[4773] | 1 | ! radiation_two_stream.F90 - Compute two-stream coefficients |
---|
| 2 | ! |
---|
| 3 | ! (C) Copyright 2014- ECMWF. |
---|
| 4 | ! |
---|
| 5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
| 6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
| 7 | ! |
---|
| 8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
| 9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
| 10 | ! nor does it submit to any jurisdiction. |
---|
| 11 | ! |
---|
| 12 | ! Author: Robin Hogan |
---|
| 13 | ! Email: r.j.hogan@ecmwf.int |
---|
| 14 | ! |
---|
| 15 | ! Modifications |
---|
| 16 | ! 2017-05-04 P Dueben/R Hogan Use JPRD where double precision essential |
---|
| 17 | ! 2017-07-12 R Hogan Optimized LW coeffs in low optical depth case |
---|
| 18 | ! 2017-07-26 R Hogan Added calc_frac_scattered_diffuse_sw routine |
---|
| 19 | ! 2017-10-23 R Hogan Renamed single-character variables |
---|
| 20 | ! 2021-02-19 R Hogan Security for shortwave singularity |
---|
| 21 | ! 2022-11-22 P Ukkonen/R Hogan Single precision uses no double precision |
---|
| 22 | ! 2023-09-28 R Hogan Increased security for single-precision SW "k" |
---|
| 23 | |
---|
[4853] | 24 | #include "ecrad_config.h" |
---|
| 25 | |
---|
[4773] | 26 | module radiation_two_stream |
---|
| 27 | |
---|
| 28 | use parkind1, only : jprb, jprd |
---|
| 29 | |
---|
| 30 | implicit none |
---|
| 31 | public |
---|
| 32 | |
---|
| 33 | ! Elsasser's factor: the effective factor by which the zenith |
---|
| 34 | ! optical depth needs to be multiplied to account for longwave |
---|
| 35 | ! transmission at all angles through the atmosphere. Alternatively |
---|
| 36 | ! think of acos(1/lw_diffusivity) to be the effective zenith angle |
---|
| 37 | ! of longwave radiation. |
---|
| 38 | real(jprd), parameter :: LwDiffusivity = 1.66_jprd |
---|
| 39 | real(jprb), parameter :: LwDiffusivityWP = 1.66_jprb ! Working precision version |
---|
| 40 | |
---|
| 41 | ! The routines in this module can be called millions of times, so |
---|
| 42 | ! calling Dr Hook for each one may be a significant overhead. |
---|
| 43 | ! Uncomment the following to turn Dr Hook on. |
---|
| 44 | !#define DO_DR_HOOK_TWO_STREAM |
---|
| 45 | |
---|
| 46 | contains |
---|
| 47 | |
---|
| 48 | !--------------------------------------------------------------------- |
---|
| 49 | ! Calculate the two-stream coefficients gamma1 and gamma2 for the |
---|
| 50 | ! longwave |
---|
| 51 | subroutine calc_two_stream_gammas_lw(ng, ssa, g, & |
---|
| 52 | & gamma1, gamma2) |
---|
| 53 | |
---|
| 54 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 55 | use yomhook, only : lhook, dr_hook, jphook |
---|
| 56 | #endif |
---|
| 57 | |
---|
| 58 | integer, intent(in) :: ng |
---|
| 59 | ! Sngle scattering albedo and asymmetry factor: |
---|
| 60 | real(jprb), intent(in), dimension(:) :: ssa, g |
---|
| 61 | real(jprb), intent(out), dimension(:) :: gamma1, gamma2 |
---|
| 62 | |
---|
| 63 | real(jprb) :: factor |
---|
| 64 | |
---|
| 65 | integer :: jg |
---|
| 66 | |
---|
| 67 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 68 | real(jphook) :: hook_handle |
---|
| 69 | |
---|
| 70 | if (lhook) call dr_hook('radiation_two_stream:calc_two_stream_gammas_lw',0,hook_handle) |
---|
| 71 | #endif |
---|
| 72 | ! Added for DWD (2020) |
---|
| 73 | !NEC$ shortloop |
---|
| 74 | do jg = 1, ng |
---|
| 75 | ! Fu et al. (1997), Eq 2.9 and 2.10: |
---|
| 76 | ! gamma1(jg) = LwDiffusivity * (1.0_jprb - 0.5_jprb*ssa(jg) & |
---|
| 77 | ! & * (1.0_jprb + g(jg))) |
---|
| 78 | ! gamma2(jg) = LwDiffusivity * 0.5_jprb * ssa(jg) & |
---|
| 79 | ! & * (1.0_jprb - g(jg)) |
---|
| 80 | ! Reduce number of multiplications |
---|
| 81 | factor = (LwDiffusivity * 0.5_jprb) * ssa(jg) |
---|
| 82 | gamma1(jg) = LwDiffusivity - factor*(1.0_jprb + g(jg)) |
---|
| 83 | gamma2(jg) = factor * (1.0_jprb - g(jg)) |
---|
| 84 | end do |
---|
| 85 | |
---|
| 86 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 87 | if (lhook) call dr_hook('radiation_two_stream:calc_two_stream_gammas_lw',1,hook_handle) |
---|
| 88 | #endif |
---|
| 89 | |
---|
| 90 | end subroutine calc_two_stream_gammas_lw |
---|
| 91 | |
---|
| 92 | |
---|
| 93 | !--------------------------------------------------------------------- |
---|
| 94 | ! Calculate the two-stream coefficients gamma1-gamma4 in the |
---|
| 95 | ! shortwave |
---|
| 96 | subroutine calc_two_stream_gammas_sw(ng, mu0, ssa, g, & |
---|
| 97 | & gamma1, gamma2, gamma3) |
---|
| 98 | |
---|
| 99 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 100 | use yomhook, only : lhook, dr_hook, jphook |
---|
| 101 | #endif |
---|
| 102 | |
---|
| 103 | integer, intent(in) :: ng |
---|
| 104 | ! Cosine of solar zenith angle, single scattering albedo and |
---|
| 105 | ! asymmetry factor: |
---|
| 106 | real(jprb), intent(in) :: mu0 |
---|
| 107 | real(jprb), intent(in), dimension(:) :: ssa, g |
---|
| 108 | real(jprb), intent(out), dimension(:) :: gamma1, gamma2, gamma3 |
---|
| 109 | |
---|
| 110 | real(jprb) :: factor |
---|
| 111 | |
---|
| 112 | integer :: jg |
---|
| 113 | |
---|
| 114 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 115 | real(jphook) :: hook_handle |
---|
| 116 | |
---|
| 117 | if (lhook) call dr_hook('radiation_two_stream:calc_two_stream_gammas_sw',0,hook_handle) |
---|
| 118 | #endif |
---|
| 119 | |
---|
| 120 | ! Zdunkowski "PIFM" (Zdunkowski et al., 1980; Contributions to |
---|
| 121 | ! Atmospheric Physics 53, 147-66) |
---|
| 122 | ! Added for DWD (2020) |
---|
| 123 | !NEC$ shortloop |
---|
| 124 | do jg = 1, ng |
---|
| 125 | ! gamma1(jg) = 2.0_jprb - ssa(jg) * (1.25_jprb + 0.75_jprb*g(jg)) |
---|
| 126 | ! gamma2(jg) = 0.75_jprb *(ssa(jg) * (1.0_jprb - g(jg))) |
---|
| 127 | ! gamma3(jg) = 0.5_jprb - (0.75_jprb*mu0)*g(jg) |
---|
| 128 | ! Optimized version: |
---|
| 129 | factor = 0.75_jprb*g(jg) |
---|
| 130 | gamma1(jg) = 2.0_jprb - ssa(jg) * (1.25_jprb + factor) |
---|
| 131 | gamma2(jg) = ssa(jg) * (0.75_jprb - factor) |
---|
| 132 | gamma3(jg) = 0.5_jprb - mu0*factor |
---|
| 133 | end do |
---|
| 134 | |
---|
| 135 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 136 | if (lhook) call dr_hook('radiation_two_stream:calc_two_stream_gammas_sw',1,hook_handle) |
---|
| 137 | #endif |
---|
| 138 | |
---|
| 139 | end subroutine calc_two_stream_gammas_sw |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | !--------------------------------------------------------------------- |
---|
| 143 | ! Compute the longwave reflectance and transmittance to diffuse |
---|
| 144 | ! radiation using the Meador & Weaver formulas, as well as the |
---|
| 145 | ! upward flux at the top and the downward flux at the base of the |
---|
| 146 | ! layer due to emission from within the layer assuming a linear |
---|
| 147 | ! variation of Planck function within the layer. |
---|
| 148 | subroutine calc_reflectance_transmittance_lw(ng, & |
---|
| 149 | & od, gamma1, gamma2, planck_top, planck_bot, & |
---|
| 150 | & reflectance, transmittance, source_up, source_dn) |
---|
| 151 | |
---|
| 152 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 153 | use yomhook, only : lhook, dr_hook, jphook |
---|
| 154 | #endif |
---|
| 155 | |
---|
| 156 | implicit none |
---|
| 157 | |
---|
| 158 | integer, intent(in) :: ng |
---|
| 159 | |
---|
| 160 | ! Optical depth and single scattering albedo |
---|
| 161 | real(jprb), intent(in), dimension(ng) :: od |
---|
| 162 | |
---|
| 163 | ! The two transfer coefficients from the two-stream |
---|
| 164 | ! differentiatial equations (computed by |
---|
| 165 | ! calc_two_stream_gammas_lw) |
---|
| 166 | real(jprb), intent(in), dimension(ng) :: gamma1, gamma2 |
---|
| 167 | |
---|
| 168 | ! The Planck terms (functions of temperature) at the top and |
---|
| 169 | ! bottom of the layer |
---|
| 170 | real(jprb), intent(in), dimension(ng) :: planck_top, planck_bot |
---|
| 171 | |
---|
| 172 | ! The diffuse reflectance and transmittance, i.e. the fraction of |
---|
| 173 | ! diffuse radiation incident on a layer from either top or bottom |
---|
| 174 | ! that is reflected back or transmitted through |
---|
| 175 | real(jprb), intent(out), dimension(ng) :: reflectance, transmittance |
---|
| 176 | |
---|
| 177 | ! The upward emission at the top of the layer and the downward |
---|
| 178 | ! emission at its base, due to emission from within the layer |
---|
| 179 | real(jprb), intent(out), dimension(ng) :: source_up, source_dn |
---|
| 180 | |
---|
| 181 | real(jprd) :: k_exponent, reftrans_factor |
---|
| 182 | real(jprd) :: exponential ! = exp(-k_exponent*od) |
---|
| 183 | real(jprd) :: exponential2 ! = exp(-2*k_exponent*od) |
---|
| 184 | |
---|
| 185 | real(jprd) :: coeff, coeff_up_top, coeff_up_bot, coeff_dn_top, coeff_dn_bot |
---|
| 186 | |
---|
| 187 | integer :: jg |
---|
| 188 | |
---|
| 189 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 190 | real(jphook) :: hook_handle |
---|
| 191 | |
---|
| 192 | if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_lw',0,hook_handle) |
---|
| 193 | #endif |
---|
| 194 | |
---|
| 195 | ! Added for DWD (2020) |
---|
| 196 | !NEC$ shortloop |
---|
| 197 | do jg = 1, ng |
---|
| 198 | if (od(jg) > 1.0e-3_jprd) then |
---|
| 199 | k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), & |
---|
| 200 | 1.0e-12_jprd)) ! Eq 18 of Meador & Weaver (1980) |
---|
[4853] | 201 | exponential = exp(-k_exponent*od(jg)) |
---|
[4773] | 202 | exponential2 = exponential*exponential |
---|
| 203 | reftrans_factor = 1.0 / (k_exponent + gamma1(jg) + (k_exponent - gamma1(jg))*exponential2) |
---|
| 204 | ! Meador & Weaver (1980) Eq. 25 |
---|
| 205 | reflectance(jg) = gamma2(jg) * (1.0_jprd - exponential2) * reftrans_factor |
---|
| 206 | ! Meador & Weaver (1980) Eq. 26 |
---|
| 207 | transmittance(jg) = 2.0_jprd * k_exponent * exponential * reftrans_factor |
---|
| 208 | |
---|
| 209 | ! Compute upward and downward emission assuming the Planck |
---|
| 210 | ! function to vary linearly with optical depth within the layer |
---|
| 211 | ! (e.g. Wiscombe , JQSRT 1976). |
---|
| 212 | |
---|
| 213 | ! Stackhouse and Stephens (JAS 1991) Eqs 5 & 12 |
---|
| 214 | coeff = (planck_bot(jg)-planck_top(jg)) / (od(jg)*(gamma1(jg)+gamma2(jg))) |
---|
| 215 | coeff_up_top = coeff + planck_top(jg) |
---|
| 216 | coeff_up_bot = coeff + planck_bot(jg) |
---|
| 217 | coeff_dn_top = -coeff + planck_top(jg) |
---|
| 218 | coeff_dn_bot = -coeff + planck_bot(jg) |
---|
| 219 | source_up(jg) = coeff_up_top - reflectance(jg) * coeff_dn_top - transmittance(jg) * coeff_up_bot |
---|
| 220 | source_dn(jg) = coeff_dn_bot - reflectance(jg) * coeff_up_bot - transmittance(jg) * coeff_dn_top |
---|
| 221 | else |
---|
| 222 | k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), & |
---|
| 223 | 1.0e-12_jprd)) ! Eq 18 of Meador & Weaver (1980) |
---|
| 224 | reflectance(jg) = gamma2(jg) * od(jg) |
---|
| 225 | transmittance(jg) = (1.0_jprb - k_exponent*od(jg)) / (1.0_jprb + od(jg)*(gamma1(jg)-k_exponent)) |
---|
| 226 | source_up(jg) = (1.0_jprb - reflectance(jg) - transmittance(jg)) & |
---|
| 227 | & * 0.5 * (planck_top(jg) + planck_bot(jg)) |
---|
| 228 | source_dn(jg) = source_up(jg) |
---|
| 229 | end if |
---|
| 230 | end do |
---|
| 231 | |
---|
| 232 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 233 | if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_lw',1,hook_handle) |
---|
| 234 | #endif |
---|
| 235 | |
---|
| 236 | end subroutine calc_reflectance_transmittance_lw |
---|
| 237 | |
---|
| 238 | |
---|
| 239 | !--------------------------------------------------------------------- |
---|
| 240 | ! Compute the longwave reflectance and transmittance to diffuse |
---|
| 241 | ! radiation using the Meador & Weaver formulas, as well as the |
---|
| 242 | ! upward flux at the top and the downward flux at the base of the |
---|
| 243 | ! layer due to emission from within the layer assuming a linear |
---|
| 244 | ! variation of Planck function within the layer; this version |
---|
| 245 | ! computes gamma1 and gamma2 within the same routine. |
---|
| 246 | subroutine calc_ref_trans_lw(ng, & |
---|
| 247 | & od, ssa, asymmetry, planck_top, planck_bot, & |
---|
| 248 | & reflectance, transmittance, source_up, source_dn) |
---|
| 249 | |
---|
| 250 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 251 | use yomhook, only : lhook, dr_hook, jphook |
---|
| 252 | #endif |
---|
| 253 | |
---|
| 254 | integer, intent(in) :: ng |
---|
| 255 | |
---|
| 256 | ! Optical depth and single scattering albedo |
---|
| 257 | real(jprb), intent(in), dimension(ng) :: od |
---|
| 258 | |
---|
| 259 | ! Single scattering albedo and asymmetry factor |
---|
| 260 | real(jprb), intent(in), dimension(ng) :: ssa, asymmetry |
---|
| 261 | |
---|
| 262 | ! The Planck terms (functions of temperature) at the top and |
---|
| 263 | ! bottom of the layer |
---|
| 264 | real(jprb), intent(in), dimension(ng) :: planck_top, planck_bot |
---|
| 265 | |
---|
| 266 | ! The diffuse reflectance and transmittance, i.e. the fraction of |
---|
| 267 | ! diffuse radiation incident on a layer from either top or bottom |
---|
| 268 | ! that is reflected back or transmitted through |
---|
| 269 | real(jprb), intent(out), dimension(ng) :: reflectance, transmittance |
---|
| 270 | |
---|
| 271 | ! The upward emission at the top of the layer and the downward |
---|
| 272 | ! emission at its base, due to emission from within the layer |
---|
| 273 | real(jprb), intent(out), dimension(ng) :: source_up, source_dn |
---|
| 274 | |
---|
| 275 | ! The two transfer coefficients from the two-stream |
---|
| 276 | ! differentiatial equations |
---|
| 277 | real(jprb) :: gamma1, gamma2 |
---|
| 278 | |
---|
| 279 | real(jprb) :: k_exponent, reftrans_factor, factor |
---|
| 280 | real(jprb) :: exponential ! = exp(-k_exponent*od) |
---|
| 281 | real(jprb) :: exponential2 ! = exp(-2*k_exponent*od) |
---|
| 282 | |
---|
| 283 | real(jprb) :: coeff, coeff_up_top, coeff_up_bot, coeff_dn_top, coeff_dn_bot |
---|
| 284 | |
---|
| 285 | integer :: jg |
---|
| 286 | |
---|
| 287 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 288 | real(jphook) :: hook_handle |
---|
| 289 | |
---|
| 290 | if (lhook) call dr_hook('radiation_two_stream:calc_ref_trans_lw',0,hook_handle) |
---|
| 291 | #endif |
---|
| 292 | |
---|
| 293 | do jg = 1, ng |
---|
| 294 | factor = (LwDiffusivityWP * 0.5_jprb) * ssa(jg) |
---|
| 295 | gamma1 = LwDiffusivityWP - factor*(1.0_jprb + asymmetry(jg)) |
---|
| 296 | gamma2 = factor * (1.0_jprb - asymmetry(jg)) |
---|
| 297 | k_exponent = sqrt(max((gamma1 - gamma2) * (gamma1 + gamma2), & |
---|
| 298 | 1.0e-12_jprb)) ! Eq 18 of Meador & Weaver (1980) |
---|
| 299 | if (od(jg) > 1.0e-3_jprb) then |
---|
[4853] | 300 | exponential = exp(-k_exponent*od(jg)) |
---|
[4773] | 301 | exponential2 = exponential*exponential |
---|
| 302 | reftrans_factor = 1.0_jprb / (k_exponent + gamma1 + (k_exponent - gamma1)*exponential2) |
---|
| 303 | ! Meador & Weaver (1980) Eq. 25 |
---|
| 304 | reflectance(jg) = gamma2 * (1.0_jprb - exponential2) * reftrans_factor |
---|
| 305 | ! Meador & Weaver (1980) Eq. 26 |
---|
| 306 | transmittance(jg) = 2.0_jprb * k_exponent * exponential * reftrans_factor |
---|
| 307 | |
---|
| 308 | ! Compute upward and downward emission assuming the Planck |
---|
| 309 | ! function to vary linearly with optical depth within the layer |
---|
| 310 | ! (e.g. Wiscombe , JQSRT 1976). |
---|
| 311 | |
---|
| 312 | ! Stackhouse and Stephens (JAS 1991) Eqs 5 & 12 |
---|
| 313 | coeff = (planck_bot(jg)-planck_top(jg)) / (od(jg)*(gamma1+gamma2)) |
---|
| 314 | coeff_up_top = coeff + planck_top(jg) |
---|
| 315 | coeff_up_bot = coeff + planck_bot(jg) |
---|
| 316 | coeff_dn_top = -coeff + planck_top(jg) |
---|
| 317 | coeff_dn_bot = -coeff + planck_bot(jg) |
---|
| 318 | source_up(jg) = coeff_up_top - reflectance(jg) * coeff_dn_top - transmittance(jg) * coeff_up_bot |
---|
| 319 | source_dn(jg) = coeff_dn_bot - reflectance(jg) * coeff_up_bot - transmittance(jg) * coeff_dn_top |
---|
| 320 | else |
---|
| 321 | reflectance(jg) = gamma2 * od(jg) |
---|
| 322 | transmittance(jg) = (1.0_jprb - k_exponent*od(jg)) / (1.0_jprb + od(jg)*(gamma1-k_exponent)) |
---|
| 323 | source_up(jg) = (1.0_jprb - reflectance(jg) - transmittance(jg)) & |
---|
| 324 | & * 0.5 * (planck_top(jg) + planck_bot(jg)) |
---|
| 325 | source_dn(jg) = source_up(jg) |
---|
| 326 | end if |
---|
| 327 | end do |
---|
| 328 | |
---|
| 329 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 330 | if (lhook) call dr_hook('radiation_two_stream:calc_ref_trans_lw',1,hook_handle) |
---|
| 331 | #endif |
---|
| 332 | |
---|
| 333 | end subroutine calc_ref_trans_lw |
---|
| 334 | |
---|
| 335 | |
---|
| 336 | !--------------------------------------------------------------------- |
---|
| 337 | ! Compute the longwave transmittance to diffuse radiation in the |
---|
| 338 | ! no-scattering case, as well as the upward flux at the top and the |
---|
| 339 | ! downward flux at the base of the layer due to emission from within |
---|
| 340 | ! the layer assuming a linear variation of Planck function within |
---|
| 341 | ! the layer. |
---|
| 342 | subroutine calc_no_scattering_transmittance_lw(ng, & |
---|
| 343 | & od, planck_top, planck_bot, transmittance, source_up, source_dn) |
---|
| 344 | |
---|
| 345 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 346 | use yomhook, only : lhook, dr_hook, jphook |
---|
| 347 | #endif |
---|
| 348 | |
---|
| 349 | integer, intent(in) :: ng |
---|
| 350 | |
---|
| 351 | ! Optical depth and single scattering albedo |
---|
| 352 | real(jprb), intent(in), dimension(ng) :: od |
---|
| 353 | |
---|
| 354 | ! The Planck terms (functions of temperature) at the top and |
---|
| 355 | ! bottom of the layer |
---|
| 356 | real(jprb), intent(in), dimension(ng) :: planck_top, planck_bot |
---|
| 357 | |
---|
| 358 | ! The diffuse transmittance, i.e. the fraction of diffuse |
---|
| 359 | ! radiation incident on a layer from either top or bottom that is |
---|
| 360 | ! reflected back or transmitted through |
---|
| 361 | real(jprb), intent(out), dimension(ng) :: transmittance |
---|
| 362 | |
---|
| 363 | ! The upward emission at the top of the layer and the downward |
---|
| 364 | ! emission at its base, due to emission from within the layer |
---|
| 365 | real(jprb), intent(out), dimension(ng) :: source_up, source_dn |
---|
| 366 | |
---|
| 367 | real(jprb) :: coeff, coeff_up_top, coeff_up_bot, coeff_dn_top, coeff_dn_bot !, planck_mean |
---|
| 368 | |
---|
| 369 | integer :: jg |
---|
| 370 | |
---|
| 371 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 372 | real(jphook) :: hook_handle |
---|
| 373 | |
---|
| 374 | if (lhook) call dr_hook('radiation_two_stream:calc_no_scattering_transmittance_lw',0,hook_handle) |
---|
| 375 | #endif |
---|
| 376 | |
---|
[4853] | 377 | #ifndef DWD_TWO_STREAM_OPTIMIZATIONS |
---|
| 378 | transmittance = exp(-LwDiffusivityWP*od) |
---|
| 379 | #endif |
---|
[4773] | 380 | |
---|
| 381 | do jg = 1, ng |
---|
| 382 | ! Compute upward and downward emission assuming the Planck |
---|
| 383 | ! function to vary linearly with optical depth within the layer |
---|
| 384 | ! (e.g. Wiscombe , JQSRT 1976). |
---|
| 385 | coeff = LwDiffusivityWP*od(jg) |
---|
[4853] | 386 | #ifdef DWD_TWO_STREAM_OPTIMIZATIONS |
---|
| 387 | transmittance(jg) = exp(-coeff) |
---|
| 388 | #endif |
---|
[4773] | 389 | if (od(jg) > 1.0e-3_jprb) then |
---|
| 390 | ! Simplified from calc_reflectance_transmittance_lw above |
---|
| 391 | coeff = (planck_bot(jg)-planck_top(jg)) / coeff |
---|
| 392 | coeff_up_top = coeff + planck_top(jg) |
---|
| 393 | coeff_up_bot = coeff + planck_bot(jg) |
---|
| 394 | coeff_dn_top = -coeff + planck_top(jg) |
---|
| 395 | coeff_dn_bot = -coeff + planck_bot(jg) |
---|
| 396 | source_up(jg) = coeff_up_top - transmittance(jg) * coeff_up_bot |
---|
| 397 | source_dn(jg) = coeff_dn_bot - transmittance(jg) * coeff_dn_top |
---|
| 398 | else |
---|
| 399 | ! Linear limit at low optical depth |
---|
| 400 | source_up(jg) = coeff * 0.5_jprb * (planck_top(jg)+planck_bot(jg)) |
---|
| 401 | source_dn(jg) = source_up(jg) |
---|
| 402 | end if |
---|
| 403 | end do |
---|
| 404 | |
---|
| 405 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 406 | if (lhook) call dr_hook('radiation_two_stream:calc_no_scattering_transmittance_lw',1,hook_handle) |
---|
| 407 | #endif |
---|
| 408 | |
---|
| 409 | end subroutine calc_no_scattering_transmittance_lw |
---|
| 410 | |
---|
| 411 | |
---|
| 412 | !--------------------------------------------------------------------- |
---|
| 413 | ! Compute the shortwave reflectance and transmittance to diffuse |
---|
| 414 | ! radiation using the Meador & Weaver formulas, as well as the |
---|
| 415 | ! "direct" reflection and transmission, which really means the rate |
---|
| 416 | ! of transfer of direct solar radiation (into a plane perpendicular |
---|
| 417 | ! to the direct beam) into diffuse upward and downward streams at |
---|
| 418 | ! the top and bottom of the layer, respectively. Finally, |
---|
| 419 | ! trans_dir_dir is the transmittance of the atmosphere to direct |
---|
| 420 | ! radiation with no scattering. |
---|
| 421 | subroutine calc_reflectance_transmittance_sw(ng, mu0, od, ssa, & |
---|
| 422 | & gamma1, gamma2, gamma3, ref_diff, trans_diff, & |
---|
| 423 | & ref_dir, trans_dir_diff, trans_dir_dir) |
---|
| 424 | |
---|
| 425 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 426 | use yomhook, only : lhook, dr_hook, jphook |
---|
| 427 | #endif |
---|
| 428 | |
---|
| 429 | integer, intent(in) :: ng |
---|
| 430 | |
---|
| 431 | ! Cosine of solar zenith angle |
---|
| 432 | real(jprb), intent(in) :: mu0 |
---|
| 433 | |
---|
| 434 | ! Optical depth and single scattering albedo |
---|
| 435 | real(jprb), intent(in), dimension(ng) :: od, ssa |
---|
| 436 | |
---|
| 437 | ! The three transfer coefficients from the two-stream |
---|
| 438 | ! differentiatial equations (computed by calc_two_stream_gammas) |
---|
| 439 | real(jprb), intent(in), dimension(ng) :: gamma1, gamma2, gamma3 |
---|
| 440 | |
---|
| 441 | ! The direct reflectance and transmittance, i.e. the fraction of |
---|
| 442 | ! incoming direct solar radiation incident at the top of a layer |
---|
| 443 | ! that is either reflected back (ref_dir) or scattered but |
---|
| 444 | ! transmitted through the layer to the base (trans_dir_diff) |
---|
| 445 | real(jprb), intent(out), dimension(ng) :: ref_dir, trans_dir_diff |
---|
| 446 | |
---|
| 447 | ! The diffuse reflectance and transmittance, i.e. the fraction of |
---|
| 448 | ! diffuse radiation incident on a layer from either top or bottom |
---|
| 449 | ! that is reflected back or transmitted through |
---|
| 450 | real(jprb), intent(out), dimension(ng) :: ref_diff, trans_diff |
---|
| 451 | |
---|
| 452 | ! Transmittance of the direct been with no scattering |
---|
| 453 | real(jprb), intent(out), dimension(ng) :: trans_dir_dir |
---|
| 454 | |
---|
| 455 | real(jprd) :: gamma4, alpha1, alpha2, k_exponent, reftrans_factor |
---|
| 456 | real(jprb) :: exponential0 ! = exp(-od/mu0) |
---|
| 457 | real(jprd) :: exponential ! = exp(-k_exponent*od) |
---|
| 458 | real(jprd) :: exponential2 ! = exp(-2*k_exponent*od) |
---|
| 459 | real(jprd) :: k_mu0, k_gamma3, k_gamma4 |
---|
| 460 | real(jprd) :: k_2_exponential, od_over_mu0 |
---|
| 461 | integer :: jg |
---|
| 462 | |
---|
| 463 | ! Local value of cosine of solar zenith angle, in case it needs to be |
---|
| 464 | ! tweaked to avoid near division by zero. This is intentionally in working |
---|
| 465 | ! precision (jprb) rather than fixing at double precision (jprd). |
---|
| 466 | real(jprb) :: mu0_local |
---|
| 467 | |
---|
| 468 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 469 | real(jphook) :: hook_handle |
---|
| 470 | |
---|
| 471 | if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_sw',0,hook_handle) |
---|
| 472 | #endif |
---|
| 473 | |
---|
| 474 | ! Added for DWD (2020) |
---|
| 475 | !NEC$ shortloop |
---|
| 476 | do jg = 1, ng |
---|
| 477 | |
---|
| 478 | gamma4 = 1.0_jprd - gamma3(jg) |
---|
| 479 | alpha1 = gamma1(jg)*gamma4 + gamma2(jg)*gamma3(jg) ! Eq. 16 |
---|
| 480 | alpha2 = gamma1(jg)*gamma3(jg) + gamma2(jg)*gamma4 ! Eq. 17 |
---|
| 481 | |
---|
| 482 | k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), & |
---|
| 483 | & 1.0e-12_jprd)) ! Eq 18 |
---|
| 484 | |
---|
| 485 | ! We had a rare crash where k*mu0 was within around 1e-13 of 1, |
---|
| 486 | ! leading to ref_dir and trans_dir_diff being well outside the range |
---|
| 487 | ! 0-1. The following approach is appropriate when k_exponent is double |
---|
| 488 | ! precision and mu0_local is single precision, although work is needed |
---|
| 489 | ! to make this entire routine secure in single precision. |
---|
| 490 | mu0_local = mu0 |
---|
| 491 | if (abs(1.0_jprd - k_exponent*mu0) < 1000.0_jprd * epsilon(1.0_jprd)) then |
---|
| 492 | mu0_local = mu0 * (1.0_jprb - 10.0_jprb*epsilon(1.0_jprb)) |
---|
| 493 | end if |
---|
| 494 | |
---|
| 495 | od_over_mu0 = max(od(jg) / mu0_local, 0.0_jprd) |
---|
| 496 | |
---|
| 497 | ! Note that if the minimum value is reduced (e.g. to 1.0e-24) |
---|
| 498 | ! then noise starts to appear as a function of solar zenith |
---|
| 499 | ! angle |
---|
| 500 | k_mu0 = k_exponent*mu0_local |
---|
| 501 | k_gamma3 = k_exponent*gamma3(jg) |
---|
| 502 | k_gamma4 = k_exponent*gamma4 |
---|
| 503 | ! Check for mu0 <= 0! |
---|
[4853] | 504 | exponential0 = exp(-od_over_mu0) |
---|
[4773] | 505 | trans_dir_dir(jg) = exponential0 |
---|
[4853] | 506 | exponential = exp(-k_exponent*od(jg)) |
---|
[4773] | 507 | |
---|
| 508 | exponential2 = exponential*exponential |
---|
| 509 | k_2_exponential = 2.0_jprd * k_exponent * exponential |
---|
| 510 | |
---|
| 511 | reftrans_factor = 1.0_jprd / (k_exponent + gamma1(jg) + (k_exponent - gamma1(jg))*exponential2) |
---|
| 512 | |
---|
| 513 | ! Meador & Weaver (1980) Eq. 25 |
---|
| 514 | ref_diff(jg) = gamma2(jg) * (1.0_jprd - exponential2) * reftrans_factor |
---|
| 515 | |
---|
| 516 | ! Meador & Weaver (1980) Eq. 26 |
---|
| 517 | trans_diff(jg) = k_2_exponential * reftrans_factor |
---|
| 518 | |
---|
| 519 | ! Here we need mu0 even though it wasn't in Meador and Weaver |
---|
| 520 | ! because we are assuming the incoming direct flux is defined |
---|
| 521 | ! to be the flux into a plane perpendicular to the direction of |
---|
| 522 | ! the sun, not into a horizontal plane |
---|
| 523 | reftrans_factor = mu0_local * ssa(jg) * reftrans_factor / (1.0_jprd - k_mu0*k_mu0) |
---|
| 524 | |
---|
| 525 | ! Meador & Weaver (1980) Eq. 14, multiplying top & bottom by |
---|
| 526 | ! exp(-k_exponent*od) in case of very high optical depths |
---|
| 527 | ref_dir(jg) = reftrans_factor & |
---|
| 528 | & * ( (1.0_jprd - k_mu0) * (alpha2 + k_gamma3) & |
---|
| 529 | & -(1.0_jprd + k_mu0) * (alpha2 - k_gamma3)*exponential2 & |
---|
| 530 | & -k_2_exponential*(gamma3(jg) - alpha2*mu0_local)*exponential0) |
---|
| 531 | |
---|
| 532 | ! Meador & Weaver (1980) Eq. 15, multiplying top & bottom by |
---|
| 533 | ! exp(-k_exponent*od), minus the 1*exp(-od/mu0) term representing direct |
---|
| 534 | ! unscattered transmittance. |
---|
| 535 | trans_dir_diff(jg) = reftrans_factor * ( k_2_exponential*(gamma4 + alpha1*mu0_local) & |
---|
| 536 | & - exponential0 & |
---|
| 537 | & * ( (1.0_jprd + k_mu0) * (alpha1 + k_gamma4) & |
---|
| 538 | & -(1.0_jprd - k_mu0) * (alpha1 - k_gamma4) * exponential2) ) |
---|
| 539 | |
---|
| 540 | ! Final check that ref_dir + trans_dir_diff <= 1 |
---|
| 541 | ref_dir(jg) = max(0.0_jprb, min(ref_dir(jg), 1.0_jprb)) |
---|
| 542 | trans_dir_diff(jg) = max(0.0_jprb, min(trans_dir_diff(jg), 1.0_jprb-ref_dir(jg))) |
---|
| 543 | |
---|
| 544 | end do |
---|
| 545 | |
---|
| 546 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 547 | if (lhook) call dr_hook('radiation_two_stream:calc_reflectance_transmittance_sw',1,hook_handle) |
---|
| 548 | #endif |
---|
| 549 | |
---|
| 550 | end subroutine calc_reflectance_transmittance_sw |
---|
| 551 | |
---|
| 552 | |
---|
| 553 | !--------------------------------------------------------------------- |
---|
| 554 | ! Compute the shortwave reflectance and transmittance to diffuse |
---|
| 555 | ! radiation using the Meador & Weaver formulas, as well as the |
---|
| 556 | ! "direct" reflection and transmission, which really means the rate |
---|
| 557 | ! of transfer of direct solar radiation (into a plane perpendicular |
---|
| 558 | ! to the direct beam) into diffuse upward and downward streams at |
---|
| 559 | ! the top and bottom of the layer, respectively. Finally, |
---|
| 560 | ! trans_dir_dir is the transmittance of the atmosphere to direct |
---|
| 561 | ! radiation with no scattering. This version incorporates the |
---|
| 562 | ! calculation of the gamma terms. |
---|
| 563 | subroutine calc_ref_trans_sw(ng, mu0, od, ssa, & |
---|
| 564 | & asymmetry, ref_diff, trans_diff, & |
---|
| 565 | & ref_dir, trans_dir_diff, trans_dir_dir) |
---|
| 566 | |
---|
| 567 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 568 | use yomhook, only : lhook, dr_hook, jphook |
---|
| 569 | #endif |
---|
| 570 | |
---|
| 571 | implicit none |
---|
| 572 | |
---|
| 573 | integer, intent(in) :: ng |
---|
| 574 | |
---|
| 575 | ! Cosine of solar zenith angle |
---|
| 576 | real(jprb), intent(in) :: mu0 |
---|
| 577 | |
---|
| 578 | ! Optical depth and single scattering albedo |
---|
| 579 | real(jprb), intent(in), dimension(ng) :: od, ssa, asymmetry |
---|
| 580 | |
---|
| 581 | ! The direct reflectance and transmittance, i.e. the fraction of |
---|
| 582 | ! incoming direct solar radiation incident at the top of a layer |
---|
| 583 | ! that is either reflected back (ref_dir) or scattered but |
---|
| 584 | ! transmitted through the layer to the base (trans_dir_diff) |
---|
| 585 | real(jprb), intent(out), dimension(ng) :: ref_dir, trans_dir_diff |
---|
| 586 | |
---|
| 587 | ! The diffuse reflectance and transmittance, i.e. the fraction of |
---|
| 588 | ! diffuse radiation incident on a layer from either top or bottom |
---|
| 589 | ! that is reflected back or transmitted through |
---|
| 590 | real(jprb), intent(out), dimension(ng) :: ref_diff, trans_diff |
---|
| 591 | |
---|
| 592 | ! Transmittance of the direct been with no scattering |
---|
| 593 | real(jprb), intent(out), dimension(ng) :: trans_dir_dir |
---|
| 594 | |
---|
| 595 | ! The three transfer coefficients from the two-stream |
---|
| 596 | ! differentiatial equations |
---|
[4853] | 597 | #ifndef DWD_TWO_STREAM_OPTIMIZATIONS |
---|
[4773] | 598 | real(jprb), dimension(ng) :: gamma1, gamma2, gamma3, gamma4 |
---|
| 599 | real(jprb), dimension(ng) :: alpha1, alpha2, k_exponent |
---|
| 600 | real(jprb), dimension(ng) :: exponential ! = exp(-k_exponent*od) |
---|
[4853] | 601 | #else |
---|
| 602 | real(jprb) :: gamma1, gamma2, gamma3, gamma4 |
---|
| 603 | real(jprb) :: alpha1, alpha2, k_exponent |
---|
| 604 | real(jprb) :: exponential ! = exp(-k_exponent*od) |
---|
| 605 | #endif |
---|
[4773] | 606 | |
---|
| 607 | real(jprb) :: reftrans_factor, factor |
---|
| 608 | real(jprb) :: exponential2 ! = exp(-2*k_exponent*od) |
---|
| 609 | real(jprb) :: k_mu0, k_gamma3, k_gamma4 |
---|
| 610 | real(jprb) :: k_2_exponential, one_minus_kmu0_sqr |
---|
| 611 | integer :: jg |
---|
| 612 | |
---|
| 613 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 614 | real(jphook) :: hook_handle |
---|
| 615 | |
---|
| 616 | if (lhook) call dr_hook('radiation_two_stream:calc_ref_trans_sw',0,hook_handle) |
---|
| 617 | #endif |
---|
| 618 | |
---|
[4853] | 619 | #ifndef DWD_TWO_STREAM_OPTIMIZATIONS |
---|
[4773] | 620 | ! GCC 9.3 strange error: intermediate values of ~ -8000 cause a |
---|
| 621 | ! FPE when vectorizing exp(), but not in non-vectorized loop, nor |
---|
| 622 | ! with larger negative values! |
---|
| 623 | trans_dir_dir = max(-max(od * (1.0_jprb/mu0), 0.0_jprb),-1000.0_jprb) |
---|
[4853] | 624 | trans_dir_dir = exp(trans_dir_dir) |
---|
[4773] | 625 | |
---|
| 626 | do jg = 1, ng |
---|
| 627 | |
---|
| 628 | ! Zdunkowski "PIFM" (Zdunkowski et al., 1980; Contributions to |
---|
| 629 | ! Atmospheric Physics 53, 147-66) |
---|
| 630 | factor = 0.75_jprb*asymmetry(jg) |
---|
| 631 | |
---|
| 632 | gamma1(jg) = 2.0_jprb - ssa(jg) * (1.25_jprb + factor) |
---|
| 633 | gamma2(jg) = ssa(jg) * (0.75_jprb - factor) |
---|
| 634 | gamma3(jg) = 0.5_jprb - mu0*factor |
---|
| 635 | gamma4(jg) = 1.0_jprb - gamma3(jg) |
---|
| 636 | |
---|
| 637 | alpha1(jg) = gamma1(jg)*gamma4(jg) + gamma2(jg)*gamma3(jg) ! Eq. 16 |
---|
| 638 | alpha2(jg) = gamma1(jg)*gamma3(jg) + gamma2(jg)*gamma4(jg) ! Eq. 17 |
---|
| 639 | ! The following line crashes inexplicably with gfortran 8.5.0 in |
---|
| 640 | ! single precision - try a later version. Note that the minimum |
---|
| 641 | ! value is needed to produce correct results for single |
---|
| 642 | ! scattering albedos very close to or equal to one. |
---|
| 643 | #ifdef PARKIND1_SINGLE |
---|
| 644 | k_exponent(jg) = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), & |
---|
| 645 | & 1.0e-6_jprb)) ! Eq 18 |
---|
| 646 | #else |
---|
| 647 | k_exponent(jg) = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), & |
---|
| 648 | & 1.0e-12_jprb)) ! Eq 18 |
---|
| 649 | #endif |
---|
| 650 | end do |
---|
| 651 | |
---|
[4853] | 652 | exponential = exp(-k_exponent*od) |
---|
[4773] | 653 | |
---|
| 654 | do jg = 1, ng |
---|
| 655 | k_mu0 = k_exponent(jg)*mu0 |
---|
| 656 | one_minus_kmu0_sqr = 1.0_jprb - k_mu0*k_mu0 |
---|
| 657 | k_gamma3 = k_exponent(jg)*gamma3(jg) |
---|
| 658 | k_gamma4 = k_exponent(jg)*gamma4(jg) |
---|
| 659 | exponential2 = exponential(jg)*exponential(jg) |
---|
| 660 | k_2_exponential = 2.0_jprb * k_exponent(jg) * exponential(jg) |
---|
| 661 | reftrans_factor = 1.0_jprb / (k_exponent(jg) + gamma1(jg) + (k_exponent(jg) - gamma1(jg))*exponential2) |
---|
| 662 | |
---|
| 663 | ! Meador & Weaver (1980) Eq. 25 |
---|
| 664 | ref_diff(jg) = gamma2(jg) * (1.0_jprb - exponential2) * reftrans_factor |
---|
| 665 | !ref_diff(jg) = max(0.0_jprb, min(ref_diff(jg)), 1.0_jprb) |
---|
| 666 | |
---|
| 667 | ! Meador & Weaver (1980) Eq. 26, with security (which is |
---|
| 668 | ! sometimes needed, but apparently not on ref_diff) |
---|
| 669 | trans_diff(jg) = max(0.0_jprb, min(k_2_exponential * reftrans_factor, 1.0_jprb-ref_diff(jg))) |
---|
| 670 | |
---|
| 671 | ! Here we need mu0 even though it wasn't in Meador and Weaver |
---|
| 672 | ! because we are assuming the incoming direct flux is defined to |
---|
| 673 | ! be the flux into a plane perpendicular to the direction of the |
---|
| 674 | ! sun, not into a horizontal plane |
---|
| 675 | reftrans_factor = mu0 * ssa(jg) * reftrans_factor & |
---|
| 676 | & / merge(one_minus_kmu0_sqr, epsilon(1.0_jprb), abs(one_minus_kmu0_sqr) > epsilon(1.0_jprb)) |
---|
| 677 | |
---|
| 678 | ! Meador & Weaver (1980) Eq. 14, multiplying top & bottom by |
---|
| 679 | ! exp(-k_exponent*od) in case of very high optical depths |
---|
| 680 | ref_dir(jg) = reftrans_factor & |
---|
| 681 | & * ( (1.0_jprb - k_mu0) * (alpha2(jg) + k_gamma3) & |
---|
| 682 | & -(1.0_jprb + k_mu0) * (alpha2(jg) - k_gamma3)*exponential2 & |
---|
| 683 | & -k_2_exponential*(gamma3(jg) - alpha2(jg)*mu0)*trans_dir_dir(jg) ) |
---|
| 684 | |
---|
| 685 | ! Meador & Weaver (1980) Eq. 15, multiplying top & bottom by |
---|
| 686 | ! exp(-k_exponent*od), minus the 1*exp(-od/mu0) term |
---|
| 687 | ! representing direct unscattered transmittance. |
---|
| 688 | trans_dir_diff(jg) = reftrans_factor * ( k_2_exponential*(gamma4(jg) + alpha1(jg)*mu0) & |
---|
| 689 | & - trans_dir_dir(jg) & |
---|
| 690 | & * ( (1.0_jprb + k_mu0) * (alpha1(jg) + k_gamma4) & |
---|
| 691 | & -(1.0_jprb - k_mu0) * (alpha1(jg) - k_gamma4) * exponential2) ) |
---|
| 692 | |
---|
| 693 | ! Final check that ref_dir + trans_dir_diff <= 1 |
---|
| 694 | ref_dir(jg) = max(0.0_jprb, min(ref_dir(jg), mu0*(1.0_jprb-trans_dir_dir(jg)))) |
---|
| 695 | trans_dir_diff(jg) = max(0.0_jprb, min(trans_dir_diff(jg), mu0*(1.0_jprb-trans_dir_dir(jg))-ref_dir(jg))) |
---|
| 696 | end do |
---|
[4853] | 697 | |
---|
| 698 | #else |
---|
| 699 | ! GPU-capable and vector-optimized version for ICON |
---|
| 700 | do jg = 1, ng |
---|
| 701 | |
---|
| 702 | trans_dir_dir(jg) = max(-max(od(jg) * (1.0_jprb/mu0),0.0_jprb),-1000.0_jprb) |
---|
| 703 | trans_dir_dir(jg) = exp(trans_dir_dir(jg)) |
---|
| 704 | |
---|
| 705 | ! Zdunkowski "PIFM" (Zdunkowski et al., 1980; Contributions to |
---|
| 706 | ! Atmospheric Physics 53, 147-66) |
---|
| 707 | factor = 0.75_jprb*asymmetry(jg) |
---|
| 708 | |
---|
| 709 | gamma1 = 2.0_jprb - ssa(jg) * (1.25_jprb + factor) |
---|
| 710 | gamma2 = ssa(jg) * (0.75_jprb - factor) |
---|
| 711 | gamma3 = 0.5_jprb - mu0*factor |
---|
| 712 | gamma4 = 1.0_jprb - gamma3 |
---|
| 713 | |
---|
| 714 | alpha1 = gamma1*gamma4 + gamma2*gamma3 ! Eq. 16 |
---|
| 715 | alpha2 = gamma1*gamma3 + gamma2*gamma4 ! Eq. 17 |
---|
| 716 | #ifdef PARKIND1_SINGLE |
---|
| 717 | k_exponent = sqrt(max((gamma1 - gamma2) * (gamma1 + gamma2), 1.0e-6_jprb)) ! Eq 18 |
---|
| 718 | #else |
---|
| 719 | k_exponent = sqrt(max((gamma1 - gamma2) * (gamma1 + gamma2), 1.0e-12_jprb)) ! Eq 18 |
---|
| 720 | #endif |
---|
| 721 | |
---|
| 722 | exponential = exp(-k_exponent*od(jg)) |
---|
| 723 | |
---|
| 724 | k_mu0 = k_exponent*mu0 |
---|
| 725 | one_minus_kmu0_sqr = 1.0_jprb - k_mu0*k_mu0 |
---|
| 726 | k_gamma3 = k_exponent*gamma3 |
---|
| 727 | k_gamma4 = k_exponent*gamma4 |
---|
| 728 | exponential2 = exponential*exponential |
---|
| 729 | k_2_exponential = 2.0_jprb * k_exponent * exponential |
---|
| 730 | reftrans_factor = 1.0_jprb / (k_exponent + gamma1 + (k_exponent - gamma1)*exponential2) |
---|
| 731 | |
---|
| 732 | ! Meador & Weaver (1980) Eq. 25 |
---|
| 733 | ref_diff(jg) = gamma2 * (1.0_jprb - exponential2) * reftrans_factor |
---|
| 734 | |
---|
| 735 | ! Meador & Weaver (1980) Eq. 26 |
---|
| 736 | trans_diff(jg) = k_2_exponential * reftrans_factor |
---|
| 737 | |
---|
| 738 | ! Here we need mu0 even though it wasn't in Meador and Weaver |
---|
| 739 | ! because we are assuming the incoming direct flux is defined to |
---|
| 740 | ! be the flux into a plane perpendicular to the direction of the |
---|
| 741 | ! sun, not into a horizontal plane |
---|
| 742 | reftrans_factor = mu0 * ssa(jg) * reftrans_factor & |
---|
| 743 | & / merge(one_minus_kmu0_sqr, epsilon(1.0_jprb), abs(one_minus_kmu0_sqr) > epsilon(1.0_jprb)) |
---|
| 744 | |
---|
| 745 | ! Meador & Weaver (1980) Eq. 14, multiplying top & bottom by |
---|
| 746 | ! exp(-k_exponent*od) in case of very high optical depths |
---|
| 747 | ref_dir(jg) = reftrans_factor & |
---|
| 748 | & * ( (1.0_jprb - k_mu0) * (alpha2 + k_gamma3) & |
---|
| 749 | & -(1.0_jprb + k_mu0) * (alpha2 - k_gamma3)*exponential2 & |
---|
| 750 | & -k_2_exponential*(gamma3 - alpha2*mu0)*trans_dir_dir(jg) ) |
---|
| 751 | |
---|
| 752 | ! Meador & Weaver (1980) Eq. 15, multiplying top & bottom by |
---|
| 753 | ! exp(-k_exponent*od), minus the 1*exp(-od/mu0) term |
---|
| 754 | ! representing direct unscattered transmittance. |
---|
| 755 | trans_dir_diff(jg) = reftrans_factor * ( k_2_exponential*(gamma4 + alpha1*mu0) & |
---|
| 756 | & - trans_dir_dir(jg) & |
---|
| 757 | & * ( (1.0_jprb + k_mu0) * (alpha1 + k_gamma4) & |
---|
| 758 | & -(1.0_jprb - k_mu0) * (alpha1 - k_gamma4) * exponential2) ) |
---|
| 759 | |
---|
| 760 | ! Final check that ref_dir + trans_dir_diff <= 1 |
---|
| 761 | ref_dir(jg) = max(0.0_jprb, min(ref_dir(jg), mu0*(1.0_jprb-trans_dir_dir(jg)))) |
---|
| 762 | trans_dir_diff(jg) = max(0.0_jprb, min(trans_dir_diff(jg), mu0*(1.0_jprb-trans_dir_dir(jg))-ref_dir(jg))) |
---|
| 763 | |
---|
| 764 | end do |
---|
| 765 | #endif |
---|
| 766 | |
---|
[4773] | 767 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 768 | if (lhook) call dr_hook('radiation_two_stream:calc_ref_trans_sw',1,hook_handle) |
---|
| 769 | #endif |
---|
| 770 | |
---|
| 771 | end subroutine calc_ref_trans_sw |
---|
| 772 | |
---|
| 773 | |
---|
| 774 | !--------------------------------------------------------------------- |
---|
| 775 | ! Compute the fraction of shortwave transmitted diffuse radiation |
---|
| 776 | ! that is scattered during its transmission, used to compute |
---|
| 777 | ! entrapment in SPARTACUS |
---|
| 778 | subroutine calc_frac_scattered_diffuse_sw(ng, od, & |
---|
| 779 | & gamma1, gamma2, frac_scat_diffuse) |
---|
| 780 | |
---|
| 781 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 782 | use yomhook, only : lhook, dr_hook, jphook |
---|
| 783 | #endif |
---|
| 784 | |
---|
| 785 | integer, intent(in) :: ng |
---|
| 786 | |
---|
| 787 | ! Optical depth |
---|
| 788 | real(jprb), intent(in), dimension(ng) :: od |
---|
| 789 | |
---|
| 790 | ! The first two transfer coefficients from the two-stream |
---|
| 791 | ! differentiatial equations (computed by calc_two_stream_gammas) |
---|
| 792 | real(jprb), intent(in), dimension(ng) :: gamma1, gamma2 |
---|
| 793 | |
---|
| 794 | ! The fraction of shortwave transmitted diffuse radiation that is |
---|
| 795 | ! scattered during its transmission |
---|
| 796 | real(jprb), intent(out), dimension(ng) :: frac_scat_diffuse |
---|
| 797 | |
---|
| 798 | real(jprd) :: k_exponent, reftrans_factor |
---|
| 799 | real(jprd) :: exponential ! = exp(-k_exponent*od) |
---|
| 800 | real(jprd) :: exponential2 ! = exp(-2*k_exponent*od) |
---|
| 801 | real(jprd) :: k_2_exponential |
---|
| 802 | integer :: jg |
---|
| 803 | |
---|
| 804 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 805 | real(jphook) :: hook_handle |
---|
| 806 | |
---|
| 807 | if (lhook) call dr_hook('radiation_two_stream:calc_frac_scattered_diffuse_sw',0,hook_handle) |
---|
| 808 | #endif |
---|
| 809 | |
---|
| 810 | ! Added for DWD (2020) |
---|
| 811 | !NEC$ shortloop |
---|
| 812 | do jg = 1, ng |
---|
| 813 | ! Note that if the minimum value is reduced (e.g. to 1.0e-24) |
---|
| 814 | ! then noise starts to appear as a function of solar zenith |
---|
| 815 | ! angle |
---|
| 816 | k_exponent = sqrt(max((gamma1(jg) - gamma2(jg)) * (gamma1(jg) + gamma2(jg)), & |
---|
| 817 | & 1.0e-12_jprd)) ! Eq 18 |
---|
[4853] | 818 | exponential = exp(-k_exponent*od(jg)) |
---|
[4773] | 819 | exponential2 = exponential*exponential |
---|
| 820 | k_2_exponential = 2.0_jprd * k_exponent * exponential |
---|
| 821 | |
---|
| 822 | reftrans_factor = 1.0_jprd / (k_exponent + gamma1(jg) + (k_exponent - gamma1(jg))*exponential2) |
---|
| 823 | |
---|
| 824 | ! Meador & Weaver (1980) Eq. 26. |
---|
| 825 | ! Until 1.1.8, used LwDiffusivity instead of 2.0, although the |
---|
| 826 | ! effect is very small |
---|
[4853] | 827 | ! frac_scat_diffuse(jg) = 1.0_jprb - min(1.0_jprb,exp(-LwDiffusivity*od(jg)) & |
---|
[4773] | 828 | ! & / max(1.0e-8_jprb, k_2_exponential * reftrans_factor)) |
---|
| 829 | frac_scat_diffuse(jg) = 1.0_jprb & |
---|
[4853] | 830 | & - min(1.0_jprb,exp(-2.0_jprb*od(jg)) & |
---|
[4773] | 831 | & / max(1.0e-8_jprb, k_2_exponential * reftrans_factor)) |
---|
| 832 | end do |
---|
| 833 | |
---|
| 834 | #ifdef DO_DR_HOOK_TWO_STREAM |
---|
| 835 | if (lhook) call dr_hook('radiation_two_stream:calc_frac_scattered_diffuse_sw',1,hook_handle) |
---|
| 836 | #endif |
---|
| 837 | |
---|
| 838 | end subroutine calc_frac_scattered_diffuse_sw |
---|
| 839 | |
---|
| 840 | end module radiation_two_stream |
---|