source: LMDZ6/trunk/libf/phylmd/ecrad/radiation/radiation_random_numbers.F90 @ 5418

Last change on this file since 5418 was 4773, checked in by idelkadi, 12 months ago
  • Update of Ecrad in LMDZ The same organization of the Ecrad offline version is retained in order to facilitate the updating of Ecrad in LMDZ and the comparison between online and offline results. version 1.6.1 of Ecrad (https://github.com/lguez/ecrad.git)
  • Implementation of the double call of Ecrad in LMDZ


File size: 10.7 KB
Line 
1! radiation_random_numbers.F90 - Generate random numbers for McICA solver
2!
3! (C) Copyright 2020- ECMWF.
4!
5! This software is licensed under the terms of the Apache Licence Version 2.0
6! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
7!
8! In applying this licence, ECMWF does not waive the privileges and immunities
9! granted to it by virtue of its status as an intergovernmental organisation
10! nor does it submit to any jurisdiction.
11!
12! Author:  Robin Hogan
13! Email:   r.j.hogan@ecmwf.int
14!
15! The derived type "rng_type" is a random number generator that uses
16! either (1) Fortran's built-in random_number function, or (2) a
17! vectorized version of the MINSTD linear congruential generator.  In
18! the case of (2), an rng_type object is initialized with a seed that
19! is used to fill up a state of "nmaxstreams" elements using the C++
20! minstd_rand0 version of the MINSTD linear congruential generator
21! (LNG), which has the form istate[i+1] = mod(istate[i]*A0, M) from
22! i=1 to i=nmaxstreams. Subsequent requests for blocks of nmaxstreams
23! of random numbers use the C++ minstd_ran algorithm in a vectorizable
24! form, which modifies the state elements via istate[i] <-
25! mod(istate[i]*A, M). Uniform deviates are returned that normalize
26! the state elements to the range 0-1.
27!
28! The MINSTD generator was coded because the random_numbers_mix
29! generator in the IFS was found not to vectorize well on some
30! hardware.  I am no expert on random number generators, so my
31! implementation should really be looked at and improved by someone
32! who knows what they are doing.
33!
34! Reference for MINSTD: Park, Stephen K.; Miller, Keith
35! W. (1988). "Random Number Generators: Good Ones Are Hard To Find"
36! (PDF). Communications of the ACM. 31 (10):
37! 1192-1201. doi:10.1145/63039.63042
38!
39! Modifications
40!   2022-12-01  R. Hogan  Fixed zeroed state in single precision
41
42module radiation_random_numbers
43
44  use parkind1, only : jprb, jprd, jpim, jpib
45
46  implicit none
47
48  public :: rng_type, IRngMinstdVector, IRngNative
49
50  enum, bind(c)
51    enumerator IRngNative, &    ! Built-in Fortran-90 RNG
52         &     IRngMinstdVector ! Vector MINSTD algorithm
53  end enum
54 
55  ! Maximum number of random numbers that can be computed in one call
56  ! - this can be increased
57  integer(kind=jpim), parameter :: NMaxStreams = 512
58 
59  ! A requirement of the generator is that the operation mod(A*X,M) is
60  ! performed with no loss of precision, so type used for A and X must
61  ! be able to hold the largest possible value of A*X without
62  ! overflowing, going negative or losing precision. The largest
63  ! possible value is 48271*2147483647 = 103661183124337. This number
64  ! can be held in either a double-precision real number, or an 8-byte
65  ! integer. Either may be used, but on some hardwares it has been
66  ! found that operations on double-precision reals are faster. Select
67  ! which you prefer by defining USE_REAL_RNG_STATE for double
68  ! precision, or undefining it for an 8-byte integer.
69#define USE_REAL_RNG_STATE 1
70
71  ! Define RNG_STATE_TYPE based on USE_REAL_RNG_STATE, where jprd
72  ! refers to a double-precision number regardless of the working
73  ! precision described by jprb, while jpib describes an 8-byte
74  ! integer
75#ifdef USE_REAL_RNG_STATE
76#define RNG_STATE_TYPE real(kind=jprd)
77#else
78#define RNG_STATE_TYPE integer(kind=jpib)
79#endif
80
81  ! The constants used in the main random number generator
82  RNG_STATE_TYPE , parameter :: IMinstdA  = 48271
83  RNG_STATE_TYPE , parameter :: IMinstdM  = 2147483647
84
85  ! An alternative value of A that can be used to initialize the
86  ! members of the state from a single seed
87  RNG_STATE_TYPE , parameter :: IMinstdA0 = 16807
88 
89  ! Scaling to convert the state to a uniform deviate in the range 0
90  ! to 1 in working precision
91  real(kind=jprb), parameter :: IMinstdScale = 1.0_jprb / real(IMinstdM,jprb)
92
93  !---------------------------------------------------------------------
94  ! A random number generator type: after being initialized with a
95  ! seed, type and optionally a number of vector streams, subsequent
96  ! calls to "uniform_distribution" are used to fill 1D or 2D arrays
97  ! with random numbers in a way that ought to be fast.
98  type rng_type
99
100    integer(kind=jpim) :: itype = IRngNative
101    RNG_STATE_TYPE     :: istate(NMaxStreams)
102    integer(kind=jpim) :: nmaxstreams = NMaxStreams
103    integer(kind=jpim) :: iseed
104
105  contains
106    procedure :: initialize
107    procedure :: uniform_distribution_1d, &
108         &       uniform_distribution_2d, &
109         &       uniform_distribution_2d_masked
110    generic   :: uniform_distribution => uniform_distribution_1d, &
111         &                               uniform_distribution_2d, &
112         &                               uniform_distribution_2d_masked
113
114  end type rng_type
115
116contains
117
118  !---------------------------------------------------------------------
119  ! Initialize a random number generator, where "itype" may be either
120  ! IRngNative, indicating to use Fortran's native random_number
121  ! subroutine, or IRngMinstdVector, indicating to use the MINSTD
122  ! linear congruential generator (LCG).  In the latter case
123  ! "nmaxstreams" should be provided indicating that random numbers
124  ! will be requested in blocks of this length. The generator is
125  ! seeded with "iseed".
126  subroutine initialize(this, itype, iseed, nmaxstreams)
127
128    class(rng_type), intent(inout) :: this
129    integer(kind=jpim), intent(in), optional :: itype
130    integer(kind=jpim), intent(in), optional :: iseed
131    integer(kind=jpim), intent(in), optional :: nmaxstreams
132
133    integer, allocatable :: iseednative(:)
134    integer :: nseed, jseed, jstr
135    real(jprd) :: rseed ! Note this must be in double precision
136
137    if (present(itype)) then
138      this%itype = itype
139    else
140      this%itype = IRngNative
141    end if
142   
143    if (present(iseed)) then
144      this%iseed = iseed
145    else
146      this%iseed = 1
147    end if
148
149    if (present(nmaxstreams)) then
150      this%nmaxstreams = nmaxstreams
151    else
152      this%nmaxstreams = NMaxStreams
153    end if
154   
155    if (this%itype == IRngMinstdVector) then
156      ! ! OPTION 1: Use the C++ minstd_rand0 algorithm to populate the
157      ! ! state: this loop is not vectorizable because the state in
158      ! ! one stream depends on the one in the previous stream.
159      ! this%istate(1) = this%iseed
160      ! do jseed = 2,this%nmaxstreams
161      !   this%istate(jseed) = mod(IMinstdA0 * this%istate(jseed-1), IMinstdM)
162      ! end do
163
164      ! OPTION 2: Use a modified (and vectorized) C++ minstd_rand0 algorithm to
165      ! populate the state
166      rseed = real(abs(this%iseed),jprd)
167      do jstr = 1,this%nmaxstreams
168        ! Note that nint returns an integer of type jpib (8-byte)
169        ! which may be converted to double if that is the type of
170        ! istate
171        this%istate(jstr) = nint(mod(rseed*jstr*(1.0_jprd-0.05_jprd*jstr &
172             &      +0.005_jprd*jstr**2)*IMinstdA0, real(IMinstdM,jprd)),kind=jpib)
173      end do
174
175      ! One warmup of the C++ minstd_rand algorithm
176      do jstr = 1,this%nmaxstreams
177        this%istate(jstr) = mod(IMinstdA * this%istate(jstr), IMinstdM)
178      end do
179     
180    else
181      ! Native generator by default
182      call random_seed(size=nseed)
183      allocate(iseednative(nseed))
184      do jseed = 1,nseed
185        iseednative(jseed) = this%iseed + jseed - 1
186      end do
187      call random_seed(put=iseednative)
188      deallocate(iseednative)
189    end if
190
191  end subroutine initialize
192
193  !---------------------------------------------------------------------
194  ! Populate vector "randnum" with pseudo-random numbers; if rannum is
195  ! of length greater than nmaxstreams (specified when the generator
196  ! was initialized) then only the first nmaxstreams elements will be
197  ! assigned.
198  subroutine uniform_distribution_1d(this, randnum)
199
200    class(rng_type), intent(inout) :: this
201    real(kind=jprb), intent(out)   :: randnum(:)
202
203    integer :: imax, i
204
205    if (this%itype == IRngMinstdVector) then
206     
207      imax = min(this%nmaxstreams, size(randnum))
208
209      ! C++ minstd_rand algorithm
210      do i = 1, imax
211        ! The following calculation is computed entirely with 8-byte
212        ! numbers (whether real or integer)
213        this%istate(i) = mod(IMinstdA * this%istate(i), IMinstdM)
214        ! Scale the current state to a number in working precision
215        ! (jprb) between 0 and 1
216        randnum(i) = IMinstdScale * this%istate(i)
217      end do
218
219    else
220
221      call random_number(randnum)
222
223    end if
224
225  end subroutine uniform_distribution_1d
226
227
228  !---------------------------------------------------------------------
229  ! Populate matrix "randnum" with pseudo-random numbers; if the inner
230  ! dimension of rannum is of length greater than nmaxstreams
231  ! (specified when the generator was initialized) then only the first
232  ! nmaxstreams elements along this dimension will be assigned.
233  subroutine uniform_distribution_2d(this, randnum)
234
235    class(rng_type), intent(inout) :: this
236    real(kind=jprb), intent(out)   :: randnum(:,:)
237
238    integer :: imax, jblock, i
239
240    if (this%itype == IRngMinstdVector) then
241     
242      imax = min(this%nmaxstreams, size(randnum,1))
243
244      ! C++ minstd_ran algorithm
245      do jblock = 1,size(randnum,2)
246        ! These lines should be vectorizable
247        do i = 1, imax
248          this%istate(i) = mod(IMinstdA * this%istate(i), IMinstdM)
249          randnum(i,jblock) = IMinstdScale * this%istate(i)
250        end do
251      end do
252
253    else
254
255      call random_number(randnum)
256
257    end if
258
259  end subroutine uniform_distribution_2d
260
261  !---------------------------------------------------------------------
262  ! Populate matrix "randnum" with pseudo-random numbers; if the inner
263  ! dimension of rannum is of length greater than nmaxstreams
264  ! (specified when the generator was initialized) then only the first
265  ! nmaxstreams elements along this dimension will be assigned. This
266  ! version only operates on outer dimensions for which "mask" is true.
267  subroutine uniform_distribution_2d_masked(this, randnum, mask)
268
269    class(rng_type), intent(inout) :: this
270    real(kind=jprb), intent(inout) :: randnum(:,:)
271    logical,         intent(in)    :: mask(:)
272
273    integer :: imax, jblock, i
274
275    if (this%itype == IRngMinstdVector) then
276     
277      imax = min(this%nmaxstreams, size(randnum,1))
278
279      ! C++ minstd_ran algorithm
280      do jblock = 1,size(randnum,2)
281        if (mask(jblock)) then
282          ! These lines should be vectorizable
283          do i = 1, imax
284            this%istate(i) = mod(IMinstdA * this%istate(i), IMinstdM)
285            randnum(i,jblock) = IMinstdScale * this%istate(i)
286          end do
287        end if
288      end do
289
290    else
291
292      do jblock = 1,size(randnum,2)
293        if (mask(jblock)) then
294          call random_number(randnum(:,jblock))
295        end if
296      end do
297
298    end if
299
300  end subroutine uniform_distribution_2d_masked
301
302
303end module radiation_random_numbers
304
Note: See TracBrowser for help on using the repository browser.