1 | ! radiation_adding_ica_lw.F90 - Longwave adding method in independent column approximation |
---|
2 | ! |
---|
3 | ! (C) Copyright 2015- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! Modifications |
---|
16 | ! 2017-04-11 R. Hogan Receive emission/albedo rather than planck/emissivity |
---|
17 | ! 2017-07-12 R. Hogan Fast adding method for if only clouds scatter |
---|
18 | ! 2017-10-23 R. Hogan Renamed single-character variables |
---|
19 | |
---|
20 | module radiation_adding_ica_lw |
---|
21 | |
---|
22 | public |
---|
23 | |
---|
24 | contains |
---|
25 | |
---|
26 | !--------------------------------------------------------------------- |
---|
27 | ! Use the scalar "adding" method to compute longwave flux profiles, |
---|
28 | ! including scattering, by successively adding the contribution of |
---|
29 | ! layers starting from the surface to compute the total albedo and |
---|
30 | ! total upward emission of the increasingly larger block of |
---|
31 | ! atmospheric layers. |
---|
32 | subroutine adding_ica_lw(ncol, nlev, & |
---|
33 | & reflectance, transmittance, source_up, source_dn, emission_surf, albedo_surf, & |
---|
34 | & flux_up, flux_dn) |
---|
35 | |
---|
36 | use parkind1, only : jprb |
---|
37 | use yomhook, only : lhook, dr_hook |
---|
38 | |
---|
39 | implicit none |
---|
40 | |
---|
41 | ! Inputs |
---|
42 | integer, intent(in) :: ncol ! number of columns (may be spectral intervals) |
---|
43 | integer, intent(in) :: nlev ! number of levels |
---|
44 | |
---|
45 | ! Surface emission (W m-2) and albedo |
---|
46 | real(jprb), intent(in), dimension(ncol) :: emission_surf, albedo_surf |
---|
47 | |
---|
48 | ! Diffuse reflectance and transmittance of each layer |
---|
49 | real(jprb), intent(in), dimension(ncol, nlev) :: reflectance, transmittance |
---|
50 | |
---|
51 | ! Emission from each layer in an upward and downward direction |
---|
52 | real(jprb), intent(in), dimension(ncol, nlev) :: source_up, source_dn |
---|
53 | |
---|
54 | ! Resulting fluxes (W m-2) at half-levels: diffuse upwelling and |
---|
55 | ! downwelling |
---|
56 | real(jprb), intent(out), dimension(ncol, nlev+1) :: flux_up, flux_dn |
---|
57 | |
---|
58 | ! Albedo of the entire earth/atmosphere system below each half |
---|
59 | ! level |
---|
60 | real(jprb), dimension(ncol, nlev+1) :: albedo |
---|
61 | |
---|
62 | ! Upwelling radiation at each half-level due to emission below |
---|
63 | ! that half-level (W m-2) |
---|
64 | real(jprb), dimension(ncol, nlev+1) :: source |
---|
65 | |
---|
66 | ! Equal to 1/(1-albedo*reflectance) |
---|
67 | real(jprb), dimension(ncol, nlev) :: inv_denominator |
---|
68 | |
---|
69 | ! Loop index for model level and column |
---|
70 | integer :: jlev, jcol |
---|
71 | |
---|
72 | real(jprb) :: hook_handle |
---|
73 | |
---|
74 | if (lhook) call dr_hook('radiation_adding_ica_lw:adding_ica_lw',0,hook_handle) |
---|
75 | |
---|
76 | albedo(:,nlev+1) = albedo_surf |
---|
77 | |
---|
78 | ! At the surface, the source is thermal emission |
---|
79 | source(:,nlev+1) = emission_surf |
---|
80 | |
---|
81 | ! Work back up through the atmosphere and compute the albedo of |
---|
82 | ! the entire earth/atmosphere system below that half-level, and |
---|
83 | ! also the "source", which is the upwelling flux due to emission |
---|
84 | ! below that level |
---|
85 | do jlev = nlev,1,-1 |
---|
86 | ! Next loop over columns. We could do this by indexing the |
---|
87 | ! entire inner dimension as follows, e.g. for the first line: |
---|
88 | ! inv_denominator(:,jlev) = 1.0_jprb / (1.0_jprb-albedo(:,jlev+1)*reflectance(:,jlev)) |
---|
89 | ! and similarly for subsequent lines, but this slows down the |
---|
90 | ! routine by a factor of 2! Rather, we do it with an explicit |
---|
91 | ! loop. |
---|
92 | do jcol = 1,ncol |
---|
93 | ! Lacis and Hansen (1974) Eq 33, Shonk & Hogan (2008) Eq 10: |
---|
94 | inv_denominator(jcol,jlev) = 1.0_jprb & |
---|
95 | & / (1.0_jprb-albedo(jcol,jlev+1)*reflectance(jcol,jlev)) |
---|
96 | ! Shonk & Hogan (2008) Eq 9, Petty (2006) Eq 13.81: |
---|
97 | albedo(jcol,jlev) = reflectance(jcol,jlev) + transmittance(jcol,jlev)*transmittance(jcol,jlev) & |
---|
98 | & * albedo(jcol,jlev+1) * inv_denominator(jcol,jlev) |
---|
99 | ! Shonk & Hogan (2008) Eq 11: |
---|
100 | source(jcol,jlev) = source_up(jcol,jlev) & |
---|
101 | & + transmittance(jcol,jlev) * (source(jcol,jlev+1) & |
---|
102 | & + albedo(jcol,jlev+1)*source_dn(jcol,jlev)) & |
---|
103 | & * inv_denominator(jcol,jlev) |
---|
104 | end do |
---|
105 | end do |
---|
106 | |
---|
107 | ! At top-of-atmosphere there is no diffuse downwelling radiation |
---|
108 | flux_dn(:,1) = 0.0_jprb |
---|
109 | |
---|
110 | ! At top-of-atmosphere, all upwelling radiation is due to emission |
---|
111 | ! below that level |
---|
112 | flux_up(:,1) = source(:,1) |
---|
113 | |
---|
114 | ! Work back down through the atmosphere computing the fluxes at |
---|
115 | ! each half-level |
---|
116 | do jlev = 1,nlev |
---|
117 | do jcol = 1,ncol |
---|
118 | ! Shonk & Hogan (2008) Eq 14 (after simplification): |
---|
119 | flux_dn(jcol,jlev+1) & |
---|
120 | & = (transmittance(jcol,jlev)*flux_dn(jcol,jlev) & |
---|
121 | & + reflectance(jcol,jlev)*source(jcol,jlev+1) & |
---|
122 | & + source_dn(jcol,jlev)) * inv_denominator(jcol,jlev) |
---|
123 | ! Shonk & Hogan (2008) Eq 12: |
---|
124 | flux_up(jcol,jlev+1) = albedo(jcol,jlev+1)*flux_dn(jcol,jlev+1) & |
---|
125 | & + source(jcol,jlev+1) |
---|
126 | end do |
---|
127 | end do |
---|
128 | |
---|
129 | if (lhook) call dr_hook('radiation_adding_ica_lw:adding_ica_lw',1,hook_handle) |
---|
130 | |
---|
131 | end subroutine adding_ica_lw |
---|
132 | |
---|
133 | |
---|
134 | !--------------------------------------------------------------------- |
---|
135 | ! Use the scalar "adding" method to compute longwave flux profiles, |
---|
136 | ! including scattering in cloudy layers only. |
---|
137 | subroutine fast_adding_ica_lw(ncol, nlev, & |
---|
138 | & reflectance, transmittance, source_up, source_dn, emission_surf, albedo_surf, & |
---|
139 | & is_clear_sky_layer, i_cloud_top, flux_dn_clear, & |
---|
140 | & flux_up, flux_dn) |
---|
141 | |
---|
142 | use parkind1, only : jprb |
---|
143 | use yomhook, only : lhook, dr_hook |
---|
144 | |
---|
145 | implicit none |
---|
146 | |
---|
147 | ! Inputs |
---|
148 | integer, intent(in) :: ncol ! number of columns (may be spectral intervals) |
---|
149 | integer, intent(in) :: nlev ! number of levels |
---|
150 | |
---|
151 | ! Surface emission (W m-2) and albedo |
---|
152 | real(jprb), intent(in), dimension(ncol) :: emission_surf, albedo_surf |
---|
153 | |
---|
154 | ! Diffuse reflectance and transmittance of each layer |
---|
155 | real(jprb), intent(in), dimension(ncol, nlev) :: reflectance, transmittance |
---|
156 | |
---|
157 | ! Emission from each layer in an upward and downward direction |
---|
158 | real(jprb), intent(in), dimension(ncol, nlev) :: source_up, source_dn |
---|
159 | |
---|
160 | ! Determine which layers are cloud-free |
---|
161 | logical, intent(in) :: is_clear_sky_layer(nlev) |
---|
162 | |
---|
163 | ! Index to highest cloudy layer |
---|
164 | integer, intent(in) :: i_cloud_top |
---|
165 | |
---|
166 | ! Pre-computed clear-sky downwelling fluxes (W m-2) at half-levels |
---|
167 | real(jprb), intent(in), dimension(ncol, nlev+1) :: flux_dn_clear |
---|
168 | |
---|
169 | ! Resulting fluxes (W m-2) at half-levels: diffuse upwelling and |
---|
170 | ! downwelling |
---|
171 | real(jprb), intent(out), dimension(ncol, nlev+1) :: flux_up, flux_dn |
---|
172 | |
---|
173 | ! Albedo of the entire earth/atmosphere system below each half |
---|
174 | ! level |
---|
175 | real(jprb), dimension(ncol, nlev+1) :: albedo |
---|
176 | |
---|
177 | ! Upwelling radiation at each half-level due to emission below |
---|
178 | ! that half-level (W m-2) |
---|
179 | real(jprb), dimension(ncol, nlev+1) :: source |
---|
180 | |
---|
181 | ! Equal to 1/(1-albedo*reflectance) |
---|
182 | real(jprb), dimension(ncol, nlev) :: inv_denominator |
---|
183 | |
---|
184 | ! Loop index for model level and column |
---|
185 | integer :: jlev, jcol |
---|
186 | |
---|
187 | real(jprb) :: hook_handle |
---|
188 | |
---|
189 | if (lhook) call dr_hook('radiation_adding_ica_lw:fast_adding_ica_lw',0,hook_handle) |
---|
190 | |
---|
191 | ! Copy over downwelling fluxes above cloud from clear sky |
---|
192 | flux_dn(:,1:i_cloud_top) = flux_dn_clear(:,1:i_cloud_top) |
---|
193 | |
---|
194 | albedo(:,nlev+1) = albedo_surf |
---|
195 | |
---|
196 | ! At the surface, the source is thermal emission |
---|
197 | source(:,nlev+1) = emission_surf |
---|
198 | |
---|
199 | ! Work back up through the atmosphere and compute the albedo of |
---|
200 | ! the entire earth/atmosphere system below that half-level, and |
---|
201 | ! also the "source", which is the upwelling flux due to emission |
---|
202 | ! below that level |
---|
203 | do jlev = nlev,i_cloud_top,-1 |
---|
204 | if (is_clear_sky_layer(jlev)) then |
---|
205 | ! Reflectance of this layer is zero, simplifying the expression |
---|
206 | do jcol = 1,ncol |
---|
207 | albedo(jcol,jlev) = transmittance(jcol,jlev)*transmittance(jcol,jlev)*albedo(jcol,jlev+1) |
---|
208 | source(jcol,jlev) = source_up(jcol,jlev) & |
---|
209 | & + transmittance(jcol,jlev) * (source(jcol,jlev+1) & |
---|
210 | & + albedo(jcol,jlev+1)*source_dn(jcol,jlev)) |
---|
211 | end do |
---|
212 | else |
---|
213 | ! Loop over columns; explicit loop seems to be faster |
---|
214 | do jcol = 1,ncol |
---|
215 | ! Lacis and Hansen (1974) Eq 33, Shonk & Hogan (2008) Eq 10: |
---|
216 | inv_denominator(jcol,jlev) = 1.0_jprb & |
---|
217 | & / (1.0_jprb-albedo(jcol,jlev+1)*reflectance(jcol,jlev)) |
---|
218 | ! Shonk & Hogan (2008) Eq 9, Petty (2006) Eq 13.81: |
---|
219 | albedo(jcol,jlev) = reflectance(jcol,jlev) + transmittance(jcol,jlev)*transmittance(jcol,jlev) & |
---|
220 | & * albedo(jcol,jlev+1) * inv_denominator(jcol,jlev) |
---|
221 | ! Shonk & Hogan (2008) Eq 11: |
---|
222 | source(jcol,jlev) = source_up(jcol,jlev) & |
---|
223 | & + transmittance(jcol,jlev) * (source(jcol,jlev+1) & |
---|
224 | & + albedo(jcol,jlev+1)*source_dn(jcol,jlev)) & |
---|
225 | & * inv_denominator(jcol,jlev) |
---|
226 | end do |
---|
227 | end if |
---|
228 | end do |
---|
229 | |
---|
230 | ! Compute the fluxes above the highest cloud |
---|
231 | flux_up(:,i_cloud_top) = source(:,i_cloud_top) & |
---|
232 | & + albedo(:,i_cloud_top)*flux_dn(:,i_cloud_top) |
---|
233 | do jlev = i_cloud_top-1,1,-1 |
---|
234 | flux_up(:,jlev) = transmittance(:,jlev)*flux_up(:,jlev+1) + source_up(:,jlev) |
---|
235 | end do |
---|
236 | |
---|
237 | ! Work back down through the atmosphere from cloud top computing |
---|
238 | ! the fluxes at each half-level |
---|
239 | do jlev = i_cloud_top,nlev |
---|
240 | if (is_clear_sky_layer(jlev)) then |
---|
241 | do jcol = 1,ncol |
---|
242 | flux_dn(jcol,jlev+1) = transmittance(jcol,jlev)*flux_dn(jcol,jlev) & |
---|
243 | & + source_dn(jcol,jlev) |
---|
244 | flux_up(jcol,jlev+1) = albedo(jcol,jlev+1)*flux_dn(jcol,jlev+1) & |
---|
245 | & + source(jcol,jlev+1) |
---|
246 | end do |
---|
247 | else |
---|
248 | do jcol = 1,ncol |
---|
249 | ! Shonk & Hogan (2008) Eq 14 (after simplification): |
---|
250 | flux_dn(jcol,jlev+1) & |
---|
251 | & = (transmittance(jcol,jlev)*flux_dn(jcol,jlev) & |
---|
252 | & + reflectance(jcol,jlev)*source(jcol,jlev+1) & |
---|
253 | & + source_dn(jcol,jlev)) * inv_denominator(jcol,jlev) |
---|
254 | ! Shonk & Hogan (2008) Eq 12: |
---|
255 | flux_up(jcol,jlev+1) = albedo(jcol,jlev+1)*flux_dn(jcol,jlev+1) & |
---|
256 | & + source(jcol,jlev+1) |
---|
257 | end do |
---|
258 | end if |
---|
259 | end do |
---|
260 | |
---|
261 | if (lhook) call dr_hook('radiation_adding_ica_lw:fast_adding_ica_lw',1,hook_handle) |
---|
262 | |
---|
263 | end subroutine fast_adding_ica_lw |
---|
264 | |
---|
265 | |
---|
266 | !--------------------------------------------------------------------- |
---|
267 | ! If there is no scattering then fluxes may be computed simply by |
---|
268 | ! passing down through the atmosphere computing the downwelling |
---|
269 | ! fluxes from the transmission and emission of each layer, and then |
---|
270 | ! passing back up through the atmosphere to compute the upwelling |
---|
271 | ! fluxes in the same way. |
---|
272 | subroutine calc_fluxes_no_scattering_lw(ncol, nlev, & |
---|
273 | & transmittance, source_up, source_dn, emission_surf, albedo_surf, flux_up, flux_dn) |
---|
274 | |
---|
275 | use parkind1, only : jprb |
---|
276 | use yomhook, only : lhook, dr_hook |
---|
277 | |
---|
278 | implicit none |
---|
279 | |
---|
280 | ! Inputs |
---|
281 | integer, intent(in) :: ncol ! number of columns (may be spectral intervals) |
---|
282 | integer, intent(in) :: nlev ! number of levels |
---|
283 | |
---|
284 | ! Surface emission (W m-2) and albedo |
---|
285 | real(jprb), intent(in), dimension(ncol) :: emission_surf, albedo_surf |
---|
286 | |
---|
287 | ! Diffuse reflectance and transmittance of each layer |
---|
288 | real(jprb), intent(in), dimension(ncol, nlev) :: transmittance |
---|
289 | |
---|
290 | ! Emission from each layer in an upward and downward direction |
---|
291 | real(jprb), intent(in), dimension(ncol, nlev) :: source_up, source_dn |
---|
292 | |
---|
293 | ! Resulting fluxes (W m-2) at half-levels: diffuse upwelling and |
---|
294 | ! downwelling |
---|
295 | real(jprb), intent(out), dimension(ncol, nlev+1) :: flux_up, flux_dn |
---|
296 | |
---|
297 | ! Loop index for model level |
---|
298 | integer :: jlev, jcol |
---|
299 | |
---|
300 | real(jprb) :: hook_handle |
---|
301 | |
---|
302 | if (lhook) call dr_hook('radiation_adding_ica_lw:calc_fluxes_no_scattering_lw',0,hook_handle) |
---|
303 | |
---|
304 | ! At top-of-atmosphere there is no diffuse downwelling radiation |
---|
305 | flux_dn(:,1) = 0.0_jprb |
---|
306 | |
---|
307 | ! Work down through the atmosphere computing the downward fluxes |
---|
308 | ! at each half-level |
---|
309 | ! Added for DWD (2020) |
---|
310 | !NEC$ outerloop_unroll(8) |
---|
311 | do jlev = 1,nlev |
---|
312 | do jcol = 1,ncol |
---|
313 | flux_dn(jcol,jlev+1) = transmittance(jcol,jlev)*flux_dn(jcol,jlev) + source_dn(jcol,jlev) |
---|
314 | end do |
---|
315 | end do |
---|
316 | |
---|
317 | ! Surface reflection and emission |
---|
318 | flux_up(:,nlev+1) = emission_surf + albedo_surf * flux_dn(:,nlev+1) |
---|
319 | |
---|
320 | ! Work back up through the atmosphere computing the upward fluxes |
---|
321 | ! at each half-level |
---|
322 | ! Added for DWD (2020) |
---|
323 | !NEC$ outerloop_unroll(8) |
---|
324 | do jlev = nlev,1,-1 |
---|
325 | do jcol = 1,ncol |
---|
326 | flux_up(jcol,jlev) = transmittance(jcol,jlev)*flux_up(jcol,jlev+1) + source_up(jcol,jlev) |
---|
327 | end do |
---|
328 | end do |
---|
329 | |
---|
330 | if (lhook) call dr_hook('radiation_adding_ica_lw:calc_fluxes_no_scattering_lw',1,hook_handle) |
---|
331 | |
---|
332 | end subroutine calc_fluxes_no_scattering_lw |
---|
333 | |
---|
334 | end module radiation_adding_ica_lw |
---|