1 | ! radiation_tripleclouds_sw.F90 - Shortwave "Tripleclouds" solver |
---|
2 | ! |
---|
3 | ! (C) Copyright 2016- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! Modifications |
---|
16 | ! 2017-04-11 R. Hogan Receive albedos at g-points |
---|
17 | ! 2017-04-22 R. Hogan Store surface fluxes at all g-points |
---|
18 | ! 2017-10-23 R. Hogan Renamed single-character variables |
---|
19 | ! 2018-10-08 R. Hogan Call calc_region_properties |
---|
20 | ! 2019-01-02 R. Hogan Fixed problem of do_save_spectral_flux .and. .not. do_sw_direct |
---|
21 | ! 2020-09-18 R. Hogan Replaced some array expressions with loops for speed |
---|
22 | ! 2021-10-01 P. Ukkonen Performance optimizations: batched computations |
---|
23 | |
---|
24 | module radiation_tripleclouds_sw |
---|
25 | |
---|
26 | public |
---|
27 | |
---|
28 | contains |
---|
29 | ! Provides elemental function "delta_eddington" |
---|
30 | #include "radiation_delta_eddington.h" |
---|
31 | |
---|
32 | ! Small routine for scaling cloud optical depth in the cloudy |
---|
33 | ! regions |
---|
34 | #include "radiation_optical_depth_scaling.h" |
---|
35 | |
---|
36 | !--------------------------------------------------------------------- |
---|
37 | ! This module contains just one subroutine, the shortwave |
---|
38 | ! "Tripleclouds" solver in which cloud inhomogeneity is treated by |
---|
39 | ! dividing each model level into three regions, one clear and two |
---|
40 | ! cloudy (with differing optical depth). This approach was described |
---|
41 | ! by Shonk and Hogan (2008). |
---|
42 | subroutine solver_tripleclouds_sw(nlev,istartcol,iendcol, & |
---|
43 | & config, single_level, cloud, & |
---|
44 | & od, ssa, g, od_cloud, ssa_cloud, g_cloud, & |
---|
45 | & albedo_direct, albedo_diffuse, incoming_sw, & |
---|
46 | & flux) |
---|
47 | |
---|
48 | use parkind1, only : jprb |
---|
49 | use yomhook, only : lhook, dr_hook, jphook |
---|
50 | |
---|
51 | ! use radiation_io, only : nulout |
---|
52 | use radiation_config, only : config_type, IPdfShapeGamma |
---|
53 | use radiation_single_level, only : single_level_type |
---|
54 | use radiation_cloud, only : cloud_type |
---|
55 | use radiation_regions, only : calc_region_properties |
---|
56 | use radiation_overlap, only : calc_overlap_matrices |
---|
57 | use radiation_flux, only : flux_type, & |
---|
58 | & indexed_sum, add_indexed_sum |
---|
59 | use radiation_matrix, only : singlemat_x_vec |
---|
60 | use radiation_two_stream, only : calc_ref_trans_sw |
---|
61 | |
---|
62 | implicit none |
---|
63 | |
---|
64 | ! Number of regions |
---|
65 | integer, parameter :: nregions = 3 |
---|
66 | |
---|
67 | ! Inputs |
---|
68 | integer, intent(in) :: nlev ! number of model levels |
---|
69 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
---|
70 | type(config_type), intent(in) :: config |
---|
71 | type(single_level_type), intent(in) :: single_level |
---|
72 | type(cloud_type), intent(in) :: cloud |
---|
73 | |
---|
74 | ! Gas and aerosol optical depth, single-scattering albedo and |
---|
75 | ! asymmetry factor at each shortwave g-point |
---|
76 | real(jprb), intent(in), dimension(config%n_g_sw,nlev,istartcol:iendcol) & |
---|
77 | & :: od, ssa, g |
---|
78 | |
---|
79 | ! Cloud and precipitation optical depth, single-scattering albedo and |
---|
80 | ! asymmetry factor in each shortwave band |
---|
81 | real(jprb), intent(in), dimension(config%n_bands_sw,nlev,istartcol:iendcol) & |
---|
82 | & :: od_cloud, ssa_cloud, g_cloud |
---|
83 | |
---|
84 | ! Optical depth, single scattering albedo and asymmetry factor in |
---|
85 | ! each g-point of each cloudy region including gas, aerosol and |
---|
86 | ! clouds |
---|
87 | real(jprb), dimension(config%n_g_sw,2:nregions) & |
---|
88 | & :: od_total, ssa_total, g_total |
---|
89 | |
---|
90 | ! Direct and diffuse surface albedos, and the incoming shortwave |
---|
91 | ! flux into a plane perpendicular to the incoming radiation at |
---|
92 | ! top-of-atmosphere in each of the shortwave g points |
---|
93 | real(jprb), intent(in), dimension(config%n_g_sw,istartcol:iendcol) & |
---|
94 | & :: albedo_direct, albedo_diffuse, incoming_sw |
---|
95 | |
---|
96 | ! Output |
---|
97 | type(flux_type), intent(inout):: flux |
---|
98 | |
---|
99 | ! Local variables |
---|
100 | |
---|
101 | ! The area fractions of each region |
---|
102 | real(jprb) :: region_fracs(1:nregions,nlev,istartcol:iendcol) |
---|
103 | |
---|
104 | ! The scaling used for the optical depth in the cloudy regions |
---|
105 | real(jprb) :: od_scaling(2:nregions,nlev,istartcol:iendcol) |
---|
106 | |
---|
107 | ! Directional overlap matrices defined at all layer interfaces |
---|
108 | ! including top-of-atmosphere and the surface |
---|
109 | real(jprb), dimension(nregions,nregions,nlev+1, & |
---|
110 | & istartcol:iendcol) :: u_matrix, v_matrix |
---|
111 | |
---|
112 | ! Diffuse reflection and transmission matrices in the cloudy |
---|
113 | ! regions of each layer |
---|
114 | real(jprb), dimension(config%n_g_sw, 2:nregions, nlev) & |
---|
115 | & :: reflectance, transmittance |
---|
116 | |
---|
117 | ! Terms translating the direct flux entering the layer from above |
---|
118 | ! to the reflected radiation exiting upwards (ref_dir) and the |
---|
119 | ! scattered radiation exiting downwards (trans_dir_diff), along with the |
---|
120 | ! direct unscattered transmission matrix (trans_dir_dir). |
---|
121 | real(jprb), dimension(config%n_g_sw, 2:nregions, nlev) & |
---|
122 | & :: ref_dir, trans_dir_diff, trans_dir_dir |
---|
123 | |
---|
124 | ! As above but for the clear regions; clear and cloudy layers are |
---|
125 | ! separated out so that calc_ref_trans_sw can be called on the |
---|
126 | ! entire clear-sky atmosphere at once |
---|
127 | real(jprb), dimension(config%n_g_sw, nlev) & |
---|
128 | & :: reflectance_clear, transmittance_clear, & |
---|
129 | & ref_dir_clear, trans_dir_diff_clear, trans_dir_dir_clear |
---|
130 | |
---|
131 | ! Total albedo of the atmosphere/surface just above a layer |
---|
132 | ! interface with respect to downwelling diffuse and direct |
---|
133 | ! (respectively) radiation at that interface, where level index = |
---|
134 | ! 1 corresponds to the top-of-atmosphere |
---|
135 | real(jprb), dimension(config%n_g_sw, nregions, nlev+1) & |
---|
136 | & :: total_albedo, total_albedo_direct |
---|
137 | |
---|
138 | ! ...equivalent values for clear-skies |
---|
139 | real(jprb), dimension(config%n_g_sw, nlev+1) & |
---|
140 | & :: total_albedo_clear, total_albedo_clear_direct |
---|
141 | |
---|
142 | ! Total albedo of the atmosphere just below a layer interface |
---|
143 | real(jprb), dimension(config%n_g_sw, nregions) & |
---|
144 | & :: total_albedo_below, total_albedo_below_direct |
---|
145 | |
---|
146 | ! Direct downwelling flux below and above an interface between |
---|
147 | ! layers into a plane perpendicular to the direction of the sun |
---|
148 | real(jprb), dimension(config%n_g_sw, nregions) :: direct_dn |
---|
149 | ! Diffuse equivalents |
---|
150 | real(jprb), dimension(config%n_g_sw, nregions) :: flux_dn, flux_up |
---|
151 | |
---|
152 | ! ...clear-sky equivalent (no distinction between "above/below") |
---|
153 | real(jprb), dimension(config%n_g_sw) & |
---|
154 | & :: direct_dn_clear, flux_dn_clear, flux_up_clear |
---|
155 | |
---|
156 | ! Clear-sky equivalent, but actually its reciprocal to replace |
---|
157 | ! some divisions by multiplications |
---|
158 | real(jprb), dimension(config%n_g_sw, nregions) :: inv_denom |
---|
159 | |
---|
160 | ! Identify clear-sky layers, with pseudo layers for outer space |
---|
161 | ! and below the ground, both treated as single-region clear skies |
---|
162 | logical :: is_clear_sky_layer(0:nlev+1) |
---|
163 | |
---|
164 | ! Scattering optical depth of gas+aerosol and of cloud |
---|
165 | real(jprb) :: scat_od, scat_od_cloud |
---|
166 | |
---|
167 | ! Temporaries to speed up summations |
---|
168 | real(jprb) :: sum_dn_diff, sum_dn_dir, sum_up |
---|
169 | |
---|
170 | ! Local cosine of solar zenith angle |
---|
171 | real(jprb) :: mu0 |
---|
172 | |
---|
173 | integer :: jcol, jlev, jg, jreg, iband, jreg2, ng |
---|
174 | |
---|
175 | real(jphook) :: hook_handle |
---|
176 | |
---|
177 | if (lhook) call dr_hook('radiation_tripleclouds_sw:solver_tripleclouds_sw',0,hook_handle) |
---|
178 | |
---|
179 | ! -------------------------------------------------------- |
---|
180 | ! Section 1: Prepare general variables and arrays |
---|
181 | ! -------------------------------------------------------- |
---|
182 | ! Copy array dimensions to local variables for convenience |
---|
183 | ng = config%n_g_sw |
---|
184 | |
---|
185 | ! Compute the wavelength-independent region fractions and |
---|
186 | ! optical-depth scalings |
---|
187 | call calc_region_properties(nlev,nregions,istartcol,iendcol, & |
---|
188 | & config%i_cloud_pdf_shape == IPdfShapeGamma, & |
---|
189 | & cloud%fraction, cloud%fractional_std, region_fracs, & |
---|
190 | & od_scaling, config%cloud_fraction_threshold) |
---|
191 | |
---|
192 | ! Compute wavelength-independent overlap matrices u_matrix and |
---|
193 | ! v_matrix |
---|
194 | call calc_overlap_matrices(nlev,nregions,istartcol,iendcol, & |
---|
195 | & region_fracs, cloud%overlap_param, & |
---|
196 | & u_matrix, v_matrix, & |
---|
197 | & decorrelation_scaling=config%cloud_inhom_decorr_scaling, & |
---|
198 | & cloud_fraction_threshold=config%cloud_fraction_threshold, & |
---|
199 | & use_beta_overlap=config%use_beta_overlap, & |
---|
200 | & cloud_cover=flux%cloud_cover_sw) |
---|
201 | |
---|
202 | ! Main loop over columns |
---|
203 | do jcol = istartcol, iendcol |
---|
204 | ! -------------------------------------------------------- |
---|
205 | ! Section 2: Prepare column-specific variables and arrays |
---|
206 | ! -------------------------------------------------------- |
---|
207 | |
---|
208 | ! Copy local cosine of the solar zenith angle |
---|
209 | mu0 = single_level%cos_sza(jcol) |
---|
210 | |
---|
211 | ! Skip profile if sun is too low in the sky |
---|
212 | if (mu0 < 1.0e-10_jprb) then |
---|
213 | flux%sw_dn(jcol,:) = 0.0_jprb |
---|
214 | flux%sw_up(jcol,:) = 0.0_jprb |
---|
215 | if (allocated(flux%sw_dn_direct)) then |
---|
216 | flux%sw_dn_direct(jcol,:) = 0.0_jprb |
---|
217 | end if |
---|
218 | if (config%do_clear) then |
---|
219 | flux%sw_dn_clear(jcol,:) = 0.0_jprb |
---|
220 | flux%sw_up_clear(jcol,:) = 0.0_jprb |
---|
221 | if (allocated(flux%sw_dn_direct_clear)) then |
---|
222 | flux%sw_dn_direct_clear(jcol,:) = 0.0_jprb |
---|
223 | end if |
---|
224 | end if |
---|
225 | |
---|
226 | if (config%do_save_spectral_flux) then |
---|
227 | flux%sw_dn_band(:,jcol,:) = 0.0_jprb |
---|
228 | flux%sw_up_band(:,jcol,:) = 0.0_jprb |
---|
229 | if (allocated(flux%sw_dn_direct_band)) then |
---|
230 | flux%sw_dn_direct_band(:,jcol,:) = 0.0_jprb |
---|
231 | end if |
---|
232 | if (config%do_clear) then |
---|
233 | flux%sw_dn_clear_band(:,jcol,:) = 0.0_jprb |
---|
234 | flux%sw_up_clear_band(:,jcol,:) = 0.0_jprb |
---|
235 | if (allocated(flux%sw_dn_direct_clear_band)) then |
---|
236 | flux%sw_dn_direct_clear_band(:,jcol,:) = 0.0_jprb |
---|
237 | end if |
---|
238 | end if |
---|
239 | end if |
---|
240 | |
---|
241 | flux%sw_dn_diffuse_surf_g(:,jcol) = 0.0_jprb |
---|
242 | flux%sw_dn_direct_surf_g(:,jcol) = 0.0_jprb |
---|
243 | if (config%do_clear) then |
---|
244 | flux%sw_dn_diffuse_surf_clear_g(:,jcol) = 0.0_jprb |
---|
245 | flux%sw_dn_direct_surf_clear_g(:,jcol) = 0.0_jprb |
---|
246 | end if |
---|
247 | |
---|
248 | cycle |
---|
249 | end if ! sun is below the horizon |
---|
250 | |
---|
251 | ! At this point mu0 >= 1.0e-10 |
---|
252 | |
---|
253 | ! Define which layers contain cloud; assume that |
---|
254 | ! cloud%crop_cloud_fraction has already been called |
---|
255 | is_clear_sky_layer = .true. |
---|
256 | do jlev = 1,nlev |
---|
257 | if (cloud%fraction(jcol,jlev) > 0.0_jprb) then |
---|
258 | is_clear_sky_layer(jlev) = .false. |
---|
259 | end if |
---|
260 | end do |
---|
261 | |
---|
262 | ! -------------------------------------------------------- |
---|
263 | ! Section 3: Loop over layers to compute reflectance and transmittance |
---|
264 | ! -------------------------------------------------------- |
---|
265 | ! In this section the reflectance, transmittance and sources |
---|
266 | ! are computed for each layer |
---|
267 | |
---|
268 | ! Clear-sky quantities for all layers at once |
---|
269 | call calc_ref_trans_sw(ng*nlev, & |
---|
270 | & mu0, od(:,:,jcol), ssa(:,:,jcol), g(:,:,jcol), & |
---|
271 | & reflectance_clear, transmittance_clear, & |
---|
272 | & ref_dir_clear, trans_dir_diff_clear, & |
---|
273 | & trans_dir_dir_clear) |
---|
274 | |
---|
275 | ! Cloudy layers |
---|
276 | do jlev = 1,nlev ! Start at top-of-atmosphere |
---|
277 | if (.not. is_clear_sky_layer(jlev)) then |
---|
278 | do jreg = 2,nregions |
---|
279 | do jg = 1,ng |
---|
280 | ! Mapping from g-point to band |
---|
281 | iband = config%i_band_from_reordered_g_sw(jg) |
---|
282 | scat_od = od(jg,jlev,jcol)*ssa(jg,jlev,jcol) |
---|
283 | scat_od_cloud = od_cloud(iband,jlev,jcol) & |
---|
284 | & * ssa_cloud(iband,jlev,jcol) * od_scaling(jreg,jlev,jcol) |
---|
285 | ! Add scaled cloud optical depth to clear-sky value |
---|
286 | od_total(jg,jreg) = od(jg,jlev,jcol) & |
---|
287 | & + od_cloud(iband,jlev,jcol)*od_scaling(jreg,jlev,jcol) |
---|
288 | ! Compute single-scattering albedo and asymmetry |
---|
289 | ! factor of gas-cloud combination |
---|
290 | ssa_total(jg,jreg) = (scat_od+scat_od_cloud) & |
---|
291 | & / od_total(jg,jreg) |
---|
292 | g_total(jg,jreg) = (scat_od*g(jg,jlev,jcol) & |
---|
293 | & + scat_od_cloud * g_cloud(iband,jlev,jcol)) & |
---|
294 | & / (scat_od + scat_od_cloud) |
---|
295 | end do |
---|
296 | end do |
---|
297 | |
---|
298 | if (config%do_sw_delta_scaling_with_gases) then |
---|
299 | ! Apply delta-Eddington scaling to the aerosol-gas(-cloud) |
---|
300 | ! mixture |
---|
301 | call delta_eddington(od_total, ssa_total, g_total) |
---|
302 | end if |
---|
303 | ! Both cloudy regions at once |
---|
304 | call calc_ref_trans_sw(ng*(nregions-1), & |
---|
305 | & mu0, od_total, ssa_total, g_total, & |
---|
306 | & reflectance(:,:,jlev), transmittance(:,:,jlev), & |
---|
307 | & ref_dir(:,:,jlev), trans_dir_diff(:,:,jlev), & |
---|
308 | & trans_dir_dir(:,:,jlev)) |
---|
309 | end if |
---|
310 | end do |
---|
311 | |
---|
312 | ! -------------------------------------------------------- |
---|
313 | ! Section 4: Compute total albedos |
---|
314 | ! -------------------------------------------------------- |
---|
315 | |
---|
316 | total_albedo(:,:,:) = 0.0_jprb |
---|
317 | total_albedo_direct(:,:,:) = 0.0_jprb |
---|
318 | |
---|
319 | ! Copy surface albedos in clear-sky region |
---|
320 | do jg = 1,ng |
---|
321 | total_albedo(jg,1,nlev+1) = albedo_diffuse(jg,jcol) |
---|
322 | total_albedo_direct(jg,1,nlev+1) & |
---|
323 | & = mu0 * albedo_direct(jg,jcol) |
---|
324 | end do |
---|
325 | |
---|
326 | ! If there is cloud in the lowest layer then we need the albedos |
---|
327 | ! underneath |
---|
328 | if (.not. is_clear_sky_layer(nlev)) then |
---|
329 | do jreg = 2,nregions |
---|
330 | total_albedo(:,jreg,nlev+1) = total_albedo(:,1,nlev+1) |
---|
331 | total_albedo_direct(:,jreg,nlev+1) = total_albedo_direct(:,1,nlev+1) |
---|
332 | end do |
---|
333 | end if |
---|
334 | |
---|
335 | if (config%do_clear) then |
---|
336 | total_albedo_clear(:,nlev+1) = total_albedo(:,1,nlev+1) |
---|
337 | total_albedo_clear_direct(:,nlev+1) = total_albedo_direct(:,1,nlev+1) |
---|
338 | end if |
---|
339 | |
---|
340 | ! Work up from the surface computing the total albedo of the |
---|
341 | ! atmosphere below that point using the adding method |
---|
342 | do jlev = nlev,1,-1 |
---|
343 | |
---|
344 | total_albedo_below = 0.0_jprb |
---|
345 | total_albedo_below_direct = 0.0_jprb |
---|
346 | |
---|
347 | if (config%do_clear) then |
---|
348 | ! For clear-skies there is no need to consider "above" and |
---|
349 | ! "below" quantities since with no cloud overlap to worry |
---|
350 | ! about, these are the same |
---|
351 | do jg = 1,ng |
---|
352 | inv_denom(jg,1) = 1.0_jprb & |
---|
353 | & / (1.0_jprb - total_albedo_clear(jg,jlev+1)*reflectance_clear(jg,jlev)) |
---|
354 | total_albedo_clear(jg,jlev) = reflectance_clear(jg,jlev) & |
---|
355 | & + transmittance_clear(jg,jlev) * transmittance_clear(jg,jlev) & |
---|
356 | & * total_albedo_clear(jg,jlev+1) * inv_denom(jg,1) |
---|
357 | |
---|
358 | total_albedo_clear_direct(jg,jlev) = ref_dir_clear(jg,jlev) & |
---|
359 | & + (trans_dir_dir_clear(jg,jlev)*total_albedo_clear_direct(jg,jlev+1) & |
---|
360 | & +trans_dir_diff_clear(jg,jlev)*total_albedo_clear(jg,jlev+1)) & |
---|
361 | & * transmittance_clear(jg,jlev) * inv_denom(jg,1) |
---|
362 | end do |
---|
363 | end if |
---|
364 | |
---|
365 | ! All-sky fluxes: first the clear region |
---|
366 | do jg = 1,ng |
---|
367 | inv_denom(jg,1) = 1.0_jprb & |
---|
368 | & / (1.0_jprb - total_albedo(jg,1,jlev+1)*reflectance_clear(jg,jlev)) |
---|
369 | total_albedo_below(jg,1) = reflectance_clear(jg,jlev) & |
---|
370 | & + transmittance_clear(jg,jlev) * transmittance_clear(jg,jlev) & |
---|
371 | & * total_albedo(jg,1,jlev+1) * inv_denom(jg,1) |
---|
372 | total_albedo_below_direct(jg,1) = ref_dir_clear(jg,jlev) & |
---|
373 | & + (trans_dir_dir_clear(jg,jlev)*total_albedo_direct(jg,1,jlev+1) & |
---|
374 | & +trans_dir_diff_clear(jg,jlev)*total_albedo(jg,1,jlev+1)) & |
---|
375 | & * transmittance_clear(jg,jlev) * inv_denom(jg,1) |
---|
376 | end do |
---|
377 | |
---|
378 | ! Then the cloudy regions if any cloud is present in this layer |
---|
379 | if (.not. is_clear_sky_layer(jlev)) then |
---|
380 | do jreg = 2,nregions |
---|
381 | do jg = 1,ng |
---|
382 | inv_denom(jg,jreg) = 1.0_jprb / (1.0_jprb & |
---|
383 | & - total_albedo(jg,jreg,jlev+1)*reflectance(jg,jreg,jlev)) |
---|
384 | total_albedo_below(jg,jreg) = reflectance(jg,jreg,jlev) & |
---|
385 | & + transmittance(jg,jreg,jlev) * transmittance(jg,jreg,jlev) & |
---|
386 | & * total_albedo(jg,jreg,jlev+1) * inv_denom(jg,jreg) |
---|
387 | total_albedo_below_direct(jg,jreg) = ref_dir(jg,jreg,jlev) & |
---|
388 | & + (trans_dir_dir(jg,jreg,jlev)*total_albedo_direct(jg,jreg,jlev+1) & |
---|
389 | & +trans_dir_diff(jg,jreg,jlev)*total_albedo(jg,jreg,jlev+1)) & |
---|
390 | & * transmittance(jg,jreg,jlev) * inv_denom(jg,jreg) |
---|
391 | end do |
---|
392 | end do |
---|
393 | end if |
---|
394 | |
---|
395 | ! Account for cloud overlap when converting albedo below a |
---|
396 | ! layer interface to the equivalent values just above |
---|
397 | if (is_clear_sky_layer(jlev) .and. is_clear_sky_layer(jlev-1)) then |
---|
398 | total_albedo(:,:,jlev) = total_albedo_below(:,:) |
---|
399 | total_albedo_direct(:,:,jlev) = total_albedo_below_direct(:,:) |
---|
400 | else |
---|
401 | ! Use overlap matrix and exclude "anomalous" horizontal |
---|
402 | ! transport described by Shonk & Hogan (2008). Therefore, |
---|
403 | ! the operation we perform is essentially diag(total_albedo) |
---|
404 | ! = matmul(transpose(v_matrix)), diag(total_albedo_below)). |
---|
405 | do jreg = 1,nregions |
---|
406 | do jreg2 = 1,nregions |
---|
407 | total_albedo(:,jreg,jlev) & |
---|
408 | & = total_albedo(:,jreg,jlev) & |
---|
409 | & + total_albedo_below(:,jreg2) & |
---|
410 | & * v_matrix(jreg2,jreg,jlev,jcol) |
---|
411 | total_albedo_direct(:,jreg,jlev) & |
---|
412 | & = total_albedo_direct(:,jreg,jlev) & |
---|
413 | & + total_albedo_below_direct(:,jreg2) & |
---|
414 | & * v_matrix(jreg2,jreg,jlev,jcol) |
---|
415 | end do |
---|
416 | end do |
---|
417 | |
---|
418 | end if |
---|
419 | |
---|
420 | end do ! Reverse loop over levels |
---|
421 | |
---|
422 | ! -------------------------------------------------------- |
---|
423 | ! Section 5: Compute fluxes |
---|
424 | ! -------------------------------------------------------- |
---|
425 | |
---|
426 | ! Top-of-atmosphere fluxes into the regions of the top-most |
---|
427 | ! layer, zero since we assume no diffuse downwelling |
---|
428 | flux_dn = 0.0_jprb |
---|
429 | ! Direct downwelling flux (into a plane perpendicular to the |
---|
430 | ! sun) entering the top of each region in the top-most layer |
---|
431 | do jreg = 1,nregions |
---|
432 | direct_dn(:,jreg) = incoming_sw(:,jcol)*region_fracs(jreg,1,jcol) |
---|
433 | end do |
---|
434 | flux_up = direct_dn*total_albedo_direct(:,:,1) |
---|
435 | |
---|
436 | if (config%do_clear) then |
---|
437 | flux_dn_clear = 0.0_jprb |
---|
438 | direct_dn_clear(:) = incoming_sw(:,jcol) |
---|
439 | flux_up_clear = direct_dn_clear*total_albedo_clear_direct(:,1) |
---|
440 | end if |
---|
441 | |
---|
442 | ! Store TOA spectral fluxes |
---|
443 | flux%sw_up_toa_g(:,jcol) = sum(flux_up,2) |
---|
444 | flux%sw_dn_toa_g(:,jcol) = incoming_sw(:,jcol)*mu0 |
---|
445 | if (config%do_clear) then |
---|
446 | flux%sw_up_toa_clear_g(:,jcol) = flux_up_clear |
---|
447 | end if |
---|
448 | |
---|
449 | ! Store the TOA broadband fluxes, noting that there is no |
---|
450 | ! diffuse downwelling at TOA. The intrinsic "sum" command has |
---|
451 | ! been found to be very slow; better performance is found on |
---|
452 | ! x86-64 architecture with explicit loops and the "omp simd |
---|
453 | ! reduction" directive. |
---|
454 | sum_up = 0.0_jprb |
---|
455 | sum_dn_dir = 0.0_jprb |
---|
456 | do jreg = 1,nregions |
---|
457 | !$omp simd reduction(+:sum_up, sum_dn_dir) |
---|
458 | do jg = 1,ng |
---|
459 | sum_up = sum_up + flux_up(jg,jreg) |
---|
460 | sum_dn_dir = sum_dn_dir + direct_dn(jg,jreg) |
---|
461 | end do |
---|
462 | end do |
---|
463 | flux%sw_up(jcol,1) = sum_up |
---|
464 | flux%sw_dn(jcol,1) = mu0 * sum_dn_dir |
---|
465 | if (allocated(flux%sw_dn_direct)) then |
---|
466 | flux%sw_dn_direct(jcol,1) = flux%sw_dn(jcol,1) |
---|
467 | end if |
---|
468 | if (config%do_clear) then |
---|
469 | sum_up = 0.0_jprb |
---|
470 | sum_dn_dir = 0.0_jprb |
---|
471 | !$omp simd reduction(+:sum_up, sum_dn_dir) |
---|
472 | do jg = 1,ng |
---|
473 | sum_up = sum_up + flux_up_clear(jg) |
---|
474 | sum_dn_dir = sum_dn_dir + direct_dn_clear(jg) |
---|
475 | end do |
---|
476 | flux%sw_up_clear(jcol,1) = sum_up |
---|
477 | flux%sw_dn_clear(jcol,1) = mu0 * sum_dn_dir |
---|
478 | if (allocated(flux%sw_dn_direct_clear)) then |
---|
479 | flux%sw_dn_direct_clear(jcol,1) = flux%sw_dn_clear(jcol,1) |
---|
480 | end if |
---|
481 | end if |
---|
482 | |
---|
483 | ! Save the spectral fluxes if required; some redundancy here as |
---|
484 | ! the TOA downwelling flux is the same in clear and cloudy skies |
---|
485 | if (config%do_save_spectral_flux) then |
---|
486 | call indexed_sum(sum(flux_up,2), & |
---|
487 | & config%i_spec_from_reordered_g_sw, & |
---|
488 | & flux%sw_up_band(:,jcol,1)) |
---|
489 | call indexed_sum(sum(direct_dn,2), & |
---|
490 | & config%i_spec_from_reordered_g_sw, & |
---|
491 | & flux%sw_dn_band(:,jcol,1)) |
---|
492 | flux%sw_dn_band(:,jcol,1) = mu0 * flux%sw_dn_band(:,jcol,1) |
---|
493 | if (allocated(flux%sw_dn_direct_band)) then |
---|
494 | flux%sw_dn_direct_band(:,jcol,1) = flux%sw_dn_band(:,jcol,1) |
---|
495 | end if |
---|
496 | call add_indexed_sum(sum(flux_dn,2), & |
---|
497 | & config%i_spec_from_reordered_g_sw, & |
---|
498 | & flux%sw_dn_band(:,jcol,1)) |
---|
499 | if (config%do_clear) then |
---|
500 | call indexed_sum(flux_up_clear, & |
---|
501 | & config%i_spec_from_reordered_g_sw, & |
---|
502 | & flux%sw_up_clear_band(:,jcol,1)) |
---|
503 | call indexed_sum(direct_dn_clear, & |
---|
504 | & config%i_spec_from_reordered_g_sw, & |
---|
505 | & flux%sw_dn_clear_band(:,jcol,1)) |
---|
506 | flux%sw_dn_clear_band(:,jcol,1) & |
---|
507 | & = mu0 * flux%sw_dn_clear_band(:,jcol,1) |
---|
508 | if (allocated(flux%sw_dn_direct_clear_band)) then |
---|
509 | flux%sw_dn_direct_clear_band(:,jcol,1) & |
---|
510 | & = flux%sw_dn_clear_band(:,jcol,1) |
---|
511 | end if |
---|
512 | call add_indexed_sum(flux_dn_clear, & |
---|
513 | & config%i_spec_from_reordered_g_sw, & |
---|
514 | & flux%sw_dn_clear_band(:,jcol,1)) |
---|
515 | end if |
---|
516 | end if |
---|
517 | |
---|
518 | ! Final loop back down through the atmosphere to compute fluxes |
---|
519 | do jlev = 1,nlev |
---|
520 | if (config%do_clear) then |
---|
521 | do jg = 1,ng |
---|
522 | flux_dn_clear(jg) = (transmittance_clear(jg,jlev)*flux_dn_clear(jg) + direct_dn_clear(jg) & |
---|
523 | & * (trans_dir_dir_clear(jg,jlev)*total_albedo_clear_direct(jg,jlev+1)*reflectance_clear(jg,jlev) & |
---|
524 | & + trans_dir_diff_clear(jg,jlev) )) & |
---|
525 | & / (1.0_jprb - reflectance_clear(jg,jlev)*total_albedo_clear(jg,jlev+1)) |
---|
526 | direct_dn_clear(jg) = trans_dir_dir_clear(jg,jlev)*direct_dn_clear(jg) |
---|
527 | flux_up_clear(jg) = direct_dn_clear(jg)*total_albedo_clear_direct(jg,jlev+1) & |
---|
528 | & + flux_dn_clear(jg)*total_albedo_clear(jg,jlev+1) |
---|
529 | end do |
---|
530 | end if |
---|
531 | |
---|
532 | ! All-sky fluxes: first the clear region... |
---|
533 | do jg = 1,ng |
---|
534 | flux_dn(jg,1) = (transmittance_clear(jg,jlev)*flux_dn(jg,1) + direct_dn(jg,1) & |
---|
535 | & * (trans_dir_dir_clear(jg,jlev)*total_albedo_direct(jg,1,jlev+1)*reflectance_clear(jg,jlev) & |
---|
536 | & + trans_dir_diff_clear(jg,jlev) )) & |
---|
537 | & / (1.0_jprb - reflectance_clear(jg,jlev)*total_albedo(jg,1,jlev+1)) |
---|
538 | direct_dn(jg,1) = trans_dir_dir_clear(jg,jlev)*direct_dn(jg,1) |
---|
539 | flux_up(jg,1) = direct_dn(jg,1)*total_albedo_direct(jg,1,jlev+1) & |
---|
540 | & + flux_dn(jg,1)*total_albedo(jg,1,jlev+1) |
---|
541 | end do |
---|
542 | |
---|
543 | ! ...then the cloudy regions if there are any |
---|
544 | if (is_clear_sky_layer(jlev)) then |
---|
545 | flux_dn(:,2:nregions) = 0.0_jprb |
---|
546 | flux_up(:,2:nregions) = 0.0_jprb |
---|
547 | direct_dn(:,2:nregions)= 0.0_jprb |
---|
548 | else |
---|
549 | do jreg = 2,nregions |
---|
550 | do jg = 1,ng |
---|
551 | flux_dn(jg,jreg) = (transmittance(jg,jreg,jlev)*flux_dn(jg,jreg) + direct_dn(jg,jreg) & |
---|
552 | & * (trans_dir_dir(jg,jreg,jlev)*total_albedo_direct(jg,jreg,jlev+1)*reflectance(jg,jreg,jlev) & |
---|
553 | & + trans_dir_diff(jg,jreg,jlev) )) & |
---|
554 | & / (1.0_jprb - reflectance(jg,jreg,jlev)*total_albedo(jg,jreg,jlev+1)) |
---|
555 | direct_dn(jg,jreg) = trans_dir_dir(jg,jreg,jlev)*direct_dn(jg,jreg) |
---|
556 | flux_up(jg,jreg) = direct_dn(jg,jreg)*total_albedo_direct(jg,jreg,jlev+1) & |
---|
557 | & + flux_dn(jg,jreg)*total_albedo(jg,jreg,jlev+1) |
---|
558 | end do |
---|
559 | end do |
---|
560 | end if |
---|
561 | |
---|
562 | if (.not. (is_clear_sky_layer(jlev) & |
---|
563 | & .and. is_clear_sky_layer(jlev+1))) then |
---|
564 | ! Account for overlap rules in translating fluxes just above |
---|
565 | ! a layer interface to the values just below |
---|
566 | flux_dn = singlemat_x_vec(ng,ng,nregions, & |
---|
567 | & v_matrix(:,:,jlev+1,jcol), flux_dn) |
---|
568 | direct_dn = singlemat_x_vec(ng,ng,nregions, & |
---|
569 | & v_matrix(:,:,jlev+1,jcol), direct_dn) |
---|
570 | end if ! Otherwise the fluxes in each region are the same so |
---|
571 | ! nothing to do |
---|
572 | |
---|
573 | ! Store the broadband fluxes. The intrinsic "sum" command has |
---|
574 | ! been found to be very slow; better performance is found on |
---|
575 | ! x86-64 architecture with explicit loops and the "omp simd |
---|
576 | ! reduction" directive. |
---|
577 | sum_up = 0.0_jprb |
---|
578 | sum_dn_dir = 0.0_jprb |
---|
579 | sum_dn_diff = 0.0_jprb |
---|
580 | do jreg = 1,nregions |
---|
581 | !$omp simd reduction(+:sum_up, sum_dn_diff, sum_dn_dir) |
---|
582 | do jg = 1,ng |
---|
583 | sum_up = sum_up + flux_up(jg,jreg) |
---|
584 | sum_dn_diff = sum_dn_diff + flux_dn(jg,jreg) |
---|
585 | sum_dn_dir = sum_dn_dir + direct_dn(jg,jreg) |
---|
586 | end do |
---|
587 | end do |
---|
588 | flux%sw_up(jcol,jlev+1) = sum_up |
---|
589 | flux%sw_dn(jcol,jlev+1) = mu0 * sum_dn_dir + sum_dn_diff |
---|
590 | if (allocated(flux%sw_dn_direct)) then |
---|
591 | flux%sw_dn_direct(jcol,jlev+1) = mu0 * sum_dn_dir |
---|
592 | end if |
---|
593 | if (config%do_clear) then |
---|
594 | sum_up = 0.0_jprb |
---|
595 | sum_dn_dir = 0.0_jprb |
---|
596 | sum_dn_diff = 0.0_jprb |
---|
597 | !$omp simd reduction(+:sum_up, sum_dn_diff, sum_dn_dir) |
---|
598 | do jg = 1,ng |
---|
599 | sum_up = sum_up + flux_up_clear(jg) |
---|
600 | sum_dn_diff = sum_dn_diff + flux_dn_clear(jg) |
---|
601 | sum_dn_dir = sum_dn_dir + direct_dn_clear(jg) |
---|
602 | end do |
---|
603 | flux%sw_up_clear(jcol,jlev+1) = sum_up |
---|
604 | flux%sw_dn_clear(jcol,jlev+1) = mu0 * sum_dn_dir + sum_dn_diff |
---|
605 | if (allocated(flux%sw_dn_direct_clear)) then |
---|
606 | flux%sw_dn_direct_clear(jcol,jlev+1) = mu0 * sum_dn_dir |
---|
607 | end if |
---|
608 | end if |
---|
609 | |
---|
610 | ! Save the spectral fluxes if required |
---|
611 | if (config%do_save_spectral_flux) then |
---|
612 | call indexed_sum(sum(flux_up,2), & |
---|
613 | & config%i_spec_from_reordered_g_sw, & |
---|
614 | & flux%sw_up_band(:,jcol,jlev+1)) |
---|
615 | call indexed_sum(sum(direct_dn,2), & |
---|
616 | & config%i_spec_from_reordered_g_sw, & |
---|
617 | & flux%sw_dn_band(:,jcol,jlev+1)) |
---|
618 | flux%sw_dn_band(:,jcol,jlev+1) = & |
---|
619 | & mu0 * flux%sw_dn_band(:,jcol,jlev+1) |
---|
620 | if (allocated(flux%sw_dn_direct_band)) then |
---|
621 | flux%sw_dn_direct_band(:,jcol,jlev+1) & |
---|
622 | & = flux%sw_dn_band(:,jcol,jlev+1) |
---|
623 | end if |
---|
624 | call add_indexed_sum(sum(flux_dn,2), & |
---|
625 | & config%i_spec_from_reordered_g_sw, & |
---|
626 | & flux%sw_dn_band(:,jcol,jlev+1)) |
---|
627 | if (config%do_clear) then |
---|
628 | call indexed_sum(flux_up_clear, & |
---|
629 | & config%i_spec_from_reordered_g_sw, & |
---|
630 | & flux%sw_up_clear_band(:,jcol,jlev+1)) |
---|
631 | call indexed_sum(direct_dn_clear, & |
---|
632 | & config%i_spec_from_reordered_g_sw, & |
---|
633 | & flux%sw_dn_clear_band(:,jcol,jlev+1)) |
---|
634 | flux%sw_dn_clear_band(:,jcol,jlev+1) = & |
---|
635 | & mu0 * flux%sw_dn_clear_band(:,jcol,jlev+1) |
---|
636 | if (allocated(flux%sw_dn_direct_clear_band)) then |
---|
637 | flux%sw_dn_direct_clear_band(:,jcol,jlev+1) & |
---|
638 | & = flux%sw_dn_clear_band(:,jcol,jlev+1) |
---|
639 | end if |
---|
640 | call add_indexed_sum(flux_dn_clear, & |
---|
641 | & config%i_spec_from_reordered_g_sw, & |
---|
642 | & flux%sw_dn_clear_band(:,jcol,jlev+1)) |
---|
643 | end if |
---|
644 | end if |
---|
645 | end do ! Final loop over levels |
---|
646 | |
---|
647 | ! Store surface spectral fluxes, if required (after the end of |
---|
648 | ! the final loop over levels, the current values of these arrays |
---|
649 | ! will be the surface values) |
---|
650 | flux%sw_dn_diffuse_surf_g(:,jcol) = sum(flux_dn,2) |
---|
651 | flux%sw_dn_direct_surf_g(:,jcol) = mu0 * sum(direct_dn,2) |
---|
652 | if (config%do_clear) then |
---|
653 | flux%sw_dn_diffuse_surf_clear_g(:,jcol) = flux_dn_clear |
---|
654 | flux%sw_dn_direct_surf_clear_g(:,jcol) = mu0 * direct_dn_clear |
---|
655 | end if |
---|
656 | |
---|
657 | end do ! Loop over columns |
---|
658 | |
---|
659 | if (lhook) call dr_hook('radiation_tripleclouds_sw:solver_tripleclouds_sw',1,hook_handle) |
---|
660 | |
---|
661 | end subroutine solver_tripleclouds_sw |
---|
662 | |
---|
663 | end module radiation_tripleclouds_sw |
---|