[4773] | 1 | SUBROUTINE RADIATION_SCHEME & |
---|
| 2 | & (YRADIATION,KIDIA, KFDIA, KLON, KLEV, KAEROSOL, & |
---|
| 3 | & PSOLAR_IRRADIANCE, & |
---|
| 4 | & PMU0, PTEMPERATURE_SKIN, PALBEDO_DIF, PALBEDO_DIR, & |
---|
| 5 | & PSPECTRALEMISS, & |
---|
| 6 | & PCCN_LAND, PCCN_SEA, & |
---|
| 7 | & PGELAM, PGEMU, PLAND_SEA_MASK, & |
---|
| 8 | & PPRESSURE, PTEMPERATURE, & |
---|
| 9 | & PPRESSURE_H, PTEMPERATURE_H, & |
---|
| 10 | & PQ, PCO2, PCH4, PN2O, PNO2, PCFC11, PCFC12, PHCFC22, PCCL4, PO3, & |
---|
| 11 | & PCLOUD_FRAC, PQ_LIQUID, PQ_ICE, PQ_RAIN, PQ_SNOW, & |
---|
| 12 | & PAEROSOL_OLD, PAEROSOL, & |
---|
| 13 | & PFLUX_SW, PFLUX_LW, PFLUX_SW_CLEAR, PFLUX_LW_CLEAR, & |
---|
| 14 | & PFLUX_SW_DN, PFLUX_LW_DN, PFLUX_SW_DN_CLEAR, PFLUX_LW_DN_CLEAR, & |
---|
| 15 | & PFLUX_DIR, PFLUX_DIR_CLEAR, PFLUX_DIR_INTO_SUN, & |
---|
| 16 | & PFLUX_UV, PFLUX_PAR, PFLUX_PAR_CLEAR, & |
---|
| 17 | & PFLUX_SW_DN_TOA, PEMIS_OUT, PLWDERIVATIVE, & |
---|
| 18 | & PSWDIFFUSEBAND, PSWDIRECTBAND) |
---|
| 19 | |
---|
| 20 | ! RADIATION_SCHEME - Interface to modular radiation scheme |
---|
| 21 | ! |
---|
| 22 | ! (C) Copyright 2015- ECMWF. |
---|
| 23 | ! |
---|
| 24 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
| 25 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
| 26 | ! |
---|
| 27 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
| 28 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
| 29 | ! nor does it submit to any jurisdiction. |
---|
| 30 | ! |
---|
| 31 | ! PURPOSE |
---|
| 32 | ! ------- |
---|
| 33 | ! The modular radiation scheme is contained in a separate |
---|
| 34 | ! library. This routine puts the the IFS arrays into appropriate |
---|
| 35 | ! objects, computing the additional data that is required, and sends |
---|
| 36 | ! it to the radiation scheme. It returns net fluxes and surface |
---|
| 37 | ! flux components needed by the rest of the model. |
---|
| 38 | ! |
---|
| 39 | ! Lower case is used for variables and types taken from the |
---|
| 40 | ! radiation library |
---|
| 41 | ! |
---|
| 42 | ! INTERFACE |
---|
| 43 | ! --------- |
---|
| 44 | ! RADIATION_SCHEME is called from RADLSWR. The |
---|
| 45 | ! SETUP_RADIATION_SCHEME routine (in the RADIATION_SETUP module) |
---|
| 46 | ! populates the YRADIATION object, and should have been run first. |
---|
| 47 | ! |
---|
| 48 | ! AUTHOR |
---|
| 49 | ! ------ |
---|
| 50 | ! Robin Hogan, ECMWF |
---|
| 51 | ! Original: 2015-09-16 |
---|
| 52 | ! |
---|
| 53 | ! MODIFICATIONS |
---|
| 54 | ! ------------- |
---|
| 55 | ! 2017-03-03 R. Hogan Read configuration data from YRADIATION object |
---|
| 56 | ! 2017-05-11 R. Hogan Pass KIDIA,KFDIA to get_layer_mass |
---|
| 57 | ! 2018-01-11 R. Hogan Capability to scale solar spectrum in each band |
---|
| 58 | ! 2017-11-11 M. Ahlgrimm add variable FSD for cloud heterogeneity |
---|
| 59 | ! 2017-11-29 R. Hogan Check fluxes in physical bounds |
---|
| 60 | ! 2019-01-22 R. Hogan Use fluxes in albedo bands from ecRad |
---|
| 61 | ! 2019-01-23 R. Hogan Spectral longwave emissivity in NLWEMISS bands |
---|
| 62 | ! 2019-02-04 R. Hogan Pass out surface longwave downwelling in each emissivity interval |
---|
| 63 | ! 2019-02-07 R. Hogan SPARTACUS cloud size from PARAM_CLOUD_EFFECTIVE_SEPARATION_ETA |
---|
| 64 | ! |
---|
| 65 | !----------------------------------------------------------------------- |
---|
| 66 | |
---|
| 67 | ! Modules from ifs or ifsaux libraries |
---|
| 68 | USE PARKIND1 , ONLY : JPIM, JPRB, JPRD |
---|
| 69 | USE YOMHOOK , ONLY : LHOOK, DR_HOOK, JPHOOK |
---|
| 70 | USE YOMCST , ONLY : RPI, RSIGMA ! Stefan-Boltzmann constant |
---|
| 71 | USE YOMLUN , ONLY : NULERR |
---|
| 72 | USE RADIATION_SETUP, ONLY : ITYPE_TROP_BG_AER, ITYPE_STRAT_BG_AER, TRADIATION |
---|
| 73 | |
---|
| 74 | ! Modules from ecRad radiation library |
---|
| 75 | USE RADIATION_CONFIG, ONLY : ISOLVERSPARTACUS |
---|
| 76 | USE RADIATION_SINGLE_LEVEL, ONLY : SINGLE_LEVEL_TYPE |
---|
| 77 | USE RADIATION_THERMODYNAMICS, ONLY : THERMODYNAMICS_TYPE |
---|
| 78 | USE RADIATION_GAS, ONLY : GAS_TYPE,& |
---|
| 79 | & IMASSMIXINGRATIO, IVOLUMEMIXINGRATIO,& |
---|
| 80 | & IH2O, ICO2, ICH4, IN2O, ICFC11, ICFC12, IHCFC22, ICCL4, IO3, IO2 |
---|
| 81 | USE RADIATION_CLOUD, ONLY : CLOUD_TYPE |
---|
| 82 | USE RADIATION_AEROSOL, ONLY : AEROSOL_TYPE |
---|
| 83 | USE RADIATION_FLUX, ONLY : FLUX_TYPE |
---|
| 84 | USE RADIATION_INTERFACE, ONLY : RADIATION, SET_GAS_UNITS |
---|
| 85 | USE RADIATION_SAVE, ONLY : SAVE_INPUTS, SAVE_FLUXES |
---|
| 86 | |
---|
| 87 | IMPLICIT NONE |
---|
| 88 | |
---|
| 89 | ! INPUT ARGUMENTS |
---|
| 90 | |
---|
| 91 | TYPE(TRADIATION), INTENT(IN) :: YRADIATION |
---|
| 92 | |
---|
| 93 | ! *** Array dimensions and ranges |
---|
| 94 | INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA ! Start column to process |
---|
| 95 | INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA ! End column to process |
---|
| 96 | INTEGER(KIND=JPIM),INTENT(IN) :: KLON ! Number of columns |
---|
| 97 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV ! Number of levels |
---|
| 98 | INTEGER(KIND=JPIM),INTENT(IN) :: KAEROSOL ! Number of aerosol types |
---|
| 99 | |
---|
| 100 | ! *** Single-level fields |
---|
| 101 | REAL(KIND=JPRB), INTENT(IN) :: PSOLAR_IRRADIANCE ! (W m-2) |
---|
| 102 | REAL(KIND=JPRB), INTENT(IN) :: PMU0(KLON) ! Cosine of solar zenith ang |
---|
| 103 | REAL(KIND=JPRB), INTENT(IN) :: PTEMPERATURE_SKIN(KLON) ! (K) |
---|
| 104 | ! Diffuse and direct components of surface shortwave albedo |
---|
| 105 | REAL(KIND=JPRB), INTENT(IN) :: PALBEDO_DIF(KLON,YRADIATION%YRERAD%NSW) |
---|
| 106 | REAL(KIND=JPRB), INTENT(IN) :: PALBEDO_DIR(KLON,YRADIATION%YRERAD%NSW) |
---|
| 107 | ! Longwave spectral emissivity |
---|
| 108 | REAL(KIND=JPRB), INTENT(IN) :: PSPECTRALEMISS(KLON,YRADIATION%YRERAD%NLWEMISS) |
---|
| 109 | ! Longitude (radians), sine of latitude |
---|
| 110 | REAL(KIND=JPRB), INTENT(IN) :: PGELAM(KLON) |
---|
| 111 | REAL(KIND=JPRB), INTENT(IN) :: PGEMU(KLON) |
---|
| 112 | ! Land-sea mask |
---|
| 113 | REAL(KIND=JPRB), INTENT(IN) :: PLAND_SEA_MASK(KLON) |
---|
| 114 | |
---|
| 115 | ! *** Variables on full levels |
---|
| 116 | REAL(KIND=JPRB), INTENT(IN) :: PPRESSURE(KLON,KLEV) ! (Pa) |
---|
| 117 | REAL(KIND=JPRB), INTENT(IN) :: PTEMPERATURE(KLON,KLEV) ! (K) |
---|
| 118 | ! *** Variables on half levels |
---|
| 119 | REAL(KIND=JPRB), INTENT(IN) :: PPRESSURE_H(KLON,KLEV+1) ! (Pa) |
---|
| 120 | REAL(KIND=JPRB), INTENT(IN) :: PTEMPERATURE_H(KLON,KLEV+1) ! (K) |
---|
| 121 | |
---|
| 122 | ! *** Gas mass mixing ratios on full levels |
---|
| 123 | REAL(KIND=JPRB), INTENT(IN) :: PQ(KLON,KLEV) |
---|
| 124 | REAL(KIND=JPRB), INTENT(IN) :: PCO2(KLON,KLEV) |
---|
| 125 | REAL(KIND=JPRB), INTENT(IN) :: PCH4(KLON,KLEV) |
---|
| 126 | REAL(KIND=JPRB), INTENT(IN) :: PN2O(KLON,KLEV) |
---|
| 127 | REAL(KIND=JPRB), INTENT(IN) :: PNO2(KLON,KLEV) |
---|
| 128 | REAL(KIND=JPRB), INTENT(IN) :: PCFC11(KLON,KLEV) |
---|
| 129 | REAL(KIND=JPRB), INTENT(IN) :: PCFC12(KLON,KLEV) |
---|
| 130 | REAL(KIND=JPRB), INTENT(IN) :: PHCFC22(KLON,KLEV) |
---|
| 131 | REAL(KIND=JPRB), INTENT(IN) :: PCCL4(KLON,KLEV) |
---|
| 132 | REAL(KIND=JPRB), INTENT(IN) :: PO3(KLON,KLEV) |
---|
| 133 | |
---|
| 134 | ! *** Cloud fraction and hydrometeor mass mixing ratios |
---|
| 135 | REAL(KIND=JPRB), INTENT(IN) :: PCLOUD_FRAC(KLON,KLEV) |
---|
| 136 | REAL(KIND=JPRB), INTENT(IN) :: PQ_LIQUID(KLON,KLEV) |
---|
| 137 | REAL(KIND=JPRB), INTENT(IN) :: PQ_ICE(KLON,KLEV) |
---|
| 138 | REAL(KIND=JPRB), INTENT(IN) :: PQ_RAIN(KLON,KLEV) |
---|
| 139 | REAL(KIND=JPRB), INTENT(IN) :: PQ_SNOW(KLON,KLEV) |
---|
| 140 | |
---|
| 141 | ! *** Aerosol mass mixing ratios |
---|
| 142 | REAL(KIND=JPRB), INTENT(IN) :: PAEROSOL_OLD(KLON,6,KLEV) |
---|
| 143 | REAL(KIND=JPRB), INTENT(IN) :: PAEROSOL(KLON,KLEV,KAEROSOL) |
---|
| 144 | |
---|
| 145 | REAL(KIND=JPRB), INTENT(IN) :: PCCN_LAND(KLON) |
---|
| 146 | REAL(KIND=JPRB), INTENT(IN) :: PCCN_SEA(KLON) |
---|
| 147 | |
---|
| 148 | ! OUTPUT ARGUMENTS |
---|
| 149 | |
---|
| 150 | ! *** Net fluxes on half-levels (W m-2) |
---|
| 151 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW(KLON,KLEV+1) |
---|
| 152 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW(KLON,KLEV+1) |
---|
| 153 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_CLEAR(KLON,KLEV+1) |
---|
| 154 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_CLEAR(KLON,KLEV+1) |
---|
| 155 | |
---|
| 156 | ! *** Surface flux components (W m-2) |
---|
| 157 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_DN(KLON) |
---|
| 158 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_DN(KLON) |
---|
| 159 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_DN_CLEAR(KLON) |
---|
| 160 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_DN_CLEAR(KLON) |
---|
| 161 | ! Direct component of surface flux into horizontal plane |
---|
| 162 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_DIR(KLON) |
---|
| 163 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_DIR_CLEAR(KLON) |
---|
| 164 | ! As PFLUX_DIR but into a plane perpendicular to the sun |
---|
| 165 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_DIR_INTO_SUN(KLON) |
---|
| 166 | |
---|
| 167 | ! *** Ultraviolet and photosynthetically active radiation (W m-2) |
---|
| 168 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_UV(KLON) |
---|
| 169 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_PAR(KLON) |
---|
| 170 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_PAR_CLEAR(KLON) |
---|
| 171 | |
---|
| 172 | ! *** Other single-level diagnostics |
---|
| 173 | ! Top-of-atmosphere incident solar flux (W m-2) |
---|
| 174 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_DN_TOA(KLON) |
---|
| 175 | ! Diagnosed longwave surface emissivity across the whole spectrum |
---|
| 176 | REAL(KIND=JPRB), INTENT(OUT) :: PEMIS_OUT(KLON) |
---|
| 177 | |
---|
| 178 | ! Partial derivative of total-sky longwave upward flux at each level |
---|
| 179 | ! with respect to upward flux at surface, used to correct heating |
---|
| 180 | ! rates at gridpoints/timesteps between calls to the full radiation |
---|
| 181 | ! scheme. Note that this version uses the convention of level index |
---|
| 182 | ! increasing downwards, unlike the local variable ZLwDerivative that |
---|
| 183 | ! is returned from the LW radiation scheme. |
---|
| 184 | REAL(KIND=JPRB), INTENT(OUT) :: PLWDERIVATIVE(KLON,KLEV+1) |
---|
| 185 | |
---|
| 186 | ! Surface diffuse and direct downwelling shortwave flux in each |
---|
| 187 | ! shortwave albedo band, used in RADINTG to update the surface fluxes |
---|
| 188 | ! accounting for high-resolution albedo information |
---|
| 189 | REAL(KIND=JPRB), INTENT(OUT) :: PSWDIFFUSEBAND(KLON,YRADIATION%YRERAD%NSW) |
---|
| 190 | REAL(KIND=JPRB), INTENT(OUT) :: PSWDIRECTBAND (KLON,YRADIATION%YRERAD%NSW) |
---|
| 191 | |
---|
| 192 | ! LOCAL VARIABLES |
---|
| 193 | TYPE(SINGLE_LEVEL_TYPE) :: SINGLE_LEVEL |
---|
| 194 | TYPE(THERMODYNAMICS_TYPE) :: THERMODYNAMICS |
---|
| 195 | TYPE(GAS_TYPE) :: GAS |
---|
| 196 | TYPE(CLOUD_TYPE) :: YLCLOUD |
---|
| 197 | TYPE(AEROSOL_TYPE) :: AEROSOL |
---|
| 198 | TYPE(FLUX_TYPE) :: FLUX |
---|
| 199 | |
---|
| 200 | ! Cloud effective radii in microns |
---|
| 201 | REAL(KIND=JPRB) :: ZRE_LIQUID_UM(KLON,KLEV) |
---|
| 202 | REAL(KIND=JPRB) :: ZRE_ICE_UM(KLON,KLEV) |
---|
| 203 | |
---|
| 204 | ! Cloud overlap decorrelation length for cloud boundaries in km |
---|
| 205 | REAL(KIND=JPRB) :: ZDECORR_LEN_KM(KLON) |
---|
| 206 | |
---|
| 207 | ! Ratio of cloud overlap decorrelation length for cloud water |
---|
| 208 | ! inhomogeneities to that for cloud boundaries (typically 0.5) |
---|
| 209 | REAL(KIND=JPRB) :: ZDECORR_LEN_RATIO |
---|
| 210 | |
---|
| 211 | ! The surface net longwave flux if the surface was a black body, used |
---|
| 212 | ! to compute the effective broadband surface emissivity |
---|
| 213 | REAL(KIND=JPRB) :: ZBLACK_BODY_NET_LW(KIDIA:KFDIA) |
---|
| 214 | |
---|
| 215 | ! Layer mass in kg m-2 |
---|
| 216 | REAL(KIND=JPRB) :: ZLAYER_MASS(KIDIA:KFDIA,KLEV) |
---|
| 217 | |
---|
| 218 | ! Time integers |
---|
| 219 | ! INTEGER(KIND=JPIM) :: ITIM, IDAY |
---|
| 220 | |
---|
| 221 | ! Loop indices |
---|
| 222 | INTEGER(KIND=JPIM) :: JLON, JLEV, JBAND, JAER |
---|
| 223 | |
---|
| 224 | ! Have any fluxes been returned that are out of a physically |
---|
| 225 | ! reasonable range? This integer stores the number of blocks of fluxes |
---|
| 226 | ! that have contained a bad value so far, for this task. NetCDF files |
---|
| 227 | ! will be written up to the value of NAERAD:NDUMPBADINPUTS. |
---|
| 228 | INTEGER(KIND=JPIM), SAVE :: N_BAD_FLUXES = 0 |
---|
| 229 | |
---|
| 230 | ! For debugging it can be useful to save input profiles and output |
---|
| 231 | ! fluxes without the condition that the fluxes are out of a reasonable |
---|
| 232 | ! range. NetCDF files will be written up to the value of |
---|
| 233 | ! NAERAD:NDUMPINPUTS. |
---|
| 234 | INTEGER(KIND=JPIM), SAVE :: N_OUTPUT_FLUXES = 0 |
---|
| 235 | |
---|
| 236 | ! NetCDF file name in case of bad fluxes |
---|
| 237 | CHARACTER(LEN=512) :: CL_FILE_NAME |
---|
| 238 | |
---|
| 239 | REAL(KIND=JPHOOK) :: ZHOOK_HANDLE |
---|
| 240 | |
---|
| 241 | ! Dummy from YOMCT3 |
---|
| 242 | ! INTEGER(KIND=JPIM) :: NSTEP = 0 |
---|
| 243 | |
---|
| 244 | ! Dummy from MPL_MYRANK_MOD |
---|
| 245 | INTEGER(KIND=JPIM) :: MPL_MYRANK |
---|
| 246 | MPL_MYRANK() = 1 |
---|
| 247 | |
---|
| 248 | ! Import time functions for iseed calculation |
---|
| 249 | #include "fcttim.func.h" |
---|
| 250 | |
---|
| 251 | #include "liquid_effective_radius.intfb.h" |
---|
| 252 | #include "ice_effective_radius.intfb.h" |
---|
| 253 | #include "cloud_overlap_decorr_len.intfb.h" |
---|
| 254 | !#include "satur.intfb.h" |
---|
| 255 | !#include "abor1.intfb.h" |
---|
| 256 | |
---|
| 257 | IF (LHOOK) CALL DR_HOOK('RADIATION_SCHEME',0,ZHOOK_HANDLE) |
---|
| 258 | |
---|
| 259 | ASSOCIATE(YRERAD =>YRADIATION%YRERAD, & |
---|
| 260 | & RAD_CONFIG=>YRADIATION%RAD_CONFIG, & |
---|
| 261 | & NWEIGHT_UV=>YRADIATION%NWEIGHT_UV, & |
---|
| 262 | & IBAND_UV =>YRADIATION%IBAND_UV(:), & |
---|
| 263 | & WEIGHT_UV =>YRADIATION%WEIGHT_UV(:), & |
---|
| 264 | & NWEIGHT_PAR=>YRADIATION%NWEIGHT_PAR, & |
---|
| 265 | & IBAND_PAR =>YRADIATION%IBAND_PAR(:), & |
---|
| 266 | & WEIGHT_PAR=>YRADIATION%WEIGHT_PAR(:), & |
---|
| 267 | & TROP_BG_AER_MASS_EXT=>YRADIATION%TROP_BG_AER_MASS_EXT, & |
---|
| 268 | & STRAT_BG_AER_MASS_EXT=>YRADIATION%STRAT_BG_AER_MASS_EXT) |
---|
| 269 | ! Allocate memory in radiation objects |
---|
| 270 | CALL SINGLE_LEVEL%ALLOCATE(KLON, YRERAD%NSW, YRERAD%NLWEMISS, & |
---|
| 271 | & USE_SW_ALBEDO_DIRECT=.TRUE.) |
---|
| 272 | CALL THERMODYNAMICS%ALLOCATE(KLON, KLEV, USE_H2O_SAT=.TRUE.) |
---|
| 273 | CALL GAS%ALLOCATE(KLON, KLEV) |
---|
| 274 | CALL YLCLOUD%ALLOCATE(KLON, KLEV) |
---|
| 275 | IF (YRERAD%NAERMACC == 1) THEN |
---|
| 276 | CALL AEROSOL%ALLOCATE(KLON, 1, KLEV, KAEROSOL) ! MACC aerosols |
---|
| 277 | ELSE |
---|
| 278 | CALL AEROSOL%ALLOCATE(KLON, 1, KLEV, 6) ! Tegen climatology |
---|
| 279 | ENDIF |
---|
| 280 | CALL FLUX%ALLOCATE(RAD_CONFIG, 1, KLON, KLEV) |
---|
| 281 | |
---|
| 282 | ! Set thermodynamic profiles: simply copy over the half-level |
---|
| 283 | ! pressure and temperature |
---|
| 284 | THERMODYNAMICS%PRESSURE_HL (KIDIA:KFDIA,:) = PPRESSURE_H (KIDIA:KFDIA,:) |
---|
| 285 | THERMODYNAMICS%TEMPERATURE_HL(KIDIA:KFDIA,:) = PTEMPERATURE_H(KIDIA:KFDIA,:) |
---|
| 286 | |
---|
| 287 | ! IFS currently sets the half-level temperature at the surface to be |
---|
| 288 | ! equal to the skin temperature. The radiation scheme takes as input |
---|
| 289 | ! only the half-level temperatures and assumes the Planck function to |
---|
| 290 | ! vary linearly in optical depth between half levels. In the lowest |
---|
| 291 | ! atmospheric layer, where the atmospheric temperature can be much |
---|
| 292 | ! cooler than the skin temperature, this can lead to significant |
---|
| 293 | ! differences between the effective temperature of this lowest layer |
---|
| 294 | ! and the true value in the model. |
---|
| 295 | ! |
---|
| 296 | ! We may approximate the temperature profile in the lowest model level |
---|
| 297 | ! as piecewise linear between the top of the layer T[k-1/2], the |
---|
| 298 | ! centre of the layer T[k] and the base of the layer Tskin. The mean |
---|
| 299 | ! temperature of the layer is then 0.25*T[k-1/2] + 0.5*T[k] + |
---|
| 300 | ! 0.25*Tskin, which can be achieved by setting the atmospheric |
---|
| 301 | ! temperature at the half-level corresponding to the surface as |
---|
| 302 | ! follows: |
---|
| 303 | THERMODYNAMICS%TEMPERATURE_HL(KIDIA:KFDIA,KLEV+1)& |
---|
| 304 | & = PTEMPERATURE(KIDIA:KFDIA,KLEV)& |
---|
| 305 | & + 0.5_JPRB * (PTEMPERATURE_H(KIDIA:KFDIA,KLEV+1)& |
---|
| 306 | & -PTEMPERATURE_H(KIDIA:KFDIA,KLEV)) |
---|
| 307 | |
---|
| 308 | ! Alternatively we respect the model's atmospheric temperature in the |
---|
| 309 | ! lowest model level by setting the temperature at the lowest |
---|
| 310 | ! half-level such that the mean temperature of the layer is correct: |
---|
| 311 | !thermodynamics%temperature_hl(KIDIA:KFDIA,KLEV+1) & |
---|
| 312 | ! & = 2.0_JPRB * PTEMPERATURE(KIDIA:KFDIA,KLEV) & |
---|
| 313 | ! & - PTEMPERATURE_H(KIDIA:KFDIA,KLEV) |
---|
| 314 | |
---|
| 315 | ! Compute saturation specific humidity, used to hydrate aerosols. The |
---|
| 316 | ! "2" for the last argument indicates that the routine is not being |
---|
| 317 | ! called from within the convection scheme. |
---|
| 318 | !CALL SATUR(KIDIA, KFDIA, KLON, 1, KLEV, .false., & |
---|
| 319 | ! & PPRESSURE, PTEMPERATURE, THERMODYNAMICS%H2O_SAT_LIQ, 2) |
---|
| 320 | ! Alternative approximate version using temperature and pressure from |
---|
| 321 | ! the thermodynamics structure |
---|
| 322 | CALL thermodynamics%calc_saturation_wrt_liquid(KIDIA, KFDIA) |
---|
| 323 | |
---|
| 324 | ! Set single-level fileds |
---|
| 325 | SINGLE_LEVEL%SOLAR_IRRADIANCE = PSOLAR_IRRADIANCE |
---|
| 326 | SINGLE_LEVEL%COS_SZA(KIDIA:KFDIA) = PMU0(KIDIA:KFDIA) |
---|
| 327 | SINGLE_LEVEL%SKIN_TEMPERATURE(KIDIA:KFDIA) = PTEMPERATURE_SKIN(KIDIA:KFDIA) |
---|
| 328 | SINGLE_LEVEL%SW_ALBEDO(KIDIA:KFDIA,:) = PALBEDO_DIF(KIDIA:KFDIA,:) |
---|
| 329 | SINGLE_LEVEL%SW_ALBEDO_DIRECT(KIDIA:KFDIA,:)=PALBEDO_DIR(KIDIA:KFDIA,:) |
---|
| 330 | ! Spectral longwave emissivity |
---|
| 331 | SINGLE_LEVEL%LW_EMISSIVITY(KIDIA:KFDIA,:) = PSPECTRALEMISS(KIDIA:KFDIA,:) |
---|
| 332 | |
---|
| 333 | ! Create the relevant seed from date and time get the starting day |
---|
| 334 | ! and number of minutes since start |
---|
| 335 | ! IDAY = NDD(NINDAT) |
---|
| 336 | ! ITIM = NINT(NSTEP * YDMODEL%YRML_GCONF%YRRIP%TSTEP / 60.0_JPRB) |
---|
| 337 | ! DO JLON = KIDIA, KFDIA |
---|
| 338 | ! ! This method gives a unique value for roughly every 1-km square |
---|
| 339 | ! ! on the globe and every minute. ASIN(PGEMU)*60 gives rough |
---|
| 340 | ! ! latitude in degrees, which we multiply by 100 to give a unique |
---|
| 341 | ! ! value for roughly every km. PGELAM*60*100 gives a unique number |
---|
| 342 | ! ! for roughly every km of longitude around the equator, which we |
---|
| 343 | ! ! multiply by 180*100 so there is no overlap with the latitude |
---|
| 344 | ! ! values. The result can be contained in a 32-byte integer (but |
---|
| 345 | ! ! since random numbers are generated with the help of integer |
---|
| 346 | ! ! overflow, it should not matter if the number did overflow). |
---|
| 347 | ! SINGLE_LEVEL%ISEED(JLON) = ITIM + IDAY & |
---|
| 348 | ! & + NINT(PGELAM(JLON)*108000000.0_JPRD & |
---|
| 349 | ! & + ASIN(PGEMU(JLON))*6000.0_JPRD) |
---|
| 350 | ! ENDDO |
---|
| 351 | |
---|
| 352 | ! Simple initialization of the seeds for the Monte Carlo scheme |
---|
| 353 | call single_level%init_seed_simple(kidia, kfdia) |
---|
| 354 | |
---|
| 355 | ! Set the solar spectrum scaling, if required |
---|
| 356 | IF (YRERAD%NSOLARSPECTRUM == 1) THEN |
---|
| 357 | ALLOCATE(SINGLE_LEVEL%SPECTRAL_SOLAR_SCALING(RAD_CONFIG%N_BANDS_SW)) |
---|
| 358 | ! Ratio of SORCE (Coddington et al. 2016) and Kurucz solar spectra |
---|
| 359 | SINGLE_LEVEL%SPECTRAL_SOLAR_SCALING & |
---|
| 360 | & = (/ 1.0, 1.0, 1.0, 1.0478, 1.0404, 1.0317, 1.0231, & |
---|
| 361 | & 1.0054, 0.98413, 0.99863, 0.99907, 0.90589, 0.92213, 1.0 /) |
---|
| 362 | ENDIF |
---|
| 363 | |
---|
| 364 | ! Set cloud fields |
---|
| 365 | YLCLOUD%Q_LIQ(KIDIA:KFDIA,:) = PQ_LIQUID(KIDIA:KFDIA,:) |
---|
| 366 | YLCLOUD%Q_ICE(KIDIA:KFDIA,:) = PQ_ICE(KIDIA:KFDIA,:) + PQ_SNOW(KIDIA:KFDIA,:) |
---|
| 367 | YLCLOUD%FRACTION(KIDIA:KFDIA,:) = PCLOUD_FRAC(KIDIA:KFDIA,:) |
---|
| 368 | |
---|
| 369 | ! Compute effective radii and convert to metres |
---|
| 370 | CALL LIQUID_EFFECTIVE_RADIUS(YRERAD, & |
---|
| 371 | & KIDIA, KFDIA, KLON, KLEV, & |
---|
| 372 | & PPRESSURE, PTEMPERATURE, PCLOUD_FRAC, PQ_LIQUID, PQ_RAIN, & |
---|
| 373 | & PLAND_SEA_MASK, PCCN_LAND, PCCN_SEA, & |
---|
| 374 | & ZRE_LIQUID_UM) !, PPERT=PPERT) |
---|
| 375 | YLCLOUD%RE_LIQ(KIDIA:KFDIA,:) = ZRE_LIQUID_UM(KIDIA:KFDIA,:) * 1.0E-6_JPRB |
---|
| 376 | |
---|
| 377 | CALL ICE_EFFECTIVE_RADIUS(YRERAD, KIDIA, KFDIA, KLON, KLEV, & |
---|
| 378 | & PPRESSURE, PTEMPERATURE, PCLOUD_FRAC, PQ_ICE, PQ_SNOW, PGEMU, & |
---|
| 379 | & ZRE_ICE_UM) !, PPERT=PPERT) |
---|
| 380 | YLCLOUD%RE_ICE(KIDIA:KFDIA,:) = ZRE_ICE_UM(KIDIA:KFDIA,:) * 1.0E-6_JPRB |
---|
| 381 | |
---|
| 382 | ! Get the cloud overlap decorrelation length (for cloud boundaries), |
---|
| 383 | ! in km, according to the parameterization specified by NDECOLAT, |
---|
| 384 | ! and insert into the "cloud" object. Also get the ratio of |
---|
| 385 | ! decorrelation lengths for cloud water content inhomogeneities and |
---|
| 386 | ! cloud boundaries, and set it in the "rad_config" object. |
---|
| 387 | CALL CLOUD_OVERLAP_DECORR_LEN(KIDIA,KFDIA,KLON, & |
---|
| 388 | & PGEMU,YRERAD%NDECOLAT, & |
---|
| 389 | & PDECORR_LEN_EDGES_KM=ZDECORR_LEN_KM, PDECORR_LEN_RATIO=ZDECORR_LEN_RATIO) |
---|
| 390 | |
---|
| 391 | ! Compute cloud overlap parameter from decorrelation length |
---|
| 392 | !RAD_CONFIG%CLOUD_INHOM_DECORR_SCALING = ZDECORR_LEN_RATIO |
---|
| 393 | DO JLON = KIDIA,KFDIA |
---|
| 394 | CALL YLCLOUD%SET_OVERLAP_PARAM(THERMODYNAMICS,& |
---|
| 395 | & ZDECORR_LEN_KM(JLON)*1000.0_JPRB,& |
---|
| 396 | & ISTARTCOL=JLON, IENDCOL=JLON) |
---|
| 397 | ENDDO |
---|
| 398 | ! Or we can call the routine on all columns at once |
---|
| 399 | !CALL YLCLOUD%SET_OVERLAP_PARAM(THERMODYNAMICS,& |
---|
| 400 | ! & ZDECORR_LEN_KM(KIDIA:KFDIA)*1000.0_JPRB,& |
---|
| 401 | ! & ISTARTCOL=KIDIA, IENDCOL=KFDIA) |
---|
| 402 | |
---|
| 403 | ! Cloud water content fractional standard deviation is configurable |
---|
| 404 | ! from namelist NAERAD but must be globally constant. Before it was |
---|
| 405 | ! hard coded at 1.0. |
---|
| 406 | CALL YLCLOUD%CREATE_FRACTIONAL_STD(KLON, KLEV, YRERAD%RCLOUD_FRAC_STD) |
---|
| 407 | |
---|
| 408 | |
---|
| 409 | IF ( RAD_CONFIG%I_SOLVER_LW == ISOLVERSPARTACUS & |
---|
| 410 | & .OR. RAD_CONFIG%I_SOLVER_SW == ISOLVERSPARTACUS) THEN |
---|
| 411 | ! We are using the SPARTACUS solver so need to specify cloud scale, |
---|
| 412 | ! and use Mark Fielding's parameterization based on ARM data |
---|
| 413 | CALL YLCLOUD%PARAM_CLOUD_EFFECTIVE_SEPARATION_ETA(KLON, KLEV, & |
---|
| 414 | & PPRESSURE_H, YRERAD%RCLOUD_SEPARATION_SCALE_SURF, & |
---|
| 415 | & YRERAD%RCLOUD_SEPARATION_SCALE_TOA, 3.5_JPRB, 0.75_JPRB, & |
---|
| 416 | & KIDIA, KFDIA) |
---|
| 417 | ENDIF |
---|
| 418 | |
---|
| 419 | ! Compute the dry mass of each layer neglecting humidity effects, in |
---|
| 420 | ! kg m-2, needed to scale some of the aerosol inputs |
---|
| 421 | CALL THERMODYNAMICS%GET_LAYER_MASS(KIDIA,KFDIA,ZLAYER_MASS) |
---|
| 422 | |
---|
| 423 | ! Copy over aerosol mass mixing ratio |
---|
| 424 | IF (YRERAD%NAERMACC == 1) THEN |
---|
| 425 | |
---|
| 426 | |
---|
| 427 | ! MACC aerosol from climatology or prognostic aerosol variables - |
---|
| 428 | ! this is already in mass mixing ratio units with the required array |
---|
| 429 | ! orientation so we can copy it over directly |
---|
| 430 | ! AB need to cap the minimum mass mixing ratio/AOD to avoid instability |
---|
| 431 | ! in case of negative values in input |
---|
| 432 | DO JAER = 1,KAEROSOL |
---|
| 433 | DO JLEV = 1,KLEV |
---|
| 434 | DO JLON = KIDIA,KFDIA |
---|
| 435 | AEROSOL%MIXING_RATIO(JLON,JLEV,JAER) = MAX(PAEROSOL(JLON,JLEV,JAER),0.0_JPRB) |
---|
| 436 | ENDDO |
---|
| 437 | ENDDO |
---|
| 438 | ENDDO |
---|
| 439 | |
---|
| 440 | IF (YRERAD%NAERMACC == 1) THEN |
---|
| 441 | ! Add the tropospheric and stratospheric backgrounds contained in the |
---|
| 442 | ! old Tegen arrays - this is very ugly! |
---|
| 443 | IF (TROP_BG_AER_MASS_EXT > 0.0_JPRB) THEN |
---|
| 444 | AEROSOL%MIXING_RATIO(KIDIA:KFDIA,:,ITYPE_TROP_BG_AER)& |
---|
| 445 | & = AEROSOL%MIXING_RATIO(KIDIA:KFDIA,:,ITYPE_TROP_BG_AER)& |
---|
| 446 | & + PAEROSOL_OLD(KIDIA:KFDIA,1,:)& |
---|
| 447 | & / (ZLAYER_MASS * TROP_BG_AER_MASS_EXT) |
---|
| 448 | ENDIF |
---|
| 449 | IF (STRAT_BG_AER_MASS_EXT > 0.0_JPRB) THEN |
---|
| 450 | AEROSOL%MIXING_RATIO(KIDIA:KFDIA,:,ITYPE_STRAT_BG_AER)& |
---|
| 451 | & = AEROSOL%MIXING_RATIO(KIDIA:KFDIA,:,ITYPE_STRAT_BG_AER)& |
---|
| 452 | & + PAEROSOL_OLD(KIDIA:KFDIA,6,:)& |
---|
| 453 | & / (ZLAYER_MASS * STRAT_BG_AER_MASS_EXT) |
---|
| 454 | ENDIF |
---|
| 455 | ENDIF |
---|
| 456 | ELSE |
---|
| 457 | |
---|
| 458 | ! Tegen aerosol climatology - the array PAEROSOL_OLD contains the |
---|
| 459 | ! 550-nm optical depth in each layer. The optics data file |
---|
| 460 | ! aerosol_ifs_rrtm_tegen.nc does not contain mass extinction |
---|
| 461 | ! coefficient, but a scaling factor that the 550-nm optical depth |
---|
| 462 | ! should be multiplied by to obtain the optical depth in each |
---|
| 463 | ! spectral band. Therefore, in order for the units to work out, we |
---|
| 464 | ! need to divide by the layer mass (in kg m-2) to obtain the 550-nm |
---|
| 465 | ! cross-section per unit mass of dry air (so in m2 kg-1). We also |
---|
| 466 | ! need to permute the array. |
---|
| 467 | DO JLEV = 1,KLEV |
---|
| 468 | DO JAER = 1,6 |
---|
| 469 | AEROSOL%MIXING_RATIO(KIDIA:KFDIA,JLEV,JAER)& |
---|
| 470 | & = PAEROSOL_OLD(KIDIA:KFDIA,JAER,JLEV)& |
---|
| 471 | & / ZLAYER_MASS(KIDIA:KFDIA,JLEV) |
---|
| 472 | ENDDO |
---|
| 473 | ENDDO |
---|
| 474 | |
---|
| 475 | ENDIF |
---|
| 476 | |
---|
| 477 | ! Insert gas mixing ratios |
---|
| 478 | CALL GAS%PUT(IH2O, IMASSMIXINGRATIO, PQ) |
---|
| 479 | CALL GAS%PUT(ICO2, IMASSMIXINGRATIO, PCO2) |
---|
| 480 | CALL GAS%PUT(ICH4, IMASSMIXINGRATIO, PCH4) |
---|
| 481 | CALL GAS%PUT(IN2O, IMASSMIXINGRATIO, PN2O) |
---|
| 482 | CALL GAS%PUT(ICFC11, IMASSMIXINGRATIO, PCFC11) |
---|
| 483 | CALL GAS%PUT(ICFC12, IMASSMIXINGRATIO, PCFC12) |
---|
| 484 | CALL GAS%PUT(IHCFC22, IMASSMIXINGRATIO, PHCFC22) |
---|
| 485 | CALL GAS%PUT(ICCL4, IMASSMIXINGRATIO, PCCL4) |
---|
| 486 | CALL GAS%PUT(IO3, IMASSMIXINGRATIO, PO3) |
---|
| 487 | CALL GAS%PUT_WELL_MIXED(IO2, IVOLUMEMIXINGRATIO, 0.20944_JPRB) |
---|
| 488 | |
---|
| 489 | ! Ensure the units of the gas mixing ratios are what is required by |
---|
| 490 | ! the gas absorption model |
---|
| 491 | CALL SET_GAS_UNITS(RAD_CONFIG, GAS) |
---|
| 492 | |
---|
| 493 | !call save_inputs('inputs_ifs.nc', rad_config, single_level, thermodynamics, & |
---|
| 494 | ! & gas, ylcloud, aerosol, & |
---|
| 495 | ! & lat=spread(0.0_jprb,1,klon), & |
---|
| 496 | ! & lon=spread(0.0_jprb,1,klon), & |
---|
| 497 | ! & iverbose=2) |
---|
| 498 | |
---|
| 499 | ! Call radiation scheme |
---|
| 500 | CALL RADIATION(KLON, KLEV, KIDIA, KFDIA, RAD_CONFIG,& |
---|
| 501 | & SINGLE_LEVEL, THERMODYNAMICS, GAS, YLCLOUD, AEROSOL, FLUX) |
---|
| 502 | |
---|
| 503 | ! Check fluxes are within physical bounds |
---|
| 504 | IF (YRERAD%NDUMPBADINPUTS /= 0 & |
---|
| 505 | & .AND. (N_BAD_FLUXES == 0 .OR. N_BAD_FLUXES < YRERAD%NDUMPBADINPUTS)) THEN |
---|
| 506 | IF (FLUX%OUT_OF_PHYSICAL_BOUNDS(KIDIA,KFDIA)) THEN |
---|
| 507 | !$OMP CRITICAL |
---|
| 508 | N_BAD_FLUXES = N_BAD_FLUXES+1 |
---|
| 509 | WRITE(CL_FILE_NAME, '(A,I0,A,I0,A)') '/home/parr/ifs_dump/bad_inputs_', & |
---|
| 510 | & MPL_MYRANK(), '_', N_BAD_FLUXES, '.nc' |
---|
| 511 | WRITE(NULERR,*) ' Writing ', TRIM(CL_FILE_NAME) |
---|
| 512 | ! Implicit assumption that KFDIA==KLON |
---|
| 513 | CALL SAVE_INPUTS(TRIM(CL_FILE_NAME), RAD_CONFIG, SINGLE_LEVEL, & |
---|
| 514 | & THERMODYNAMICS, GAS, YLCLOUD, AEROSOL, & |
---|
| 515 | & LAT=ASIN(PGEMU)*180.0/RPI, LON=PGELAM*180.0/RPI, IVERBOSE=3) |
---|
| 516 | WRITE(CL_FILE_NAME, '(A,I0,A,I0,A)') '/home/parr/ifs_dump/bad_outputs_', & |
---|
| 517 | & MPL_MYRANK(), '_', N_BAD_FLUXES, '.nc' |
---|
| 518 | WRITE(NULERR,*) ' Writing ', TRIM(CL_FILE_NAME) |
---|
| 519 | CALL SAVE_FLUXES(TRIM(CL_FILE_NAME), RAD_CONFIG, THERMODYNAMICS, FLUX, IVERBOSE=3) |
---|
| 520 | IF (YRERAD%NDUMPBADINPUTS < 0) THEN |
---|
| 521 | ! Abort on the first set of bad fluxes |
---|
| 522 | CALL ABOR1("RADIATION_SCHEME: ABORT DUE TO FLUXES OUT OF PHYSICAL BOUNDS") |
---|
| 523 | ENDIF |
---|
| 524 | !$OMP END CRITICAL |
---|
| 525 | ENDIF |
---|
| 526 | ENDIF |
---|
| 527 | |
---|
| 528 | ! For debugging, do we store a certain number of inputs and outputs |
---|
| 529 | ! regardless of whether bad fluxes have been detected? |
---|
| 530 | IF (N_OUTPUT_FLUXES < YRERAD%NDUMPINPUTS) THEN |
---|
| 531 | !$OMP CRITICAL |
---|
| 532 | N_OUTPUT_FLUXES = N_OUTPUT_FLUXES+1 |
---|
| 533 | WRITE(CL_FILE_NAME, '(A,I0,A,I0,A)') '/home/parr/ifs_dump/inputs_', & |
---|
| 534 | & MPL_MYRANK(), '_', N_OUTPUT_FLUXES, '.nc' |
---|
| 535 | WRITE(NULERR,*) ' Writing ', TRIM(CL_FILE_NAME) |
---|
| 536 | ! Implicit assumption that KFDIA==KLON |
---|
| 537 | CALL SAVE_INPUTS(TRIM(CL_FILE_NAME), RAD_CONFIG, SINGLE_LEVEL, & |
---|
| 538 | & THERMODYNAMICS, GAS, YLCLOUD, AEROSOL, & |
---|
| 539 | & LAT=ASIN(PGEMU)*180.0/RPI, LON=PGELAM*180.0/RPI, IVERBOSE=3) |
---|
| 540 | WRITE(CL_FILE_NAME, '(A,I0,A,I0,A)') '/home/parr/ifs_dump/outputs_', & |
---|
| 541 | & MPL_MYRANK(), '_', N_OUTPUT_FLUXES, '.nc' |
---|
| 542 | WRITE(NULERR,*) ' Writing ', TRIM(CL_FILE_NAME) |
---|
| 543 | CALL SAVE_FLUXES(TRIM(CL_FILE_NAME), RAD_CONFIG, THERMODYNAMICS, FLUX, IVERBOSE=3) |
---|
| 544 | !$OMP END CRITICAL |
---|
| 545 | ENDIF |
---|
| 546 | |
---|
| 547 | ! Compute required output fluxes |
---|
| 548 | ! First the net fluxes |
---|
| 549 | PFLUX_SW(KIDIA:KFDIA,:) = FLUX%SW_DN(KIDIA:KFDIA,:) - FLUX%SW_UP(KIDIA:KFDIA,:) |
---|
| 550 | PFLUX_LW(KIDIA:KFDIA,:) = FLUX%LW_DN(KIDIA:KFDIA,:) - FLUX%LW_UP(KIDIA:KFDIA,:) |
---|
| 551 | PFLUX_SW_CLEAR(KIDIA:KFDIA,:)& |
---|
| 552 | & = FLUX%SW_DN_CLEAR(KIDIA:KFDIA,:) - FLUX%SW_UP_CLEAR(KIDIA:KFDIA,:) |
---|
| 553 | PFLUX_LW_CLEAR(KIDIA:KFDIA,:)& |
---|
| 554 | & = FLUX%LW_DN_CLEAR(KIDIA:KFDIA,:) - FLUX%LW_UP_CLEAR(KIDIA:KFDIA,:) |
---|
| 555 | ! Now the surface fluxes |
---|
| 556 | PFLUX_SW_DN (KIDIA:KFDIA) = FLUX%SW_DN (KIDIA:KFDIA,KLEV+1) |
---|
| 557 | PFLUX_LW_DN (KIDIA:KFDIA) = FLUX%LW_DN (KIDIA:KFDIA,KLEV+1) |
---|
| 558 | PFLUX_SW_DN_CLEAR(KIDIA:KFDIA) = FLUX%SW_DN_CLEAR (KIDIA:KFDIA,KLEV+1) |
---|
| 559 | PFLUX_LW_DN_CLEAR(KIDIA:KFDIA) = FLUX%LW_DN_CLEAR (KIDIA:KFDIA,KLEV+1) |
---|
| 560 | PFLUX_DIR (KIDIA:KFDIA) = FLUX%SW_DN_DIRECT (KIDIA:KFDIA,KLEV+1) |
---|
| 561 | PFLUX_DIR_CLEAR (KIDIA:KFDIA) = FLUX%SW_DN_DIRECT_CLEAR(KIDIA:KFDIA,KLEV+1) |
---|
| 562 | PFLUX_DIR_INTO_SUN(KIDIA:KFDIA) = 0.0_JPRB |
---|
| 563 | WHERE (PMU0(KIDIA:KFDIA) > EPSILON(1.0_JPRB)) |
---|
| 564 | PFLUX_DIR_INTO_SUN(KIDIA:KFDIA) = PFLUX_DIR(KIDIA:KFDIA) / PMU0(KIDIA:KFDIA) |
---|
| 565 | ENDWHERE |
---|
| 566 | ! Top-of-atmosphere downwelling flux |
---|
| 567 | PFLUX_SW_DN_TOA(KIDIA:KFDIA) = FLUX%SW_DN(KIDIA:KFDIA,1) |
---|
| 568 | |
---|
| 569 | ! Compute UV fluxes as weighted sum of appropriate shortwave bands |
---|
| 570 | PFLUX_UV (KIDIA:KFDIA) = 0.0_JPRB |
---|
| 571 | DO JBAND = 1,NWEIGHT_UV |
---|
| 572 | !DEC$ IVDEP |
---|
| 573 | PFLUX_UV(KIDIA:KFDIA) = PFLUX_UV(KIDIA:KFDIA) + WEIGHT_UV(JBAND)& |
---|
| 574 | & * FLUX%SW_DN_SURF_BAND(IBAND_UV(JBAND),KIDIA:KFDIA) |
---|
| 575 | ENDDO |
---|
| 576 | |
---|
| 577 | ! Compute photosynthetically active radiation similarly |
---|
| 578 | PFLUX_PAR (KIDIA:KFDIA) = 0.0_JPRB |
---|
| 579 | PFLUX_PAR_CLEAR(KIDIA:KFDIA) = 0.0_JPRB |
---|
| 580 | DO JBAND = 1,NWEIGHT_PAR |
---|
| 581 | !DEC$ IVDEP |
---|
| 582 | PFLUX_PAR(KIDIA:KFDIA) = PFLUX_PAR(KIDIA:KFDIA) + WEIGHT_PAR(JBAND)& |
---|
| 583 | & * FLUX%SW_DN_SURF_BAND(IBAND_PAR(JBAND),KIDIA:KFDIA) |
---|
| 584 | !DEC$ IVDEP |
---|
| 585 | PFLUX_PAR_CLEAR(KIDIA:KFDIA) = PFLUX_PAR_CLEAR(KIDIA:KFDIA)& |
---|
| 586 | & + WEIGHT_PAR(JBAND)& |
---|
| 587 | & * FLUX%SW_DN_SURF_CLEAR_BAND(IBAND_PAR(JBAND),KIDIA:KFDIA) |
---|
| 588 | ENDDO |
---|
| 589 | |
---|
| 590 | ! Compute effective broadband emissivity. This is only approximate - |
---|
| 591 | ! due to spectral variations in emissivity, it is not in general |
---|
| 592 | ! possible to provide a broadband emissivity that can reproduce the |
---|
| 593 | ! upwelling surface flux given the downwelling flux and the skin |
---|
| 594 | ! temperature. |
---|
| 595 | ZBLACK_BODY_NET_LW = PFLUX_LW_DN(KIDIA:KFDIA) & |
---|
| 596 | & - RSIGMA*PTEMPERATURE_SKIN(KIDIA:KFDIA)**4 |
---|
| 597 | PEMIS_OUT(KIDIA:KFDIA) = PSPECTRALEMISS(KIDIA:KFDIA,1) ! Default value |
---|
| 598 | WHERE (ABS(ZBLACK_BODY_NET_LW) > 1.0E-5) |
---|
| 599 | ! This calculation can go outside the range of any individual |
---|
| 600 | ! spectral emissivity value, so needs to be capped |
---|
| 601 | PEMIS_OUT(KIDIA:KFDIA) = MAX(0.8_JPRB, MIN(0.99_JPRB, PFLUX_LW(KIDIA:KFDIA,KLEV+1) / ZBLACK_BODY_NET_LW)) |
---|
| 602 | ENDWHERE |
---|
| 603 | |
---|
| 604 | ! Copy longwave derivatives |
---|
| 605 | IF (YRERAD%LAPPROXLWUPDATE) THEN |
---|
| 606 | PLWDERIVATIVE(KIDIA:KFDIA,:) = FLUX%LW_DERIVATIVES(KIDIA:KFDIA,:) |
---|
| 607 | ENDIF |
---|
| 608 | |
---|
| 609 | ! Store the shortwave downwelling fluxes in each albedo band |
---|
| 610 | IF (YRERAD%LAPPROXSWUPDATE) THEN |
---|
| 611 | PSWDIFFUSEBAND(KIDIA:KFDIA,:) = TRANSPOSE(FLUX%SW_DN_DIFFUSE_SURF_CANOPY(:,KIDIA:KFDIA)) |
---|
| 612 | PSWDIRECTBAND (KIDIA:KFDIA,:) = TRANSPOSE(FLUX%SW_DN_DIRECT_SURF_CANOPY (:,KIDIA:KFDIA)) |
---|
| 613 | ENDIF |
---|
| 614 | |
---|
| 615 | CALL SINGLE_LEVEL%DEALLOCATE |
---|
| 616 | CALL THERMODYNAMICS%DEALLOCATE |
---|
| 617 | CALL GAS%DEALLOCATE |
---|
| 618 | CALL YLCLOUD%DEALLOCATE |
---|
| 619 | CALL AEROSOL%DEALLOCATE |
---|
| 620 | CALL FLUX%DEALLOCATE |
---|
| 621 | |
---|
| 622 | END ASSOCIATE |
---|
| 623 | |
---|
| 624 | IF (LHOOK) CALL DR_HOOK('RADIATION_SCHEME',1,ZHOOK_HANDLE) |
---|
| 625 | |
---|
| 626 | END SUBROUTINE RADIATION_SCHEME |
---|