source: LMDZ6/trunk/libf/phylmd/ecrad.v1.5.1/rrtm_taumol4.F90 @ 5445

Last change on this file since 5445 was 3908, checked in by idelkadi, 4 years ago

Online implementation of the radiative transfer code ECRAD in the LMDZ model.

  • Inclusion of the ecrad directory containing the sources of the ECRAD code
    • interface routine : radiation_scheme.F90
  • Adaptation of compilation scripts :
    • compilation under CPP key CPP_ECRAD
    • compilation with option "-rad ecard" or "-ecard true"
    • The "-rad old/rtm/ecran" build option will need to replace the "-rrtm true" and "-ecrad true" options in the future.
  • Runing LMDZ simulations with ecrad, you need :
    • logical key iflag_rrtm = 2 in physiq.def
    • namelist_ecrad (DefLists?)
    • the directory "data" containing the configuration files is temporarily placed in ../libfphylmd/ecrad/
  • Compilation and execution are tested in the 1D case. The repository under svn would allow to continue the implementation work: tests, verification of the results, ...
File size: 13.4 KB
Line 
1!----------------------------------------------------------------------------
2SUBROUTINE RRTM_TAUMOL4 (KIDIA,KFDIA,KLEV,P_TAU,&
3 & P_TAUAERL,P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,P_FORFRAC,K_INDFOR,K_JP,K_JT,K_JT1,P_ONEMINUS,&
4 & P_COLH2O,P_COLCO2,P_COLO3,K_LAYTROP,P_SELFFAC,P_SELFFRAC,K_INDSELF,PFRAC, &
5 & P_RAT_H2OCO2, P_RAT_H2OCO2_1, P_RAT_O3CO2, P_RAT_O3CO2_1) 
6
7!     BAND 4:  630-700 cm-1 (low - H2O,CO2; high - O3,CO2)
8
9!     AUTHOR.
10!     -------
11!      JJMorcrette, ECMWF
12
13!     MODIFICATIONS.
14!     --------------
15!      M.Hamrud      01-Oct-2003 CY28 Cleaning
16!      NEC           25-Oct-2007 Optimisations
17!      JJMorcrette 20110613 flexible number of g-points
18!      ABozzo 201306 updated to rrtmg v4.85
19! ---------------------------------------------------------------------------
20
21USE PARKIND1  ,ONLY : JPIM     ,JPRB
22USE YOMHOOK   ,ONLY : LHOOK,   DR_HOOK
23
24USE PARRRTM  , ONLY : JPBAND
25USE YOERRTM  , ONLY : JPGPT  ,NG4   ,NGS3
26USE YOERRTWN , ONLY : NSPA   ,NSPB
27USE YOERRTA4 , ONLY : ABSA   ,ABSB   ,FRACREFA, FRACREFB,SELFREF,FORREF
28USE YOERRTRF, ONLY : CHI_MLS
29
30IMPLICIT NONE
31
32INTEGER(KIND=JPIM),INTENT(IN)    :: KIDIA
33INTEGER(KIND=JPIM),INTENT(IN)    :: KFDIA
34INTEGER(KIND=JPIM),INTENT(IN)    :: KLEV
35REAL(KIND=JPRB)   ,INTENT(OUT)   :: P_TAU(KIDIA:KFDIA,JPGPT,KLEV)
36REAL(KIND=JPRB)   ,INTENT(IN)    :: P_TAUAERL(KIDIA:KFDIA,KLEV,JPBAND)
37REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC00(KIDIA:KFDIA,KLEV)
38REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC01(KIDIA:KFDIA,KLEV)
39REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC10(KIDIA:KFDIA,KLEV)
40REAL(KIND=JPRB)   ,INTENT(IN)    :: P_FAC11(KIDIA:KFDIA,KLEV)
41INTEGER(KIND=JPIM),INTENT(IN)    :: K_JP(KIDIA:KFDIA,KLEV)
42INTEGER(KIND=JPIM),INTENT(IN)    :: K_JT(KIDIA:KFDIA,KLEV)
43INTEGER(KIND=JPIM),INTENT(IN)    :: K_JT1(KIDIA:KFDIA,KLEV)
44REAL(KIND=JPRB)   ,INTENT(IN)    :: P_ONEMINUS
45REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLH2O(KIDIA:KFDIA,KLEV)
46REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLCO2(KIDIA:KFDIA,KLEV)
47REAL(KIND=JPRB)   ,INTENT(IN)    :: P_COLO3(KIDIA:KFDIA,KLEV)
48INTEGER(KIND=JPIM),INTENT(IN)    :: K_LAYTROP(KIDIA:KFDIA)
49REAL(KIND=JPRB)   ,INTENT(IN)    :: P_SELFFAC(KIDIA:KFDIA,KLEV)
50REAL(KIND=JPRB)   ,INTENT(IN)    :: P_SELFFRAC(KIDIA:KFDIA,KLEV)
51INTEGER(KIND=JPIM),INTENT(IN)    :: K_INDSELF(KIDIA:KFDIA,KLEV)
52REAL(KIND=JPRB)   ,INTENT(OUT)   :: PFRAC(KIDIA:KFDIA,JPGPT,KLEV)
53
54REAL(KIND=JPRB)   ,INTENT(IN)   :: P_RAT_H2OCO2(KIDIA:KFDIA,KLEV)
55REAL(KIND=JPRB)   ,INTENT(IN)   :: P_RAT_H2OCO2_1(KIDIA:KFDIA,KLEV)
56REAL(KIND=JPRB)   ,INTENT(IN)   :: P_RAT_O3CO2(KIDIA:KFDIA,KLEV)
57REAL(KIND=JPRB)   ,INTENT(IN)   :: P_RAT_O3CO2_1(KIDIA:KFDIA,KLEV)
58INTEGER(KIND=JPIM),INTENT(IN)   :: K_INDFOR(KIDIA:KFDIA,KLEV)
59REAL(KIND=JPRB)   ,INTENT(IN)   :: P_FORFAC(KIDIA:KFDIA,KLEV)
60REAL(KIND=JPRB)   ,INTENT(IN)   :: P_FORFRAC(KIDIA:KFDIA,KLEV)
61! ---------------------------------------------------------------------------
62
63REAL(KIND=JPRB) :: Z_SPECCOMB(KLEV),Z_SPECCOMB1(KLEV), Z_SPECCOMB_PLANCK(KLEV)
64INTEGER(KIND=JPIM) :: IND0(KLEV),IND1(KLEV),INDS(KLEV),INDF(KLEV)
65
66INTEGER(KIND=JPIM) :: IG, JS, JLAY, JS1, JPL
67INTEGER(KIND=JPIM) :: JLON
68
69
70REAL(KIND=JPRB) :: ZREFRAT_PLANCK_A, ZREFRAT_PLANCK_B
71 REAL(KIND=JPRB) ::  Z_FAC000, Z_FAC100, Z_FAC200,&
72 & Z_FAC010, Z_FAC110, Z_FAC210, &
73 & Z_FAC001, Z_FAC101, Z_FAC201, &
74 & Z_FAC011, Z_FAC111, Z_FAC211
75REAL(KIND=JPRB) :: ZP, ZP4, ZFK0, ZFK1, ZFK2
76REAL(KIND=JPRB) :: ZTAUFOR,ZTAUSELF,ZTAU_MAJOR,ZTAU_MAJOR1
77REAL(KIND=JPRB) :: Z_FS, Z_SPECMULT, Z_SPECPARM,  &
78 & Z_FS1, Z_SPECMULT1, Z_SPECPARM1, &
79 & Z_FPL, Z_SPECMULT_PLANCK, Z_SPECPARM_PLANCK
80
81REAL(KIND=JPRB) :: ZHOOK_HANDLE
82
83! P =   142.5940 mb
84      ZREFRAT_PLANCK_A = CHI_MLS(1,11)/CHI_MLS(2,11)
85
86! P = 95.58350 mb
87      ZREFRAT_PLANCK_B = CHI_MLS(3,13)/CHI_MLS(2,13)
88
89
90!     Compute the optical depth by interpolating in ln(pressure),
91!     temperature, and appropriate species.  Below LAYTROP, the water
92!     vapor self-continuum is interpolated (in temperature) separately.
93 
94ASSOCIATE(NFLEVG=>KLEV)
95IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL4',0,ZHOOK_HANDLE)
96
97DO JLAY = 1, KLEV
98  DO JLON = KIDIA, KFDIA
99    IF (JLAY <= K_LAYTROP(JLON)) THEN
100      Z_SPECCOMB(JLAY) = P_COLH2O(JLON,JLAY) + P_RAT_H2OCO2(JLON,JLAY)*P_COLCO2(JLON,JLAY)
101      Z_SPECPARM = P_COLH2O(JLON,JLAY)/Z_SPECCOMB(JLAY)
102      Z_SPECPARM=MIN(P_ONEMINUS,Z_SPECPARM)
103      Z_SPECMULT = 8._JPRB*(Z_SPECPARM)
104      JS = 1 + INT(Z_SPECMULT)
105      Z_FS = MOD(Z_SPECMULT,1.0_JPRB)
106
107      Z_SPECCOMB1(JLAY) = P_COLH2O(JLON,JLAY) + P_RAT_H2OCO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY)
108      Z_SPECPARM1 = P_COLH2O(JLON,JLAY)/Z_SPECCOMB1(JLAY)
109      IF (Z_SPECPARM1 >= P_ONEMINUS) Z_SPECPARM1 = P_ONEMINUS
110      Z_SPECMULT1 = 8._JPRB*(Z_SPECPARM1)
111      JS1 = 1 + INT(Z_SPECMULT1)
112      Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB)
113
114      Z_SPECCOMB_PLANCK(JLAY) = P_COLH2O(JLON,JLAY)+ZREFRAT_PLANCK_A*P_COLCO2(JLON,JLAY)
115      Z_SPECPARM_PLANCK = P_COLH2O(JLON,JLAY)/Z_SPECCOMB_PLANCK(JLAY)
116      IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS
117      Z_SPECMULT_PLANCK = 8._JPRB*Z_SPECPARM_PLANCK
118      JPL= 1 + INT(Z_SPECMULT_PLANCK)
119      Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB)
120
121      IND0(JLAY) = ((K_JP(JLON,JLAY)-1)*5+(K_JT(JLON,JLAY)-1))*NSPA(4) + JS
122      IND1(JLAY) = (K_JP(JLON,JLAY)*5+(K_JT1(JLON,JLAY)-1))*NSPA(4) + JS1
123      INDS(JLAY) = K_INDSELF(JLON,JLAY)
124      INDF(JLAY) = K_INDFOR(JLON,JLAY)
125
126    IF (Z_SPECPARM < 0.125_JPRB) THEN
127            ZP = Z_FS - 1
128            ZP4 = ZP**4
129            ZFK0 = ZP4
130            ZFK1 = 1 - ZP - 2.0_JPRB*ZP4
131            ZFK2 = ZP + ZP4
132            Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY)
133            Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY)
134            Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY)
135            Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY)
136            Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY)
137            Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY)
138         ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN
139            ZP = -Z_FS
140            ZP4 = ZP**4
141            ZFK0 = ZP4
142            ZFK1 = 1 - ZP - 2.0_JPRB*ZP4
143            ZFK2 = ZP + ZP4
144            Z_FAC000 = ZFK0*P_FAC00(JLON,JLAY)
145            Z_FAC100 = ZFK1*P_FAC00(JLON,JLAY)
146            Z_FAC200 = ZFK2*P_FAC00(JLON,JLAY)
147            Z_FAC010 = ZFK0*P_FAC10(JLON,JLAY)
148            Z_FAC110 = ZFK1*P_FAC10(JLON,JLAY)
149            Z_FAC210 = ZFK2*P_FAC10(JLON,JLAY)
150         ELSE
151            Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY)
152            Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY)
153            Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY)
154            Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY)
155         ENDIF
156         IF (Z_SPECPARM1 < 0.125_JPRB) THEN
157            ZP = Z_FS1 - 1
158            ZP4 = ZP**4
159            ZFK0 = ZP4
160            ZFK1 = 1 - ZP - 2.0_JPRB*ZP4
161            ZFK2 = ZP + ZP4
162            Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY)
163            Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY)
164            Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY)
165            Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY)
166            Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY)
167            Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY)
168         ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN
169            ZP = -Z_FS1
170            ZP4 = ZP**4
171            ZFK0 = ZP4
172            ZFK1 = 1 - ZP - 2.0_JPRB*ZP4
173            ZFK2 = ZP + ZP4
174            Z_FAC001 = ZFK0*P_FAC01(JLON,JLAY)
175            Z_FAC101 = ZFK1*P_FAC01(JLON,JLAY)
176            Z_FAC201 = ZFK2*P_FAC01(JLON,JLAY)
177            Z_FAC011 = ZFK0*P_FAC11(JLON,JLAY)
178            Z_FAC111 = ZFK1*P_FAC11(JLON,JLAY)
179            Z_FAC211 = ZFK2*P_FAC11(JLON,JLAY)
180         ELSE
181            Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY)
182            Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY)
183            Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY)
184            Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY)
185         ENDIF
186
187
188
189!-- DS_000515
190!CDIR UNROLL=NG4
191      DO IG = 1, NG4
192!-- DS_000515
193         ZTAUSELF = P_SELFFAC(JLON,JLAY)* (SELFREF(INDS(JLAY),IG) + P_SELFFRAC(JLON,JLAY) * &
194              &  (SELFREF(INDS(JLAY)+1,IG) - SELFREF(INDS(JLAY),IG)))
195         ZTAUFOR = P_FORFAC(JLON,JLAY) * (FORREF(INDF(JLAY),IG) + P_FORFRAC(JLON,JLAY) * &
196              &  (FORREF(INDF(JLAY)+1,IG) - FORREF(INDF(JLAY),IG)))
197
198            IF (Z_SPECPARM < 0.125_JPRB) THEN
199               ZTAU_MAJOR = Z_SPECCOMB(JLAY) * &
200                 &  (Z_FAC000 * ABSA(IND0(JLAY),IG) + &
201                 &  Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + &
202                 &  Z_FAC200 * ABSA(IND0(JLAY)+2,IG) + &
203                 &  Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + &
204                 &  Z_FAC110 * ABSA(IND0(JLAY)+10,IG) + &
205                 &  Z_FAC210 * ABSA(IND0(JLAY)+11,IG))
206            ELSEIF (Z_SPECPARM > 0.875_JPRB) THEN
207               ZTAU_MAJOR = Z_SPECCOMB(JLAY) * &
208                 &  (Z_FAC200 * ABSA(IND0(JLAY)-1,IG) + &
209                 &  Z_FAC100 * ABSA(IND0(JLAY),IG) + &
210                 &  Z_FAC000 * ABSA(IND0(JLAY)+1,IG) + &
211                 &  Z_FAC210 * ABSA(IND0(JLAY)+8,IG) + &
212                 &  Z_FAC110 * ABSA(IND0(JLAY)+9,IG) + &
213                 &  Z_FAC010 * ABSA(IND0(JLAY)+10,IG))
214            ELSE
215               ZTAU_MAJOR = Z_SPECCOMB(JLAY) * &
216                 &  (Z_FAC000 * ABSA(IND0(JLAY),IG) + &
217                 &  Z_FAC100 * ABSA(IND0(JLAY)+1,IG) + &
218                 &  Z_FAC010 * ABSA(IND0(JLAY)+9,IG) + &
219                 &  Z_FAC110 * ABSA(IND0(JLAY)+10,IG))
220            ENDIF
221
222            IF (Z_SPECPARM1 < 0.125_JPRB) THEN
223               ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * &
224                 &  (Z_FAC001 * ABSA(IND1(JLAY),IG) + &
225                 &  Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + &
226                 &  Z_FAC201 * ABSA(IND1(JLAY)+2,IG) + &
227                 &  Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + &
228                 &  Z_FAC111 * ABSA(IND1(JLAY)+10,IG) + &
229                 &  Z_FAC211 * ABSA(IND1(JLAY)+11,IG))
230            ELSEIF (Z_SPECPARM1 > 0.875_JPRB) THEN
231               ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * &
232                 &  (Z_FAC201 * ABSA(IND1(JLAY)-1,IG) + &
233                 &  Z_FAC101 * ABSA(IND1(JLAY),IG) + &
234                 &  Z_FAC001 * ABSA(IND1(JLAY)+1,IG) + &
235                 &  Z_FAC211 * ABSA(IND1(JLAY)+8,IG) + &
236                 &  Z_FAC111 * ABSA(IND1(JLAY)+9,IG) + &
237                 &  Z_FAC011 * ABSA(IND1(JLAY)+10,IG))
238            ELSE
239               ZTAU_MAJOR1 = Z_SPECCOMB1(JLAY) * &
240                 &  (Z_FAC001 * ABSA(IND1(JLAY),IG) +  &
241                 &  Z_FAC101 * ABSA(IND1(JLAY)+1,IG) + &
242                 &  Z_FAC011 * ABSA(IND1(JLAY)+9,IG) + &
243                 &  Z_FAC111 * ABSA(IND1(JLAY)+10,IG))
244            ENDIF
245
246
247            P_TAU(JLON,NGS3+IG,JLAY) = ZTAU_MAJOR + ZTAU_MAJOR1 &
248               & + ZTAUSELF + ZTAUFOR &
249               & + P_TAUAERL(JLON,JLAY,4) 
250            PFRAC(JLON,NGS3+IG,JLAY) = FRACREFA(IG,JPL) + Z_FPL *&
251               & (FRACREFA(IG,JPL+1) - FRACREFA(IG,JPL))
252      ENDDO
253    ENDIF
254
255    IF (JLAY > K_LAYTROP(JLON)) THEN
256      Z_SPECCOMB(JLAY) = P_COLO3(JLON,JLAY) + P_RAT_O3CO2(JLON,JLAY)*P_COLCO2(JLON,JLAY)
257      Z_SPECPARM = P_COLO3(JLON,JLAY)/Z_SPECCOMB(JLAY)
258      Z_SPECPARM=MIN(P_ONEMINUS,Z_SPECPARM)
259      Z_SPECMULT = 4._JPRB*(Z_SPECPARM)
260      JS = 1 + INT(Z_SPECMULT)
261      Z_FS = MOD(Z_SPECMULT,1.0_JPRB)
262
263      Z_SPECCOMB1(JLAY) = P_COLO3(JLON,JLAY) + P_RAT_O3CO2_1(JLON,JLAY)*P_COLCO2(JLON,JLAY)
264      Z_SPECPARM1 = P_COLO3(JLON,JLAY)/Z_SPECCOMB1(JLAY)
265      Z_SPECPARM1=MIN(P_ONEMINUS,Z_SPECPARM1)
266      Z_SPECMULT1 = 4._JPRB*(Z_SPECPARM1)
267      JS1 = 1 + INT(Z_SPECMULT1)
268      Z_FS1 = MOD(Z_SPECMULT1,1.0_JPRB)
269
270      Z_FAC000 = (1._JPRB - Z_FS) * P_FAC00(JLON,JLAY)
271      Z_FAC010 = (1._JPRB - Z_FS) * P_FAC10(JLON,JLAY)
272      Z_FAC100 = Z_FS * P_FAC00(JLON,JLAY)
273      Z_FAC110 = Z_FS * P_FAC10(JLON,JLAY)
274      Z_FAC001 = (1._JPRB - Z_FS1) * P_FAC01(JLON,JLAY)
275      Z_FAC011 = (1._JPRB - Z_FS1) * P_FAC11(JLON,JLAY)
276      Z_FAC101 = Z_FS1 * P_FAC01(JLON,JLAY)
277      Z_FAC111 = Z_FS1 * P_FAC11(JLON,JLAY)
278
279      Z_SPECCOMB_PLANCK(JLAY) = P_COLO3(JLON,JLAY)+ZREFRAT_PLANCK_B*P_COLCO2(JLON,JLAY)
280      Z_SPECPARM_PLANCK = P_COLO3(JLON,JLAY)/Z_SPECCOMB_PLANCK(JLAY)
281      IF (Z_SPECPARM_PLANCK >= P_ONEMINUS) Z_SPECPARM_PLANCK=P_ONEMINUS
282      Z_SPECMULT_PLANCK = 4._JPRB*Z_SPECPARM_PLANCK
283      JPL= 1 + INT(Z_SPECMULT_PLANCK)
284      Z_FPL = MOD(Z_SPECMULT_PLANCK,1.0_JPRB)
285
286      IND0(JLAY) = ((K_JP(JLON,JLAY)-13)*5+(K_JT(JLON,JLAY)-1))*NSPB(4) + JS
287      IND1(JLAY) = ((K_JP(JLON,JLAY)-12)*5+(K_JT1(JLON,JLAY)-1))*NSPB(4) + JS1
288
289
290!CDIR UNROLL=NG4
291      DO IG = 1, NG4
292        P_TAU(JLON,NGS3+IG,JLAY) = Z_SPECCOMB(JLAY) *   &
293          &(Z_FAC000 * ABSB(IND0(JLAY)  ,IG) +&
294          & Z_FAC100 * ABSB(IND0(JLAY)+1,IG) +&
295          & Z_FAC010 * ABSB(IND0(JLAY)+5,IG) +&
296          & Z_FAC110 * ABSB(IND0(JLAY)+6,IG)) +&
297          & Z_SPECCOMB1(JLAY) * &
298          & (Z_FAC001 * ABSB(IND1(JLAY)  ,IG) +&
299          & Z_FAC101 * ABSB(IND1(JLAY)+1,IG) +&
300          & Z_FAC011 * ABSB(IND1(JLAY)+5,IG) +&
301          & Z_FAC111 * ABSB(IND1(JLAY)+6,IG))+&
302          & P_TAUAERL(JLON,JLAY,4) 
303        PFRAC(JLON,NGS3+IG,JLAY) = FRACREFB(IG,JPL) + Z_FPL *&
304         & (FRACREFB(IG,JPL+1) - FRACREFB(IG,JPL)) 
305      ENDDO
306
307! Empirical modification to code to improve stratospheric cooling rates
308! for co2.  Revised to apply weighting for g-point reduction in this band.
309
310         P_TAU(JLON,NGS3+8,JLAY)=P_TAU(JLON,NGS3+8,JLAY)*0.92
311         P_TAU(JLON,NGS3+9,JLAY)=P_TAU(JLON,NGS3+9,JLAY)*0.88
312         P_TAU(JLON,NGS3+10,JLAY)=P_TAU(JLON,NGS3+10,JLAY)*1.07
313         P_TAU(JLON,NGS3+11,JLAY)=P_TAU(JLON,NGS3+11,JLAY)*1.1
314         P_TAU(JLON,NGS3+12,JLAY)=P_TAU(JLON,NGS3+12,JLAY)*0.99
315         P_TAU(JLON,NGS3+13,JLAY)=P_TAU(JLON,NGS3+13,JLAY)*0.88
316         P_TAU(JLON,NGS3+14,JLAY)=P_TAU(JLON,NGS3+14,JLAY)*0.943
317
318
319    ENDIF
320  ENDDO
321ENDDO
322
323IF (LHOOK) CALL DR_HOOK('RRTM_TAUMOL4',1,ZHOOK_HANDLE)
324
325END ASSOCIATE
326END SUBROUTINE RRTM_TAUMOL4
Note: See TracBrowser for help on using the repository browser.