1 | ! radiation_tripleclouds_sw.F90 - Shortwave "Tripleclouds" solver |
---|
2 | ! |
---|
3 | ! (C) Copyright 2016- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! Modifications |
---|
16 | ! 2017-04-11 R. Hogan Receive albedos at g-points |
---|
17 | ! 2017-04-22 R. Hogan Store surface fluxes at all g-points |
---|
18 | ! 2017-10-23 R. Hogan Renamed single-character variables |
---|
19 | ! 2018-10-08 R. Hogan Call calc_region_properties |
---|
20 | ! 2019-01-02 R. Hogan Fixed problem of do_save_spectral_flux .and. .not. do_sw_direct |
---|
21 | ! 2020-09-18 R. Hogan Replaced some array expressions with loops for speed |
---|
22 | ! 2021-10-01 P. Ukkonen Performance optimizations: batched computations |
---|
23 | |
---|
24 | module radiation_tripleclouds_sw |
---|
25 | |
---|
26 | public |
---|
27 | |
---|
28 | contains |
---|
29 | ! Provides elemental function "delta_eddington" |
---|
30 | #include "radiation_delta_eddington.h" |
---|
31 | |
---|
32 | ! Small routine for scaling cloud optical depth in the cloudy |
---|
33 | ! regions |
---|
34 | #include "radiation_optical_depth_scaling.h" |
---|
35 | |
---|
36 | !--------------------------------------------------------------------- |
---|
37 | ! This module contains just one subroutine, the shortwave |
---|
38 | ! "Tripleclouds" solver in which cloud inhomogeneity is treated by |
---|
39 | ! dividing each model level into three regions, one clear and two |
---|
40 | ! cloudy (with differing optical depth). This approach was described |
---|
41 | ! by Shonk and Hogan (2008). |
---|
42 | subroutine solver_tripleclouds_sw(nlev,istartcol,iendcol, & |
---|
43 | & config, single_level, cloud, & |
---|
44 | & od, ssa, g, od_cloud, ssa_cloud, g_cloud, & |
---|
45 | & albedo_direct, albedo_diffuse, incoming_sw, & |
---|
46 | & flux) |
---|
47 | |
---|
48 | use parkind1, only : jprb |
---|
49 | use yomhook, only : lhook, dr_hook, jphook |
---|
50 | |
---|
51 | ! use radiation_io, only : nulout |
---|
52 | use radiation_config, only : config_type, IPdfShapeGamma |
---|
53 | use radiation_single_level, only : single_level_type |
---|
54 | use radiation_cloud, only : cloud_type |
---|
55 | use radiation_regions, only : calc_region_properties |
---|
56 | use radiation_overlap, only : calc_overlap_matrices |
---|
57 | use radiation_flux, only : flux_type, & |
---|
58 | & indexed_sum, add_indexed_sum |
---|
59 | use radiation_matrix, only : singlemat_x_vec |
---|
60 | use radiation_two_stream, only : calc_ref_trans_sw |
---|
61 | |
---|
62 | implicit none |
---|
63 | |
---|
64 | ! Number of regions |
---|
65 | integer, parameter :: nregions = 3 |
---|
66 | |
---|
67 | ! Inputs |
---|
68 | integer, intent(in) :: nlev ! number of model levels |
---|
69 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
---|
70 | type(config_type), intent(in) :: config |
---|
71 | type(single_level_type), intent(in) :: single_level |
---|
72 | type(cloud_type), intent(in) :: cloud |
---|
73 | |
---|
74 | ! Gas and aerosol optical depth, single-scattering albedo and |
---|
75 | ! asymmetry factor at each shortwave g-point |
---|
76 | ! real(jprb), intent(in), dimension(istartcol:iendcol,nlev,config%n_g_sw) :: & |
---|
77 | real(jprb), intent(in), dimension(config%n_g_sw,nlev,istartcol:iendcol) :: & |
---|
78 | & od, ssa, g |
---|
79 | |
---|
80 | ! Cloud and precipitation optical depth, single-scattering albedo and |
---|
81 | ! asymmetry factor in each shortwave band |
---|
82 | real(jprb), intent(in), dimension(config%n_bands_sw,nlev,istartcol:iendcol) :: & |
---|
83 | & od_cloud, ssa_cloud, g_cloud |
---|
84 | |
---|
85 | ! Optical depth, single scattering albedo and asymmetry factor in |
---|
86 | ! each g-point of each cloudy region including gas, aerosol and |
---|
87 | ! clouds |
---|
88 | real(jprb), dimension(config%n_g_sw,2:nregions) & |
---|
89 | & :: od_total, ssa_total, g_total |
---|
90 | |
---|
91 | ! Direct and diffuse surface albedos, and the incoming shortwave |
---|
92 | ! flux into a plane perpendicular to the incoming radiation at |
---|
93 | ! top-of-atmosphere in each of the shortwave g points |
---|
94 | real(jprb), intent(in), dimension(config%n_g_sw,istartcol:iendcol) :: & |
---|
95 | & albedo_direct, albedo_diffuse, incoming_sw |
---|
96 | |
---|
97 | ! Output |
---|
98 | type(flux_type), intent(inout):: flux |
---|
99 | |
---|
100 | ! Local variables |
---|
101 | |
---|
102 | ! The area fractions of each region |
---|
103 | real(jprb) :: region_fracs(1:nregions,nlev,istartcol:iendcol) |
---|
104 | |
---|
105 | ! The scaling used for the optical depth in the cloudy regions |
---|
106 | real(jprb) :: od_scaling(2:nregions,nlev,istartcol:iendcol) |
---|
107 | |
---|
108 | ! Directional overlap matrices defined at all layer interfaces |
---|
109 | ! including top-of-atmosphere and the surface |
---|
110 | real(jprb), dimension(nregions,nregions,nlev+1, & |
---|
111 | & istartcol:iendcol) :: u_matrix, v_matrix |
---|
112 | |
---|
113 | ! Diffuse reflection and transmission matrices in the cloudy |
---|
114 | ! regions of each layer |
---|
115 | real(jprb), dimension(config%n_g_sw, 2:nregions, nlev) & |
---|
116 | & :: reflectance, transmittance |
---|
117 | |
---|
118 | ! Terms translating the direct flux entering the layer from above |
---|
119 | ! to the reflected radiation exiting upwards (ref_dir) and the |
---|
120 | ! scattered radiation exiting downwards (trans_dir_diff), along with the |
---|
121 | ! direct unscattered transmission matrix (trans_dir_dir). |
---|
122 | real(jprb), dimension(config%n_g_sw, 2:nregions, nlev) & |
---|
123 | & :: ref_dir, trans_dir_diff, trans_dir_dir |
---|
124 | |
---|
125 | ! As above but for the clear regions; clear and cloudy layers are |
---|
126 | ! separated out so that calc_ref_trans_sw can be called on the |
---|
127 | ! entire clear-sky atmosphere at once |
---|
128 | real(jprb), dimension(config%n_g_sw, nlev) & |
---|
129 | & :: reflectance_clear, transmittance_clear, & |
---|
130 | & ref_dir_clear, trans_dir_diff_clear, trans_dir_dir_clear |
---|
131 | |
---|
132 | ! Total albedo of the atmosphere/surface just above a layer |
---|
133 | ! interface with respect to downwelling diffuse and direct |
---|
134 | ! (respectively) radiation at that interface, where level index = |
---|
135 | ! 1 corresponds to the top-of-atmosphere |
---|
136 | real(jprb), dimension(config%n_g_sw, nregions, nlev+1) & |
---|
137 | & :: total_albedo, total_albedo_direct |
---|
138 | |
---|
139 | ! ...equivalent values for clear-skies |
---|
140 | real(jprb), dimension(config%n_g_sw, nlev+1) & |
---|
141 | & :: total_albedo_clear, total_albedo_clear_direct |
---|
142 | |
---|
143 | ! Total albedo of the atmosphere just below a layer interface |
---|
144 | real(jprb), dimension(config%n_g_sw, nregions) & |
---|
145 | & :: total_albedo_below, total_albedo_below_direct |
---|
146 | |
---|
147 | ! Direct downwelling flux below and above an interface between |
---|
148 | ! layers into a plane perpendicular to the direction of the sun |
---|
149 | real(jprb), dimension(config%n_g_sw, nregions) :: direct_dn |
---|
150 | ! Diffuse equivalents |
---|
151 | real(jprb), dimension(config%n_g_sw, nregions) :: flux_dn, flux_up |
---|
152 | |
---|
153 | ! ...clear-sky equivalent (no distinction between "above/below") |
---|
154 | real(jprb), dimension(config%n_g_sw) & |
---|
155 | & :: direct_dn_clear, flux_dn_clear, flux_up_clear |
---|
156 | |
---|
157 | ! Clear-sky equivalent, but actually its reciprocal to replace |
---|
158 | ! some divisions by multiplications |
---|
159 | real(jprb), dimension(config%n_g_sw, nregions) :: inv_denom |
---|
160 | |
---|
161 | ! Identify clear-sky layers, with pseudo layers for outer space |
---|
162 | ! and below the ground, both treated as single-region clear skies |
---|
163 | logical :: is_clear_sky_layer(0:nlev+1) |
---|
164 | |
---|
165 | ! Scattering optical depth of gas+aerosol and of cloud |
---|
166 | real(jprb) :: scat_od, scat_od_cloud |
---|
167 | |
---|
168 | real(jprb) :: mu0 |
---|
169 | |
---|
170 | integer :: jcol, jlev, jg, jreg, iband, jreg2, ng |
---|
171 | |
---|
172 | real(jphook) :: hook_handle |
---|
173 | |
---|
174 | if (lhook) call dr_hook('radiation_tripleclouds_sw:solver_tripleclouds_sw',0,hook_handle) |
---|
175 | |
---|
176 | ! -------------------------------------------------------- |
---|
177 | ! Section 1: Prepare general variables and arrays |
---|
178 | ! -------------------------------------------------------- |
---|
179 | ! Copy array dimensions to local variables for convenience |
---|
180 | ng = config%n_g_sw |
---|
181 | |
---|
182 | ! Compute the wavelength-independent region fractions and |
---|
183 | ! optical-depth scalings |
---|
184 | call calc_region_properties(nlev,nregions,istartcol,iendcol, & |
---|
185 | & config%i_cloud_pdf_shape == IPdfShapeGamma, & |
---|
186 | & cloud%fraction, cloud%fractional_std, region_fracs, & |
---|
187 | & od_scaling, config%cloud_fraction_threshold) |
---|
188 | |
---|
189 | ! Compute wavelength-independent overlap matrices u_matrix and |
---|
190 | ! v_matrix |
---|
191 | call calc_overlap_matrices(nlev,nregions,istartcol,iendcol, & |
---|
192 | & region_fracs, cloud%overlap_param, & |
---|
193 | & u_matrix, v_matrix, & |
---|
194 | & decorrelation_scaling=config%cloud_inhom_decorr_scaling, & |
---|
195 | & cloud_fraction_threshold=config%cloud_fraction_threshold, & |
---|
196 | & use_beta_overlap=config%use_beta_overlap, & |
---|
197 | & cloud_cover=flux%cloud_cover_sw) |
---|
198 | |
---|
199 | ! Main loop over columns |
---|
200 | do jcol = istartcol, iendcol |
---|
201 | ! -------------------------------------------------------- |
---|
202 | ! Section 2: Prepare column-specific variables and arrays |
---|
203 | ! -------------------------------------------------------- |
---|
204 | |
---|
205 | ! Copy local cosine of the solar zenith angle |
---|
206 | mu0 = single_level%cos_sza(jcol) |
---|
207 | |
---|
208 | ! Skip profile if sun is too low in the sky |
---|
209 | if (mu0 < 1.0e-10_jprb) then |
---|
210 | flux%sw_dn(jcol,:) = 0.0_jprb |
---|
211 | flux%sw_up(jcol,:) = 0.0_jprb |
---|
212 | if (allocated(flux%sw_dn_direct)) then |
---|
213 | flux%sw_dn_direct(jcol,:) = 0.0_jprb |
---|
214 | end if |
---|
215 | if (config%do_clear) then |
---|
216 | flux%sw_dn_clear(jcol,:) = 0.0_jprb |
---|
217 | flux%sw_up_clear(jcol,:) = 0.0_jprb |
---|
218 | if (allocated(flux%sw_dn_direct_clear)) then |
---|
219 | flux%sw_dn_direct_clear(jcol,:) = 0.0_jprb |
---|
220 | end if |
---|
221 | end if |
---|
222 | |
---|
223 | if (config%do_save_spectral_flux) then |
---|
224 | flux%sw_dn_band(:,jcol,:) = 0.0_jprb |
---|
225 | flux%sw_up_band(:,jcol,:) = 0.0_jprb |
---|
226 | if (allocated(flux%sw_dn_direct_band)) then |
---|
227 | flux%sw_dn_direct_band(:,jcol,:) = 0.0_jprb |
---|
228 | end if |
---|
229 | if (config%do_clear) then |
---|
230 | flux%sw_dn_clear_band(:,jcol,:) = 0.0_jprb |
---|
231 | flux%sw_up_clear_band(:,jcol,:) = 0.0_jprb |
---|
232 | if (allocated(flux%sw_dn_direct_clear_band)) then |
---|
233 | flux%sw_dn_direct_clear_band(:,jcol,:) = 0.0_jprb |
---|
234 | end if |
---|
235 | end if |
---|
236 | end if |
---|
237 | |
---|
238 | flux%sw_dn_diffuse_surf_g(:,jcol) = 0.0_jprb |
---|
239 | flux%sw_dn_direct_surf_g(:,jcol) = 0.0_jprb |
---|
240 | if (config%do_clear) then |
---|
241 | flux%sw_dn_diffuse_surf_clear_g(:,jcol) = 0.0_jprb |
---|
242 | flux%sw_dn_direct_surf_clear_g(:,jcol) = 0.0_jprb |
---|
243 | end if |
---|
244 | |
---|
245 | cycle |
---|
246 | end if ! sun is below the horizon |
---|
247 | |
---|
248 | ! At this point mu0 >= 1.0e-10 |
---|
249 | |
---|
250 | ! Define which layers contain cloud; assume that |
---|
251 | ! cloud%crop_cloud_fraction has already been called |
---|
252 | is_clear_sky_layer = .true. |
---|
253 | do jlev = 1,nlev |
---|
254 | if (cloud%fraction(jcol,jlev) > 0.0_jprb) then |
---|
255 | is_clear_sky_layer(jlev) = .false. |
---|
256 | end if |
---|
257 | end do |
---|
258 | |
---|
259 | ! -------------------------------------------------------- |
---|
260 | ! Section 3: Loop over layers to compute reflectance and transmittance |
---|
261 | ! -------------------------------------------------------- |
---|
262 | ! In this section the reflectance, transmittance and sources |
---|
263 | ! are computed for each layer |
---|
264 | |
---|
265 | ! Clear-sky quantities for all layers at once |
---|
266 | call calc_ref_trans_sw(ng*nlev, & |
---|
267 | & mu0, od(:,:,jcol), ssa(:,:,jcol), g(:,:,jcol), & |
---|
268 | & reflectance_clear, transmittance_clear, & |
---|
269 | & ref_dir_clear, trans_dir_diff_clear, & |
---|
270 | & trans_dir_dir_clear) |
---|
271 | |
---|
272 | ! Cloudy layers |
---|
273 | do jlev = 1,nlev ! Start at top-of-atmosphere |
---|
274 | if (.not. is_clear_sky_layer(jlev)) then |
---|
275 | do jreg = 2,nregions |
---|
276 | do jg = 1,ng |
---|
277 | ! Mapping from g-point to band |
---|
278 | iband = config%i_band_from_reordered_g_sw(jg) |
---|
279 | scat_od = od(jg,jlev,jcol)*ssa(jg,jlev,jcol) |
---|
280 | scat_od_cloud = od_cloud(iband,jlev,jcol) & |
---|
281 | & * ssa_cloud(iband,jlev,jcol) * od_scaling(jreg,jlev,jcol) |
---|
282 | ! Add scaled cloud optical depth to clear-sky value |
---|
283 | od_total(jg,jreg) = od(jg,jlev,jcol) & |
---|
284 | & + od_cloud(iband,jlev,jcol)*od_scaling(jreg,jlev,jcol) |
---|
285 | ! Compute single-scattering albedo and asymmetry |
---|
286 | ! factor of gas-cloud combination |
---|
287 | ssa_total(jg,jreg) = (scat_od+scat_od_cloud) & |
---|
288 | & / od_total(jg,jreg) |
---|
289 | g_total(jg,jreg) = (scat_od*g(jg,jlev,jcol) & |
---|
290 | & + scat_od_cloud * g_cloud(iband,jlev,jcol)) & |
---|
291 | & / (scat_od + scat_od_cloud) |
---|
292 | end do |
---|
293 | end do |
---|
294 | |
---|
295 | if (config%do_sw_delta_scaling_with_gases) then |
---|
296 | ! Apply delta-Eddington scaling to the aerosol-gas(-cloud) |
---|
297 | ! mixture |
---|
298 | call delta_eddington(od_total, ssa_total, g_total) |
---|
299 | end if |
---|
300 | ! Both cloudy regions at once |
---|
301 | call calc_ref_trans_sw(ng*(nregions-1), & |
---|
302 | & mu0, od_total, ssa_total, g_total, & |
---|
303 | & reflectance(:,:,jlev), transmittance(:,:,jlev), & |
---|
304 | & ref_dir(:,:,jlev), trans_dir_diff(:,:,jlev), & |
---|
305 | & trans_dir_dir(:,:,jlev)) |
---|
306 | end if |
---|
307 | end do |
---|
308 | |
---|
309 | ! -------------------------------------------------------- |
---|
310 | ! Section 4: Compute total albedos |
---|
311 | ! -------------------------------------------------------- |
---|
312 | |
---|
313 | total_albedo(:,:,:) = 0.0_jprb |
---|
314 | total_albedo_direct(:,:,:) = 0.0_jprb |
---|
315 | |
---|
316 | ! Copy surface albedos in clear-sky region |
---|
317 | do jg = 1,ng |
---|
318 | total_albedo(jg,1,nlev+1) = albedo_diffuse(jg,jcol) |
---|
319 | total_albedo_direct(jg,1,nlev+1) & |
---|
320 | & = mu0 * albedo_direct(jg,jcol) |
---|
321 | end do |
---|
322 | |
---|
323 | ! If there is cloud in the lowest layer then we need the albedos |
---|
324 | ! underneath |
---|
325 | if (.not. is_clear_sky_layer(nlev)) then |
---|
326 | do jreg = 2,nregions |
---|
327 | total_albedo(:,jreg,nlev+1) = total_albedo(:,1,nlev+1) |
---|
328 | total_albedo_direct(:,jreg,nlev+1) = total_albedo_direct(:,1,nlev+1) |
---|
329 | end do |
---|
330 | end if |
---|
331 | |
---|
332 | if (config%do_clear) then |
---|
333 | total_albedo_clear(:,nlev+1) = total_albedo(:,1,nlev+1) |
---|
334 | total_albedo_clear_direct(:,nlev+1) = total_albedo_direct(:,1,nlev+1) |
---|
335 | end if |
---|
336 | |
---|
337 | ! Work up from the surface computing the total albedo of the |
---|
338 | ! atmosphere below that point using the adding method |
---|
339 | do jlev = nlev,1,-1 |
---|
340 | |
---|
341 | total_albedo_below = 0.0_jprb |
---|
342 | total_albedo_below_direct = 0.0_jprb |
---|
343 | |
---|
344 | if (config%do_clear) then |
---|
345 | ! For clear-skies there is no need to consider "above" and |
---|
346 | ! "below" quantities since with no cloud overlap to worry |
---|
347 | ! about, these are the same |
---|
348 | do jg = 1,ng |
---|
349 | inv_denom(jg,1) = 1.0_jprb & |
---|
350 | & / (1.0_jprb - total_albedo_clear(jg,jlev+1)*reflectance_clear(jg,jlev)) |
---|
351 | total_albedo_clear(jg,jlev) = reflectance_clear(jg,jlev) & |
---|
352 | & + transmittance_clear(jg,jlev) * transmittance_clear(jg,jlev) & |
---|
353 | & * total_albedo_clear(jg,jlev+1) * inv_denom(jg,1) |
---|
354 | |
---|
355 | total_albedo_clear_direct(jg,jlev) = ref_dir_clear(jg,jlev) & |
---|
356 | & + (trans_dir_dir_clear(jg,jlev)*total_albedo_clear_direct(jg,jlev+1) & |
---|
357 | & +trans_dir_diff_clear(jg,jlev)*total_albedo_clear(jg,jlev+1)) & |
---|
358 | & * transmittance_clear(jg,jlev) * inv_denom(jg,1) |
---|
359 | end do |
---|
360 | end if |
---|
361 | |
---|
362 | ! All-sky fluxes: first the clear region |
---|
363 | do jg = 1,ng |
---|
364 | inv_denom(jg,1) = 1.0_jprb & |
---|
365 | & / (1.0_jprb - total_albedo(jg,1,jlev+1)*reflectance_clear(jg,jlev)) |
---|
366 | total_albedo_below(jg,1) = reflectance_clear(jg,jlev) & |
---|
367 | & + transmittance_clear(jg,jlev) * transmittance_clear(jg,jlev) & |
---|
368 | & * total_albedo(jg,1,jlev+1) * inv_denom(jg,1) |
---|
369 | total_albedo_below_direct(jg,1) = ref_dir_clear(jg,jlev) & |
---|
370 | & + (trans_dir_dir_clear(jg,jlev)*total_albedo_direct(jg,1,jlev+1) & |
---|
371 | & +trans_dir_diff_clear(jg,jlev)*total_albedo(jg,1,jlev+1)) & |
---|
372 | & * transmittance_clear(jg,jlev) * inv_denom(jg,1) |
---|
373 | end do |
---|
374 | |
---|
375 | ! Then the cloudy regions if any cloud is present in this layer |
---|
376 | if (.not. is_clear_sky_layer(jlev)) then |
---|
377 | do jreg = 2,nregions |
---|
378 | do jg = 1,ng |
---|
379 | inv_denom(jg,jreg) = 1.0_jprb / (1.0_jprb & |
---|
380 | & - total_albedo(jg,jreg,jlev+1)*reflectance(jg,jreg,jlev)) |
---|
381 | total_albedo_below(jg,jreg) = reflectance(jg,jreg,jlev) & |
---|
382 | & + transmittance(jg,jreg,jlev) * transmittance(jg,jreg,jlev) & |
---|
383 | & * total_albedo(jg,jreg,jlev+1) * inv_denom(jg,jreg) |
---|
384 | total_albedo_below_direct(jg,jreg) = ref_dir(jg,jreg,jlev) & |
---|
385 | & + (trans_dir_dir(jg,jreg,jlev)*total_albedo_direct(jg,jreg,jlev+1) & |
---|
386 | & +trans_dir_diff(jg,jreg,jlev)*total_albedo(jg,jreg,jlev+1)) & |
---|
387 | & * transmittance(jg,jreg,jlev) * inv_denom(jg,jreg) |
---|
388 | end do |
---|
389 | end do |
---|
390 | end if |
---|
391 | |
---|
392 | ! Account for cloud overlap when converting albedo below a |
---|
393 | ! layer interface to the equivalent values just above |
---|
394 | if (is_clear_sky_layer(jlev) .and. is_clear_sky_layer(jlev-1)) then |
---|
395 | total_albedo(:,:,jlev) = total_albedo_below(:,:) |
---|
396 | total_albedo_direct(:,:,jlev) = total_albedo_below_direct(:,:) |
---|
397 | else |
---|
398 | ! Use overlap matrix and exclude "anomalous" horizontal |
---|
399 | ! transport described by Shonk & Hogan (2008). Therefore, |
---|
400 | ! the operation we perform is essentially diag(total_albedo) |
---|
401 | ! = matmul(transpose(v_matrix)), diag(total_albedo_below)). |
---|
402 | do jreg = 1,nregions |
---|
403 | do jreg2 = 1,nregions |
---|
404 | total_albedo(:,jreg,jlev) & |
---|
405 | & = total_albedo(:,jreg,jlev) & |
---|
406 | & + total_albedo_below(:,jreg2) & |
---|
407 | & * v_matrix(jreg2,jreg,jlev,jcol) |
---|
408 | total_albedo_direct(:,jreg,jlev) & |
---|
409 | & = total_albedo_direct(:,jreg,jlev) & |
---|
410 | & + total_albedo_below_direct(:,jreg2) & |
---|
411 | & * v_matrix(jreg2,jreg,jlev,jcol) |
---|
412 | end do |
---|
413 | end do |
---|
414 | |
---|
415 | end if |
---|
416 | |
---|
417 | end do ! Reverse loop over levels |
---|
418 | |
---|
419 | ! -------------------------------------------------------- |
---|
420 | ! Section 5: Compute fluxes |
---|
421 | ! -------------------------------------------------------- |
---|
422 | |
---|
423 | ! Top-of-atmosphere fluxes into the regions of the top-most |
---|
424 | ! layer, zero since we assume no diffuse downwelling |
---|
425 | flux_dn = 0.0_jprb |
---|
426 | ! Direct downwelling flux (into a plane perpendicular to the |
---|
427 | ! sun) entering the top of each region in the top-most layer |
---|
428 | do jreg = 1,nregions |
---|
429 | direct_dn(:,jreg) = incoming_sw(:,jcol)*region_fracs(jreg,1,jcol) |
---|
430 | end do |
---|
431 | flux_up = direct_dn*total_albedo_direct(:,:,1) |
---|
432 | |
---|
433 | if (config%do_clear) then |
---|
434 | flux_dn_clear = 0.0_jprb |
---|
435 | direct_dn_clear(:) = incoming_sw(:,jcol) |
---|
436 | flux_up_clear = direct_dn_clear*total_albedo_clear_direct(:,1) |
---|
437 | end if |
---|
438 | |
---|
439 | ! Store TOA spectral fluxes |
---|
440 | flux%sw_up_toa_g(:,jcol) = sum(flux_up,2) |
---|
441 | flux%sw_dn_toa_g(:,jcol) = incoming_sw(:,jcol)*mu0 |
---|
442 | if (config%do_clear) then |
---|
443 | flux%sw_up_toa_clear_g(:,jcol) = flux_up_clear |
---|
444 | end if |
---|
445 | |
---|
446 | ! Store the TOA broadband fluxes |
---|
447 | flux%sw_up(jcol,1) = sum(sum(flux_up,1)) |
---|
448 | flux%sw_dn(jcol,1) = mu0 * sum(sum(direct_dn,1)) |
---|
449 | if (allocated(flux%sw_dn_direct)) then |
---|
450 | flux%sw_dn_direct(jcol,1) = flux%sw_dn(jcol,1) |
---|
451 | end if |
---|
452 | if (config%do_clear) then |
---|
453 | flux%sw_up_clear(jcol,1) = sum(flux_up_clear) |
---|
454 | flux%sw_dn_clear(jcol,1) = mu0 * sum(direct_dn_clear) |
---|
455 | if (allocated(flux%sw_dn_direct_clear)) then |
---|
456 | flux%sw_dn_direct_clear(jcol,1) = flux%sw_dn_clear(jcol,1) |
---|
457 | end if |
---|
458 | end if |
---|
459 | |
---|
460 | ! Save the spectral fluxes if required; some redundancy here as |
---|
461 | ! the TOA downwelling flux is the same in clear and cloudy skies |
---|
462 | if (config%do_save_spectral_flux) then |
---|
463 | call indexed_sum(sum(flux_up,2), & |
---|
464 | & config%i_spec_from_reordered_g_sw, & |
---|
465 | & flux%sw_up_band(:,jcol,1)) |
---|
466 | call indexed_sum(sum(direct_dn,2), & |
---|
467 | & config%i_spec_from_reordered_g_sw, & |
---|
468 | & flux%sw_dn_band(:,jcol,1)) |
---|
469 | flux%sw_dn_band(:,jcol,1) = & |
---|
470 | & mu0 * flux%sw_dn_band(:,jcol,1) |
---|
471 | if (allocated(flux%sw_dn_direct_band)) then |
---|
472 | flux%sw_dn_direct_band(:,jcol,1) = flux%sw_dn_band(:,jcol,1) |
---|
473 | end if |
---|
474 | call add_indexed_sum(sum(flux_dn,2), & |
---|
475 | & config%i_spec_from_reordered_g_sw, & |
---|
476 | & flux%sw_dn_band(:,jcol,1)) |
---|
477 | if (config%do_clear) then |
---|
478 | call indexed_sum(flux_up_clear, & |
---|
479 | & config%i_spec_from_reordered_g_sw, & |
---|
480 | & flux%sw_up_clear_band(:,jcol,1)) |
---|
481 | call indexed_sum(direct_dn_clear, & |
---|
482 | & config%i_spec_from_reordered_g_sw, & |
---|
483 | & flux%sw_dn_clear_band(:,jcol,1)) |
---|
484 | flux%sw_dn_clear_band(:,jcol,1) & |
---|
485 | & = mu0 * flux%sw_dn_clear_band(:,jcol,1) |
---|
486 | if (allocated(flux%sw_dn_direct_clear_band)) then |
---|
487 | flux%sw_dn_direct_clear_band(:,jcol,1) & |
---|
488 | & = flux%sw_dn_clear_band(:,jcol,1) |
---|
489 | end if |
---|
490 | call add_indexed_sum(flux_dn_clear, & |
---|
491 | & config%i_spec_from_reordered_g_sw, & |
---|
492 | & flux%sw_dn_clear_band(:,jcol,1)) |
---|
493 | end if |
---|
494 | end if |
---|
495 | |
---|
496 | ! Final loop back down through the atmosphere to compute fluxes |
---|
497 | do jlev = 1,nlev |
---|
498 | if (config%do_clear) then |
---|
499 | do jg = 1,ng |
---|
500 | flux_dn_clear(jg) = (transmittance_clear(jg,jlev)*flux_dn_clear(jg) + direct_dn_clear(jg) & |
---|
501 | & * (trans_dir_dir_clear(jg,jlev)*total_albedo_clear_direct(jg,jlev+1)*reflectance_clear(jg,jlev) & |
---|
502 | & + trans_dir_diff_clear(jg,jlev) )) & |
---|
503 | & / (1.0_jprb - reflectance_clear(jg,jlev)*total_albedo_clear(jg,jlev+1)) |
---|
504 | direct_dn_clear(jg) = trans_dir_dir_clear(jg,jlev)*direct_dn_clear(jg) |
---|
505 | flux_up_clear(jg) = direct_dn_clear(jg)*total_albedo_clear_direct(jg,jlev+1) & |
---|
506 | & + flux_dn_clear(jg)*total_albedo_clear(jg,jlev+1) |
---|
507 | end do |
---|
508 | end if |
---|
509 | |
---|
510 | ! All-sky fluxes: first the clear region... |
---|
511 | do jg = 1,ng |
---|
512 | flux_dn(jg,1) = (transmittance_clear(jg,jlev)*flux_dn(jg,1) + direct_dn(jg,1) & |
---|
513 | & * (trans_dir_dir_clear(jg,jlev)*total_albedo_direct(jg,1,jlev+1)*reflectance_clear(jg,jlev) & |
---|
514 | & + trans_dir_diff_clear(jg,jlev) )) & |
---|
515 | & / (1.0_jprb - reflectance_clear(jg,jlev)*total_albedo(jg,1,jlev+1)) |
---|
516 | direct_dn(jg,1) = trans_dir_dir_clear(jg,jlev)*direct_dn(jg,1) |
---|
517 | flux_up(jg,1) = direct_dn(jg,1)*total_albedo_direct(jg,1,jlev+1) & |
---|
518 | & + flux_dn(jg,1)*total_albedo(jg,1,jlev+1) |
---|
519 | end do |
---|
520 | |
---|
521 | ! ...then the cloudy regions if there are any |
---|
522 | if (is_clear_sky_layer(jlev)) then |
---|
523 | flux_dn(:,2:nregions) = 0.0_jprb |
---|
524 | flux_up(:,2:nregions) = 0.0_jprb |
---|
525 | direct_dn(:,2:nregions)= 0.0_jprb |
---|
526 | else |
---|
527 | do jreg = 2,nregions |
---|
528 | do jg = 1,ng |
---|
529 | flux_dn(jg,jreg) = (transmittance(jg,jreg,jlev)*flux_dn(jg,jreg) + direct_dn(jg,jreg) & |
---|
530 | & * (trans_dir_dir(jg,jreg,jlev)*total_albedo_direct(jg,jreg,jlev+1)*reflectance(jg,jreg,jlev) & |
---|
531 | & + trans_dir_diff(jg,jreg,jlev) )) & |
---|
532 | & / (1.0_jprb - reflectance(jg,jreg,jlev)*total_albedo(jg,jreg,jlev+1)) |
---|
533 | direct_dn(jg,jreg) = trans_dir_dir(jg,jreg,jlev)*direct_dn(jg,jreg) |
---|
534 | flux_up(jg,jreg) = direct_dn(jg,jreg)*total_albedo_direct(jg,jreg,jlev+1) & |
---|
535 | & + flux_dn(jg,jreg)*total_albedo(jg,jreg,jlev+1) |
---|
536 | end do |
---|
537 | end do |
---|
538 | end if |
---|
539 | |
---|
540 | if (.not. (is_clear_sky_layer(jlev) & |
---|
541 | & .and. is_clear_sky_layer(jlev+1))) then |
---|
542 | ! Account for overlap rules in translating fluxes just above |
---|
543 | ! a layer interface to the values just below |
---|
544 | flux_dn = singlemat_x_vec(ng,ng,nregions, & |
---|
545 | & v_matrix(:,:,jlev+1,jcol), flux_dn) |
---|
546 | direct_dn = singlemat_x_vec(ng,ng,nregions, & |
---|
547 | & v_matrix(:,:,jlev+1,jcol), direct_dn) |
---|
548 | end if ! Otherwise the fluxes in each region are the same so |
---|
549 | ! nothing to do |
---|
550 | |
---|
551 | ! Store the broadband fluxes |
---|
552 | flux%sw_up(jcol,jlev+1) = sum(sum(flux_up,1)) |
---|
553 | if (allocated(flux%sw_dn_direct)) then |
---|
554 | flux%sw_dn_direct(jcol,jlev+1) = mu0 * sum(sum(direct_dn,1)) |
---|
555 | flux%sw_dn(jcol,jlev+1) & |
---|
556 | & = flux%sw_dn_direct(jcol,jlev+1) + sum(sum(flux_dn,1)) |
---|
557 | else |
---|
558 | flux%sw_dn(jcol,jlev+1) = mu0 * sum(sum(direct_dn,1)) + sum(sum(flux_dn,1)) |
---|
559 | end if |
---|
560 | if (config%do_clear) then |
---|
561 | flux%sw_up_clear(jcol,jlev+1) = sum(flux_up_clear) |
---|
562 | if (allocated(flux%sw_dn_direct_clear)) then |
---|
563 | flux%sw_dn_direct_clear(jcol,jlev+1) = mu0 * sum(direct_dn_clear) |
---|
564 | flux%sw_dn_clear(jcol,jlev+1) & |
---|
565 | & = flux%sw_dn_direct_clear(jcol,jlev+1) + sum(flux_dn_clear) |
---|
566 | else |
---|
567 | flux%sw_dn_clear(jcol,jlev+1) = mu0 * sum(direct_dn_clear) & |
---|
568 | & + sum(flux_dn_clear) |
---|
569 | end if |
---|
570 | end if |
---|
571 | |
---|
572 | ! Save the spectral fluxes if required |
---|
573 | if (config%do_save_spectral_flux) then |
---|
574 | call indexed_sum(sum(flux_up,2), & |
---|
575 | & config%i_spec_from_reordered_g_sw, & |
---|
576 | & flux%sw_up_band(:,jcol,jlev+1)) |
---|
577 | call indexed_sum(sum(direct_dn,2), & |
---|
578 | & config%i_spec_from_reordered_g_sw, & |
---|
579 | & flux%sw_dn_band(:,jcol,jlev+1)) |
---|
580 | flux%sw_dn_band(:,jcol,jlev+1) = & |
---|
581 | & mu0 * flux%sw_dn_band(:,jcol,jlev+1) |
---|
582 | if (allocated(flux%sw_dn_direct_band)) then |
---|
583 | flux%sw_dn_direct_band(:,jcol,jlev+1) & |
---|
584 | & = flux%sw_dn_band(:,jcol,jlev+1) |
---|
585 | end if |
---|
586 | call add_indexed_sum(sum(flux_dn,2), & |
---|
587 | & config%i_spec_from_reordered_g_sw, & |
---|
588 | & flux%sw_dn_band(:,jcol,jlev+1)) |
---|
589 | if (config%do_clear) then |
---|
590 | call indexed_sum(flux_up_clear, & |
---|
591 | & config%i_spec_from_reordered_g_sw, & |
---|
592 | & flux%sw_up_clear_band(:,jcol,jlev+1)) |
---|
593 | call indexed_sum(direct_dn_clear, & |
---|
594 | & config%i_spec_from_reordered_g_sw, & |
---|
595 | & flux%sw_dn_clear_band(:,jcol,jlev+1)) |
---|
596 | flux%sw_dn_clear_band(:,jcol,jlev+1) = & |
---|
597 | & mu0 * flux%sw_dn_clear_band(:,jcol,jlev+1) |
---|
598 | if (allocated(flux%sw_dn_direct_clear_band)) then |
---|
599 | flux%sw_dn_direct_clear_band(:,jcol,jlev+1) & |
---|
600 | & = flux%sw_dn_clear_band(:,jcol,jlev+1) |
---|
601 | end if |
---|
602 | call add_indexed_sum(flux_dn_clear, & |
---|
603 | & config%i_spec_from_reordered_g_sw, & |
---|
604 | & flux%sw_dn_clear_band(:,jcol,jlev+1)) |
---|
605 | end if |
---|
606 | end if |
---|
607 | |
---|
608 | end do ! Final loop over levels |
---|
609 | |
---|
610 | ! Store surface spectral fluxes, if required (after the end of |
---|
611 | ! the final loop over levels, the current values of these arrays |
---|
612 | ! will be the surface values) |
---|
613 | flux%sw_dn_diffuse_surf_g(:,jcol) = sum(flux_dn,2) |
---|
614 | flux%sw_dn_direct_surf_g(:,jcol) = mu0 * sum(direct_dn,2) |
---|
615 | if (config%do_clear) then |
---|
616 | flux%sw_dn_diffuse_surf_clear_g(:,jcol) = flux_dn_clear |
---|
617 | flux%sw_dn_direct_surf_clear_g(:,jcol) = mu0 * direct_dn_clear |
---|
618 | end if |
---|
619 | |
---|
620 | end do ! Loop over columns |
---|
621 | |
---|
622 | if (lhook) call dr_hook('radiation_tripleclouds_sw:solver_tripleclouds_sw',1,hook_handle) |
---|
623 | |
---|
624 | end subroutine solver_tripleclouds_sw |
---|
625 | |
---|
626 | end module radiation_tripleclouds_sw |
---|