[4773] | 1 | !---------------------------------------------------------------------------- |
---|
| 2 | SUBROUTINE RRTM_TAUMOL3 (KIDIA,KFDIA,KLEV,P_TAU,& |
---|
| 3 | & P_TAUAERL,P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,P_FORFRAC,K_INDFOR,K_JP,K_JT,K_JT1,P_ONEMINUS,& |
---|
| 4 | & P_COLH2O,P_COLCO2,P_COLN2O,P_COLDRY,K_LAYTROP,P_SELFFAC,P_SELFFRAC,K_INDSELF,PFRAC, & |
---|
| 5 | & PRAT_H2OCO2, PRAT_H2OCO2_1,PMINORFRAC,KINDMINOR) |
---|
| 6 | |
---|
| 7 | ! BAND 3: 500-630 cm-1 (low - H2O,CO2; high - H2O,CO2) |
---|
| 8 | |
---|
| 9 | ! AUTHOR. |
---|
| 10 | ! ------- |
---|
| 11 | ! JJMorcrette, ECMWF |
---|
| 12 | |
---|
| 13 | ! MODIFICATIONS. |
---|
| 14 | ! -------------- |
---|
| 15 | ! M.Hamrud 01-Oct-2003 CY28 Cleaning |
---|
| 16 | ! NEC 25-Oct-2007 Optimisations |
---|
| 17 | ! JJMorcrette 20110613 flexible number of g-points |
---|
| 18 | ! ABozzo 20130517 updated to rrtmg_lw_v4.85: |
---|
| 19 | ! band 3: 500-630 cm-1 (low key - h2o,co2; low minor - n2o) |
---|
| 20 | ! (high key - h2o,co2; high minor - n2o) |
---|
| 21 | ! --------------------------------------------------------------------------- |
---|
| 22 | |
---|
| 23 | USE PARKIND1 ,ONLY : JPIM ,JPRB |
---|
| 24 | USE YOMHOOK ,ONLY : LHOOK, DR_HOOK, JPHOOK |
---|
| 25 | |
---|
| 26 | USE PARRRTM , ONLY : JPBAND |
---|
| 27 | USE YOERRTM , ONLY : JPGPT ,NG3 ,NGS2 |
---|
| 28 | USE YOERRTWN , ONLY : NSPA ,NSPB |
---|
| 29 | USE YOERRTA3 , ONLY : ABSA ,ABSB ,FRACREFA, FRACREFB,& |
---|
| 30 | & FORREF ,SELFREF , KA_MN2O , KB_MN2O |
---|
| 31 | USE YOERRTRF, ONLY : CHI_MLS |
---|
| 32 | |
---|
| 33 | IMPLICIT NONE |
---|
| 34 | |
---|
| 35 | INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA |
---|
| 36 | INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA |
---|
| 37 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV |
---|
| 38 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAU(KIDIA:KFDIA,JPGPT,KLEV) |
---|
| 39 | REAL(KIND=JPRB) ,INTENT(IN) :: P_TAUAERL(KIDIA:KFDIA,KLEV,JPBAND) |
---|
| 40 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(KIDIA:KFDIA,KLEV) |
---|
| 41 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(KIDIA:KFDIA,KLEV) |
---|
| 42 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(KIDIA:KFDIA,KLEV) |
---|
| 43 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(KIDIA:KFDIA,KLEV) |
---|
| 44 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFAC(KIDIA:KFDIA,KLEV) |
---|
| 45 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(KIDIA:KFDIA,KLEV) |
---|
| 46 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(KIDIA:KFDIA,KLEV) |
---|
| 47 | INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(KIDIA:KFDIA,KLEV) |
---|
| 48 | REAL(KIND=JPRB) ,INTENT(IN) :: P_ONEMINUS |
---|
| 49 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLH2O(KIDIA:KFDIA,KLEV) |
---|
| 50 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLCO2(KIDIA:KFDIA,KLEV) |
---|
| 51 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLN2O(KIDIA:KFDIA,KLEV) |
---|
| 52 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLDRY(KIDIA:KFDIA,KLEV) |
---|
| 53 | INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP(KIDIA:KFDIA) |
---|
| 54 | REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFAC(KIDIA:KFDIA,KLEV) |
---|
| 55 | REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFRAC(KIDIA:KFDIA,KLEV) |
---|
| 56 | INTEGER(KIND=JPIM),INTENT(IN) :: K_INDSELF(KIDIA:KFDIA,KLEV) |
---|
| 57 | REAL(KIND=JPRB) ,INTENT(OUT) :: PFRAC(KIDIA:KFDIA,JPGPT,KLEV) |
---|
| 58 | |
---|
| 59 | REAL(KIND=JPRB) ,INTENT(IN) :: PRAT_H2OCO2(KIDIA:KFDIA,KLEV) |
---|
| 60 | REAL(KIND=JPRB) ,INTENT(IN) :: PRAT_H2OCO2_1(KIDIA:KFDIA,KLEV) |
---|
| 61 | INTEGER(KIND=JPIM),INTENT(IN) :: K_INDFOR(KIDIA:KFDIA,KLEV) |
---|
| 62 | REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFRAC(KIDIA:KFDIA,KLEV) |
---|
| 63 | REAL(KIND=JPRB) ,INTENT(IN) :: PMINORFRAC(KIDIA:KFDIA,KLEV) |
---|
| 64 | INTEGER(KIND=JPIM),INTENT(IN) :: KINDMINOR(KIDIA:KFDIA,KLEV) |
---|
| 65 | ! --------------------------------------------------------------------------- |
---|
| 66 | |
---|
| 67 | REAL(KIND=JPRB) :: Z_SPECCOMB(KLEV),Z_SPECCOMB1(KLEV),Z_SPECCOMB_MN2O(KLEV), & |
---|
| 68 | & Z_SPECCOMB_PLANCK(KLEV) |
---|
| 69 | REAL(KIND=JPRB) :: ZREFRAT_PLANCK_A, ZREFRAT_PLANCK_B, ZREFRAT_M_A, ZREFRAT_M_B |
---|
| 70 | |
---|
| 71 | INTEGER(KIND=JPIM) :: IND0(KLEV),IND1(KLEV),INDS(KLEV),INDF(KLEV),INDM(KLEV) |
---|
| 72 | INTEGER(KIND=JPIM) :: IG, JS, JLAY, JS1,JMN2O,JPL |
---|
| 73 | INTEGER(KIND=JPIM) :: JLON |
---|
| 74 | |
---|
| 75 | REAL(KIND=JPRB) :: Z_FS, Z_SPECMULT, Z_SPECPARM, & |
---|
| 76 | & Z_FS1, Z_SPECMULT1, Z_SPECPARM1, & |
---|
| 77 | & Z_FMN2O, Z_FMN2OMF, Z_SPECMULT_MN2O, Z_SPECPARM_MN2O, & |
---|
| 78 | & Z_FPL, Z_SPECMULT_PLANCK, Z_SPECPARM_PLANCK |
---|
| 79 | |
---|
| 80 | REAL(KIND=JPRB) :: ZADJFAC,ZADJCOLN2O(KIDIA:KFDIA,KLEV),ZRATN2O,Z_CHI_N2O |
---|
| 81 | |
---|
| 82 | REAL(KIND=JPRB) :: Z_FAC000, Z_FAC100, Z_FAC200,& |
---|
| 83 | & Z_FAC010, Z_FAC110, Z_FAC210, & |
---|
| 84 | & Z_FAC001, Z_FAC101, Z_FAC201, & |
---|
| 85 | & Z_FAC011, Z_FAC111, Z_FAC211 |
---|
| 86 | REAL(KIND=JPRB) :: ZP, ZP4, ZFK0, ZFK1, ZFK2 |
---|
| 87 | REAL(KIND=JPRB) :: ZTAUFOR,ZTAUSELF,ZN2OM1,ZN2OM2,ZABSN2O,ZTAU_MAJOR,ZTAU_MAJOR1 |
---|
| 88 | |
---|
| 89 | REAL(KIND=JPHOOK) :: ZHOOK_HANDLE |
---|
| 90 | |
---|
| 91 | IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL3',0,ZHOOK_HANDLE) |
---|
| 92 | |
---|
| 93 | ! Compute the optical depth by interpolating in ln(pressure), |
---|
| 94 | ! temperature, and appropriate species. Below LAYTROP, the water |
---|
| 95 | ! vapor self-continuum is interpolated (in temperature) separately. |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | ! Minor gas mapping levels: |
---|
| 99 | ! lower - n2o, p = 706.272 mbar, t = 278.94 k |
---|
| 100 | ! upper - n2o, p = 95.58 mbar, t = 215.7 k |
---|
| 101 | |
---|
| 102 | ! P = 212.725 mb |
---|
| 103 | ZREFRAT_PLANCK_A = CHI_MLS(1,9)/CHI_MLS(2,9) |
---|
| 104 | |
---|
| 105 | ! P = 95.58 mb |
---|
| 106 | ZREFRAT_PLANCK_B = CHI_MLS(1,13)/CHI_MLS(2,13) |
---|
| 107 | |
---|
| 108 | ! P = 706.270mb |
---|
| 109 | ZREFRAT_M_A = CHI_MLS(1,3)/CHI_MLS(2,3) |
---|
| 110 | |
---|
| 111 | ! P = 95.58 mb |
---|
| 112 | ZREFRAT_M_B = CHI_MLS(1,13)/CHI_MLS(2,13) |
---|
| 113 | ASSOCIATE(NFLEVG=>KLEV) |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | DO JLAY = 1, KLEV |
---|
| 117 | DO JLON = KIDIA, KFDIA |
---|
| 118 | IF (JLAY <= K_LAYTROP(JLON)) THEN |
---|
| 119 | Z_SPECCOMB(JLAY) = P_COLH2O(JLON,JLAY) + PRAT_H2OCO2(JLON,JLAY)*P_COLCO2(JLON,JLAY) |
---|
| 120 | Z_SPECPARM = P_COLH2O(JLON,JLAY)/Z_SPECCOMB(JLAY) |
---|
| 121 | Z_SPECPARM=MIN(P_ONEMINUS,Z_SPECPARM) |
---|
| 122 | Z_SPECMULT = 8._JPRB*(Z_SPECPARM) |
---|
| 123 | JS = 1 + INT(Z_SPECMULT) |
---|
| 124 | Z_FS = MOD(Z_SPECMULT,1.0_JPRB) |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | Z_SPECCOMB1(JLAY) = P_COLH2O(JLON,JLAY) + PRAT_H2OCO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY) |
---|
| 128 | Z_SPECPARM1 = P_COLH2O(JLON,JLAY)/Z_SPECCOMB1(JLAY) |
---|
| 129 | IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS |
---|
| 130 | Z_SPECMULT1 = 8._JPRB*(Z_SPECPARM1) |
---|
| 131 | JS1 = 1 + INT(Z_SPECMULT1) |
---|
| 132 | Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB) |
---|
| 133 | |
---|
| 134 | Z_SPECCOMB_MN2O(JLAY) = P_COLH2O(JLON,JLAY) + ZREFRAT_M_A*P_COLCO2(JLON,JLAY) |
---|
| 135 | Z_SPECPARM_MN2O = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_MN2O(JLAY) |
---|
| 136 | IF (Z_SPECPARM_MN2O >= P_ONEMINUS) Z_SPECPARM_MN2O = P_ONEMINUS |
---|
| 137 | Z_SPECMULT_MN2O = 8._JPRB*Z_SPECPARM_MN2O |
---|
| 138 | JMN2O = 1 + INT(Z_SPECMULT_MN2O) |
---|
| 139 | Z_FMN2O = MOD(Z_SPECMULT_MN2O,1.0_JPRB) |
---|
| 140 | Z_FMN2OMF = PMINORFRAC(JLON,JLAY)*Z_FMN2O |
---|
| 141 | ! In atmospheres where the amount of N2O is too great to be considered |
---|
| 142 | ! a minor species, adjust the column amount of N2O by an empirical factor |
---|
| 143 | ! to obtain the proper contribution. |
---|
| 144 | Z_CHI_N2O = P_COLN2O(JLON,JLAY)/P_COLDRY(JLON,JLAY) |
---|
| 145 | ZRATN2O = 1.E20_JPRB*Z_CHI_N2O/CHI_MLS(4,K_JP(JLON,JLAY)+1) |
---|
| 146 | IF (ZRATN2O > 1.5_JPRB) THEN |
---|
| 147 | ZADJFAC = 0.5_JPRB+(ZRATN2O-0.5_JPRB)**0.65_JPRB |
---|
| 148 | ZADJCOLN2O(JLON,JLAY) = ZADJFAC*CHI_MLS(4,K_JP(JLON,JLAY)+1)*P_COLDRY(JLON,JLAY)*1.E-20_JPRB |
---|
| 149 | ELSE |
---|
| 150 | ZADJCOLN2O(JLON,JLAY) = P_COLN2O(JLON,JLAY) |
---|
| 151 | ENDIF |
---|
| 152 | |
---|
| 153 | Z_SPECCOMB_PLANCK(JLAY) = P_COLH2O(JLON,JLAY)+ZREFRAT_PLANCK_A*P_COLCO2(JLON,JLAY) |
---|
| 154 | Z_SPECPARM_PLANCK = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_PLANCK(JLAY) |
---|
| 155 | IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS |
---|
| 156 | Z_SPECMULT_PLANCK = 8._JPRB*Z_SPECPARM_PLANCK |
---|
| 157 | JPL= 1 + INT(Z_SPECMULT_PLANCK) |
---|
| 158 | Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB) |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | IND0(JLAY) = ((K_JP(JLON,JLAY)-1)*5+(K_JT(JLON,JLAY)-1))*NSPA(3) + JS |
---|
| 163 | IND1(JLAY) = (K_JP(JLON,JLAY)*5+(K_JT1(JLON,JLAY)-1))*NSPA(3) + JS1 |
---|
| 164 | INDS(JLAY) = K_INDSELF(JLON,JLAY) |
---|
| 165 | INDF(JLAY) = K_INDFOR(JLON,JLAY) |
---|
| 166 | INDM(JLAY) = KINDMINOR(JLON,JLAY) |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | IF (Z_SPECPARM < 0.125_JPRB) THEN |
---|
| 171 | ZP = Z_FS - 1 |
---|
| 172 | ZP4 = ZP**4 |
---|
| 173 | ZFK0 = ZP4 |
---|
| 174 | ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 |
---|
| 175 | ZFK2 = ZP + ZP4 |
---|
| 176 | Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) |
---|
| 177 | Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) |
---|
| 178 | Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) |
---|
| 179 | Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) |
---|
| 180 | Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) |
---|
| 181 | Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) |
---|
| 182 | ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN |
---|
| 183 | ZP = -Z_FS |
---|
| 184 | ZP4 = ZP**4 |
---|
| 185 | ZFK0 = ZP4 |
---|
| 186 | ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 |
---|
| 187 | ZFK2 = ZP + ZP4 |
---|
| 188 | Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY) |
---|
| 189 | Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY) |
---|
| 190 | Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY) |
---|
| 191 | Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY) |
---|
| 192 | Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY) |
---|
| 193 | Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY) |
---|
| 194 | ELSE |
---|
| 195 | Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY) |
---|
| 196 | Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY) |
---|
| 197 | Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY) |
---|
| 198 | Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY) |
---|
| 199 | ENDIF |
---|
| 200 | IF (Z_SPECPARM1 < 0.125_JPRB) THEN |
---|
| 201 | ZP = Z_FS1 - 1 |
---|
| 202 | ZP4 = ZP**4 |
---|
| 203 | ZFK0 = ZP4 |
---|
| 204 | ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 |
---|
| 205 | ZFK2 = ZP + ZP4 |
---|
| 206 | Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) |
---|
| 207 | Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) |
---|
| 208 | Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) |
---|
| 209 | Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) |
---|
| 210 | Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) |
---|
| 211 | Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) |
---|
| 212 | ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN |
---|
| 213 | ZP = -Z_FS1 |
---|
| 214 | ZP4 = ZP**4 |
---|
| 215 | ZFK0 = ZP4 |
---|
| 216 | ZFK1 = 1 - ZP - 2.0_JPRB*ZP4 |
---|
| 217 | ZFK2 = ZP + ZP4 |
---|
| 218 | Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY) |
---|
| 219 | Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY) |
---|
| 220 | Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY) |
---|
| 221 | Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY) |
---|
| 222 | Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY) |
---|
| 223 | Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY) |
---|
| 224 | ELSE |
---|
| 225 | Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY) |
---|
| 226 | Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY) |
---|
| 227 | Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY) |
---|
| 228 | Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY) |
---|
| 229 | ENDIF |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | !-- DS_000515 |
---|
| 236 | !CDIR UNROLL=NG3 |
---|
| 237 | DO IG = 1, NG3 |
---|
| 238 | !-- DS_000515 |
---|
| 239 | ZTAUSELF = P_SELFFAC(JLON,JLAY)* (SELFREF(INDS(JLAY),IG) + P_SELFFRAC(JLON,JLAY) * & |
---|
| 240 | & (SELFREF(INDS(JLAY)+1,IG) - SELFREF(INDS(JLAY),IG))) |
---|
| 241 | ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + P_FORFRAC(JLON,JLAY) * & |
---|
| 242 | & (FORREF(INDF(JLAY)+1,IG) - FORREF(INDF(JLAY),IG))) |
---|
| 243 | ZN2OM1 = KA_MN2O(JMN2O,INDM(JLAY),IG) + Z_FMN2O * & |
---|
| 244 | & (KA_MN2O(JMN2O+1,INDM(JLAY),IG) - KA_MN2O(JMN2O,INDM(JLAY),IG)) |
---|
| 245 | ZN2OM2 = KA_MN2O(JMN2O,INDM(JLAY)+1,IG) + Z_FMN2O * & |
---|
| 246 | & (KA_MN2O(JMN2O+1,INDM(JLAY)+1,IG) - KA_MN2O(JMN2O,INDM(JLAY)+1,IG)) |
---|
| 247 | ZABSN2O = ZN2OM1 + PMINORFRAC(JLON,JLAY) * (ZN2OM2 - ZN2OM1) |
---|
| 248 | |
---|
| 249 | IF (Z_SPECPARM < 0.125_JPRB) THEN |
---|
| 250 | ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & |
---|
| 251 | & (Z_FAC000 * ABSA(IND0(JLAY),IG) + & |
---|
| 252 | & Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + & |
---|
| 253 | & Z_FAC200 * ABSA(IND0(JLAY)+2,IG) + & |
---|
| 254 | & Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + & |
---|
| 255 | & Z_FAC110 * ABSA(IND0(JLAY)+10,IG) + & |
---|
| 256 | & Z_FAC210 * ABSA(IND0(JLAY)+11,IG)) |
---|
| 257 | ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN |
---|
| 258 | ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & |
---|
| 259 | & (Z_FAC200 * ABSA(IND0(JLAY)-1,IG) + & |
---|
| 260 | & Z_FAC100 * ABSA(IND0(JLAY),IG) + & |
---|
| 261 | & Z_FAC000 * ABSA(IND0(JLAY)+1,IG) + & |
---|
| 262 | & Z_FAC210 * ABSA(IND0(JLAY)+8,IG) + & |
---|
| 263 | & Z_FAC110 * ABSA(IND0(JLAY)+9,IG) + & |
---|
| 264 | & Z_FAC010 * ABSA(IND0(JLAY)+10,IG)) |
---|
| 265 | ELSE |
---|
| 266 | ZTAU_MAJOR = Z_SPECCOMB(JLAY) * & |
---|
| 267 | & (Z_FAC000 * ABSA(IND0(JLAY),IG) + & |
---|
| 268 | & Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + & |
---|
| 269 | & Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + & |
---|
| 270 | & Z_FAC110 * ABSA(IND0(JLAY)+10,IG)) |
---|
| 271 | ENDIF |
---|
| 272 | |
---|
| 273 | IF (Z_SPECPARM1 < 0.125_JPRB) THEN |
---|
| 274 | ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & |
---|
| 275 | & (Z_FAC001 * ABSA(IND1(JLAY),IG) + & |
---|
| 276 | & Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + & |
---|
| 277 | & Z_FAC201 * ABSA(IND1(JLAY)+2,IG) + & |
---|
| 278 | & Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + & |
---|
| 279 | & Z_FAC111 * ABSA(IND1(JLAY)+10,IG) + & |
---|
| 280 | & Z_FAC211 * ABSA(IND1(JLAY)+11,IG)) |
---|
| 281 | ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN |
---|
| 282 | ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & |
---|
| 283 | & (Z_FAC201 * ABSA(IND1(JLAY)-1,IG) + & |
---|
| 284 | & Z_FAC101 * ABSA(IND1(JLAY),IG) + & |
---|
| 285 | & Z_FAC001 * ABSA(IND1(JLAY)+1,IG) + & |
---|
| 286 | & Z_FAC211 * ABSA(IND1(JLAY)+8,IG) + & |
---|
| 287 | & Z_FAC111 * ABSA(IND1(JLAY)+9,IG) + & |
---|
| 288 | & Z_FAC011 * ABSA(IND1(JLAY)+10,IG)) |
---|
| 289 | ELSE |
---|
| 290 | ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * & |
---|
| 291 | & (Z_FAC001 * ABSA(IND1(JLAY),IG) + & |
---|
| 292 | & Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + & |
---|
| 293 | & Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + & |
---|
| 294 | & Z_FAC111 * ABSA(IND1(JLAY)+10,IG)) |
---|
| 295 | ENDIF |
---|
| 296 | |
---|
| 297 | |
---|
| 298 | P_TAU(JLON,NGS2+IG,JLAY) = ZTAU_MAJOR + ZTAU_MAJOR1 & |
---|
| 299 | & + ZTAUSELF + ZTAUFOR & |
---|
| 300 | & + ZADJCOLN2O(JLON,JLAY)*ZABSN2O & |
---|
| 301 | & + P_TAUAERL(JLON,JLAY,3) |
---|
| 302 | |
---|
| 303 | !if (JPL < 1) call abort |
---|
| 304 | |
---|
| 305 | PFRAC(JLON,NGS2+IG,JLAY) = FRACREFA(IG,JPL) + Z_FPL *& |
---|
| 306 | & (FRACREFA(IG,JPL+1) - FRACREFA(IG,JPL)) |
---|
| 307 | ENDDO |
---|
| 308 | ENDIF |
---|
| 309 | |
---|
| 310 | IF (JLAY > K_LAYTROP(JLON)) THEN |
---|
| 311 | Z_SPECCOMB(JLAY) = P_COLH2O(JLON,JLAY) + PRAT_H2OCO2(JLON,JLAY)*P_COLCO2(JLON,JLAY) |
---|
| 312 | Z_SPECPARM = P_COLH2O(JLON,JLAY)/Z_SPECCOMB(JLAY) |
---|
| 313 | Z_SPECPARM=MIN(P_ONEMINUS,Z_SPECPARM) |
---|
| 314 | Z_SPECMULT = 4._JPRB*(Z_SPECPARM) |
---|
| 315 | JS = 1 + INT(Z_SPECMULT) |
---|
| 316 | Z_FS = MOD(Z_SPECMULT,1.0_JPRB) |
---|
| 317 | |
---|
| 318 | Z_SPECCOMB1(JLAY) = P_COLH2O(JLON,JLAY) + PRAT_H2OCO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY) |
---|
| 319 | Z_SPECPARM1 = P_COLH2O(JLON,JLAY)/Z_SPECCOMB1(JLAY) |
---|
| 320 | IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS |
---|
| 321 | Z_SPECMULT1 = 4._JPRB*(Z_SPECPARM1) |
---|
| 322 | JS1 = 1 + INT(Z_SPECMULT1) |
---|
| 323 | Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB) |
---|
| 324 | |
---|
| 325 | Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY) |
---|
| 326 | Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY) |
---|
| 327 | Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY) |
---|
| 328 | Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY) |
---|
| 329 | Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY) |
---|
| 330 | Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY) |
---|
| 331 | Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY) |
---|
| 332 | Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY) |
---|
| 333 | |
---|
| 334 | |
---|
| 335 | Z_SPECCOMB_MN2O(JLAY) = P_COLH2O(JLON,JLAY) + ZREFRAT_M_B*P_COLCO2(JLON,JLAY) |
---|
| 336 | Z_SPECPARM_MN2O = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_MN2O(JLAY) |
---|
| 337 | IF (Z_SPECPARM_MN2O >= P_ONEMINUS) Z_SPECPARM_MN2O = P_ONEMINUS |
---|
| 338 | Z_SPECMULT_MN2O = 4._JPRB*Z_SPECPARM_MN2O |
---|
| 339 | JMN2O = 1 + INT(Z_SPECMULT_MN2O) |
---|
| 340 | Z_FMN2O = MOD(Z_SPECMULT_MN2O,1.0_JPRB) |
---|
| 341 | Z_FMN2OMF = PMINORFRAC(JLON,JLAY)*Z_FMN2O |
---|
| 342 | ! In atmospheres where the amount of N2O is too great to be considered |
---|
| 343 | ! a minor species, adjust the column amount of N2O by an empirical factor |
---|
| 344 | ! to obtain the proper contribution. |
---|
| 345 | Z_CHI_N2O = P_COLN2O(JLON,JLAY)/P_COLDRY(JLON,JLAY) |
---|
| 346 | ZRATN2O = 1.E20_JPRB*Z_CHI_N2O/CHI_MLS(4,K_JP(JLON,JLAY)+1) |
---|
| 347 | IF (ZRATN2O > 1.5_JPRB) THEN |
---|
| 348 | ZADJFAC = 0.5_JPRB+(ZRATN2O-0.5_JPRB)**0.65_JPRB |
---|
| 349 | ZADJCOLN2O(JLON,JLAY) = ZADJFAC*CHI_MLS(4,K_JP(JLON,JLAY)+1)*P_COLDRY(JLON,JLAY)*1.E-20_JPRB |
---|
| 350 | ELSE |
---|
| 351 | ZADJCOLN2O(JLON,JLAY) = P_COLN2O(JLON,JLAY) |
---|
| 352 | ENDIF |
---|
| 353 | |
---|
| 354 | Z_SPECCOMB_PLANCK(JLAY) = P_COLH2O(JLON,JLAY)+ZREFRAT_PLANCK_B*P_COLCO2(JLON,JLAY) |
---|
| 355 | Z_SPECPARM_PLANCK = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_PLANCK(JLAY) |
---|
| 356 | IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS |
---|
| 357 | Z_SPECMULT_PLANCK = 4._JPRB*Z_SPECPARM_PLANCK |
---|
| 358 | JPL= 1 + INT(Z_SPECMULT_PLANCK) |
---|
| 359 | Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB) |
---|
| 360 | |
---|
| 361 | IND0(JLAY) = ((K_JP(JLON,JLAY)-13)*5+(K_JT(JLON,JLAY)-1))*NSPB(3) + JS |
---|
| 362 | IND1(JLAY) = ((K_JP(JLON,JLAY)-12)*5+(K_JT1(JLON,JLAY)-1))*NSPB(3) + JS1 |
---|
| 363 | INDF(JLAY) = K_INDFOR(JLON,JLAY) |
---|
| 364 | INDM(JLAY) = KINDMINOR(JLON,JLAY) |
---|
| 365 | |
---|
| 366 | |
---|
| 367 | !CDIR UNROLL=NG3 |
---|
| 368 | DO IG = 1, NG3 |
---|
| 369 | ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + P_FORFRAC(JLON,JLAY) * & |
---|
| 370 | & (FORREF(INDF(JLAY)+1,IG) - FORREF(INDF(JLAY),IG))) |
---|
| 371 | ZN2OM1 = KB_MN2O(JMN2O,INDM(JLAY),IG) + Z_FMN2O * & |
---|
| 372 | & (KB_MN2O(JMN2O+1,INDM(JLAY),IG) - KB_MN2O(JMN2O,INDM(JLAY),IG)) |
---|
| 373 | ZN2OM2 = KB_MN2O(JMN2O,INDM(JLAY)+1,IG) + Z_FMN2O * & |
---|
| 374 | & (KB_MN2O(JMN2O+1,INDM(JLAY)+1,IG) - KB_MN2O(JMN2O,INDM(JLAY)+1,IG)) |
---|
| 375 | ZABSN2O = ZN2OM1 + PMINORFRAC(JLON,JLAY) * (ZN2OM2 - ZN2OM1) |
---|
| 376 | |
---|
| 377 | |
---|
| 378 | P_TAU(JLON,NGS2+IG,JLAY) = Z_SPECCOMB(JLAY) * & |
---|
| 379 | &(Z_FAC000 * ABSB(IND0(JLAY) ,IG) +& |
---|
| 380 | & Z_FAC100 * ABSB(IND0(JLAY)+1,IG) +& |
---|
| 381 | & Z_FAC010 * ABSB(IND0(JLAY)+5,IG) +& |
---|
| 382 | & Z_FAC110 * ABSB(IND0(JLAY)+6,IG)) +& |
---|
| 383 | & Z_SPECCOMB1(JLAY) * & |
---|
| 384 | & (Z_FAC001 * ABSB(IND1(JLAY) ,IG) +& |
---|
| 385 | & Z_FAC101 * ABSB(IND1(JLAY)+1,IG) +& |
---|
| 386 | & Z_FAC011 * ABSB(IND1(JLAY)+5,IG) +& |
---|
| 387 | & Z_FAC111 * ABSB(IND1(JLAY)+6,IG))+& |
---|
| 388 | & ZTAUFOR + ZADJCOLN2O(JLON,JLAY)*ZABSN2O & |
---|
| 389 | & + P_TAUAERL(JLON,JLAY,3) |
---|
| 390 | |
---|
| 391 | |
---|
| 392 | PFRAC(JLON,NGS2+IG,JLAY) = FRACREFB(IG,JPL) + Z_FPL *& |
---|
| 393 | & (FRACREFB(IG,JPL+1) - FRACREFB(IG,JPL)) |
---|
| 394 | ENDDO |
---|
| 395 | ENDIF |
---|
| 396 | ENDDO |
---|
| 397 | ENDDO |
---|
| 398 | |
---|
| 399 | IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL3',1,ZHOOK_HANDLE) |
---|
| 400 | |
---|
| 401 | END ASSOCIATE |
---|
| 402 | END SUBROUTINE RRTM_TAUMOL3 |
---|