| 1 | ! radiation_tripleclouds_lw.F90 - Longwave "Tripleclouds" solver |
|---|
| 2 | ! |
|---|
| 3 | ! (C) Copyright 2016- ECMWF. |
|---|
| 4 | ! |
|---|
| 5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
|---|
| 6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
|---|
| 7 | ! |
|---|
| 8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
|---|
| 9 | ! granted to it by virtue of its status as an intergovernmental organisation |
|---|
| 10 | ! nor does it submit to any jurisdiction. |
|---|
| 11 | ! |
|---|
| 12 | ! Author: Robin Hogan |
|---|
| 13 | ! Email: r.j.hogan@ecmwf.int |
|---|
| 14 | ! |
|---|
| 15 | ! Modifications |
|---|
| 16 | ! 2017-04-28 R. Hogan Receive emission/albedo rather than planck/emissivity |
|---|
| 17 | ! 2017-04-22 R. Hogan Store surface fluxes at all g-points |
|---|
| 18 | ! 2017-10-23 R. Hogan Renamed single-character variables |
|---|
| 19 | ! 2018-10-08 R. Hogan Call calc_region_properties |
|---|
| 20 | ! 2020-09-18 R. Hogan Replaced some array expressions with loops |
|---|
| 21 | ! 2020-09-19 R. Hogan Implement the cloud-only-scattering optimization |
|---|
| 22 | |
|---|
| 23 | module radiation_tripleclouds_lw |
|---|
| 24 | |
|---|
| 25 | public |
|---|
| 26 | |
|---|
| 27 | contains |
|---|
| 28 | ! Small routine for scaling cloud optical depth in the cloudy |
|---|
| 29 | ! regions |
|---|
| 30 | #include "radiation_optical_depth_scaling.h" |
|---|
| 31 | |
|---|
| 32 | !--------------------------------------------------------------------- |
|---|
| 33 | ! This module contains just one subroutine, the longwave |
|---|
| 34 | ! "Tripleclouds" solver in which cloud inhomogeneity is treated by |
|---|
| 35 | ! dividing each model level into three regions, one clear and two |
|---|
| 36 | ! cloudy (with differing optical depth). This approach was described |
|---|
| 37 | ! by Shonk and Hogan (2008). |
|---|
| 38 | subroutine solver_tripleclouds_lw(nlev,istartcol,iendcol, & |
|---|
| 39 | & config, cloud, & |
|---|
| 40 | & od, ssa, g, od_cloud, ssa_cloud, g_cloud, planck_hl, & |
|---|
| 41 | & emission, albedo, & |
|---|
| 42 | & flux) |
|---|
| 43 | |
|---|
| 44 | use parkind1, only : jprb |
|---|
| 45 | use yomhook, only : lhook, dr_hook, jphook |
|---|
| 46 | |
|---|
| 47 | ! use radiation_io, only : nulout |
|---|
| 48 | use radiation_config, only : config_type, IPdfShapeGamma |
|---|
| 49 | use radiation_cloud, only : cloud_type |
|---|
| 50 | use radiation_regions, only : calc_region_properties |
|---|
| 51 | use radiation_overlap, only : calc_overlap_matrices |
|---|
| 52 | use radiation_flux, only : flux_type, indexed_sum |
|---|
| 53 | use radiation_matrix, only : singlemat_x_vec |
|---|
| 54 | use radiation_two_stream, only : calc_ref_trans_lw, & |
|---|
| 55 | & calc_no_scattering_transmittance_lw |
|---|
| 56 | use radiation_adding_ica_lw, only : adding_ica_lw, calc_fluxes_no_scattering_lw |
|---|
| 57 | use radiation_lw_derivatives, only : calc_lw_derivatives_region |
|---|
| 58 | |
|---|
| 59 | implicit none |
|---|
| 60 | |
|---|
| 61 | ! Inputs |
|---|
| 62 | integer, intent(in) :: nlev ! number of model levels |
|---|
| 63 | integer, intent(in) :: istartcol, iendcol ! range of columns to process |
|---|
| 64 | type(config_type), intent(in) :: config |
|---|
| 65 | type(cloud_type), intent(in) :: cloud |
|---|
| 66 | |
|---|
| 67 | ! Gas and aerosol optical depth of each layer at each longwave |
|---|
| 68 | ! g-point |
|---|
| 69 | real(jprb), intent(in), dimension(config%n_g_lw,nlev,istartcol:iendcol) :: od |
|---|
| 70 | |
|---|
| 71 | ! Gas and aerosol single-scattering albedo and asymmetry factor, |
|---|
| 72 | ! only if longwave scattering by aerosols is to be represented |
|---|
| 73 | real(jprb), intent(in), & |
|---|
| 74 | & dimension(config%n_g_lw_if_scattering,nlev,istartcol:iendcol) :: ssa, g |
|---|
| 75 | |
|---|
| 76 | ! Cloud and precipitation optical depth of each layer in each |
|---|
| 77 | ! longwave band |
|---|
| 78 | real(jprb), intent(in) :: od_cloud(config%n_bands_lw,nlev,istartcol:iendcol) |
|---|
| 79 | |
|---|
| 80 | ! Cloud and precipitation single-scattering albedo and asymmetry |
|---|
| 81 | ! factor, only if longwave scattering by clouds is to be |
|---|
| 82 | ! represented |
|---|
| 83 | real(jprb), intent(in), dimension(config%n_bands_lw_if_scattering, & |
|---|
| 84 | & nlev,istartcol:iendcol) :: ssa_cloud, g_cloud |
|---|
| 85 | |
|---|
| 86 | ! Planck function (emitted flux from a black body) at half levels |
|---|
| 87 | ! and at the surface at each longwave g-point |
|---|
| 88 | real(jprb), intent(in), dimension(config%n_g_lw,nlev+1,istartcol:iendcol) :: planck_hl |
|---|
| 89 | |
|---|
| 90 | ! Emission (Planck*emissivity) and albedo (1-emissivity) at the |
|---|
| 91 | ! surface at each longwave g-point |
|---|
| 92 | real(jprb), intent(in), dimension(config%n_g_lw, istartcol:iendcol) :: emission, albedo |
|---|
| 93 | |
|---|
| 94 | ! Optical depth, single scattering albedo and asymmetry factor in |
|---|
| 95 | ! each g-point including gas, aerosol and clouds |
|---|
| 96 | real(jprb), dimension(config%n_g_lw) :: od_total, ssa_total, g_total |
|---|
| 97 | |
|---|
| 98 | ! Modified optical depth after Tripleclouds scaling to represent |
|---|
| 99 | ! cloud inhomogeneity |
|---|
| 100 | real(jprb), dimension(config%n_g_lw) :: od_cloud_new |
|---|
| 101 | |
|---|
| 102 | ! Output |
|---|
| 103 | type(flux_type), intent(inout):: flux |
|---|
| 104 | |
|---|
| 105 | ! Local constants |
|---|
| 106 | integer, parameter :: nregions = 3 |
|---|
| 107 | |
|---|
| 108 | ! In a clear-sky layer this will be 1, otherwise equal to nregions |
|---|
| 109 | integer :: nreg |
|---|
| 110 | |
|---|
| 111 | ! Local variables |
|---|
| 112 | |
|---|
| 113 | ! The area fractions of each region |
|---|
| 114 | real(jprb) :: region_fracs(1:nregions,nlev,istartcol:iendcol) |
|---|
| 115 | |
|---|
| 116 | ! The scaling used for the optical depth in the cloudy regions |
|---|
| 117 | real(jprb) :: od_scaling(2:nregions,nlev,istartcol:iendcol) |
|---|
| 118 | |
|---|
| 119 | ! Directional overlap matrices defined at all layer interfaces |
|---|
| 120 | ! including top-of-atmosphere and the surface |
|---|
| 121 | real(jprb), dimension(nregions,nregions,nlev+1, & |
|---|
| 122 | & istartcol:iendcol) :: u_matrix, v_matrix |
|---|
| 123 | |
|---|
| 124 | ! Diffuse reflection and transmission matrices of each layer |
|---|
| 125 | real(jprb), dimension(config%n_g_lw, nregions, nlev) :: reflectance, transmittance |
|---|
| 126 | |
|---|
| 127 | ! Emission by a layer into the upwelling or downwelling diffuse |
|---|
| 128 | ! streams |
|---|
| 129 | real(jprb), dimension(config%n_g_lw, nregions, nlev) & |
|---|
| 130 | & :: source_up, source_dn |
|---|
| 131 | |
|---|
| 132 | ! Clear-sky reflectance and transmittance |
|---|
| 133 | real(jprb), dimension(config%n_g_lw, nlev) & |
|---|
| 134 | & :: ref_clear, trans_clear |
|---|
| 135 | |
|---|
| 136 | ! ...clear-sky equivalent |
|---|
| 137 | real(jprb), dimension(config%n_g_lw, nlev) & |
|---|
| 138 | & :: source_up_clear, source_dn_clear |
|---|
| 139 | |
|---|
| 140 | ! Total albedo of the atmosphere/surface just above a layer |
|---|
| 141 | ! interface with respect to downwelling diffuse radiation at that |
|---|
| 142 | ! interface, where level index = 1 corresponds to the |
|---|
| 143 | ! top-of-atmosphere |
|---|
| 144 | real(jprb), dimension(config%n_g_lw, nregions, nlev+1) :: total_albedo |
|---|
| 145 | |
|---|
| 146 | ! Upwelling radiation just above a layer interface due to emission |
|---|
| 147 | ! below that interface, where level index = 1 corresponds to the |
|---|
| 148 | ! top-of-atmosphere |
|---|
| 149 | real(jprb), dimension(config%n_g_lw, nregions, nlev+1) :: total_source |
|---|
| 150 | |
|---|
| 151 | ! Total albedo and source of the atmosphere just below a layer interface |
|---|
| 152 | real(jprb), dimension(config%n_g_lw, nregions) & |
|---|
| 153 | & :: total_albedo_below, total_source_below |
|---|
| 154 | |
|---|
| 155 | ! Downwelling flux below and above an interface between |
|---|
| 156 | ! layers into a plane perpendicular to the direction of the sun |
|---|
| 157 | real(jprb), dimension(config%n_g_lw, nregions) & |
|---|
| 158 | & :: flux_dn, flux_dn_below, flux_up |
|---|
| 159 | |
|---|
| 160 | ! ...clear-sky equivalent (no distinction between "above/below") |
|---|
| 161 | real(jprb), dimension(config%n_g_lw, nlev+1) & |
|---|
| 162 | & :: flux_dn_clear, flux_up_clear |
|---|
| 163 | |
|---|
| 164 | ! Clear-sky equivalent, but actually its reciprocal to replace |
|---|
| 165 | ! some divisions by multiplications |
|---|
| 166 | real(jprb), dimension(config%n_g_lw, nregions) :: inv_denom |
|---|
| 167 | |
|---|
| 168 | ! Identify clear-sky layers, with pseudo layers for outer space |
|---|
| 169 | ! and below the ground, both treated as single-region clear skies |
|---|
| 170 | logical :: is_clear_sky_layer(0:nlev+1) |
|---|
| 171 | |
|---|
| 172 | ! Index of the highest cloudy layer |
|---|
| 173 | integer :: i_cloud_top |
|---|
| 174 | |
|---|
| 175 | integer :: jcol, jlev, jg, jreg, jreg2, ng |
|---|
| 176 | |
|---|
| 177 | real(jphook) :: hook_handle |
|---|
| 178 | |
|---|
| 179 | if (lhook) call dr_hook('radiation_tripleclouds_lw:solver_tripleclouds_lw',0,hook_handle) |
|---|
| 180 | |
|---|
| 181 | ! -------------------------------------------------------- |
|---|
| 182 | ! Section 1: Prepare general variables and arrays |
|---|
| 183 | ! -------------------------------------------------------- |
|---|
| 184 | ! Copy array dimensions to local variables for convenience |
|---|
| 185 | ng = config%n_g_lw |
|---|
| 186 | |
|---|
| 187 | ! Compute the wavelength-independent region fractions and |
|---|
| 188 | ! optical-depth scalings |
|---|
| 189 | call calc_region_properties(nlev,nregions,istartcol,iendcol, & |
|---|
| 190 | & config%i_cloud_pdf_shape == IPdfShapeGamma, & |
|---|
| 191 | & cloud%fraction, cloud%fractional_std, region_fracs, & |
|---|
| 192 | & od_scaling, config%cloud_fraction_threshold) |
|---|
| 193 | |
|---|
| 194 | ! Compute wavelength-independent overlap matrices u_matrix and v_matrix |
|---|
| 195 | call calc_overlap_matrices(nlev,nregions,istartcol,iendcol, & |
|---|
| 196 | & region_fracs, cloud%overlap_param, & |
|---|
| 197 | & u_matrix, v_matrix, & |
|---|
| 198 | & decorrelation_scaling=config%cloud_inhom_decorr_scaling, & |
|---|
| 199 | & cloud_fraction_threshold=config%cloud_fraction_threshold, & |
|---|
| 200 | & use_beta_overlap=config%use_beta_overlap, & |
|---|
| 201 | & cloud_cover=flux%cloud_cover_lw) |
|---|
| 202 | |
|---|
| 203 | ! Main loop over columns |
|---|
| 204 | do jcol = istartcol, iendcol |
|---|
| 205 | ! -------------------------------------------------------- |
|---|
| 206 | ! Section 2: Prepare column-specific variables and arrays |
|---|
| 207 | ! -------------------------------------------------------- |
|---|
| 208 | |
|---|
| 209 | ! Define which layers contain cloud; assume that |
|---|
| 210 | ! cloud%crop_cloud_fraction has already been called |
|---|
| 211 | is_clear_sky_layer = .true. |
|---|
| 212 | i_cloud_top = nlev+1 |
|---|
| 213 | do jlev = 1,nlev |
|---|
| 214 | if (cloud%fraction(jcol,jlev) > 0.0_jprb) then |
|---|
| 215 | is_clear_sky_layer(jlev) = .false. |
|---|
| 216 | ! Get index to the first cloudy layer from the top |
|---|
| 217 | if (i_cloud_top > jlev) then |
|---|
| 218 | i_cloud_top = jlev |
|---|
| 219 | end if |
|---|
| 220 | end if |
|---|
| 221 | end do |
|---|
| 222 | if (config%do_lw_aerosol_scattering) then |
|---|
| 223 | ! This is actually the first layer in which we need to |
|---|
| 224 | ! consider scattering |
|---|
| 225 | i_cloud_top = 1 |
|---|
| 226 | end if |
|---|
| 227 | |
|---|
| 228 | ! -------------------------------------------------------- |
|---|
| 229 | ! Section 3: Clear-sky calculation |
|---|
| 230 | ! -------------------------------------------------------- |
|---|
| 231 | |
|---|
| 232 | if (.not. config%do_lw_aerosol_scattering) then |
|---|
| 233 | ! No scattering in clear-sky flux calculation; note that here |
|---|
| 234 | ! the first two dimensions of the input arrays are unpacked |
|---|
| 235 | ! into vectors inside the routine |
|---|
| 236 | call calc_no_scattering_transmittance_lw(ng*nlev, od(:,:,jcol), & |
|---|
| 237 | & planck_hl(:,1:nlev,jcol), planck_hl(:,2:nlev+1, jcol), & |
|---|
| 238 | & trans_clear, source_up_clear, source_dn_clear) |
|---|
| 239 | ! Ensure that clear-sky reflectance is zero since it may be |
|---|
| 240 | ! used in cloudy-sky case |
|---|
| 241 | ref_clear = 0.0_jprb |
|---|
| 242 | ! Simple down-then-up method to compute fluxes |
|---|
| 243 | call calc_fluxes_no_scattering_lw(ng, nlev, & |
|---|
| 244 | & trans_clear, source_up_clear, source_dn_clear, & |
|---|
| 245 | & emission(:,jcol), albedo(:,jcol), & |
|---|
| 246 | & flux_up_clear, flux_dn_clear) |
|---|
| 247 | else |
|---|
| 248 | ! Scattering in clear-sky flux calculation |
|---|
| 249 | call calc_ref_trans_lw(ng*nlev, & |
|---|
| 250 | & od(:,:,jcol), ssa(:,:,jcol), g(:,:,jcol), & |
|---|
| 251 | & planck_hl(:,1:nlev,jcol), planck_hl(:,2:nlev+1,jcol), & |
|---|
| 252 | & ref_clear, trans_clear, & |
|---|
| 253 | & source_up_clear, source_dn_clear) |
|---|
| 254 | ! Use adding method to compute fluxes |
|---|
| 255 | call adding_ica_lw(ng, nlev, & |
|---|
| 256 | & ref_clear, trans_clear, source_up_clear, source_dn_clear, & |
|---|
| 257 | & emission(:,jcol), albedo(:,jcol), & |
|---|
| 258 | & flux_up_clear, flux_dn_clear) |
|---|
| 259 | end if |
|---|
| 260 | |
|---|
| 261 | if (config%do_clear) then |
|---|
| 262 | ! Sum over g-points to compute broadband fluxes |
|---|
| 263 | flux%lw_up_clear(jcol,:) = sum(flux_up_clear,1) |
|---|
| 264 | flux%lw_dn_clear(jcol,:) = sum(flux_dn_clear,1) |
|---|
| 265 | ! Store surface spectral downwelling fluxes / TOA upwelling |
|---|
| 266 | flux%lw_dn_surf_clear_g(:,jcol) = flux_dn_clear(:,nlev+1) |
|---|
| 267 | flux%lw_up_toa_clear_g (:,jcol) = flux_up_clear(:,1) |
|---|
| 268 | ! Save the spectral fluxes if required |
|---|
| 269 | if (config%do_save_spectral_flux) then |
|---|
| 270 | do jlev = 1,nlev+1 |
|---|
| 271 | call indexed_sum(flux_up_clear(:,jlev), & |
|---|
| 272 | & config%i_spec_from_reordered_g_lw, & |
|---|
| 273 | & flux%lw_up_clear_band(:,jcol,jlev)) |
|---|
| 274 | call indexed_sum(flux_dn_clear(:,jlev), & |
|---|
| 275 | & config%i_spec_from_reordered_g_lw, & |
|---|
| 276 | & flux%lw_dn_clear_band(:,jcol,jlev)) |
|---|
| 277 | end do |
|---|
| 278 | end if |
|---|
| 279 | end if |
|---|
| 280 | |
|---|
| 281 | ! -------------------------------------------------------- |
|---|
| 282 | ! Section 4: Loop over cloudy layers to compute reflectance and transmittance |
|---|
| 283 | ! -------------------------------------------------------- |
|---|
| 284 | ! In this section the reflectance, transmittance and sources |
|---|
| 285 | ! are computed for each layer |
|---|
| 286 | |
|---|
| 287 | ! Firstly, ensure clear-sky transmittance is valid for whole |
|---|
| 288 | ! depth of the atmosphere, because even above cloud it is used |
|---|
| 289 | ! by the LW derivatives |
|---|
| 290 | transmittance(:,1,:) = trans_clear(:,:) |
|---|
| 291 | ! Dummy values in cloudy regions above cloud top |
|---|
| 292 | if (i_cloud_top > 0) then |
|---|
| 293 | transmittance(:,2:,1:min(i_cloud_top,nlev)) = 1.0_jprb |
|---|
| 294 | end if |
|---|
| 295 | |
|---|
| 296 | do jlev = i_cloud_top,nlev ! Start at cloud top and work down |
|---|
| 297 | |
|---|
| 298 | ! Copy over clear-sky properties |
|---|
| 299 | reflectance(:,1,jlev) = ref_clear(:,jlev) |
|---|
| 300 | source_up(:,1,jlev) = source_up_clear(:,jlev) ! Scaled later by region size |
|---|
| 301 | source_dn(:,1,jlev) = source_dn_clear(:,jlev) ! Scaled later by region size |
|---|
| 302 | nreg = nregions |
|---|
| 303 | if (is_clear_sky_layer(jlev)) then |
|---|
| 304 | nreg = 1 |
|---|
| 305 | reflectance(:,2:,jlev) = 0.0_jprb |
|---|
| 306 | transmittance(:,2:,jlev) = 1.0_jprb |
|---|
| 307 | source_up(:,2:,jlev) = 0.0_jprb |
|---|
| 308 | source_dn(:,2:,jlev) = 0.0_jprb |
|---|
| 309 | else |
|---|
| 310 | do jreg = 2,nreg |
|---|
| 311 | ! Cloudy sky |
|---|
| 312 | ! Add scaled cloud optical depth to clear-sky value |
|---|
| 313 | od_cloud_new = od_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
|---|
| 314 | & * od_scaling(jreg,jlev,jcol) |
|---|
| 315 | od_total = od(:,jlev,jcol) + od_cloud_new |
|---|
| 316 | |
|---|
| 317 | if (config%do_lw_cloud_scattering) then |
|---|
| 318 | ssa_total = 0.0_jprb |
|---|
| 319 | g_total = 0.0_jprb |
|---|
| 320 | if (config%do_lw_aerosol_scattering) then |
|---|
| 321 | where (od_total > 0.0_jprb) |
|---|
| 322 | ssa_total = (ssa(:,jlev,jcol)*od(:,jlev,jcol) & |
|---|
| 323 | & + ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
|---|
| 324 | & * od_cloud_new) & |
|---|
| 325 | & / od_total |
|---|
| 326 | end where |
|---|
| 327 | where (ssa_total > 0.0_jprb .and. od_total > 0.0_jprb) |
|---|
| 328 | g_total = (g(:,jlev,jcol)*ssa(:,jlev,jcol)*od(:,jlev,jcol) & |
|---|
| 329 | & + g_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
|---|
| 330 | & * ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
|---|
| 331 | & * od_cloud_new) & |
|---|
| 332 | & / (ssa_total*od_total) |
|---|
| 333 | end where |
|---|
| 334 | else |
|---|
| 335 | where (od_total > 0.0_jprb) |
|---|
| 336 | ssa_total = ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
|---|
| 337 | & * od_cloud_new / od_total |
|---|
| 338 | end where |
|---|
| 339 | where (ssa_total > 0.0_jprb .and. od_total > 0.0_jprb) |
|---|
| 340 | g_total = g_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
|---|
| 341 | & * ssa_cloud(config%i_band_from_reordered_g_lw,jlev,jcol) & |
|---|
| 342 | & * od_cloud_new / (ssa_total*od_total) |
|---|
| 343 | end where |
|---|
| 344 | end if |
|---|
| 345 | call calc_ref_trans_lw(ng, & |
|---|
| 346 | & od_total, ssa_total, g_total, & |
|---|
| 347 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1,jcol), & |
|---|
| 348 | & reflectance(:,jreg,jlev), transmittance(:,jreg,jlev), & |
|---|
| 349 | & source_up(:,jreg,jlev), source_dn(:,jreg,jlev)) |
|---|
| 350 | else |
|---|
| 351 | ! No-scattering case: use simpler functions for |
|---|
| 352 | ! transmission and emission |
|---|
| 353 | call calc_no_scattering_transmittance_lw(ng, od_total, & |
|---|
| 354 | & planck_hl(:,jlev,jcol), planck_hl(:,jlev+1, jcol), & |
|---|
| 355 | & transmittance(:,jreg,jlev), source_up(:,jreg,jlev), source_dn(:,jreg,jlev)) |
|---|
| 356 | reflectance(:,jreg,jlev) = 0.0_jprb |
|---|
| 357 | end if |
|---|
| 358 | end do |
|---|
| 359 | ! Emission is scaled by the size of each region |
|---|
| 360 | do jreg = 1,nregions |
|---|
| 361 | source_up(:,jreg,jlev) = region_fracs(jreg,jlev,jcol) * source_up(:,jreg,jlev) |
|---|
| 362 | source_dn(:,jreg,jlev) = region_fracs(jreg,jlev,jcol) * source_dn(:,jreg,jlev) |
|---|
| 363 | end do |
|---|
| 364 | end if |
|---|
| 365 | |
|---|
| 366 | end do ! Loop over levels |
|---|
| 367 | |
|---|
| 368 | ! -------------------------------------------------------- |
|---|
| 369 | ! Section 5: Compute total sources and albedos at each half level |
|---|
| 370 | ! -------------------------------------------------------- |
|---|
| 371 | |
|---|
| 372 | total_albedo(:,:,:) = 0.0_jprb |
|---|
| 373 | total_source(:,:,:) = 0.0_jprb |
|---|
| 374 | |
|---|
| 375 | ! Calculate the upwelling radiation emitted by the surface, and |
|---|
| 376 | ! copy the surface albedo into total_albedo |
|---|
| 377 | do jreg = 1,nregions |
|---|
| 378 | do jg = 1,ng |
|---|
| 379 | ! region_fracs(jreg,nlev,jcol) is the fraction of each region in the |
|---|
| 380 | ! lowest model level |
|---|
| 381 | total_source(jg,jreg,nlev+1) = region_fracs(jreg,nlev,jcol)*emission(jg,jcol) |
|---|
| 382 | total_albedo(jg,jreg,nlev+1) = albedo(jg,jcol) |
|---|
| 383 | end do |
|---|
| 384 | end do |
|---|
| 385 | |
|---|
| 386 | ! Work up from the surface computing the total albedo of the |
|---|
| 387 | ! atmosphere and the total upwelling due to emission below each |
|---|
| 388 | ! level below using the adding method |
|---|
| 389 | do jlev = nlev,i_cloud_top,-1 |
|---|
| 390 | |
|---|
| 391 | total_albedo_below = 0.0_jprb |
|---|
| 392 | |
|---|
| 393 | if (is_clear_sky_layer(jlev)) then |
|---|
| 394 | total_albedo_below = 0.0_jprb |
|---|
| 395 | total_source_below = 0.0_jprb |
|---|
| 396 | do jg = 1,ng |
|---|
| 397 | inv_denom(jg,1) = 1.0_jprb & |
|---|
| 398 | & / (1.0_jprb - total_albedo(jg,1,jlev+1)*reflectance(jg,1,jlev)) |
|---|
| 399 | total_albedo_below(jg,1) = reflectance(jg,1,jlev) & |
|---|
| 400 | & + transmittance(jg,1,jlev)*transmittance(jg,1,jlev)*total_albedo(jg,1,jlev+1) & |
|---|
| 401 | & * inv_denom(jg,1) |
|---|
| 402 | total_source_below(jg,1) = source_up(jg,1,jlev) & |
|---|
| 403 | & + transmittance(jg,1,jlev)*(total_source(jg,1,jlev+1) & |
|---|
| 404 | & + total_albedo(jg,1,jlev+1)*source_dn(jg,1,jlev)) & |
|---|
| 405 | & * inv_denom(jg,1) |
|---|
| 406 | end do |
|---|
| 407 | else |
|---|
| 408 | inv_denom = 1.0_jprb / (1.0_jprb - total_albedo(:,:,jlev+1)*reflectance(:,:,jlev)) |
|---|
| 409 | total_albedo_below = reflectance(:,:,jlev) & |
|---|
| 410 | & + transmittance(:,:,jlev)*transmittance(:,:,jlev)*total_albedo(:,:,jlev+1) & |
|---|
| 411 | & * inv_denom |
|---|
| 412 | total_source_below = source_up(:,:,jlev) & |
|---|
| 413 | & + transmittance(:,:,jlev)*(total_source(:,:,jlev+1) & |
|---|
| 414 | & + total_albedo(:,:,jlev+1)*source_dn(:,:,jlev)) & |
|---|
| 415 | & * inv_denom |
|---|
| 416 | end if |
|---|
| 417 | |
|---|
| 418 | ! Account for cloud overlap when converting albedo below a |
|---|
| 419 | ! layer interface to the equivalent values just above |
|---|
| 420 | if (is_clear_sky_layer(jlev) .and. is_clear_sky_layer(jlev-1)) then |
|---|
| 421 | total_albedo(:,:,jlev) = total_albedo_below(:,:) |
|---|
| 422 | total_source(:,:,jlev) = total_source_below(:,:) |
|---|
| 423 | else |
|---|
| 424 | total_source(:,:,jlev) = singlemat_x_vec(ng,ng,nregions,& |
|---|
| 425 | & u_matrix(:,:,jlev,jcol), total_source_below) |
|---|
| 426 | ! Use overlap matrix and exclude "anomalous" horizontal |
|---|
| 427 | ! transport described by Shonk & Hogan (2008). Therefore, |
|---|
| 428 | ! the operation we perform is essentially diag(total_albedo) |
|---|
| 429 | ! = matmul(transpose(v_matrix), diag(total_albedo_below)). |
|---|
| 430 | do jreg = 1,nregions |
|---|
| 431 | do jreg2 = 1,nregions |
|---|
| 432 | total_albedo(:,jreg,jlev) & |
|---|
| 433 | & = total_albedo(:,jreg,jlev) & |
|---|
| 434 | & + total_albedo_below(:,jreg2) & |
|---|
| 435 | & * v_matrix(jreg2,jreg,jlev,jcol) |
|---|
| 436 | |
|---|
| 437 | end do |
|---|
| 438 | end do |
|---|
| 439 | |
|---|
| 440 | end if |
|---|
| 441 | |
|---|
| 442 | end do ! Reverse loop over levels |
|---|
| 443 | |
|---|
| 444 | ! -------------------------------------------------------- |
|---|
| 445 | ! Section 6: Copy over downwelling fluxes above cloud top |
|---|
| 446 | ! -------------------------------------------------------- |
|---|
| 447 | do jlev = 1,i_cloud_top |
|---|
| 448 | if (config%do_clear) then |
|---|
| 449 | ! Clear-sky fluxes have already been averaged: use these |
|---|
| 450 | flux%lw_dn(jcol,jlev) = flux%lw_dn_clear(jcol,jlev) |
|---|
| 451 | if (config%do_save_spectral_flux) then |
|---|
| 452 | flux%lw_dn_band(:,jcol,jlev) = flux%lw_dn_clear_band(:,jcol,jlev) |
|---|
| 453 | end if |
|---|
| 454 | else |
|---|
| 455 | flux%lw_dn(jcol,:) = sum(flux_dn_clear(:,jlev)) |
|---|
| 456 | if (config%do_save_spectral_flux) then |
|---|
| 457 | call indexed_sum(flux_dn_clear(:,jlev), & |
|---|
| 458 | & config%i_spec_from_reordered_g_lw, & |
|---|
| 459 | & flux%lw_dn_band(:,jcol,jlev)) |
|---|
| 460 | end if |
|---|
| 461 | end if |
|---|
| 462 | end do |
|---|
| 463 | |
|---|
| 464 | ! -------------------------------------------------------- |
|---|
| 465 | ! Section 7: Compute fluxes up to top-of-atmosphere |
|---|
| 466 | ! -------------------------------------------------------- |
|---|
| 467 | |
|---|
| 468 | ! Compute the fluxes just above the highest cloud |
|---|
| 469 | flux_up(:,1) = total_source(:,1,i_cloud_top) & |
|---|
| 470 | & + total_albedo(:,1,i_cloud_top)*flux_dn_clear(:,i_cloud_top) |
|---|
| 471 | flux_up(:,2:) = 0.0_jprb |
|---|
| 472 | flux%lw_up(jcol,i_cloud_top) = sum(flux_up(:,1)) |
|---|
| 473 | if (config%do_save_spectral_flux) then |
|---|
| 474 | call indexed_sum(flux_up(:,1), & |
|---|
| 475 | & config%i_spec_from_reordered_g_lw, & |
|---|
| 476 | & flux%lw_up_band(:,jcol,i_cloud_top)) |
|---|
| 477 | end if |
|---|
| 478 | do jlev = i_cloud_top-1,1,-1 |
|---|
| 479 | flux_up(:,1) = trans_clear(:,jlev)*flux_up(:,1) + source_up_clear(:,jlev) |
|---|
| 480 | flux%lw_up(jcol,jlev) = sum(flux_up(:,1)) |
|---|
| 481 | if (config%do_save_spectral_flux) then |
|---|
| 482 | call indexed_sum(flux_up(:,1), & |
|---|
| 483 | & config%i_spec_from_reordered_g_lw, & |
|---|
| 484 | & flux%lw_up_band(:,jcol,jlev)) |
|---|
| 485 | end if |
|---|
| 486 | end do |
|---|
| 487 | flux%lw_up_toa_g(:,jcol) = sum(flux_up,2) |
|---|
| 488 | |
|---|
| 489 | ! -------------------------------------------------------- |
|---|
| 490 | ! Section 8: Compute fluxes down to surface |
|---|
| 491 | ! -------------------------------------------------------- |
|---|
| 492 | |
|---|
| 493 | ! Copy over downwelling spectral fluxes at top of first |
|---|
| 494 | ! scattering layer, using overlap matrix to translate to the |
|---|
| 495 | ! regions of the first layer of cloud |
|---|
| 496 | do jreg = 1,nregions |
|---|
| 497 | flux_dn(:,jreg) = v_matrix(jreg,1,i_cloud_top,jcol)*flux_dn_clear(:,i_cloud_top) |
|---|
| 498 | end do |
|---|
| 499 | |
|---|
| 500 | ! Final loop back down through the atmosphere to compute fluxes |
|---|
| 501 | do jlev = i_cloud_top,nlev |
|---|
| 502 | |
|---|
| 503 | if (is_clear_sky_layer(jlev)) then |
|---|
| 504 | do jg = 1,ng |
|---|
| 505 | flux_dn(jg,1) = (transmittance(jg,1,jlev)*flux_dn(jg,1) & |
|---|
| 506 | & + reflectance(jg,1,jlev)*total_source(jg,1,jlev+1) + source_dn(jg,1,jlev) ) & |
|---|
| 507 | & / (1.0_jprb - reflectance(jg,1,jlev)*total_albedo(jg,1,jlev+1)) |
|---|
| 508 | flux_up(jg,1) = total_source(jg,1,jlev+1) + flux_dn(jg,1)*total_albedo(jg,1,jlev+1) |
|---|
| 509 | end do |
|---|
| 510 | flux_dn(:,2:) = 0.0_jprb |
|---|
| 511 | flux_up(:,2:) = 0.0_jprb |
|---|
| 512 | else |
|---|
| 513 | flux_dn = (transmittance(:,:,jlev)*flux_dn & |
|---|
| 514 | & + reflectance(:,:,jlev)*total_source(:,:,jlev+1) + source_dn(:,:,jlev) ) & |
|---|
| 515 | & / (1.0_jprb - reflectance(:,:,jlev)*total_albedo(:,:,jlev+1)) |
|---|
| 516 | flux_up = total_source(:,:,jlev+1) + flux_dn*total_albedo(:,:,jlev+1) |
|---|
| 517 | end if |
|---|
| 518 | |
|---|
| 519 | if (.not. (is_clear_sky_layer(jlev) & |
|---|
| 520 | & .and. is_clear_sky_layer(jlev+1))) then |
|---|
| 521 | ! Account for overlap rules in translating fluxes just above |
|---|
| 522 | ! a layer interface to the values just below |
|---|
| 523 | flux_dn_below = singlemat_x_vec(ng,ng,nregions, & |
|---|
| 524 | & v_matrix(:,:,jlev+1,jcol), flux_dn) |
|---|
| 525 | flux_dn = flux_dn_below |
|---|
| 526 | end if ! Otherwise the fluxes in each region are the same so |
|---|
| 527 | ! nothing to do |
|---|
| 528 | |
|---|
| 529 | ! Store the broadband fluxes |
|---|
| 530 | flux%lw_up(jcol,jlev+1) = sum(sum(flux_up,1)) |
|---|
| 531 | flux%lw_dn(jcol,jlev+1) = sum(sum(flux_dn,1)) |
|---|
| 532 | |
|---|
| 533 | ! Save the spectral fluxes if required |
|---|
| 534 | if (config%do_save_spectral_flux) then |
|---|
| 535 | call indexed_sum(sum(flux_up,2), & |
|---|
| 536 | & config%i_spec_from_reordered_g_lw, & |
|---|
| 537 | & flux%lw_up_band(:,jcol,jlev+1)) |
|---|
| 538 | call indexed_sum(sum(flux_dn,2), & |
|---|
| 539 | & config%i_spec_from_reordered_g_lw, & |
|---|
| 540 | & flux%lw_dn_band(:,jcol,jlev+1)) |
|---|
| 541 | end if |
|---|
| 542 | |
|---|
| 543 | end do ! Final loop over levels |
|---|
| 544 | |
|---|
| 545 | ! Store surface spectral downwelling fluxes, which at this point |
|---|
| 546 | ! are at the surface |
|---|
| 547 | flux%lw_dn_surf_g(:,jcol) = sum(flux_dn,2) |
|---|
| 548 | |
|---|
| 549 | ! Compute the longwave derivatives needed by Hogan and Bozzo |
|---|
| 550 | ! (2015) approximate radiation update scheme |
|---|
| 551 | if (config%do_lw_derivatives) then |
|---|
| 552 | ! Note that at this point flux_up contains the spectral |
|---|
| 553 | ! fluxes into the regions of the lowest layer; we sum over |
|---|
| 554 | ! regions first to provide a simple spectral flux upwelling |
|---|
| 555 | ! from the surface |
|---|
| 556 | call calc_lw_derivatives_region(ng, nlev, nregions, jcol, transmittance, & |
|---|
| 557 | & u_matrix(:,:,:,jcol), sum(flux_up,2), flux%lw_derivatives) |
|---|
| 558 | end if |
|---|
| 559 | |
|---|
| 560 | end do ! Loop over columns |
|---|
| 561 | |
|---|
| 562 | if (lhook) call dr_hook('radiation_tripleclouds_lw:solver_tripleclouds_lw',1,hook_handle) |
|---|
| 563 | |
|---|
| 564 | end subroutine solver_tripleclouds_lw |
|---|
| 565 | |
|---|
| 566 | end module radiation_tripleclouds_lw |
|---|