source: LMDZ6/trunk/libf/phylmd/ecrad.v1.5.1/srtm_taumol29.F90 @ 4976

Last change on this file since 4976 was 3908, checked in by idelkadi, 3 years ago

Online implementation of the radiative transfer code ECRAD in the LMDZ model.

  • Inclusion of the ecrad directory containing the sources of the ECRAD code
    • interface routine : radiation_scheme.F90
  • Adaptation of compilation scripts :
    • compilation under CPP key CPP_ECRAD
    • compilation with option "-rad ecard" or "-ecard true"
    • The "-rad old/rtm/ecran" build option will need to replace the "-rrtm true" and "-ecrad true" options in the future.
  • Runing LMDZ simulations with ecrad, you need :
    • logical key iflag_rrtm = 2 in physiq.def
    • namelist_ecrad (DefLists?)
    • the directory "data" containing the configuration files is temporarily placed in ../libfphylmd/ecrad/
  • Compilation and execution are tested in the 1D case. The repository under svn would allow to continue the implementation work: tests, verification of the results, ...
File size: 5.6 KB
Line 
1SUBROUTINE SRTM_TAUMOL29 &
2 & ( KIDIA   , KFDIA    , KLEV,&
3 & P_FAC00   , P_FAC01  , P_FAC10   , P_FAC11,&
4 & K_JP      , K_JT     , K_JT1,&
5 & P_COLH2O  , P_COLCO2 , P_COLMOL,&
6 & K_LAYTROP , P_SELFFAC, P_SELFFRAC, K_INDSELF  , P_FORFAC, P_FORFRAC, K_INDFOR,&
7 & P_SFLUXZEN, P_TAUG   , P_TAUR    , PRMU0   &
8 & ) 
9
10!     Written by Eli J. Mlawer, Atmospheric & Environmental Research.
11
12!     BAND 29:  820-2600 cm-1 (low - H2O; high - CO2)
13
14! Modifications
15!        M.Hamrud      01-Oct-2003 CY28 Cleaning
16
17!     JJMorcrette 2002-10-03 adapted to ECMWF environment
18!        D.Salmond  31-Oct-2007 Vector version in the style of RRTM from Meteo France & NEC
19!     JJMorcrette 20110610 Flexible configuration for number of g-points
20
21USE PARKIND1 , ONLY : JPIM, JPRB
22USE YOMHOOK  , ONLY : LHOOK, DR_HOOK
23USE PARSRTM  , ONLY : JPG
24USE YOESRTM  , ONLY : NG29
25USE YOESRTA29, ONLY : ABSA, ABSB, FORREFC, SELFREFC, SFLUXREFC, &
26 & ABSH2OC, ABSCO2C, RAYL, LAYREFFR 
27USE YOESRTWN , ONLY : NSPA, NSPB
28
29IMPLICIT NONE
30
31!-- Output
32INTEGER(KIND=JPIM),INTENT(IN)    :: KIDIA, KFDIA
33INTEGER(KIND=JPIM),INTENT(IN)    :: KLEV
34REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC00(KIDIA:KFDIA,KLEV)
35REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC01(KIDIA:KFDIA,KLEV)
36REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC10(KIDIA:KFDIA,KLEV)
37REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC11(KIDIA:KFDIA,KLEV)
38INTEGER(KIND=JPIM),INTENT(IN)    :: K_JP(KIDIA:KFDIA,KLEV)
39INTEGER(KIND=JPIM),INTENT(IN)    :: K_JT(KIDIA:KFDIA,KLEV)
40INTEGER(KIND=JPIM),INTENT(IN)    :: K_JT1(KIDIA:KFDIA,KLEV)
41REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLH2O(KIDIA:KFDIA,KLEV)
42REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLCO2(KIDIA:KFDIA,KLEV)
43REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLMOL(KIDIA:KFDIA,KLEV)
44INTEGER(KIND=JPIM),INTENT(IN)    :: K_LAYTROP(KIDIA:KFDIA)
45REAL(KIND=JPRB)   ,INTENT(IN)    :: P_SELFFAC(KIDIA:KFDIA,KLEV)
46REAL(KIND=JPRB)   ,INTENT(IN)    :: P_SELFFRAC(KIDIA:KFDIA,KLEV)
47INTEGER(KIND=JPIM),INTENT(IN)    :: K_INDSELF(KIDIA:KFDIA,KLEV)
48REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FORFAC(KIDIA:KFDIA,KLEV)
49REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FORFRAC(KIDIA:KFDIA,KLEV)
50INTEGER(KIND=JPIM),INTENT(IN)    :: K_INDFOR(KIDIA:KFDIA,KLEV)
51
52REAL(KIND=JPRB)   ,INTENT(OUT)   :: P_SFLUXZEN(KIDIA:KFDIA,JPG)
53REAL(KIND=JPRB)   ,INTENT(OUT)   :: P_TAUG(KIDIA:KFDIA,KLEV,JPG)
54REAL(KIND=JPRB)   ,INTENT(OUT)   :: P_TAUR(KIDIA:KFDIA,KLEV,JPG)
55REAL(KIND=JPRB)   ,INTENT(IN)    :: PRMU0(KIDIA:KFDIA)
56!- from INTFAC     
57!- from INTIND
58!- from PRECISE             
59!- from PROFDATA             
60!- from SELF             
61!-- from FOREIGN
62INTEGER(KIND=JPIM) :: IG, IND0, IND1, INDS, INDF, I_LAY, I_LAYSOLFR(KIDIA:KFDIA), I_NLAYERS, IPLON
63
64REAL(KIND=JPRB) ::  &
65 & Z_TAURAY 
66REAL(KIND=JPRB) :: ZHOOK_HANDLE
67
68ASSOCIATE(NFLEVG=>KLEV)
69IF (LHOOK) CALL DR_HOOK('SRTM_TAUMOL29',0,ZHOOK_HANDLE)
70
71I_NLAYERS = KLEV
72
73! Compute the optical depth by interpolating in ln(pressure),
74! temperature, and appropriate species.  Below LAYTROP, the water
75! vapor self-continuum is interpolated (in temperature) separately. 
76
77DO I_LAY = 1, I_NLAYERS
78  DO IPLON = KIDIA, KFDIA
79    IF (PRMU0(IPLON) > 0.0_JPRB) THEN
80      IF (I_LAY <= K_LAYTROP(IPLON)) THEN
81        IND0 = ((K_JP(IPLON,I_LAY)-1)*5+(K_JT(IPLON,I_LAY)-1))*NSPA(29) + 1
82        IND1 = (K_JP(IPLON,I_LAY)*5+(K_JT1(IPLON,I_LAY)-1))*NSPA(29) + 1
83        INDS = K_INDSELF(IPLON,I_LAY)
84        INDF = K_INDFOR(IPLON,I_LAY)
85        Z_TAURAY = P_COLMOL(IPLON,I_LAY) * RAYL
86
87        !  DO IG = 1, NG(29)
88!CDIR UNROLL=NG29
89        DO IG = 1, NG29
90          P_TAUG(IPLON,I_LAY,IG) = P_COLH2O(IPLON,I_LAY) * &
91           & ((P_FAC00(IPLON,I_LAY) * ABSA(IND0,IG) + &
92           & P_FAC10(IPLON,I_LAY) * ABSA(IND0+1,IG) + &
93           & P_FAC01(IPLON,I_LAY) * ABSA(IND1,IG) + &
94           & P_FAC11(IPLON,I_LAY) * ABSA(IND1+1,IG)) + &
95           & P_SELFFAC(IPLON,I_LAY) * (SELFREFC(INDS,IG) + &
96           & P_SELFFRAC(IPLON,I_LAY) * &
97           & (SELFREFC(INDS+1,IG) - SELFREFC(INDS,IG))) + &
98           & P_FORFAC(IPLON,I_LAY) * (FORREFC(INDF,IG) +  &
99           & P_FORFRAC(IPLON,I_LAY) * &
100           & (FORREFC(INDF+1,IG) - FORREFC(INDF,IG)))) &
101           & + P_COLCO2(IPLON,I_LAY) * ABSCO2C(IG)   
102          !     &           + TAURAY &
103          !    SSA(LAY,IG) = TAURAY/TAUG(LAY,IG)
104          P_TAUR(IPLON,I_LAY,IG) = Z_TAURAY
105        ENDDO
106      ENDIF
107    ENDIF
108  ENDDO
109ENDDO
110
111I_LAYSOLFR(:) = I_NLAYERS
112
113DO I_LAY = 1, I_NLAYERS
114  DO IPLON = KIDIA, KFDIA
115    IF (PRMU0(IPLON) > 0.0_JPRB) THEN
116      IF (I_LAY >= K_LAYTROP(IPLON)+1) THEN
117        IF (K_JP(IPLON,I_LAY-1) < LAYREFFR .AND. K_JP(IPLON,I_LAY) >= LAYREFFR) &
118         & I_LAYSOLFR(IPLON) = I_LAY 
119        IND0 = ((K_JP(IPLON,I_LAY)-13)*5+(K_JT(IPLON,I_LAY)-1))*NSPB(29) + 1
120        IND1 = ((K_JP(IPLON,I_LAY)-12)*5+(K_JT1(IPLON,I_LAY)-1))*NSPB(29) + 1
121        Z_TAURAY = P_COLMOL(IPLON,I_LAY) * RAYL
122
123        !  DO IG = 1, NG(29)
124!CDIR UNROLL=NG29
125        DO IG = 1 , NG29
126          P_TAUG(IPLON,I_LAY,IG) = P_COLCO2(IPLON,I_LAY) * &
127           & (P_FAC00(IPLON,I_LAY) * ABSB(IND0,IG) + &
128           & P_FAC10(IPLON,I_LAY) * ABSB(IND0+1,IG) + &
129           & P_FAC01(IPLON,I_LAY) * ABSB(IND1,IG) + &
130           & P_FAC11(IPLON,I_LAY) * ABSB(IND1+1,IG))   &
131           & + P_COLH2O(IPLON,I_LAY) * ABSH2OC(IG)   
132          !     &           + TAURAY
133          !    SSA(LAY,IG) = TAURAY/TAUG(LAY,IG)
134          IF (I_LAY == I_LAYSOLFR(IPLON)) P_SFLUXZEN(IPLON,IG) = SFLUXREFC(IG)
135          P_TAUR(IPLON,I_LAY,IG) = Z_TAURAY
136        ENDDO
137      ENDIF
138    ENDIF
139  ENDDO
140ENDDO
141
142!-----------------------------------------------------------------------
143IF (LHOOK) CALL DR_HOOK('SRTM_TAUMOL29',1,ZHOOK_HANDLE)
144END ASSOCIATE
145END SUBROUTINE SRTM_TAUMOL29
Note: See TracBrowser for help on using the repository browser.