bands_lw = maxval(this%i_lw_emiss_index(1:ninterval)) |
---|
1826 | end if |
---|
1827 | end if |
---|
1828 | |
---|
1829 | if (this%do_weighted_surface_mapping) then |
---|
1830 | call this%gas_optics_lw%spectral_def%calc_mapping_from_bands(TerrestrialReferenceTemperature, & |
---|
1831 | & this%lw_emiss_wavelength_bound(1:ninterval-1), this%i_lw_emiss_index(1:ninterval), & |
---|
1832 | & this%lw_emiss_weights, use_bands=(.not. this%do_cloud_aerosol_per_lw_g_point)) |
---|
1833 | else |
---|
1834 | ! Weight each wavenumber equally as in IFS Cycles 48 and earlier |
---|
1835 | call this%gas_optics_lw%spectral_def%calc_mapping_from_bands(-1.0_jprb, & |
---|
1836 | & this%lw_emiss_wavelength_bound(1:ninterval-1), this%i_lw_emiss_index(1:ninterval), & |
---|
1837 | & this%lw_emiss_weights, use_bands=(.not. this%do_cloud_aerosol_per_lw_g_point)) |
---|
1838 | end if |
---|
1839 | |
---|
1840 | ! Legacy method uses input band with largest weight |
---|
1841 | if (this%do_nearest_spectral_lw_emiss) then |
---|
1842 | allocate(this%i_emiss_from_band_lw(this%n_bands_lw)) |
---|
1843 | this%i_emiss_from_band_lw = maxloc(this%lw_emiss_weights, dim=1) |
---|
1844 | end if |
---|
1845 | |
---|
1846 | if (this%iverbosesetup >= 2) then |
---|
1847 | write(nulout, '(a)') 'Surface longwave emissivity' |
---|
1848 | if (.not. this%do_nearest_spectral_lw_emiss) then |
---|
1849 | call this%gas_optics_lw%spectral_def%print_mapping_from_bands(this%lw_emiss_weights, & |
---|
1850 | & use_bands=(.not. this%do_cloud_aerosol_per_lw_g_point)) |
---|
1851 | else if (ninterval <= 1) then |
---|
1852 | write(nulout, '(a)') 'All longwave bands will use the same emissivty' |
---|
1853 | else |
---|
1854 | write(nulout, '(a,i0,a)',advance='no') 'Mapping from ', size(this%i_emiss_from_band_lw), & |
---|
1855 | & ' longwave intervals to emissivity intervals:' |
---|
1856 | do jband = 1,size(this%i_emiss_from_band_lw) |
---|
1857 | write(nulout,'(a,i0)',advance='no') ' ', this%i_emiss_from_band_lw(jband) |
---|
1858 | end do |
---|
1859 | write(nulout, '()') |
---|
1860 | end if |
---|
1861 | end if |
---|
1862 | |
---|
1863 | end subroutine consolidate_lw_emiss_intervals |
---|
1864 | |
---|
1865 | |
---|
1866 | !--------------------------------------------------------------------- |
---|
1867 | ! Return the 0-based index for str in enum_str, or abort if it is |
---|
1868 | ! not found |
---|
1869 | subroutine get_enum_code(str, enum_str, var_name, icode) |
---|
1870 | |
---|
1871 | use radiation_io, only : nulerr, radiation_abort |
---|
1872 | |
---|
1873 | character(len=*), intent(in) :: str |
---|
1874 | character(len=*), intent(in) :: enum_str(0:) |
---|
1875 | character(len=*), intent(in) :: var_name |
---|
1876 | integer, intent(out) :: icode |
---|
1877 | |
---|
1878 | integer :: jc |
---|
1879 | logical :: is_not_found |
---|
1880 | |
---|
1881 | ! If string is empty then we don't modify icode but assume it has |
---|
1882 | ! a sensible default value |
---|
1883 | if (len_trim(str) > 1) then |
---|
1884 | is_not_found = .true. |
---|
1885 | |
---|
1886 | do jc = 0,size(enum_str)-1 |
---|
1887 | if (trim(str) == trim(enum_str(jc))) then |
---|
1888 | icode = jc |
---|
1889 | is_not_found = .false. |
---|
1890 | exit |
---|
1891 | end if |
---|
1892 | end do |
---|
1893 | if (is_not_found) then |
---|
1894 | write(nulerr,'(a,a,a,a,a)',advance='no') '*** Error: ', trim(var_name), & |
---|
1895 | & ' must be one of: "', enum_str(0), '"' |
---|
1896 | do jc = 1,size(enum_str)-1 |
---|
1897 | write(nulerr,'(a,a,a)',advance='no') ', "', trim(enum_str(jc)), '"' |
---|
1898 | end do |
---|
1899 | write(nulerr,'(a)') '' |
---|
1900 | call radiation_abort('Radiation configuration error') |
---|
1901 | end if |
---|
1902 | end if |
---|
1903 | |
---|
1904 | end subroutine get_enum_code |
---|
1905 | |
---|
1906 | |
---|
1907 | !--------------------------------------------------------------------- |
---|
1908 | ! Print one line of information: logical |
---|
1909 | subroutine print_logical(message_str, name, val) |
---|
1910 | use radiation_io, only : nulout |
---|
1911 | character(len=*), intent(in) :: message_str |
---|
1912 | character(len=*), intent(in) :: name |
---|
1913 | logical, intent(in) :: val |
---|
1914 | character(4) :: on_or_off |
---|
1915 | character(NPrintStringLen) :: str |
---|
1916 | if (val) then |
---|
1917 | on_or_off = ' ON ' |
---|
1918 | else |
---|
1919 | on_or_off = ' OFF' |
---|
1920 | end if |
---|
1921 | write(str, '(a,a4)') message_str, on_or_off |
---|
1922 | write(nulout,'(a,a,a,a,l1,a)') str, ' (', name, '=', val,')' |
---|
1923 | end subroutine print_logical |
---|
1924 | |
---|
1925 | |
---|
1926 | !--------------------------------------------------------------------- |
---|
1927 | ! Print one line of information: integer |
---|
1928 | subroutine print_integer(message_str, name, val) |
---|
1929 | use radiation_io, only : nulout |
---|
1930 | character(len=*), intent(in) :: message_str |
---|
1931 | character(len=*), intent(in) :: name |
---|
1932 | integer, intent(in) :: val |
---|
1933 | character(NPrintStringLen) :: str |
---|
1934 | write(str, '(a,a,i0)') message_str, ' = ', val |
---|
1935 | write(nulout,'(a,a,a,a)') str, ' (', name, ')' |
---|
1936 | end subroutine print_integer |
---|
1937 | |
---|
1938 | |
---|
1939 | !--------------------------------------------------------------------- |
---|
1940 | ! Print one line of information: real |
---|
1941 | subroutine print_real(message_str, name, val) |
---|
1942 | use parkind1, only : jprb |
---|
1943 | use radiation_io, only : nulout |
---|
1944 | character(len=*), intent(in) :: message_str |
---|
1945 | character(len=*), intent(in) :: name |
---|
1946 | real(jprb), intent(in) :: val |
---|
1947 | character(NPrintStringLen) :: str |
---|
1948 | write(str, '(a,a,g8.3)') message_str, ' = ', val |
---|
1949 | write(nulout,'(a,a,a,a)') str, ' (', name, ')' |
---|
1950 | end subroutine print_real |
---|
1951 | |
---|
1952 | |
---|
1953 | !--------------------------------------------------------------------- |
---|
1954 | ! Print one line of information: enum |
---|
1955 | subroutine print_enum(message_str, enum_str, name, val) |
---|
1956 | use radiation_io, only : nulout |
---|
1957 | character(len=*), intent(in) :: message_str |
---|
1958 | character(len=*), intent(in) :: enum_str(0:) |
---|
1959 | character(len=*), intent(in) :: name |
---|
1960 | integer, intent(in) :: val |
---|
1961 | character(NPrintStringLen) :: str |
---|
1962 | write(str, '(a,a,a,a)') message_str, ' "', trim(enum_str(val)), '"' |
---|
1963 | write(nulout,'(a,a,a,a,i0,a)') str, ' (', name, '=', val,')' |
---|
1964 | end subroutine print_enum |
---|
1965 | |
---|
1966 | end module radiation_config |
---|