| 1 | SUBROUTINE RRTM_PREPARE_GASES & |
|---|
| 2 | &( KIDIA, KFDIA, KLON, KLEV, & |
|---|
| 3 | & PAPH , PAP , & |
|---|
| 4 | & PTH , PT , & |
|---|
| 5 | & PQ , PCO2 , PCH4, PN2O , PNO2, PC11, PC12, PC22, PCL4, POZN, & |
|---|
| 6 | & PCOLDRY, PWBRODL, PWKL, PWX , & |
|---|
| 7 | & PAVEL , PTAVEL , PZ , PTZ , KREFLECT) |
|---|
| 8 | |
|---|
| 9 | !----compiled for Cray with -h nopattern---- |
|---|
| 10 | |
|---|
| 11 | ! Prepare the units of the gas concentrations for the longwave |
|---|
| 12 | ! RRTM gas absorption model. This file is adapted from |
|---|
| 13 | ! rrtm_ecrt_140gp_mcica.F90, written mainly by Jean-Jacques |
|---|
| 14 | ! Morcrette. |
|---|
| 15 | |
|---|
| 16 | !- Original |
|---|
| 17 | ! 2015-07-15 Robin Hogan |
|---|
| 18 | |
|---|
| 19 | !- Modifications |
|---|
| 20 | |
|---|
| 21 | USE PARKIND1 , ONLY : JPIM, JPRB |
|---|
| 22 | USE YOMHOOK , ONLY : LHOOK, DR_HOOK |
|---|
| 23 | USE YOMCST , ONLY : RG |
|---|
| 24 | USE PARRRTM , ONLY : JPBAND, JPXSEC, JPINPX |
|---|
| 25 | USE YOMDYNCORE,ONLY : RPLRG |
|---|
| 26 | |
|---|
| 27 | !------------------------------Arguments-------------------------------- |
|---|
| 28 | |
|---|
| 29 | IMPLICIT NONE |
|---|
| 30 | |
|---|
| 31 | INTEGER(KIND=JPIM),INTENT(IN) :: KLON! Number of atmospheres (longitudes) |
|---|
| 32 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV! Number of atmospheric layers |
|---|
| 33 | INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA, KFDIA |
|---|
| 34 | |
|---|
| 35 | REAL(KIND=JPRB) ,INTENT(IN) :: PAPH(KLON,KLEV+1) ! Interface pressures (Pa) |
|---|
| 36 | REAL(KIND=JPRB) ,INTENT(IN) :: PAP(KLON,KLEV) ! Layer pressures (Pa) |
|---|
| 37 | REAL(KIND=JPRB) ,INTENT(IN) :: PTH(KLON,KLEV+1) ! Interface temperatures (K) |
|---|
| 38 | REAL(KIND=JPRB) ,INTENT(IN) :: PT(KLON,KLEV) ! Layer temperature (K) |
|---|
| 39 | REAL(KIND=JPRB) ,INTENT(IN) :: PQ(KLON,KLEV) ! H2O specific humidity (mmr) |
|---|
| 40 | REAL(KIND=JPRB) ,INTENT(IN) :: PCO2(KLON,KLEV) ! CO2 mass mixing ratio |
|---|
| 41 | REAL(KIND=JPRB) ,INTENT(IN) :: PCH4(KLON,KLEV) ! CH4 mass mixing ratio |
|---|
| 42 | REAL(KIND=JPRB) ,INTENT(IN) :: PN2O(KLON,KLEV) ! N2O mass mixing ratio |
|---|
| 43 | REAL(KIND=JPRB) ,INTENT(IN) :: PNO2(KLON,KLEV) ! NO2 mass mixing ratio |
|---|
| 44 | REAL(KIND=JPRB) ,INTENT(IN) :: PC11(KLON,KLEV) ! CFC11 mass mixing ratio |
|---|
| 45 | REAL(KIND=JPRB) ,INTENT(IN) :: PC12(KLON,KLEV) ! CFC12 mass mixing ratio |
|---|
| 46 | REAL(KIND=JPRB) ,INTENT(IN) :: PC22(KLON,KLEV) ! CFC22 mass mixing ratio |
|---|
| 47 | REAL(KIND=JPRB) ,INTENT(IN) :: PCL4(KLON,KLEV) ! CCL4 mass mixing ratio |
|---|
| 48 | REAL(KIND=JPRB) ,INTENT(IN) :: POZN(KLON,KLEV) ! O3 mass mixing ratio |
|---|
| 49 | |
|---|
| 50 | REAL(KIND=JPRB) ,INTENT(OUT) :: PCOLDRY(KIDIA:KFDIA,KLEV) |
|---|
| 51 | REAL(KIND=JPRB) ,INTENT(OUT) :: PWBRODL(KIDIA:KFDIA,KLEV) ! broadening gas column density (mol/cm2) |
|---|
| 52 | REAL(KIND=JPRB) ,INTENT(OUT) :: PWKL(KIDIA:KFDIA,JPINPX,KLEV) |
|---|
| 53 | REAL(KIND=JPRB) ,INTENT(OUT) :: PWX(KIDIA:KFDIA,JPXSEC,KLEV) ! Amount of trace gases |
|---|
| 54 | REAL(KIND=JPRB) ,INTENT(OUT) :: PAVEL(KIDIA:KFDIA,KLEV) |
|---|
| 55 | REAL(KIND=JPRB) ,INTENT(OUT) :: PTAVEL(KIDIA:KFDIA,KLEV) |
|---|
| 56 | REAL(KIND=JPRB) ,INTENT(OUT) :: PZ(KIDIA:KFDIA,0:KLEV) |
|---|
| 57 | REAL(KIND=JPRB) ,INTENT(OUT) :: PTZ(KIDIA:KFDIA,0:KLEV) |
|---|
| 58 | INTEGER(KIND=JPIM),INTENT(OUT) :: KREFLECT(KIDIA:KFDIA) |
|---|
| 59 | |
|---|
| 60 | ! real rch4 ! CH4 mass mixing ratio |
|---|
| 61 | ! real rn2o ! N2O mass mixing ratio |
|---|
| 62 | ! real rcfc11 ! CFC11 mass mixing ratio |
|---|
| 63 | ! real rcfc12 ! CFC12 mass mixing ratio |
|---|
| 64 | ! real rcfc22 ! CFC22 mass mixing ratio |
|---|
| 65 | ! real rccl4 ! CCl4 mass mixing ratio |
|---|
| 66 | !- from PROFILE |
|---|
| 67 | !- from SURFACE |
|---|
| 68 | REAL(KIND=JPRB) :: ZAMD ! Effective molecular weight of dry air (g/mol) |
|---|
| 69 | REAL(KIND=JPRB) :: ZAMW ! Molecular weight of water vapor (g/mol) |
|---|
| 70 | REAL(KIND=JPRB) :: ZAMCO2 ! Molecular weight of carbon dioxide (g/mol) |
|---|
| 71 | REAL(KIND=JPRB) :: ZAMO ! Molecular weight of ozone (g/mol) |
|---|
| 72 | REAL(KIND=JPRB) :: ZAMCH4 ! Molecular weight of methane (g/mol) |
|---|
| 73 | REAL(KIND=JPRB) :: ZAMN2O ! Molecular weight of nitrous oxide (g/mol) |
|---|
| 74 | REAL(KIND=JPRB) :: ZAMC11 ! Molecular weight of CFC11 (g/mol) - CFCL3 |
|---|
| 75 | REAL(KIND=JPRB) :: ZAMC12 ! Molecular weight of CFC12 (g/mol) - CF2CL2 |
|---|
| 76 | REAL(KIND=JPRB) :: ZAMC22 ! Molecular weight of CFC22 (g/mol) - CHF2CL |
|---|
| 77 | REAL(KIND=JPRB) :: ZAMCL4 ! Molecular weight of CCl4 (g/mol) - CCL4 |
|---|
| 78 | REAL(KIND=JPRB) :: ZAVGDRO ! Avogadro's number (molecules/mole) |
|---|
| 79 | REAL(KIND=JPRB) :: ZGRAVIT ! Gravitational acceleration (cm/s**2) |
|---|
| 80 | |
|---|
| 81 | REAL(KIND=JPRB) :: ZSUMMOL |
|---|
| 82 | |
|---|
| 83 | ! Atomic weights for conversion from mass to volume mixing ratios; these |
|---|
| 84 | ! are the same values used in ECRT to assure accurate conversion to vmr |
|---|
| 85 | data ZAMD / 28.970_JPRB / |
|---|
| 86 | data ZAMW / 18.0154_JPRB / |
|---|
| 87 | data ZAMCO2 / 44.011_JPRB / |
|---|
| 88 | data ZAMO / 47.9982_JPRB / |
|---|
| 89 | data ZAMCH4 / 16.043_JPRB / |
|---|
| 90 | data ZAMN2O / 44.013_JPRB / |
|---|
| 91 | data ZAMC11 / 137.3686_JPRB / |
|---|
| 92 | data ZAMC12 / 120.9140_JPRB / |
|---|
| 93 | data ZAMC22 / 86.4690_JPRB / |
|---|
| 94 | data ZAMCL4 / 153.8230_JPRB / |
|---|
| 95 | data ZAVGDRO/ 6.02214E23_JPRB / |
|---|
| 96 | |
|---|
| 97 | INTEGER(KIND=JPIM) :: IATM, JMOL, IXMAX, J1, J2, JK, JL |
|---|
| 98 | INTEGER(KIND=JPIM) :: ITMOL, INXMOL |
|---|
| 99 | |
|---|
| 100 | REAL(KIND=JPRB) :: ZAMM |
|---|
| 101 | |
|---|
| 102 | REAL(KIND=JPRB) :: ZHOOK_HANDLE |
|---|
| 103 | |
|---|
| 104 | ! *** |
|---|
| 105 | |
|---|
| 106 | ! *** mji |
|---|
| 107 | ! Initialize all molecular amounts to zero here, |
|---|
| 108 | ! then pass ECRT amounts into RRTM arrays below. |
|---|
| 109 | |
|---|
| 110 | ! DATA ZWKL /MAXPRDW*0.0/ |
|---|
| 111 | ! DATA ZWX /MAXPROD*0.0/ |
|---|
| 112 | ! DATA KREFLECT /0/ |
|---|
| 113 | |
|---|
| 114 | ! Activate cross section molecules: |
|---|
| 115 | ! NXMOL - number of cross-sections input by user |
|---|
| 116 | ! IXINDX(I) - index of cross-section molecule corresponding to Ith |
|---|
| 117 | ! cross-section specified by user |
|---|
| 118 | ! = 0 -- not allowed in RRTM |
|---|
| 119 | ! = 1 -- CCL4 |
|---|
| 120 | ! = 2 -- CFC11 |
|---|
| 121 | ! = 3 -- CFC12 |
|---|
| 122 | ! = 4 -- CFC22 |
|---|
| 123 | ! DATA KXMOL /2/ |
|---|
| 124 | ! DATA KXINDX /0,2,3,0,31*0/ |
|---|
| 125 | |
|---|
| 126 | ! IREFLECT=KREFLECT |
|---|
| 127 | ! NXMOL=KXMOL |
|---|
| 128 | |
|---|
| 129 | ASSOCIATE(NFLEVG=>KLEV) |
|---|
| 130 | IF (LHOOK) CALL DR_HOOK('RRTM_PREPARE_GASES',0,ZHOOK_HANDLE) |
|---|
| 131 | |
|---|
| 132 | ZGRAVIT=(RG/RPLRG)*1.E2_JPRB |
|---|
| 133 | |
|---|
| 134 | DO JL = KIDIA, KFDIA |
|---|
| 135 | KREFLECT(JL)=0 |
|---|
| 136 | INXMOL=2 |
|---|
| 137 | ENDDO |
|---|
| 138 | |
|---|
| 139 | !DO J1=1,35 |
|---|
| 140 | ! IXINDX(J1)=0 |
|---|
| 141 | DO J2=1,KLEV |
|---|
| 142 | DO J1=1,35 |
|---|
| 143 | DO JL = KIDIA, KFDIA |
|---|
| 144 | PWKL(JL,J1,J2)=0.0_JPRB |
|---|
| 145 | ENDDO |
|---|
| 146 | ENDDO |
|---|
| 147 | ENDDO |
|---|
| 148 | !IXINDX(2)=2 |
|---|
| 149 | !IXINDX(3)=3 |
|---|
| 150 | |
|---|
| 151 | ! Set parameters needed for RRTM execution: |
|---|
| 152 | IATM = 0 |
|---|
| 153 | ! IXSECT = 1 |
|---|
| 154 | ! NUMANGS = 0 |
|---|
| 155 | ! IOUT = -1 |
|---|
| 156 | IXMAX = 4 |
|---|
| 157 | |
|---|
| 158 | DO JL = KIDIA, KFDIA |
|---|
| 159 | ! Install ECRT arrays into RRTM arrays for pressure, temperature, |
|---|
| 160 | ! and molecular amounts. Pressures are converted from Pascals |
|---|
| 161 | ! (ECRT) to mb (RRTM). H2O, CO2, O3 and trace gas amounts are |
|---|
| 162 | ! converted from mass mixing ratio to volume mixing ratio. CO2 |
|---|
| 163 | ! converted with same dry air and CO2 molecular weights used in |
|---|
| 164 | ! ECRT to assure correct conversion back to the proper CO2 vmr. |
|---|
| 165 | ! The dry air column COLDRY (in molec/cm2) is calculated from |
|---|
| 166 | ! the level pressures PZ (in mb) based on the hydrostatic equation |
|---|
| 167 | ! and includes a correction to account for H2O in the layer. The |
|---|
| 168 | ! molecular weight of moist air (amm) is calculated for each layer. |
|---|
| 169 | ! Note: RRTM levels count from bottom to top, while the ECRT input |
|---|
| 170 | ! variables count from the top down and must be reversed |
|---|
| 171 | ITMOL = 7 |
|---|
| 172 | PZ(JL,0) = PAPH(JL,KLEV+1)/100._JPRB |
|---|
| 173 | PTZ(JL,0) = PTH(JL,KLEV+1) |
|---|
| 174 | ENDDO |
|---|
| 175 | |
|---|
| 176 | DO JK = 1, KLEV |
|---|
| 177 | DO JL = KIDIA, KFDIA |
|---|
| 178 | PAVEL(JL,JK) = PAP(JL,KLEV-JK+1)/100._JPRB |
|---|
| 179 | PTAVEL(JL,JK) = PT(JL,KLEV-JK+1) |
|---|
| 180 | PZ(JL,JK) = PAPH(JL,KLEV-JK+1)/100._JPRB |
|---|
| 181 | PTZ(JL,JK) = PTH(JL,KLEV-JK+1) |
|---|
| 182 | PWKL(JL,1,JK) = PQ(JL,KLEV-JK+1)*ZAMD/ZAMW |
|---|
| 183 | PWKL(JL,2,JK) = PCO2(JL,KLEV-JK+1)*ZAMD/ZAMCO2 |
|---|
| 184 | PWKL(JL,3,JK) = POZN(JL,KLEV-JK+1)*ZAMD/ZAMO |
|---|
| 185 | PWKL(JL,4,JK) = PN2O(JL,KLEV-JK+1)*ZAMD/ZAMN2O |
|---|
| 186 | PWKL(JL,6,JK) = PCH4(JL,KLEV-JK+1)*ZAMD/ZAMCH4 |
|---|
| 187 | PWKL(JL,7,JK) = 0.209488_JPRB |
|---|
| 188 | ZAMM = (1.0_JPRB-PWKL(JL,1,JK))*ZAMD + PWKL(JL,1,JK)*ZAMW |
|---|
| 189 | PCOLDRY(JL,JK) = (PZ(JL,JK-1)-PZ(JL,JK))*1.E3_JPRB*ZAVGDRO/(ZGRAVIT*ZAMM*(1.0_JPRB+PWKL(JL,1,JK))) |
|---|
| 190 | ENDDO |
|---|
| 191 | ENDDO |
|---|
| 192 | |
|---|
| 193 | DO J2=1,KLEV |
|---|
| 194 | DO J1=1,JPXSEC |
|---|
| 195 | DO JL = KIDIA, KFDIA |
|---|
| 196 | PWX(JL,J1,J2)=0.0_JPRB |
|---|
| 197 | ENDDO |
|---|
| 198 | ENDDO |
|---|
| 199 | ENDDO |
|---|
| 200 | |
|---|
| 201 | DO JK = 1, KLEV |
|---|
| 202 | DO JL = KIDIA, KFDIA |
|---|
| 203 | !- Set cross section molecule amounts from ECRT; convert to vmr |
|---|
| 204 | PWX(JL,1,JK) = PCL4(JL,KLEV-JK+1) * ZAMD/ZAMCL4 |
|---|
| 205 | PWX(JL,2,JK) = PC11(JL,KLEV-JK+1) * ZAMD/ZAMC11 |
|---|
| 206 | PWX(JL,3,JK) = PC12(JL,KLEV-JK+1) * ZAMD/ZAMC12 |
|---|
| 207 | PWX(JL,4,JK) = PC22(JL,KLEV-JK+1) * ZAMD/ZAMC22 |
|---|
| 208 | PWX(JL,1,JK) = PCOLDRY(JL,JK) * PWX(JL,1,JK) * 1.E-20_JPRB |
|---|
| 209 | PWX(JL,2,JK) = PCOLDRY(JL,JK) * PWX(JL,2,JK) * 1.E-20_JPRB |
|---|
| 210 | PWX(JL,3,JK) = PCOLDRY(JL,JK) * PWX(JL,3,JK) * 1.E-20_JPRB |
|---|
| 211 | PWX(JL,4,JK) = PCOLDRY(JL,JK) * PWX(JL,4,JK) * 1.E-20_JPRB |
|---|
| 212 | |
|---|
| 213 | !- Here, all molecules in WKL and WX are in volume mixing ratio; convert to |
|---|
| 214 | ! molec/cm2 based on COLDRY for use in RRTM |
|---|
| 215 | |
|---|
| 216 | !CDIR UNROLL=6 |
|---|
| 217 | ZSUMMOL = 0.0_JPRB |
|---|
| 218 | !AB broadening gases |
|---|
| 219 | DO JMOL = 2, ITMOL |
|---|
| 220 | ZSUMMOL = ZSUMMOL + PWKL(JL,JMOL,JK) |
|---|
| 221 | ENDDO |
|---|
| 222 | PWBRODL(JL,JK) = PCOLDRY(JL,JK) * (1._JPRB - ZSUMMOL) |
|---|
| 223 | DO JMOL = 1, ITMOL |
|---|
| 224 | PWKL(JL,JMOL,JK) = PCOLDRY(JL,JK) * PWKL(JL,JMOL,JK) |
|---|
| 225 | ENDDO |
|---|
| 226 | ENDDO |
|---|
| 227 | ENDDO |
|---|
| 228 | |
|---|
| 229 | ! ------------------------------------------------------------------ |
|---|
| 230 | IF (LHOOK) CALL DR_HOOK('RRTM_PREPARE_GASES',1,ZHOOK_HANDLE) |
|---|
| 231 | END ASSOCIATE |
|---|
| 232 | END SUBROUTINE RRTM_PREPARE_GASES |
|---|