1 | SUBROUTINE SRTM_TAUMOL28 & |
---|
2 | & ( KIDIA , KFDIA , KLEV,& |
---|
3 | & P_FAC00 , P_FAC01 , P_FAC10 , P_FAC11,& |
---|
4 | & K_JP , K_JT , K_JT1 , P_ONEMINUS,& |
---|
5 | & P_COLMOL , P_COLO2 , P_COLO3,& |
---|
6 | & K_LAYTROP,& |
---|
7 | & P_SFLUXZEN, P_TAUG , P_TAUR , PRMU0 & |
---|
8 | & ) |
---|
9 | |
---|
10 | ! Written by Eli J. Mlawer, Atmospheric & Environmental Research. |
---|
11 | |
---|
12 | ! BAND 28: 38000-50000 cm-1 (low - O3,O2; high - O3,O2) |
---|
13 | |
---|
14 | ! Modifications |
---|
15 | ! M.Hamrud 01-Oct-2003 CY28 Cleaning |
---|
16 | |
---|
17 | ! JJMorcrette 2003-02-24 adapted to ECMWF environment |
---|
18 | ! D.Salmond 31-Oct-2007 Vector version in the style of RRTM from Meteo France & NEC |
---|
19 | ! JJMorcrette 20010610 Flexible configuration for number of g-points |
---|
20 | |
---|
21 | USE PARKIND1 , ONLY : JPIM, JPRB |
---|
22 | USE YOMHOOK , ONLY : LHOOK, DR_HOOK, JPHOOK |
---|
23 | USE PARSRTM , ONLY : JPG |
---|
24 | USE YOESRTM , ONLY : NG28 |
---|
25 | USE YOESRTA28, ONLY : ABSA, ABSB, SFLUXREFC, RAYL, LAYREFFR, STRRAT |
---|
26 | USE YOESRTWN , ONLY : NSPA, NSPB |
---|
27 | |
---|
28 | IMPLICIT NONE |
---|
29 | |
---|
30 | !-- Output |
---|
31 | INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA, KFDIA |
---|
32 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV |
---|
33 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(KIDIA:KFDIA,KLEV) |
---|
34 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(KIDIA:KFDIA,KLEV) |
---|
35 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(KIDIA:KFDIA,KLEV) |
---|
36 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(KIDIA:KFDIA,KLEV) |
---|
37 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(KIDIA:KFDIA,KLEV) |
---|
38 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(KIDIA:KFDIA,KLEV) |
---|
39 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(KIDIA:KFDIA,KLEV) |
---|
40 | REAL(KIND=JPRB) ,INTENT(IN) :: P_ONEMINUS(KIDIA:KFDIA) |
---|
41 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLMOL(KIDIA:KFDIA,KLEV) |
---|
42 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLO2(KIDIA:KFDIA,KLEV) |
---|
43 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLO3(KIDIA:KFDIA,KLEV) |
---|
44 | INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP(KIDIA:KFDIA) |
---|
45 | |
---|
46 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_SFLUXZEN(KIDIA:KFDIA,JPG) |
---|
47 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUG(KIDIA:KFDIA,KLEV,JPG) |
---|
48 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUR(KIDIA:KFDIA,KLEV,JPG) |
---|
49 | REAL(KIND=JPRB) ,INTENT(IN) :: PRMU0(KIDIA:KFDIA) |
---|
50 | !- from INTFAC |
---|
51 | !- from INTIND |
---|
52 | !- from PRECISE |
---|
53 | !- from PROFDATA |
---|
54 | !- from SELF |
---|
55 | INTEGER(KIND=JPIM) :: IG, IND0, IND1, JS, I_LAY, I_LAYSOLFR(KIDIA:KFDIA), I_NLAYERS, IPLON |
---|
56 | |
---|
57 | REAL(KIND=JPRB) :: Z_FAC000, Z_FAC001, Z_FAC010, Z_FAC011, Z_FAC100, Z_FAC101,& |
---|
58 | & Z_FAC110, Z_FAC111, Z_FS, Z_SPECCOMB, Z_SPECMULT, Z_SPECPARM, & |
---|
59 | & Z_TAURAY |
---|
60 | REAL(KIND=JPHOOK) :: ZHOOK_HANDLE |
---|
61 | |
---|
62 | IF (LHOOK) CALL DR_HOOK('SRTM_TAUMOL28',0,ZHOOK_HANDLE) |
---|
63 | |
---|
64 | I_NLAYERS = KLEV |
---|
65 | |
---|
66 | ! Compute the optical depth by interpolating in ln(pressure), |
---|
67 | ! temperature, and appropriate species. Below LAYTROP, the water |
---|
68 | ! vapor self-continuum is interpolated (in temperature) separately. |
---|
69 | |
---|
70 | DO I_LAY = 1, I_NLAYERS |
---|
71 | DO IPLON = KIDIA, KFDIA |
---|
72 | IF (PRMU0(IPLON) > 0.0_JPRB) THEN |
---|
73 | IF (I_LAY <= K_LAYTROP(IPLON)) THEN |
---|
74 | Z_SPECCOMB = P_COLO3(IPLON,I_LAY) + STRRAT*P_COLO2(IPLON,I_LAY) |
---|
75 | Z_SPECPARM = P_COLO3(IPLON,I_LAY)/Z_SPECCOMB |
---|
76 | IF (Z_SPECPARM >= P_ONEMINUS(IPLON)) Z_SPECPARM = P_ONEMINUS(IPLON) |
---|
77 | Z_SPECMULT = 8.*(Z_SPECPARM) |
---|
78 | JS = 1 + INT(Z_SPECMULT) |
---|
79 | Z_FS = MOD(Z_SPECMULT, 1.0_JPRB ) |
---|
80 | ! Z_FAC000 = (1. - Z_FS) * P_FAC00(I_LAY) |
---|
81 | ! Z_FAC010 = (1. - Z_FS) * P_FAC10(I_LAY) |
---|
82 | ! Z_FAC100 = Z_FS * P_FAC00(I_LAY) |
---|
83 | ! Z_FAC110 = Z_FS * P_FAC10(I_LAY) |
---|
84 | ! Z_FAC001 = (1. - Z_FS) * P_FAC01(I_LAY) |
---|
85 | ! Z_FAC011 = (1. - Z_FS) * P_FAC11(I_LAY) |
---|
86 | ! Z_FAC101 = Z_FS * P_FAC01(I_LAY) |
---|
87 | ! Z_FAC111 = Z_FS * P_FAC11(I_LAY) |
---|
88 | IND0 = ((K_JP(IPLON,I_LAY)-1)*5+(K_JT(IPLON,I_LAY)-1))*NSPA(28) + JS |
---|
89 | IND1 = (K_JP(IPLON,I_LAY)*5+(K_JT1(IPLON,I_LAY)-1))*NSPA(28) + JS |
---|
90 | Z_TAURAY = P_COLMOL(IPLON,I_LAY) * RAYL |
---|
91 | |
---|
92 | ! DO IG = 1, NG(28) |
---|
93 | !CDIR UNROLL=NG28 |
---|
94 | DO IG = 1 , NG28 |
---|
95 | P_TAUG(IPLON,I_LAY,IG) = Z_SPECCOMB * & |
---|
96 | ! & (Z_FAC000 * ABSA(IND0,IG) + & |
---|
97 | ! & Z_FAC100 * ABSA(IND0+1,IG) + & |
---|
98 | ! & Z_FAC010 * ABSA(IND0+9,IG) + & |
---|
99 | ! & Z_FAC110 * ABSA(IND0+10,IG) + & |
---|
100 | ! & Z_FAC001 * ABSA(IND1,IG) + & |
---|
101 | ! & Z_FAC101 * ABSA(IND1+1,IG) + & |
---|
102 | ! & Z_FAC011 * ABSA(IND1+9,IG) + & |
---|
103 | ! & Z_FAC111 * ABSA(IND1+10,IG)) |
---|
104 | & (& |
---|
105 | & (1. - Z_FS) * ( ABSA(IND0,IG) * P_FAC00(IPLON,I_LAY) + & |
---|
106 | & ABSA(IND0+9,IG) * P_FAC10(IPLON,I_LAY) + & |
---|
107 | & ABSA(IND1,IG) * P_FAC01(IPLON,I_LAY) + & |
---|
108 | & ABSA(IND1+9,IG) * P_FAC11(IPLON,I_LAY) ) + & |
---|
109 | & Z_FS * ( ABSA(IND0+1,IG) * P_FAC00(IPLON,I_LAY) + & |
---|
110 | & ABSA(IND0+10,IG) * P_FAC10(IPLON,I_LAY) + & |
---|
111 | & ABSA(IND1+1,IG) * P_FAC01(IPLON,I_LAY) + & |
---|
112 | & ABSA(IND1+10,IG) * P_FAC11(IPLON,I_LAY) ) & |
---|
113 | & ) |
---|
114 | ! & + TAURAY |
---|
115 | ! SSA(LAY,IG) = TAURAY/TAUG(LAY,IG) |
---|
116 | P_TAUR(IPLON,I_LAY,IG) = Z_TAURAY |
---|
117 | ENDDO |
---|
118 | ENDIF |
---|
119 | ENDIF |
---|
120 | ENDDO |
---|
121 | ENDDO |
---|
122 | |
---|
123 | I_LAYSOLFR(:) = I_NLAYERS |
---|
124 | |
---|
125 | DO I_LAY = 1, I_NLAYERS |
---|
126 | DO IPLON = KIDIA, KFDIA |
---|
127 | IF (PRMU0(IPLON) > 0.0_JPRB) THEN |
---|
128 | IF (I_LAY >= K_LAYTROP(IPLON)+1) THEN |
---|
129 | IF (K_JP(IPLON,I_LAY-1) < LAYREFFR .AND. K_JP(IPLON,I_LAY) >= LAYREFFR) & |
---|
130 | & I_LAYSOLFR(IPLON) = I_LAY |
---|
131 | Z_SPECCOMB = P_COLO3(IPLON,I_LAY) + STRRAT*P_COLO2(IPLON,I_LAY) |
---|
132 | Z_SPECPARM = P_COLO3(IPLON,I_LAY)/Z_SPECCOMB |
---|
133 | IF (Z_SPECPARM >= P_ONEMINUS(IPLON)) Z_SPECPARM = P_ONEMINUS(IPLON) |
---|
134 | Z_SPECMULT = 4.*(Z_SPECPARM) |
---|
135 | JS = 1 + INT(Z_SPECMULT) |
---|
136 | Z_FS = MOD(Z_SPECMULT, 1.0_JPRB ) |
---|
137 | ! Z_FAC000 = (1. - Z_FS) * P_FAC00(I_LAY) |
---|
138 | ! Z_FAC010 = (1. - Z_FS) * P_FAC10(I_LAY) |
---|
139 | ! Z_FAC100 = Z_FS * P_FAC00(I_LAY) |
---|
140 | ! Z_FAC110 = Z_FS * P_FAC10(I_LAY) |
---|
141 | ! Z_FAC001 = (1. - Z_FS) * P_FAC01(I_LAY) |
---|
142 | ! Z_FAC011 = (1. - Z_FS) * P_FAC11(I_LAY) |
---|
143 | ! Z_FAC101 = Z_FS * P_FAC01(I_LAY) |
---|
144 | ! Z_FAC111 = Z_FS * P_FAC11(I_LAY) |
---|
145 | IND0 = ((K_JP(IPLON,I_LAY)-13)*5+(K_JT(IPLON,I_LAY)-1))*NSPB(28) + JS |
---|
146 | IND1 = ((K_JP(IPLON,I_LAY)-12)*5+(K_JT1(IPLON,I_LAY)-1))*NSPB(28) + JS |
---|
147 | Z_TAURAY = P_COLMOL(IPLON,I_LAY) * RAYL |
---|
148 | |
---|
149 | ! DO IG = 1, NG(28) |
---|
150 | !CDIR UNROLL=NG28 |
---|
151 | DO IG = 1 , NG28 |
---|
152 | P_TAUG(IPLON,I_LAY,IG) = Z_SPECCOMB * & |
---|
153 | ! & (Z_FAC000 * ABSB(IND0,IG) + & |
---|
154 | ! & Z_FAC100 * ABSB(IND0+1,IG) + & |
---|
155 | ! & Z_FAC010 * ABSB(IND0+5,IG) + & |
---|
156 | ! & Z_FAC110 * ABSB(IND0+6,IG) + & |
---|
157 | ! & Z_FAC001 * ABSB(IND1,IG) + & |
---|
158 | ! & Z_FAC101 * ABSB(IND1+1,IG) + & |
---|
159 | ! & Z_FAC011 * ABSB(IND1+5,IG) + & |
---|
160 | ! & Z_FAC111 * ABSB(IND1+6,IG)) |
---|
161 | & (& |
---|
162 | & (1. - Z_FS) * ( ABSB(IND0,IG) * P_FAC00(IPLON,I_LAY) + & |
---|
163 | & ABSB(IND0+5,IG) * P_FAC10(IPLON,I_LAY) + & |
---|
164 | & ABSB(IND1,IG) * P_FAC01(IPLON,I_LAY) + & |
---|
165 | & ABSB(IND1+5,IG) * P_FAC11(IPLON,I_LAY) ) + & |
---|
166 | & Z_FS * ( ABSB(IND0+1,IG) * P_FAC00(IPLON,I_LAY) + & |
---|
167 | & ABSB(IND0+6,IG) * P_FAC10(IPLON,I_LAY) + & |
---|
168 | & ABSB(IND1+1,IG) * P_FAC01(IPLON,I_LAY) + & |
---|
169 | & ABSB(IND1+6,IG) * P_FAC11(IPLON,I_LAY) ) & |
---|
170 | & ) |
---|
171 | ! & + TAURAY |
---|
172 | ! SSA(LAY,IG) = TAURAY/TAUG(LAY,IG) |
---|
173 | IF (I_LAY == I_LAYSOLFR(IPLON)) P_SFLUXZEN(IPLON,IG) = SFLUXREFC(IG,JS) & |
---|
174 | & + Z_FS * (SFLUXREFC(IG,JS+1) - SFLUXREFC(IG,JS)) |
---|
175 | ! The following actually improves this band by setting the solar |
---|
176 | ! spectrum at each g point equal to what would be computed if |
---|
177 | ! molecular oxygen was set to zero. But it is worse overall due to a |
---|
178 | ! compensating error with the previous band 27. |
---|
179 | ! IF (I_LAY == I_LAYSOLFR) P_SFLUXZEN(IPLON,IG) = SFLUXREFC(IG,5) |
---|
180 | P_TAUR(IPLON,I_LAY,IG) = Z_TAURAY |
---|
181 | ENDDO |
---|
182 | ENDIF |
---|
183 | ENDIF |
---|
184 | ENDDO |
---|
185 | ENDDO |
---|
186 | |
---|
187 | !----------------------------------------------------------------------- |
---|
188 | IF (LHOOK) CALL DR_HOOK('SRTM_TAUMOL28',1,ZHOOK_HANDLE) |
---|
189 | |
---|
190 | END SUBROUTINE SRTM_TAUMOL28 |
---|