[4773] | 1 | !---------------------------------------------------------------------------- |
---|
| 2 | SUBROUTINE RRTM_TAUMOL7 (KIDIA,KFDIA,KLEV,P_TAU,& |
---|
| 3 | & P_TAUAERL,P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,P_FORFRAC,K_INDFOR,K_JP,K_JT,K_JT1,P_ONEMINUS,& |
---|
| 4 | & P_COLH2O,P_COLO3,P_COLCO2,P_COLDRY,K_LAYTROP,P_SELFFAC,P_SELFFRAC,K_INDSELF,PFRAC, & |
---|
| 5 | & P_RAT_H2OO3, P_RAT_H2OO3_1,PMINORFRAC,KINDMINOR) |
---|
| 6 | |
---|
| 7 | ! BAND 7: 980-1080 cm-1 (low - H2O,O3; high - O3) |
---|
| 8 | |
---|
| 9 | ! AUTHOR. |
---|
| 10 | ! ------- |
---|
| 11 | ! JJMorcrette, ECMWF |
---|
| 12 | |
---|
| 13 | ! MODIFICATIONS. |
---|
| 14 | ! -------------- |
---|
| 15 | ! M.Hamrud 01-Oct-2003 CY28 Cleaning |
---|
| 16 | ! NEC 25-Oct-2007 Optimisations |
---|
| 17 | ! JJMorcrette 20110613 flexible number of g-points |
---|
| 18 | ! ABozzo 201306 updated to rrtmg v4.85 |
---|
| 19 | ! band 7: 980-1080 cm-1 (low key - h2o,o3; low minor - co2) |
---|
| 20 | ! (high key - o3; high minor - co2) |
---|
| 21 | ! F. Vana 05-Mar-2015 Support for single precision |
---|
| 22 | ! --------------------------------------------------------------------------- |
---|
| 23 | |
---|
| 24 | USE PARKIND1 ,ONLY : JPIM ,JPRB |
---|
| 25 | USE YOMHOOK ,ONLY : LHOOK, DR_HOOK, JPHOOK |
---|
| 26 | |
---|
| 27 | USE PARRRTM , ONLY : JPBAND |
---|
| 28 | USE YOERRTM , ONLY : JPGPT ,NG7 ,NGS6 |
---|
| 29 | USE YOERRTWN , ONLY : NSPA ,NSPB |
---|
| 30 | USE YOERRTA7 , ONLY : ABSA ,ABSB ,KA_MCO2,KB_MCO2 ,FRACREFA ,FRACREFB,SELFREF,FORREF |
---|
| 31 | USE YOERRTRF, ONLY : CHI_MLS |
---|
| 32 | |
---|
| 33 | IMPLICIT NONE |
---|
| 34 | |
---|
| 35 | INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA |
---|
| 36 | INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA |
---|
| 37 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV |
---|
| 38 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAU(KIDIA:KFDIA,JPGPT,KLEV) |
---|
| 39 | REAL(KIND=JPRB) ,INTENT(IN) :: P_TAUAERL(KIDIA:KFDIA,KLEV,JPBAND) |
---|
| 40 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(KIDIA:KFDIA,KLEV) |
---|
| 41 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(KIDIA:KFDIA,KLEV) |
---|
| 42 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(KIDIA:KFDIA,KLEV) |
---|
| 43 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(KIDIA:KFDIA,KLEV) |
---|
| 44 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(KIDIA:KFDIA,KLEV) |
---|
| 45 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(KIDIA:KFDIA,KLEV) |
---|
| 46 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(KIDIA:KFDIA,KLEV) |
---|
| 47 | REAL(KIND=JPRB) ,INTENT(IN) :: P_ONEMINUS |
---|
| 48 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLH2O(KIDIA:KFDIA,KLEV) |
---|
| 49 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLO3(KIDIA:KFDIA,KLEV) |
---|
| 50 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLCO2(KIDIA:KFDIA,KLEV) |
---|
| 51 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLDRY(KIDIA:KFDIA,KLEV) |
---|
| 52 | INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP(KIDIA:KFDIA) |
---|
| 53 | REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFAC(KIDIA:KFDIA,KLEV) |
---|
| 54 | REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFRAC(KIDIA:KFDIA,KLEV) |
---|
| 55 | INTEGER(KIND=JPIM),INTENT(IN) :: K_INDSELF(KIDIA:KFDIA,KLEV) |
---|
| 56 | REAL(KIND=JPRB) ,INTENT(OUT) :: PFRAC(KIDIA:KFDIA,JPGPT,KLEV) |
---|
| 57 | |
---|
| 58 | REAL(KIND=JPRB) ,INTENT(IN) :: P_RAT_H2OO3(KIDIA:KFDIA,KLEV) |
---|
| 59 | REAL(KIND=JPRB) ,INTENT(IN) :: P_RAT_H2OO3_1(KIDIA:KFDIA,KLEV) |
---|
| 60 | INTEGER(KIND=JPIM),INTENT(IN) :: K_INDFOR(KIDIA:KFDIA,KLEV) |
---|
| 61 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFRAC(KIDIA:KFDIA,KLEV) |
---|
| 62 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFAC(KIDIA:KFDIA,KLEV) |
---|
| 63 | REAL(KIND=JPRB) ,INTENT(IN) :: PMINORFRAC(KIDIA:KFDIA,KLEV) |
---|
| 64 | INTEGER(KIND=JPIM),INTENT(IN) :: KINDMINOR(KIDIA:KFDIA,KLEV) |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | ! --------------------------------------------------------------------------- |
---|
| 68 | |
---|
| 69 | REAL(KIND=JPRB) :: Z_SPECCOMB(KLEV),Z_SPECCOMB1(KLEV), & |
---|
| 70 | & Z_SPECCOMB_MCO2(KLEV), Z_SPECCOMB_PLANCK(KLEV) |
---|
| 71 | INTEGER(KIND=JPIM) :: IND0(KLEV),IND1(KLEV),INDS(KLEV),INDF(KLEV),INDM(KLEV) |
---|
| 72 | |
---|
| 73 | INTEGER(KIND=JPIM) :: IG, JS, JLAY, JS1, JPL, JMCO2 |
---|
| 74 | INTEGER(KIND=JPIM) :: JLON |
---|
| 75 | |
---|
| 76 | REAL(KIND=JPRB) :: ZREFRAT_PLANCK_A, ZREFRAT_M_A |
---|
| 77 | REAL(KIND=JPRB) :: ZCHI_CO2, ZRATCO2, ZADJFAC, ZADJCOLCO2(KIDIA:KFDIA,KLEV) |
---|
| 78 | REAL(KIND=JPRB) :: Z_FAC000, Z_FAC100, Z_FAC200,& |
---|
| 79 | & Z_FAC010, Z_FAC110, Z_FAC210, & |
---|
| 80 | & Z_FAC001, Z_FAC101, Z_FAC201, & |
---|
| 81 | & Z_FAC011, Z_FAC111, Z_FAC211 |
---|
| 82 | REAL(KIND=JPRB) :: ZP, ZP4, ZFK0, ZFK1, ZFK2 |
---|
| 83 | REAL(KIND=JPRB) :: ZTAUFOR,ZTAUSELF,ZTAU_MAJOR,ZTAU_MAJOR1, ZCO2M1, ZCO2M2, ZABSCO2 |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | REAL(KIND=JPRB) :: Z_FS, Z_SPECMULT, Z_SPECPARM, & |
---|
| 87 | & Z_FS1, Z_SPECMULT1, Z_SPECPARM1, & |
---|
| 88 | & Z_FPL, Z_SPECMULT_PLANCK, Z_SPECPARM_PLANCK, & |
---|
| 89 | & Z_FMCO2, Z_SPECMULT_MCO2, Z_SPECPARM_MCO2 |
---|
| 90 | REAL(KIND=JPHOOK) :: ZHOOK_HANDLE |
---|
| 91 | |
---|
| 92 | IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL7',0,ZHOOK_HANDLE) |
---|
| 93 | |
---|
| 94 | ! Minor gas mapping level : |
---|
| 95 | ! lower - co2, p = 706.2620 mbar, t= 278.94 k |
---|
| 96 | ! upper - co2, p = 12.9350 mbar, t = 234.01 k |
---|
| 97 | |
---|
| 98 | ! Calculate reference ratio to be used in calculation of Planck |
---|
| 99 | ! fraction in lower atmosphere. |
---|
| 100 | |
---|
| 101 | ! P = 706.2620 mb |
---|
| 102 | ZREFRAT_PLANCK_A = CHI_MLS(1,3)/CHI_MLS(3,3) |
---|
| 103 | |
---|
| 104 | ! P = 706.2720 mb |
---|
| 105 | ZREFRAT_M_A = CHI_MLS(1,3)/CHI_MLS(3,3) |
---|
| 106 | |
---|
| 107 | ! Compute the optical depth by interpolating in ln(pressure), |
---|
| 108 | ! temperature, and appropriate species. Below laytrop, the water |
---|
| 109 | ! vapor self-continuum and foreign continuum is interpolated |
---|
| 110 | ! (in temperature) separately. |
---|
| 111 | |
---|
| 112 | DO JLAY = 1, KLEV |
---|
| 113 | DO JLON = KIDIA, KFDIA |
---|
| 114 | IF (JLAY <= K_LAYTROP(JLON)) THEN |
---|
| 115 | Z_SPECCOMB(JLAY) = P_COLH2O(JLON,JLAY) + P_RAT_H2OO3(JLON,JLAY)*P_COLO3(JLON,JLAY) |
---|
| 116 | !Z_SPECPARM = P_COLH2O(JLON,JLAY)/Z_SPECCOMB(JLAY) |
---|
| 117 | Z_SPECPARM = 1._JPRB/(1._JPRB+P_RAT_H2OO3(JLON,JLAY)/P_COLH2O(JLON,JLAY)*P_COLO3(JLON,JLAY)) |
---|
| 118 | Z_SPECPARM=MIN(P_ONEMINUS,Z_SPECPARM) |
---|
| 119 | Z_SPECMULT = 8._JPRB*Z_SPECPARM |
---|
| 120 | JS = 1 + INT(Z_SPECMULT) |
---|
| 121 | Z_FS = MOD(Z_SPECMULT,1.0_JPRB) |
---|
| 122 | |
---|
| 123 | Z_SPECCOMB1(JLAY) = P_COLH2O(JLON,JLAY) + P_RAT_H2OO3_1(JLON,JLAY)*P_COLO3(JLON,JLAY) |
---|
| 124 | !Z_SPECPARM1 = P_COLH2O(JLON,JLAY)/Z_SPECCOMB1(JLAY) |
---|
| 125 | Z_SPECPARM1 = 1._JPRB/(1._JPRB+P_RAT_H2OO3_1(JLON,JLAY)/P_COLH2O(JLON,JLAY)*P_COLO3(JLON,JLAY)) |
---|
| 126 | IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS |
---|
| 127 | Z_SPECMULT1 = 8._JPRB*(Z_SPECPARM1) |
---|
| 128 | JS1 = 1 + INT(Z_SPECMULT1) |
---|
| 129 | Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB) |
---|
| 130 | |
---|
| 131 | Z_SPECCOMB_MCO2(JLAY) = P_COLH2O(JLON,JLAY) + ZREFRAT_M_A*P_COLO3(JLON,JLAY) |
---|
| 132 | !Z_SPECPARM_MCO2 = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_MCO2(JLAY) |
---|
| 133 | Z_SPECPARM_MCO2 = 1._JPRB/(1._JPRB+ZREFRAT_M_A/P_COLH2O(JLON,JLAY)*P_COLO3(JLON,JLAY)) |
---|
| 134 | IF (Z_SPECPARM_MCO2 >= P_ONEMINUS) Z_SPECPARM_MCO2 = P_ONEMINUS |
---|
| 135 | Z_SPECMULT_MCO2 = 8._JPRB*Z_SPECPARM_MCO2 |
---|
| 136 | JMCO2 = 1 + INT(Z_SPECMULT_MCO2) |
---|
| 137 | Z_FMCO2 = MOD(Z_SPECMULT_MCO2,1.0_JPRB) |
---|
| 138 | |
---|
| 139 | ! In atmospheres where the amount of CO2 is too great to be considered |
---|
| 140 | ! a minor species, adjust the column amount of CO2 by an empirical factor |
---|
| 141 | ! to obtain the proper contribution. |
---|
| 142 | ZCHI_CO2 = P_COLCO2(JLON,JLAY)/P_COLDRY(JLON,JLAY) |
---|
| 143 | ZRATCO2 = 1.E20_JPRB*ZCHI_CO2/CHI_MLS(2,K_JP(JLON,JLAY)+1) |
---|
| 144 | IF (ZRATCO2 > 3.0_JPRB) THEN |
---|
| 145 | ZADJFAC = 3.0_JPRB+(ZRATCO2-3.0_JPRB)**0.79_JPRB |
---|
| 146 | ZADJCOLCO2(JLON,JLAY) = ZADJFAC*CHI_MLS(2,K_JP(JLON,JLAY)+1)*P_COLDRY(JLON,JLAY)*1.E-20_JPRB |
---|
| 147 | ELSE |
---|
| 148 | ZADJCOLCO2(JLON,JLAY) = P_COLCO2(JLON,JLAY) |
---|
| 149 | ENDIF |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | Z_SPECCOMB_PLANCK(JLAY) = P_COLH2O(JLON,JLAY)+ZREFRAT_PLANCK_A*P_COLO3(JLON,JLAY) |
---|
| 153 | !Z_SPECPARM_PLANCK = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_PLANCK(JLAY) |
---|
| 154 | Z_SPECPARM_PLANCK = 1._JPRB/(1._JPRB+ZREFRAT_PLANCK_A/P_COLH2O(JLON,JLAY)*P_COLO3(JLON,JLAY)) |
---|
| 155 | IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS |
---|
| 156 | Z_SPECMULT_PLANCK = 8._JPRB*Z_SPECPARM_PLANCK |
---|
| 157 | JPL= 1 + INT(Z_SPECMULT_PLANCK) |
---|
| 158 | Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB) |
---|
| 159 | |
---|
| 160 | IND0(JLAY) = ((K_JP(JLON,JLAY)-1)*5+(K_JT(JLON,JLAY)-1))*NSPA(7) + JS |
---|
| 161 | IND1(JLAY) = (K_JP(JLON,JLAY)*5+(K_JT1(JLON,JLAY)-1))*NSPA(7) + JS1 |
---|
| 162 | INDS(JLAY) = K_INDSELF(JLON,JLAY) |
---|
| 163 | INDF(JLAY) = K_INDFOR(JLON,JLAY) |
---|
| 164 | INDM(JLAY) = KINDMINOR(JLON,JLAY) |
---|
| 165 | |
---|
| 166 | IF (Z_SPECPARM < 0.125_JPRB) THEN |
---|
| 167 | ZP = Z_FS - 1 |
---|
| 168 | ZP4 = ZP**4 |
---|
| 169 | ZFK0 = ZP4 |
---|
| 170 | ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 |
---|
| 171 | ZFK2 = ZP + ZP4 |
---|
| 172 | Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) |
---|
| 173 | Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) |
---|
| 174 | Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) |
---|
| 175 | Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) |
---|
| 176 | Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) |
---|
| 177 | Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) |
---|
| 178 | ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN |
---|
| 179 | ZP = -Z_FS |
---|
| 180 | ZP4 = ZP**4 |
---|
| 181 | ZFK0 = ZP4 |
---|
| 182 | ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 |
---|
| 183 | ZFK2 = ZP + ZP4 |
---|
| 184 | Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) |
---|
| 185 | Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) |
---|
| 186 | Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) |
---|
| 187 | Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) |
---|
| 188 | Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) |
---|
| 189 | Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) |
---|
| 190 | ELSE |
---|
| 191 | Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY) |
---|
| 192 | Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY) |
---|
| 193 | Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY) |
---|
| 194 | Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY) |
---|
| 195 | ENDIF |
---|
| 196 | IF (Z_SPECPARM1 < 0.125_JPRB) THEN |
---|
| 197 | ZP = Z_FS1 - 1 |
---|
| 198 | ZP4 = ZP**4 |
---|
| 199 | ZFK0 = ZP4 |
---|
| 200 | ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 |
---|
| 201 | ZFK2 = ZP + ZP4 |
---|
| 202 | Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) |
---|
| 203 | Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) |
---|
| 204 | Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) |
---|
| 205 | Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) |
---|
| 206 | Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) |
---|
| 207 | Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) |
---|
| 208 | ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN |
---|
| 209 | ZP = -Z_FS1 |
---|
| 210 | ZP4 = ZP**4 |
---|
| 211 | ZFK0 = ZP4 |
---|
| 212 | ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 |
---|
| 213 | ZFK2 = ZP + ZP4 |
---|
| 214 | Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) |
---|
| 215 | Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) |
---|
| 216 | Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) |
---|
| 217 | Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) |
---|
| 218 | Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) |
---|
| 219 | Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) |
---|
| 220 | ELSE |
---|
| 221 | Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY) |
---|
| 222 | Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY) |
---|
| 223 | Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY) |
---|
| 224 | Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY) |
---|
| 225 | ENDIF |
---|
| 226 | |
---|
| 227 | !-- DS_000515 |
---|
| 228 | !CDIR UNROLL=NG7 |
---|
| 229 | DO IG = 1, NG7 |
---|
| 230 | !-- DS_000515 |
---|
| 231 | ZTAUSELF = P_SELFFAC(JLON,JLAY)* (SELFREF(INDS(JLAY),IG) + P_SELFFRAC(JLON,JLAY) * & |
---|
| 232 | & (SELFREF(INDS(JLAY)+1,IG) - SELFREF(INDS(JLAY),IG))) |
---|
| 233 | ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + P_FORFRAC(JLON,JLAY) * & |
---|
| 234 | & (FORREF(INDF(JLAY)+1,IG) - FORREF(INDF(JLAY),IG))) |
---|
| 235 | ZCO2M1 = KA_MCO2(JMCO2,INDM(JLAY),IG) + Z_FMCO2 * & |
---|
| 236 | & (KA_MCO2(JMCO2+1,INDM(JLAY),IG) - KA_MCO2(JMCO2,INDM(JLAY),IG)) |
---|
| 237 | ZCO2M2 = KA_MCO2(JMCO2,INDM(JLAY)+1,IG) + Z_FMCO2 * & |
---|
| 238 | & (KA_MCO2(JMCO2+1,INDM(JLAY)+1,IG) - KA_MCO2(JMCO2,INDM(JLAY)+1,IG)) |
---|
| 239 | ZABSCO2 = ZCO2M1 + PMINORFRAC(JLON,JLAY) * (ZCO2M2 - ZCO2M1) |
---|
| 240 | |
---|
| 241 | IF (Z_SPECPARM < 0.125_JPRB) THEN |
---|
| 242 | ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & |
---|
| 243 | & (Z_FAC000 * ABSA(IND0(JLAY),IG) + & |
---|
| 244 | & Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + & |
---|
| 245 | & Z_FAC200 * ABSA(IND0(JLAY)+2,IG) + & |
---|
| 246 | & Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + & |
---|
| 247 | & Z_FAC110 * ABSA(IND0(JLAY)+10,IG) + & |
---|
| 248 | & Z_FAC210 * ABSA(IND0(JLAY)+11,IG)) |
---|
| 249 | ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN |
---|
| 250 | ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & |
---|
| 251 | & (Z_FAC200 * ABSA(IND0(JLAY)-1,IG) + & |
---|
| 252 | & Z_FAC100 * ABSA(IND0(JLAY),IG) + & |
---|
| 253 | & Z_FAC000 * ABSA(IND0(JLAY)+1,IG) + & |
---|
| 254 | & Z_FAC210 * ABSA(IND0(JLAY)+8,IG) + & |
---|
| 255 | & Z_FAC110 * ABSA(IND0(JLAY)+9,IG) + & |
---|
| 256 | & Z_FAC010 * ABSA(IND0(JLAY)+10,IG)) |
---|
| 257 | ELSE |
---|
| 258 | ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & |
---|
| 259 | & (Z_FAC000 * ABSA(IND0(JLAY),IG) + & |
---|
| 260 | & Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + & |
---|
| 261 | & Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + & |
---|
| 262 | & Z_FAC110 * ABSA(IND0(JLAY)+10,IG)) |
---|
| 263 | ENDIF |
---|
| 264 | |
---|
| 265 | IF (Z_SPECPARM1 < 0.125_JPRB) THEN |
---|
| 266 | ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & |
---|
| 267 | & (Z_FAC001 * ABSA(IND1(JLAY),IG) + & |
---|
| 268 | & Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + & |
---|
| 269 | & Z_FAC201 * ABSA(IND1(JLAY)+2,IG) + & |
---|
| 270 | & Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + & |
---|
| 271 | & Z_FAC111 * ABSA(IND1(JLAY)+10,IG) + & |
---|
| 272 | & Z_FAC211 * ABSA(IND1(JLAY)+11,IG)) |
---|
| 273 | ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN |
---|
| 274 | ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & |
---|
| 275 | & (Z_FAC201 * ABSA(IND1(JLAY)-1,IG) + & |
---|
| 276 | & Z_FAC101 * ABSA(IND1(JLAY),IG) + & |
---|
| 277 | & Z_FAC001 * ABSA(IND1(JLAY)+1,IG) + & |
---|
| 278 | & Z_FAC211 * ABSA(IND1(JLAY)+8,IG) + & |
---|
| 279 | & Z_FAC111 * ABSA(IND1(JLAY)+9,IG) + & |
---|
| 280 | & Z_FAC011 * ABSA(IND1(JLAY)+10,IG)) |
---|
| 281 | ELSE |
---|
| 282 | ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & |
---|
| 283 | & (Z_FAC001 * ABSA(IND1(JLAY),IG) + & |
---|
| 284 | & Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + & |
---|
| 285 | & Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + & |
---|
| 286 | & Z_FAC111 * ABSA(IND1(JLAY)+10,IG)) |
---|
| 287 | ENDIF |
---|
| 288 | |
---|
| 289 | |
---|
| 290 | P_TAU(JLON,NGS6+IG,JLAY) = ZTAU_MAJOR + ZTAU_MAJOR1 & |
---|
| 291 | & + ZTAUSELF + ZTAUFOR & |
---|
| 292 | & + ZADJCOLCO2(JLON,JLAY)*ZABSCO2 & |
---|
| 293 | & + P_TAUAERL(JLON,JLAY,7) |
---|
| 294 | PFRAC(JLON,NGS6+IG,JLAY) = FRACREFA(IG,JPL) + Z_FPL *& |
---|
| 295 | & (FRACREFA(IG,JPL+1) - FRACREFA(IG,JPL)) |
---|
| 296 | ENDDO |
---|
| 297 | ENDIF |
---|
| 298 | |
---|
| 299 | IF (JLAY > K_LAYTROP(JLON)) THEN |
---|
| 300 | |
---|
| 301 | ! In atmospheres where the amount of CO2 is too great to be considered |
---|
| 302 | ! a minor species, adjust the column amount of CO2 by an empirical factor |
---|
| 303 | ! to obtain the proper contribution. |
---|
| 304 | ZCHI_CO2 = P_COLCO2(JLON,JLAY)/P_COLDRY(JLON,JLAY) |
---|
| 305 | ZRATCO2 = 1.E20_JPRB*ZCHI_CO2/CHI_MLS(2,K_JP(JLON,JLAY)+1) |
---|
| 306 | IF (ZRATCO2 > 3.0_JPRB) THEN |
---|
| 307 | ZADJFAC = 2.0_JPRB+(ZRATCO2-2.0_JPRB)**0.79_JPRB |
---|
| 308 | ZADJCOLCO2(JLON,JLAY) = ZADJFAC*CHI_MLS(2,K_JP(JLON,JLAY)+1)*P_COLDRY(JLON,JLAY)*1.E-20_JPRB |
---|
| 309 | ELSE |
---|
| 310 | ZADJCOLCO2(JLON,JLAY) = P_COLCO2(JLON,JLAY) |
---|
| 311 | ENDIF |
---|
| 312 | |
---|
| 313 | |
---|
| 314 | IND0(JLAY) = ((K_JP(JLON,JLAY)-13)*5+(K_JT(JLON,JLAY)-1))*NSPB(7) + 1 |
---|
| 315 | IND1(JLAY) = ((K_JP(JLON,JLAY)-12)*5+(K_JT1(JLON,JLAY)-1))*NSPB(7) + 1 |
---|
| 316 | INDM(JLAY) = KINDMINOR(JLON,JLAY) |
---|
| 317 | !-- JJM_000517 |
---|
| 318 | !CDIR UNROLL=NG7 |
---|
| 319 | DO IG = 1, NG7 |
---|
| 320 | !-- JJM_000517 |
---|
| 321 | ZABSCO2 = KB_MCO2(INDM(JLAY),IG) + PMINORFRAC(JLON,JLAY) * & |
---|
| 322 | & (KB_MCO2(INDM(JLAY)+1,IG) - KB_MCO2(INDM(JLAY),IG)) |
---|
| 323 | |
---|
| 324 | P_TAU(JLON,NGS6+IG,JLAY) = P_COLO3(JLON,JLAY) *& |
---|
| 325 | & (P_FAC00(JLON,JLAY) * ABSB(IND0(JLAY) ,IG) +& |
---|
| 326 | & P_FAC10(JLON,JLAY) * ABSB(IND0(JLAY)+1,IG) +& |
---|
| 327 | & P_FAC01(JLON,JLAY) * ABSB(IND1(JLAY) ,IG) +& |
---|
| 328 | & P_FAC11(JLON,JLAY) * ABSB(IND1(JLAY)+1,IG))& |
---|
| 329 | & + ZADJCOLCO2(JLON,JLAY) * ZABSCO2 & |
---|
| 330 | & + P_TAUAERL(JLON,JLAY,7) |
---|
| 331 | PFRAC(JLON,NGS6+IG,JLAY) = FRACREFB(IG) |
---|
| 332 | ENDDO |
---|
| 333 | |
---|
| 334 | ! Empirical modification to code to improve stratospheric cooling rates |
---|
| 335 | ! for o3. Revised to apply weighting for g-point reduction in this band. |
---|
| 336 | |
---|
| 337 | P_TAU(JLON,NGS6+6,JLAY)=P_TAU(JLON,NGS6+6,JLAY)*0.92_JPRB |
---|
| 338 | P_TAU(JLON,NGS6+7,JLAY)=P_TAU(JLON,NGS6+7,JLAY)*0.88_JPRB |
---|
| 339 | P_TAU(JLON,NGS6+8,JLAY)=P_TAU(JLON,NGS6+8,JLAY)*1.07_JPRB |
---|
| 340 | P_TAU(JLON,NGS6+9,JLAY)=P_TAU(JLON,NGS6+9,JLAY)*1.1_JPRB |
---|
| 341 | P_TAU(JLON,NGS6+10,JLAY)=P_TAU(JLON,NGS6+10,JLAY)*0.99_JPRB |
---|
| 342 | P_TAU(JLON,NGS6+11,JLAY)=P_TAU(JLON,NGS6+11,JLAY)*0.855_JPRB |
---|
| 343 | |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | ENDIF |
---|
| 347 | ENDDO |
---|
| 348 | ENDDO |
---|
| 349 | |
---|
| 350 | IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL7',1,ZHOOK_HANDLE) |
---|
| 351 | |
---|
| 352 | END SUBROUTINE RRTM_TAUMOL7 |
---|