| 1 | ! AI mars 2021 |
|---|
| 2 | ! ====================== Interface between ECRAD and LMDZ ==================== |
|---|
| 3 | ! radiation_scheme.F90 appelee dans radlwsw_m.F90 si iflag_rttm = 2 |
|---|
| 4 | ! revoir toutes les parties avec "AI ATTENTION" |
|---|
| 5 | ! Mars 2021 : |
|---|
| 6 | ! - Revoir toutes les parties commentees AI ATTENTION |
|---|
| 7 | ! 1. Traitement des aerosols |
|---|
| 8 | ! 2. Verifier les parametres times issus de LMDZ (calcul issed) |
|---|
| 9 | ! 3. Configuration a partir de namelist |
|---|
| 10 | ! 4. frac_std = 0.75 |
|---|
| 11 | ! Juillet 2023 : |
|---|
| 12 | ! |
|---|
| 13 | ! ============================================================================ |
|---|
| 14 | |
|---|
| 15 | SUBROUTINE RADIATION_SCHEME & |
|---|
| 16 | ! Inputs |
|---|
| 17 | & (KIDIA, KFDIA, KLON, KLEV, KAEROSOL, NSW, & |
|---|
| 18 | & namelist_file, ok_3Deffect, IDAY, TIME, & |
|---|
| 19 | & PSOLAR_IRRADIANCE, & |
|---|
| 20 | & PMU0, PTEMPERATURE_SKIN, & |
|---|
| 21 | & PALBEDO_DIF, PALBEDO_DIR, & |
|---|
| 22 | & PEMIS, PEMIS_WINDOW, & |
|---|
| 23 | & PGELAM, PGEMU, & |
|---|
| 24 | & PPRESSURE_H, PTEMPERATURE_H, PQ, PQSAT, & |
|---|
| 25 | & PCO2, PCH4, PN2O, PNO2, PCFC11, PCFC12, PHCFC22, & |
|---|
| 26 | & PCCL4, PO3, PO2, & |
|---|
| 27 | & PCLOUD_FRAC, PQ_LIQUID, PQ_ICE, PQ_SNOW, & |
|---|
| 28 | & ZRE_LIQUID_UM, ZRE_ICE_UM, & |
|---|
| 29 | & PAEROSOL_OLD, PAEROSOL, & |
|---|
| 30 | ! Outputs |
|---|
| 31 | & PFLUX_SW, PFLUX_LW, PFLUX_SW_CLEAR, PFLUX_LW_CLEAR, & |
|---|
| 32 | & PFLUX_SW_DN, PFLUX_LW_DN, PFLUX_SW_DN_CLEAR, PFLUX_LW_DN_CLEAR, & |
|---|
| 33 | & PFLUX_SW_UP, PFLUX_LW_UP, PFLUX_SW_UP_CLEAR, PFLUX_LW_UP_CLEAR, & |
|---|
| 34 | & PFLUX_DIR, PFLUX_DIR_CLEAR, PFLUX_DIR_INTO_SUN, & |
|---|
| 35 | & PFLUX_UV, PFLUX_PAR, PFLUX_PAR_CLEAR, & |
|---|
| 36 | & PEMIS_OUT, PLWDERIVATIVE, & |
|---|
| 37 | & PSWDIFFUSEBAND, PSWDIRECTBAND) |
|---|
| 38 | |
|---|
| 39 | |
|---|
| 40 | ! RADIATION_SCHEME - Interface to modular radiation scheme |
|---|
| 41 | ! |
|---|
| 42 | ! (C) Copyright 2015- ECMWF. |
|---|
| 43 | ! |
|---|
| 44 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
|---|
| 45 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
|---|
| 46 | ! |
|---|
| 47 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
|---|
| 48 | ! granted to it by virtue of its status as an intergovernmental organisation |
|---|
| 49 | ! nor does it submit to any jurisdiction. |
|---|
| 50 | ! |
|---|
| 51 | ! PURPOSE |
|---|
| 52 | ! ------- |
|---|
| 53 | ! The modular radiation scheme is contained in a separate |
|---|
| 54 | ! library. This routine puts the the IFS arrays into appropriate |
|---|
| 55 | ! objects, computing the additional data that is required, and sends |
|---|
| 56 | ! it to the radiation scheme. It returns net fluxes and surface |
|---|
| 57 | ! flux components needed by the rest of the model. |
|---|
| 58 | ! |
|---|
| 59 | ! Lower case is used for variables and types taken from the |
|---|
| 60 | ! radiation library |
|---|
| 61 | ! |
|---|
| 62 | ! INTERFACE |
|---|
| 63 | ! --------- |
|---|
| 64 | ! RADIATION_SCHEME is called from RADLSWR. The |
|---|
| 65 | ! SETUP_RADIATION_SCHEME routine (in the RADIATION_SETUP module) |
|---|
| 66 | ! should have been run first. |
|---|
| 67 | ! |
|---|
| 68 | ! AUTHOR |
|---|
| 69 | ! ------ |
|---|
| 70 | ! Robin Hogan, ECMWF |
|---|
| 71 | ! Original: 2015-09-16 |
|---|
| 72 | ! |
|---|
| 73 | ! MODIFICATIONS |
|---|
| 74 | ! ------------- |
|---|
| 75 | ! |
|---|
| 76 | ! TO DO |
|---|
| 77 | ! ----- |
|---|
| 78 | ! |
|---|
| 79 | !----------------------------------------------------------------------- |
|---|
| 80 | |
|---|
| 81 | ! Modules from ifs or ifsaux libraries |
|---|
| 82 | USE PARKIND1 , ONLY : JPIM, JPRB |
|---|
| 83 | USE YOMHOOK , ONLY : LHOOK, DR_HOOK |
|---|
| 84 | USE RADIATION_SETUP |
|---|
| 85 | USE YOMCST , ONLY : RSIGMA ! Stefan-Boltzmann constant |
|---|
| 86 | USE RADIATION_SETUP, ONLY : SETUP_RADIATION_SCHEME, & |
|---|
| 87 | & config_type, driver_config_type, & |
|---|
| 88 | & NWEIGHT_UV, IBAND_UV, WEIGHT_UV, & |
|---|
| 89 | & NWEIGHT_PAR, IBAND_PAR, WEIGHT_PAR, & |
|---|
| 90 | & ITYPE_TROP_BG_AER, TROP_BG_AER_MASS_EXT, & |
|---|
| 91 | & ITYPE_STRAT_BG_AER, STRAT_BG_AER_MASS_EXT, & |
|---|
| 92 | & ISolverSpartacus |
|---|
| 93 | |
|---|
| 94 | ! Modules from radiation library |
|---|
| 95 | USE radiation_single_level, ONLY : single_level_type |
|---|
| 96 | USE radiation_thermodynamics, ONLY : thermodynamics_type |
|---|
| 97 | USE radiation_gas |
|---|
| 98 | USE radiation_cloud, ONLY : cloud_type |
|---|
| 99 | USE radiation_aerosol, ONLY : aerosol_type |
|---|
| 100 | USE radiation_flux, ONLY : flux_type |
|---|
| 101 | USE radiation_interface, ONLY : radiation, set_gas_units |
|---|
| 102 | USE radiation_save, ONLY : save_inputs |
|---|
| 103 | |
|---|
| 104 | USE mod_phys_lmdz_para |
|---|
| 105 | |
|---|
| 106 | IMPLICIT NONE |
|---|
| 107 | |
|---|
| 108 | ! INPUT ARGUMENTS |
|---|
| 109 | ! *** Array dimensions and ranges |
|---|
| 110 | INTEGER(KIND=JPIM),INTENT(IN) :: KIDIA ! Start column to process |
|---|
| 111 | INTEGER(KIND=JPIM),INTENT(IN) :: KFDIA ! End column to process |
|---|
| 112 | !INTEGER, INTENT(IN) :: KIDIA, KFDIA |
|---|
| 113 | INTEGER(KIND=JPIM),INTENT(IN) :: KLON ! Number of columns |
|---|
| 114 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV ! Number of levels |
|---|
| 115 | !INTEGER, INTENT(IN) :: KLON, KLEV |
|---|
| 116 | !INTEGER(KIND=JPIM),INTENT(IN) :: KAEROLMDZ ! Number of aerosol types |
|---|
| 117 | INTEGER(KIND=JPIM),INTENT(IN) :: KAEROSOL |
|---|
| 118 | INTEGER(KIND=JPIM),INTENT(IN) :: NSW ! Numbe of bands |
|---|
| 119 | |
|---|
| 120 | ! AI ATTENTION |
|---|
| 121 | !INTEGER, PARAMETER :: KAEROSOL = 12 |
|---|
| 122 | |
|---|
| 123 | ! *** Single-level fields |
|---|
| 124 | REAL(KIND=JPRB), INTENT(IN) :: PSOLAR_IRRADIANCE ! (W m-2) |
|---|
| 125 | REAL(KIND=JPRB), INTENT(IN) :: PMU0(KLON) ! Cosine of solar zenith ang |
|---|
| 126 | REAL(KIND=JPRB), INTENT(IN) :: PTEMPERATURE_SKIN(KLON) ! (K) |
|---|
| 127 | ! Diffuse and direct components of surface shortwave albedo |
|---|
| 128 | !REAL(KIND=JPRB), INTENT(IN) :: PALBEDO_DIF(KLON,YRERAD%NSW) |
|---|
| 129 | !REAL(KIND=JPRB), INTENT(IN) :: PALBEDO_DIR(KLON,YRERAD%NSW) |
|---|
| 130 | REAL(KIND=JPRB), INTENT(IN) :: PALBEDO_DIF(KLON,NSW) |
|---|
| 131 | REAL(KIND=JPRB), INTENT(IN) :: PALBEDO_DIR(KLON,NSW) |
|---|
| 132 | ! Longwave emissivity outside and inside the window region |
|---|
| 133 | REAL(KIND=JPRB), INTENT(IN) :: PEMIS(KLON) |
|---|
| 134 | REAL(KIND=JPRB), INTENT(IN) :: PEMIS_WINDOW(KLON) |
|---|
| 135 | ! Longitude (radians), sine of latitude |
|---|
| 136 | REAL(KIND=JPRB), INTENT(IN) :: PGELAM(KLON) |
|---|
| 137 | REAL(KIND=JPRB), INTENT(IN) :: PGEMU(KLON) |
|---|
| 138 | ! Land-sea mask |
|---|
| 139 | !REAL(KIND=JPRB), INTENT(IN) :: PLAND_SEA_MASK(KLON) |
|---|
| 140 | |
|---|
| 141 | ! *** Variables on half levels |
|---|
| 142 | REAL(KIND=JPRB), INTENT(IN) :: PPRESSURE_H(KLON,KLEV+1) ! (Pa) |
|---|
| 143 | REAL(KIND=JPRB), INTENT(IN) :: PTEMPERATURE_H(KLON,KLEV+1) ! (K) |
|---|
| 144 | |
|---|
| 145 | ! *** Gas mass mixing ratios on full levels |
|---|
| 146 | REAL(KIND=JPRB), INTENT(IN) :: PQ(KLON,KLEV) |
|---|
| 147 | ! AI |
|---|
| 148 | REAL(KIND=JPRB), INTENT(IN) :: PQSAT(KLON,KLEV) |
|---|
| 149 | REAL(KIND=JPRB), INTENT(IN) :: PCO2 |
|---|
| 150 | REAL(KIND=JPRB), INTENT(IN) :: PCH4 |
|---|
| 151 | REAL(KIND=JPRB), INTENT(IN) :: PN2O |
|---|
| 152 | REAL(KIND=JPRB), INTENT(IN) :: PNO2 |
|---|
| 153 | REAL(KIND=JPRB), INTENT(IN) :: PCFC11 |
|---|
| 154 | REAL(KIND=JPRB), INTENT(IN) :: PCFC12 |
|---|
| 155 | REAL(KIND=JPRB), INTENT(IN) :: PHCFC22 |
|---|
| 156 | REAL(KIND=JPRB), INTENT(IN) :: PCCL4 |
|---|
| 157 | REAL(KIND=JPRB), INTENT(IN) :: PO3(KLON,KLEV) ! AI (kg/kg) ATTENTION (Pa*kg/kg) |
|---|
| 158 | REAL(KIND=JPRB), INTENT(IN) :: PO2 |
|---|
| 159 | |
|---|
| 160 | ! *** Cloud fraction and hydrometeor mass mixing ratios |
|---|
| 161 | REAL(KIND=JPRB), INTENT(IN) :: PCLOUD_FRAC(KLON,KLEV) |
|---|
| 162 | REAL(KIND=JPRB), INTENT(IN) :: PQ_LIQUID(KLON,KLEV) |
|---|
| 163 | REAL(KIND=JPRB), INTENT(IN) :: PQ_ICE(KLON,KLEV) |
|---|
| 164 | !REAL(KIND=JPRB), INTENT(IN) :: PQ_RAIN(KLON,KLEV) |
|---|
| 165 | REAL(KIND=JPRB), INTENT(IN) :: PQ_SNOW(KLON,KLEV) |
|---|
| 166 | |
|---|
| 167 | ! *** Aerosol mass mixing ratios |
|---|
| 168 | REAL(KIND=JPRB), INTENT(IN) :: PAEROSOL_OLD(KLON,6,KLEV) |
|---|
| 169 | REAL(KIND=JPRB), INTENT(IN) :: PAEROSOL(KLON,KLEV,KAEROSOL) |
|---|
| 170 | |
|---|
| 171 | !REAL(KIND=JPRB), INTENT(IN) :: PCCN_LAND(KLON) |
|---|
| 172 | !REAL(KIND=JPRB), INTENT(IN) :: PCCN_SEA(KLON) |
|---|
| 173 | |
|---|
| 174 | !AI mars 2021 |
|---|
| 175 | INTEGER(KIND=JPIM), INTENT(IN) :: IDAY |
|---|
| 176 | REAL(KIND=JPRB), INTENT(IN) :: TIME |
|---|
| 177 | |
|---|
| 178 | |
|---|
| 179 | ! OUTPUT ARGUMENTS |
|---|
| 180 | |
|---|
| 181 | ! *** Net fluxes on half-levels (W m-2) |
|---|
| 182 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW(KLON,KLEV+1) |
|---|
| 183 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW(KLON,KLEV+1) |
|---|
| 184 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_CLEAR(KLON,KLEV+1) |
|---|
| 185 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_CLEAR(KLON,KLEV+1) |
|---|
| 186 | |
|---|
| 187 | !*** DN and UP flux on half-levels (W m-2) |
|---|
| 188 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_DN(KLON,KLEV+1) |
|---|
| 189 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_DN(KLON,KLEV+1) |
|---|
| 190 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_DN_CLEAR(KLON,KLEV+1) |
|---|
| 191 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_DN_CLEAR(KLON,KLEV+1) |
|---|
| 192 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_UP(KLON,KLEV+1) |
|---|
| 193 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_UP(KLON,KLEV+1) |
|---|
| 194 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_SW_UP_CLEAR(KLON,KLEV+1) |
|---|
| 195 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_LW_UP_CLEAR(KLON,KLEV+1) |
|---|
| 196 | |
|---|
| 197 | ! Direct component of surface flux into horizontal plane |
|---|
| 198 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_DIR(KLON) |
|---|
| 199 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_DIR_CLEAR(KLON) |
|---|
| 200 | ! As PFLUX_DIR but into a plane perpendicular to the sun |
|---|
| 201 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_DIR_INTO_SUN(KLON) |
|---|
| 202 | |
|---|
| 203 | ! *** Ultraviolet and photosynthetically active radiation (W m-2) |
|---|
| 204 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_UV(KLON) |
|---|
| 205 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_PAR(KLON) |
|---|
| 206 | REAL(KIND=JPRB), INTENT(OUT) :: PFLUX_PAR_CLEAR(KLON) |
|---|
| 207 | |
|---|
| 208 | ! Diagnosed longwave surface emissivity across the whole spectrum |
|---|
| 209 | REAL(KIND=JPRB), INTENT(OUT) :: PEMIS_OUT(KLON) |
|---|
| 210 | |
|---|
| 211 | ! Partial derivative of total-sky longwave upward flux at each level |
|---|
| 212 | ! with respect to upward flux at surface, used to correct heating |
|---|
| 213 | ! rates at gridpoints/timesteps between calls to the full radiation |
|---|
| 214 | ! scheme. Note that this version uses the convention of level index |
|---|
| 215 | ! increasing downwards, unlike the local variable ZLwDerivative that |
|---|
| 216 | ! is returned from the LW radiation scheme. |
|---|
| 217 | REAL(KIND=JPRB), INTENT(OUT) :: PLWDERIVATIVE(KLON,KLEV+1) |
|---|
| 218 | |
|---|
| 219 | ! Surface diffuse and direct downwelling shortwave flux in each |
|---|
| 220 | ! shortwave albedo band, used in RADINTG to update the surface fluxes |
|---|
| 221 | ! accounting for high-resolution albedo information |
|---|
| 222 | REAL(KIND=JPRB), INTENT(OUT) :: PSWDIFFUSEBAND(KLON,NSW) |
|---|
| 223 | REAL(KIND=JPRB), INTENT(OUT) :: PSWDIRECTBAND (KLON,NSW) |
|---|
| 224 | |
|---|
| 225 | ! LOCAL VARIABLES |
|---|
| 226 | ! AI ATTENTION |
|---|
| 227 | type(config_type),save :: rad_config |
|---|
| 228 | !!$OMP THREADPRIVATE(rad_config) |
|---|
| 229 | type(driver_config_type),save :: driver_config |
|---|
| 230 | !!$OMP THREADPRIVATE(driver_config) |
|---|
| 231 | !type(config_type) :: rad_config |
|---|
| 232 | !type(driver_config_type) :: driver_config |
|---|
| 233 | TYPE(single_level_type) :: single_level |
|---|
| 234 | TYPE(thermodynamics_type) :: thermodynamics |
|---|
| 235 | TYPE(gas_type) :: gas |
|---|
| 236 | TYPE(cloud_type) :: cloud |
|---|
| 237 | TYPE(aerosol_type) :: aerosol |
|---|
| 238 | TYPE(flux_type) :: flux |
|---|
| 239 | |
|---|
| 240 | ! Mass mixing ratio of ozone (kg/kg) |
|---|
| 241 | REAL(KIND=JPRB) :: ZO3(KLON,KLEV) |
|---|
| 242 | |
|---|
| 243 | ! Cloud effective radii in microns |
|---|
| 244 | REAL(KIND=JPRB) :: ZRE_LIQUID_UM(KLON,KLEV) |
|---|
| 245 | REAL(KIND=JPRB) :: ZRE_ICE_UM(KLON,KLEV) |
|---|
| 246 | |
|---|
| 247 | ! Cloud overlap decorrelation length for cloud boundaries in km |
|---|
| 248 | REAL(KIND=JPRB) :: ZDECORR_LEN_KM(KLON) |
|---|
| 249 | |
|---|
| 250 | ! Ratio of cloud overlap decorrelation length for cloud water |
|---|
| 251 | ! inhomogeneities to that for cloud boundaries (typically 0.5) |
|---|
| 252 | !REAL(KIND=JPRB) :: ZDECORR_LEN_RATIO = 0.5_jprb |
|---|
| 253 | |
|---|
| 254 | ! The surface net longwave flux if the surface was a black body, used |
|---|
| 255 | ! to compute the effective broadband surface emissivity |
|---|
| 256 | REAL(KIND=JPRB) :: ZBLACK_BODY_NET_LW(KIDIA:KFDIA) |
|---|
| 257 | |
|---|
| 258 | ! Layer mass in kg m-2 |
|---|
| 259 | REAL(KIND=JPRB) :: ZLAYER_MASS(KIDIA:KFDIA,KLEV) |
|---|
| 260 | |
|---|
| 261 | ! Time integers |
|---|
| 262 | INTEGER :: ITIM |
|---|
| 263 | |
|---|
| 264 | ! Loop indices |
|---|
| 265 | INTEGER :: JLON, JLEV, JBAND, JB_ALBEDO, JAER |
|---|
| 266 | |
|---|
| 267 | REAL(KIND=JPRB) :: ZHOOK_HANDLE |
|---|
| 268 | |
|---|
| 269 | ! AI ATTENTION traitement aerosols |
|---|
| 270 | INTEGER, PARAMETER :: NAERMACC = 1 |
|---|
| 271 | |
|---|
| 272 | ! Name of file names specified on command line |
|---|
| 273 | character(len=512) :: namelist_file |
|---|
| 274 | |
|---|
| 275 | logical :: loutput=.true. |
|---|
| 276 | logical :: lprint_input=.false. |
|---|
| 277 | logical :: lprint_config=.true. |
|---|
| 278 | logical, save :: debut_ecrad=.true. |
|---|
| 279 | !$OMP THREADPRIVATE(debut_ecrad) |
|---|
| 280 | integer, save :: itap_ecrad=1 |
|---|
| 281 | logical :: ok_3Deffect |
|---|
| 282 | |
|---|
| 283 | IF (LHOOK) CALL DR_HOOK('RADIATION_SCHEME',0,ZHOOK_HANDLE) |
|---|
| 284 | |
|---|
| 285 | ! A.I juillet 2023 : |
|---|
| 286 | ! Initialisation dans radiation_setup au 1er passage dans Ecrad |
|---|
| 287 | !$OMP MASTER |
|---|
| 288 | if (.not.ok_3Deffect) then |
|---|
| 289 | if (debut_ecrad) then |
|---|
| 290 | call SETUP_RADIATION_SCHEME(loutput,namelist_file,rad_config,driver_config) |
|---|
| 291 | debut_ecrad=.false. |
|---|
| 292 | endif |
|---|
| 293 | else |
|---|
| 294 | call SETUP_RADIATION_SCHEME(loutput,namelist_file,rad_config,driver_config) |
|---|
| 295 | endif |
|---|
| 296 | !$OMP END MASTER |
|---|
| 297 | !$OMP BARRIER |
|---|
| 298 | ! Fin partie initialisation et configuration |
|---|
| 299 | |
|---|
| 300 | !AI juillet 2023 : verif des param de config : |
|---|
| 301 | if (lprint_config) then |
|---|
| 302 | ! IF (is_master) THEN |
|---|
| 303 | print*,'Parametres de configuration de ecrad, etape ',itap_ecrad |
|---|
| 304 | print*,'Entree dans radiation_scheme' |
|---|
| 305 | print*,'ok_3Deffect = ',ok_3Deffect |
|---|
| 306 | print*,'Fichier namelist = ',namelist_file |
|---|
| 307 | |
|---|
| 308 | print*,'do_sw, do_lw, do_sw_direct, do_3d_effects = ', & |
|---|
| 309 | rad_config%do_sw, rad_config%do_lw, rad_config%do_sw_direct, rad_config%do_3d_effects |
|---|
| 310 | print*,'do_lw_side_emissivity, do_clear, do_save_radiative_properties = ', & |
|---|
| 311 | rad_config%do_lw_side_emissivity, rad_config%do_clear, rad_config%do_save_radiative_properties |
|---|
| 312 | ! print*,'sw_entrapment_name, sw_encroachment_name = ', & |
|---|
| 313 | ! rad_config%sw_entrapment_name, rad_config%sw_encroachment_name |
|---|
| 314 | print*,'do_3d_lw_multilayer_effects, do_fu_lw_ice_optics_bug = ', & |
|---|
| 315 | rad_config%do_3d_lw_multilayer_effects, rad_config%do_fu_lw_ice_optics_bug |
|---|
| 316 | print*,'do_save_spectral_flux, do_save_gpoint_flux = ', & |
|---|
| 317 | rad_config%do_save_spectral_flux, rad_config%do_save_gpoint_flux |
|---|
| 318 | print*,'do_surface_sw_spectral_flux, do_lw_derivatives = ', & |
|---|
| 319 | rad_config%do_surface_sw_spectral_flux, rad_config%do_lw_derivatives |
|---|
| 320 | print*,'do_lw_aerosol_scattering, do_lw_cloud_scattering = ', & |
|---|
| 321 | rad_config%do_lw_aerosol_scattering, rad_config%do_lw_cloud_scattering |
|---|
| 322 | print*, 'nregions, i_gas_model = ', & |
|---|
| 323 | rad_config%nregions, rad_config%i_gas_model |
|---|
| 324 | ! print*, 'ice_optics_override_file_name, liq_optics_override_file_name = ', & |
|---|
| 325 | ! rad_config%ice_optics_override_file_name, rad_config%liq_optics_override_file_name |
|---|
| 326 | ! print*, 'aerosol_optics_override_file_name, cloud_pdf_override_file_name = ', & |
|---|
| 327 | ! rad_config%aerosol_optics_override_file_name, rad_config%cloud_pdf_override_file_name |
|---|
| 328 | ! print*, 'gas_optics_sw_override_file_name, gas_optics_lw_override_file_name = ', & |
|---|
| 329 | ! rad_config%gas_optics_sw_override_file_name, rad_config%gas_optics_lw_override_file_name |
|---|
| 330 | print*, 'i_liq_model, i_ice_model, max_3d_transfer_rate = ', & |
|---|
| 331 | rad_config%i_liq_model, rad_config%i_ice_model, rad_config%max_3d_transfer_rate |
|---|
| 332 | print*, 'min_cloud_effective_size, overhang_factor = ', & |
|---|
| 333 | rad_config%min_cloud_effective_size, rad_config%overhang_factor |
|---|
| 334 | print*, 'use_canopy_full_spectrum_sw, use_canopy_full_spectrum_lw = ', & |
|---|
| 335 | rad_config%use_canopy_full_spectrum_sw, rad_config%use_canopy_full_spectrum_lw |
|---|
| 336 | print*, 'do_canopy_fluxes_sw, do_canopy_fluxes_lw = ', & |
|---|
| 337 | rad_config%do_canopy_fluxes_sw, rad_config%do_canopy_fluxes_lw |
|---|
| 338 | print*, 'do_canopy_gases_sw, do_canopy_gases_lw = ', & |
|---|
| 339 | rad_config%do_canopy_gases_sw, rad_config%do_canopy_gases_lw |
|---|
| 340 | print*, 'use_general_cloud_optics, use_general_aerosol_optics = ', & |
|---|
| 341 | rad_config%use_general_cloud_optics, rad_config%use_general_aerosol_optics |
|---|
| 342 | print*, 'do_sw_delta_scaling_with_gases, i_overlap_scheme = ', & |
|---|
| 343 | rad_config%do_sw_delta_scaling_with_gases, rad_config%i_overlap_scheme |
|---|
| 344 | print*, 'i_solver_sw, i_solver_sw, use_beta_overlap, use_vectorizable_generator = ', & |
|---|
| 345 | rad_config%i_solver_sw, rad_config%i_solver_lw, & |
|---|
| 346 | rad_config%use_beta_overlap, rad_config%use_vectorizable_generator |
|---|
| 347 | print*, 'use_expm_everywhere, iverbose, iverbosesetup = ', & |
|---|
| 348 | rad_config%use_expm_everywhere, rad_config%iverbose, rad_config%iverbosesetup |
|---|
| 349 | print*, 'cloud_inhom_decorr_scaling, cloud_fraction_threshold = ', & |
|---|
| 350 | rad_config%cloud_inhom_decorr_scaling, rad_config%cloud_fraction_threshold |
|---|
| 351 | print*, 'clear_to_thick_fraction, max_gas_od_3d, max_cloud_od = ', & |
|---|
| 352 | rad_config%clear_to_thick_fraction, rad_config%max_gas_od_3d, rad_config%max_cloud_od |
|---|
| 353 | print*, 'cloud_mixing_ratio_threshold, overhead_sun_factor =', & |
|---|
| 354 | rad_config%cloud_mixing_ratio_threshold, rad_config%overhead_sun_factor |
|---|
| 355 | print*, 'n_aerosol_types, i_aerosol_type_map, use_aerosols = ', & |
|---|
| 356 | rad_config%n_aerosol_types, rad_config%i_aerosol_type_map, rad_config%use_aerosols |
|---|
| 357 | print*, 'mono_lw_wavelength, mono_lw_total_od, mono_sw_total_od = ', & |
|---|
| 358 | rad_config%mono_lw_wavelength, rad_config%mono_lw_total_od,rad_config% mono_sw_total_od |
|---|
| 359 | print*, 'mono_lw_single_scattering_albedo, mono_sw_single_scattering_albedo = ', & |
|---|
| 360 | rad_config%mono_lw_single_scattering_albedo, rad_config%mono_sw_single_scattering_albedo |
|---|
| 361 | print*, 'mono_lw_asymmetry_factor, mono_sw_asymmetry_factor = ', & |
|---|
| 362 | rad_config%mono_lw_asymmetry_factor, rad_config%mono_sw_asymmetry_factor |
|---|
| 363 | print*, 'i_cloud_pdf_shape = ', & |
|---|
| 364 | rad_config%i_cloud_pdf_shape |
|---|
| 365 | ! cloud_type_name, use_thick_cloud_spectral_averaging = ', & |
|---|
| 366 | ! rad_config%i_cloud_pdf_shape, rad_config%cloud_type_name, & |
|---|
| 367 | ! rad_config%use_thick_cloud_spectral_averaging |
|---|
| 368 | print*, 'do_nearest_spectral_sw_albedo, do_nearest_spectral_lw_emiss = ', & |
|---|
| 369 | rad_config%do_nearest_spectral_sw_albedo, rad_config%do_nearest_spectral_lw_emiss |
|---|
| 370 | print*, 'sw_albedo_wavelength_bound, lw_emiss_wavelength_bound = ', & |
|---|
| 371 | rad_config%sw_albedo_wavelength_bound, rad_config%lw_emiss_wavelength_bound |
|---|
| 372 | print*, 'i_sw_albedo_index, i_lw_emiss_index = ', & |
|---|
| 373 | rad_config%i_sw_albedo_index, rad_config%i_lw_emiss_index |
|---|
| 374 | print*, 'do_cloud_aerosol_per_lw_g_point = ', & |
|---|
| 375 | rad_config%do_cloud_aerosol_per_lw_g_point |
|---|
| 376 | print*, 'do_cloud_aerosol_per_sw_g_point, do_weighted_surface_mapping = ', & |
|---|
| 377 | rad_config%do_cloud_aerosol_per_sw_g_point, rad_config%do_weighted_surface_mapping |
|---|
| 378 | print*, 'n_bands_sw, n_bands_lw, n_g_sw, n_g_lw = ', & |
|---|
| 379 | rad_config%n_bands_sw, rad_config%n_bands_lw, rad_config%n_g_sw, rad_config%n_g_lw |
|---|
| 380 | |
|---|
| 381 | itap_ecrad=itap_ecrad+1 |
|---|
| 382 | ! ENDIF |
|---|
| 383 | endif |
|---|
| 384 | |
|---|
| 385 | ! AI ATTENTION |
|---|
| 386 | ! Allocate memory in radiation objects |
|---|
| 387 | ! emissivite avec une seule bande |
|---|
| 388 | CALL single_level%allocate(KLON, NSW, 1, & |
|---|
| 389 | & use_sw_albedo_direct=.TRUE.) |
|---|
| 390 | |
|---|
| 391 | print*,'************* THERMO (allocate + input) ************************************' |
|---|
| 392 | ! Set thermodynamic profiles: simply copy over the half-level |
|---|
| 393 | ! pressure and temperature |
|---|
| 394 | !print*,'Appel allocate thermo' |
|---|
| 395 | CALL thermodynamics%allocate(KLON, KLEV, use_h2o_sat=.true.) |
|---|
| 396 | !print*,'Definir les champs thermo' |
|---|
| 397 | ! AI |
|---|
| 398 | ! pressure_hl > paprs |
|---|
| 399 | ! temperature_hl calculee dans radlsw de la meme facon que pour RRTM |
|---|
| 400 | thermodynamics%pressure_hl (KIDIA:KFDIA,:) = PPRESSURE_H (KIDIA:KFDIA,:) |
|---|
| 401 | thermodynamics%temperature_hl(KIDIA:KFDIA,:) = PTEMPERATURE_H(KIDIA:KFDIA,:) |
|---|
| 402 | |
|---|
| 403 | !print*,'Compute saturation specific humidity' |
|---|
| 404 | ! Compute saturation specific humidity, used to hydrate aerosols. The |
|---|
| 405 | ! "2" for the last argument indicates that the routine is not being |
|---|
| 406 | ! called from within the convection scheme. |
|---|
| 407 | !CALL SATUR(KIDIA, KFDIA, KLON, 1, KLEV, & |
|---|
| 408 | ! & PPRESSURE, PTEMPERATURE, thermodynamics%h2o_sat_liq, 2) |
|---|
| 409 | ! Alternative approximate version using temperature and pressure from |
|---|
| 410 | ! the thermodynamics structure |
|---|
| 411 | !CALL thermodynamics%calc_saturation_wrt_liquid(KIDIA, KFDIA) |
|---|
| 412 | !AI ATTENTION |
|---|
| 413 | thermodynamics%h2o_sat_liq = PQSAT |
|---|
| 414 | |
|---|
| 415 | print*,'********** SINGLE LEVEL VARS **********************************' |
|---|
| 416 | !AI ATTENTION |
|---|
| 417 | ! Set single-level fileds |
|---|
| 418 | single_level%solar_irradiance = PSOLAR_IRRADIANCE |
|---|
| 419 | single_level%cos_sza(KIDIA:KFDIA) = PMU0(KIDIA:KFDIA) |
|---|
| 420 | single_level%skin_temperature(KIDIA:KFDIA) = PTEMPERATURE_SKIN(KIDIA:KFDIA) |
|---|
| 421 | single_level%sw_albedo(KIDIA:KFDIA,:) = PALBEDO_DIF(KIDIA:KFDIA,:) |
|---|
| 422 | single_level%sw_albedo_direct(KIDIA:KFDIA,:)=PALBEDO_DIR(KIDIA:KFDIA,:) |
|---|
| 423 | single_level%lw_emissivity(KIDIA:KFDIA,1) = PEMIS(KIDIA:KFDIA) |
|---|
| 424 | !single_level%lw_emissivity(KIDIA:KFDIA,2) = PEMIS_WINDOW(KIDIA:KFDIA) |
|---|
| 425 | |
|---|
| 426 | ! Create the relevant seed from date and time get the starting day |
|---|
| 427 | ! and number of minutes since start |
|---|
| 428 | !IDAY = NDD(NINDAT) |
|---|
| 429 | !cur_day |
|---|
| 430 | !ITIM = NINT(NSTEP * YRRIP%TSTEP / 60.0_JPRB) |
|---|
| 431 | ITIM = NINT(TIME / 60.0_JPRB) |
|---|
| 432 | !current_time |
|---|
| 433 | !allocate(single_level%iseed(KIDIA:KFDIA)) |
|---|
| 434 | DO JLON = KIDIA, KFDIA |
|---|
| 435 | ! This method gives a unique value for roughly every 1-km square |
|---|
| 436 | ! on the globe and every minute. ASIN(PGEMU)*60 gives rough |
|---|
| 437 | ! latitude in degrees, which we multiply by 100 to give a unique |
|---|
| 438 | ! value for roughly every km. PGELAM*60*100 gives a unique number |
|---|
| 439 | ! for roughly every km of longitude around the equator, which we |
|---|
| 440 | ! multiply by 180*100 so there is no overlap with the latitude |
|---|
| 441 | ! values. The result can be contained in a 32-byte integer (but |
|---|
| 442 | ! since random numbers are generated with the help of integer |
|---|
| 443 | ! overflow, it should not matter if the number did overflow). |
|---|
| 444 | single_level%iseed(JLON) = ITIM + IDAY & |
|---|
| 445 | & + NINT(PGELAM(JLON)*108000000.0_JPRB & |
|---|
| 446 | & + ASIN(PGEMU(JLON))*6000.0_JPRB) |
|---|
| 447 | ENDDO |
|---|
| 448 | |
|---|
| 449 | print*,'********** CLOUDS (allocate + input) *******************************************' |
|---|
| 450 | !print*,'Appel Allocate clouds' |
|---|
| 451 | CALL cloud%allocate(KLON, KLEV) |
|---|
| 452 | ! Set cloud fields |
|---|
| 453 | cloud%q_liq(KIDIA:KFDIA,:) = PQ_LIQUID(KIDIA:KFDIA,:) |
|---|
| 454 | cloud%q_ice(KIDIA:KFDIA,:) = PQ_ICE(KIDIA:KFDIA,:) + PQ_SNOW(KIDIA:KFDIA,:) |
|---|
| 455 | cloud%fraction(KIDIA:KFDIA,:) = PCLOUD_FRAC(KIDIA:KFDIA,:) |
|---|
| 456 | |
|---|
| 457 | !!! ok AI ATTENTION a voir avec JL |
|---|
| 458 | ! Compute effective radi and convert to metres |
|---|
| 459 | ! AI. : on passe directement les champs de LMDZ |
|---|
| 460 | cloud%re_liq(KIDIA:KFDIA,:) = ZRE_LIQUID_UM(KIDIA:KFDIA,:) |
|---|
| 461 | cloud%re_ice(KIDIA:KFDIA,:) = ZRE_ICE_UM(KIDIA:KFDIA,:) |
|---|
| 462 | |
|---|
| 463 | ! Get the cloud overlap decorrelation length (for cloud boundaries), |
|---|
| 464 | ! in km, according to the parameterization specified by NDECOLAT, |
|---|
| 465 | ! and insert into the "cloud" object. Also get the ratio of |
|---|
| 466 | ! decorrelation lengths for cloud water content inhomogeneities and |
|---|
| 467 | ! cloud boundaries, and set it in the "rad_config" object. |
|---|
| 468 | ! IFS : |
|---|
| 469 | !CALL CLOUD_OVERLAP_DECORR_LEN(KIDIA, KFDIA, KLON, PGEMU, YRERAD%NDECOLAT, & |
|---|
| 470 | ! & ZDECORR_LEN_KM, PDECORR_LEN_RATIO=ZDECORR_LEN_RATIO) |
|---|
| 471 | ! AI valeur dans namelist |
|---|
| 472 | ! rad_config%cloud_inhom_decorr_scaling = ZDECORR_LEN_RATIO |
|---|
| 473 | |
|---|
| 474 | !AI ATTENTION meme valeur que dans offline |
|---|
| 475 | ! A mettre dans namelist |
|---|
| 476 | ZDECORR_LEN_KM = driver_config%overlap_decorr_length |
|---|
| 477 | DO JLON = KIDIA,KFDIA |
|---|
| 478 | CALL cloud%set_overlap_param(thermodynamics, & |
|---|
| 479 | & ZDECORR_LEN_KM(JLON), & |
|---|
| 480 | & istartcol=JLON, iendcol=JLON) |
|---|
| 481 | ENDDO |
|---|
| 482 | |
|---|
| 483 | ! IFS : |
|---|
| 484 | ! Cloud water content fractional standard deviation is configurable |
|---|
| 485 | ! from namelist NAERAD but must be globally constant. Before it was |
|---|
| 486 | ! hard coded at 1.0. |
|---|
| 487 | !CALL cloud%create_fractional_std(KLON, KLEV, YRERAD%RCLOUD_FRAC_STD) |
|---|
| 488 | ! AI ATTENTION frac_std=0.75 meme valeur que dans la version offline |
|---|
| 489 | CALL cloud%create_fractional_std(KLON, KLEV, driver_config%frac_std) |
|---|
| 490 | |
|---|
| 491 | if (rad_config%i_solver_sw == ISolverSPARTACUS & |
|---|
| 492 | & .or. rad_config%i_solver_lw == ISolverSPARTACUS) then |
|---|
| 493 | ! AI ! Read cloud properties needed by SPARTACUS |
|---|
| 494 | !AI ATTENTION meme traitement dans le version offline |
|---|
| 495 | |
|---|
| 496 | ! By default mid and high cloud effective size is 10 km |
|---|
| 497 | !CALL cloud%create_inv_cloud_effective_size(KLON,KLEV,1.0_JPRB/10000.0_JPRB) |
|---|
| 498 | |
|---|
| 499 | ! if (driver_config%low_inv_effective_size >= 0.0_jprb & |
|---|
| 500 | ! & .or. driver_config%middle_inv_effective_size >= 0.0_jprb & |
|---|
| 501 | ! & .or. driver_config%high_inv_effective_size >= 0.0_jprb) then |
|---|
| 502 | if (driver_config%ok_effective_size) then |
|---|
| 503 | call cloud%create_inv_cloud_effective_size_eta(klon, klev, & |
|---|
| 504 | & thermodynamics%pressure_hl, & |
|---|
| 505 | & driver_config%low_inv_effective_size, & |
|---|
| 506 | & driver_config%middle_inv_effective_size, & |
|---|
| 507 | & driver_config%high_inv_effective_size, 0.8_jprb, 0.45_jprb) |
|---|
| 508 | ! else if (driver_config%cloud_separation_scale_surface > 0.0_jprb & |
|---|
| 509 | ! .and. driver_config%cloud_separation_scale_toa > 0.0_jprb) then |
|---|
| 510 | else if (driver_config%ok_separation) then |
|---|
| 511 | call cloud%param_cloud_effective_separation_eta(klon, klev, & |
|---|
| 512 | & thermodynamics%pressure_hl, & |
|---|
| 513 | & driver_config%cloud_separation_scale_surface, & |
|---|
| 514 | & driver_config%cloud_separation_scale_toa, & |
|---|
| 515 | & driver_config%cloud_separation_scale_power, & |
|---|
| 516 | & driver_config%cloud_inhom_separation_factor) |
|---|
| 517 | endif |
|---|
| 518 | endif |
|---|
| 519 | |
|---|
| 520 | print*,'******** AEROSOLS (allocate + input) **************************************' |
|---|
| 521 | !IF (NAERMACC > 0) THEN |
|---|
| 522 | CALL aerosol%allocate(KLON, 1, KLEV, KAEROSOL) ! MACC climatology |
|---|
| 523 | !ELSE |
|---|
| 524 | ! CALL aerosol%allocate(KLON, 1, KLEV, 6) ! Tegen climatology |
|---|
| 525 | !ENDIF |
|---|
| 526 | ! Compute the dry mass of each layer neglecting humidity effects, in |
|---|
| 527 | ! kg m-2, needed to scale some of the aerosol inputs |
|---|
| 528 | ! AI commente ATTENTION |
|---|
| 529 | !CALL thermodynamics%get_layer_mass(ZLAYER_MASS) |
|---|
| 530 | |
|---|
| 531 | ! Copy over aerosol mass mixing ratio |
|---|
| 532 | !IF (NAERMACC > 0) THEN |
|---|
| 533 | |
|---|
| 534 | ! MACC aerosol climatology - this is already in mass mixing ratio |
|---|
| 535 | ! units with the required array orientation so we can copy it over |
|---|
| 536 | ! directly |
|---|
| 537 | aerosol%mixing_ratio(KIDIA:KFDIA,:,:) = PAEROSOL(KIDIA:KFDIA,:,:) |
|---|
| 538 | |
|---|
| 539 | ! Add the tropospheric and stratospheric backgrounds contained in the |
|---|
| 540 | ! old Tegen arrays - this is very ugly! |
|---|
| 541 | ! AI ATTENTION |
|---|
| 542 | ! IF (TROP_BG_AER_MASS_EXT > 0.0_JPRB) THEN |
|---|
| 543 | ! aerosol%mixing_ratio(KIDIA:KFDIA,:,ITYPE_TROP_BG_AER) & |
|---|
| 544 | ! & = aerosol%mixing_ratio(KIDIA:KFDIA,:,ITYPE_TROP_BG_AER) & |
|---|
| 545 | ! & + PAEROSOL_OLD(KIDIA:KFDIA,1,:) & |
|---|
| 546 | ! & / (ZLAYER_MASS * TROP_BG_AER_MASS_EXT) |
|---|
| 547 | ! ENDIF |
|---|
| 548 | ! IF (STRAT_BG_AER_MASS_EXT > 0.0_JPRB) THEN |
|---|
| 549 | ! aerosol%mixing_ratio(KIDIA:KFDIA,:,ITYPE_STRAT_BG_AER) & |
|---|
| 550 | ! & = aerosol%mixing_ratio(KIDIA:KFDIA,:,ITYPE_STRAT_BG_AER) & |
|---|
| 551 | ! & + PAEROSOL_OLD(KIDIA:KFDIA,6,:) & |
|---|
| 552 | ! & / (ZLAYER_MASS * STRAT_BG_AER_MASS_EXT) |
|---|
| 553 | ! ENDIF |
|---|
| 554 | |
|---|
| 555 | !ELSE |
|---|
| 556 | |
|---|
| 557 | ! Tegen aerosol climatology - the array PAEROSOL_OLD contains the |
|---|
| 558 | ! 550-nm optical depth in each layer. The optics data file |
|---|
| 559 | ! aerosol_ifs_rrtm_tegen.nc does not contain mass extinction |
|---|
| 560 | ! coefficient, but a scaling factor that the 550-nm optical depth |
|---|
| 561 | ! should be multiplied by to obtain the optical depth in each |
|---|
| 562 | ! spectral band. Therefore, in order for the units to work out, we |
|---|
| 563 | ! need to divide by the layer mass (in kg m-2) to obtain the 550-nm |
|---|
| 564 | ! cross-section per unit mass of dry air (so in m2 kg-1). We also |
|---|
| 565 | ! need to permute the array. |
|---|
| 566 | ! DO JLEV = 1,KLEV |
|---|
| 567 | ! DO JAER = 1,6 |
|---|
| 568 | ! aerosol%mixing_ratio(KIDIA:KFDIA,JLEV,JAER) & |
|---|
| 569 | ! & = PAEROSOL_OLD(KIDIA:KFDIA,JAER,JLEV) & |
|---|
| 570 | ! & / ZLAYER_MASS(KIDIA:KFDIA,JLEV) |
|---|
| 571 | ! ENDDO |
|---|
| 572 | ! ENDDO |
|---|
| 573 | |
|---|
| 574 | !ENDIF |
|---|
| 575 | |
|---|
| 576 | print*,'********** GAS (allocate + input) ************************************************' |
|---|
| 577 | !print*,'Appel Allocate gas' |
|---|
| 578 | CALL gas%allocate(KLON, KLEV) |
|---|
| 579 | |
|---|
| 580 | ! Convert ozone Pa*kg/kg to kg/kg |
|---|
| 581 | ! AI ATTENTION |
|---|
| 582 | !DO JLEV = 1,KLEV |
|---|
| 583 | ! DO JLON = KIDIA,KFDIA |
|---|
| 584 | ! ZO3(JLON,JLEV) = PO3_DP(JLON,JLEV) & |
|---|
| 585 | ! & / (PPRESSURE_H(JLON,JLEV+1)-PPRESSURE_H(JLON,JLEV)) |
|---|
| 586 | ! ENDDO |
|---|
| 587 | !ENDDO |
|---|
| 588 | |
|---|
| 589 | ! Insert gas mixing ratios |
|---|
| 590 | !print*,'Insert gas mixing ratios' |
|---|
| 591 | CALL gas%put(IH2O, IMassMixingRatio, PQ) |
|---|
| 592 | CALL gas%put(IO3, IMassMixingRatio, PO3) |
|---|
| 593 | CALL gas%put_well_mixed(ICO2, IMAssMixingRatio, PCO2) |
|---|
| 594 | CALL gas%put_well_mixed(ICH4, IMassMixingRatio, PCH4) |
|---|
| 595 | CALL gas%put_well_mixed(IN2O, IMassMixingRatio, PN2O) |
|---|
| 596 | CALL gas%put_well_mixed(ICFC11, IMassMixingRatio, PCFC11) |
|---|
| 597 | CALL gas%put_well_mixed(ICFC12, IMassMixingRatio, PCFC12) |
|---|
| 598 | CALL gas%put_well_mixed(IHCFC22, IMassMixingRatio, PHCFC22) |
|---|
| 599 | CALL gas%put_well_mixed(ICCL4, IMassMixingRatio, PCCL4) |
|---|
| 600 | CALL gas%put_well_mixed(IO2, IMassMixingRatio, PO2) |
|---|
| 601 | ! Ensure the units of the gas mixing ratios are what is required by |
|---|
| 602 | ! the gas absorption model |
|---|
| 603 | call set_gas_units(rad_config, gas) |
|---|
| 604 | |
|---|
| 605 | print*,'************** FLUX (allocate) ***********************' |
|---|
| 606 | CALL flux%allocate(rad_config, 1, KLON, KLEV) |
|---|
| 607 | |
|---|
| 608 | ! Call radiation scheme |
|---|
| 609 | print*,'******** Appel radiation scheme **************************' |
|---|
| 610 | CALL radiation(KLON, KLEV, KIDIA, KFDIA, rad_config, & |
|---|
| 611 | & single_level, thermodynamics, gas, cloud, aerosol, flux) |
|---|
| 612 | |
|---|
| 613 | ! Compute required output fluxes |
|---|
| 614 | ! DN and UP flux |
|---|
| 615 | PFLUX_SW_DN(KIDIA:KFDIA,:) = flux%sw_dn(KIDIA:KFDIA,:) |
|---|
| 616 | PFLUX_SW_UP(KIDIA:KFDIA,:) = flux%sw_up(KIDIA:KFDIA,:) |
|---|
| 617 | PFLUX_LW_DN(KIDIA:KFDIA,:) = flux%lw_dn(KIDIA:KFDIA,:) |
|---|
| 618 | PFLUX_LW_UP(KIDIA:KFDIA,:) = flux%lw_up(KIDIA:KFDIA,:) |
|---|
| 619 | PFLUX_SW_DN_CLEAR(KIDIA:KFDIA,:) = flux%sw_dn_clear(KIDIA:KFDIA,:) |
|---|
| 620 | PFLUX_SW_UP_CLEAR(KIDIA:KFDIA,:) = flux%sw_up_clear(KIDIA:KFDIA,:) |
|---|
| 621 | PFLUX_LW_DN_CLEAR(KIDIA:KFDIA,:) = flux%lw_dn_clear(KIDIA:KFDIA,:) |
|---|
| 622 | PFLUX_LW_UP_CLEAR(KIDIA:KFDIA,:) = flux%lw_up_clear(KIDIA:KFDIA,:) |
|---|
| 623 | |
|---|
| 624 | ! First the net fluxes |
|---|
| 625 | PFLUX_SW(KIDIA:KFDIA,:) = flux%sw_dn(KIDIA:KFDIA,:) - flux%sw_up(KIDIA:KFDIA,:) |
|---|
| 626 | PFLUX_LW(KIDIA:KFDIA,:) = flux%lw_dn(KIDIA:KFDIA,:) - flux%lw_up(KIDIA:KFDIA,:) |
|---|
| 627 | PFLUX_SW_CLEAR(KIDIA:KFDIA,:) & |
|---|
| 628 | & = flux%sw_dn_clear(KIDIA:KFDIA,:) - flux%sw_up_clear(KIDIA:KFDIA,:) |
|---|
| 629 | PFLUX_LW_CLEAR(KIDIA:KFDIA,:) & |
|---|
| 630 | & = flux%lw_dn_clear(KIDIA:KFDIA,:) - flux%lw_up_clear(KIDIA:KFDIA,:) |
|---|
| 631 | |
|---|
| 632 | ! Now the surface fluxes |
|---|
| 633 | !PFLUX_SW_DN_SURF(KIDIA:KFDIA) = flux%sw_dn(KIDIA:KFDIA,KLEV+1) |
|---|
| 634 | !PFLUX_LW_DN_SURF(KIDIA:KFDIA) = flux%lw_dn(KIDIA:KFDIA,KLEV+1) |
|---|
| 635 | !PFLUX_SW_UP_SURF(KIDIA:KFDIA) = flux%sw_up(KIDIA:KFDIA,KLEV+1) |
|---|
| 636 | !PFLUX_LW_UP_SURF(KIDIA:KFDIA) = flux%lw_up(KIDIA:KFDIA,KLEV+1) |
|---|
| 637 | !PFLUX_SW_DN_CLEAR_SURF(KIDIA:KFDIA) = flux%sw_dn_clear(KIDIA:KFDIA,KLEV+1) |
|---|
| 638 | !PFLUX_LW_DN_CLEAR_SURF(KIDIA:KFDIA) = flux%lw_dn_clear(KIDIA:KFDIA,KLEV+1) |
|---|
| 639 | !PFLUX_SW_UP_CLEAR_SURF(KIDIA:KFDIA) = flux%sw_up_clear(KIDIA:KFDIA,KLEV+1) |
|---|
| 640 | !PFLUX_LW_UP_CLEAR_SURF(KIDIA:KFDIA) = flux%lw_up_clear(KIDIA:KFDIA,KLEV+1) |
|---|
| 641 | PFLUX_DIR(KIDIA:KFDIA) = flux%sw_dn_direct(KIDIA:KFDIA,KLEV+1) |
|---|
| 642 | PFLUX_DIR_CLEAR(KIDIA:KFDIA) = flux%sw_dn_direct_clear(KIDIA:KFDIA,KLEV+1) |
|---|
| 643 | PFLUX_DIR_INTO_SUN(KIDIA:KFDIA) = 0.0_JPRB |
|---|
| 644 | WHERE (PMU0(KIDIA:KFDIA) > EPSILON(1.0_JPRB)) |
|---|
| 645 | PFLUX_DIR_INTO_SUN(KIDIA:KFDIA) = PFLUX_DIR(KIDIA:KFDIA) / PMU0(KIDIA:KFDIA) |
|---|
| 646 | END WHERE |
|---|
| 647 | |
|---|
| 648 | ! Top-of-atmosphere downwelling flux |
|---|
| 649 | !PFLUX_SW_DN_TOA(KIDIA:KFDIA) = flux%sw_dn(KIDIA:KFDIA,1) |
|---|
| 650 | !PFLUX_SW_UP_TOA(KIDIA:KFDIA) = flux%sw_up(KIDIA:KFDIA,1) |
|---|
| 651 | !PFLUX_LW_DN_TOA(KIDIA:KFDIA) = flux%lw_dn(KIDIA:KFDIA,1) |
|---|
| 652 | !PFLUX_LW_UP_TOA(KIDIA:KFDIA) = flux%lw_up(KIDIA:KFDIA,1) |
|---|
| 653 | |
|---|
| 654 | ! Compute UV fluxes as weighted sum of appropriate shortwave bands |
|---|
| 655 | !AI ATTENTION |
|---|
| 656 | if (0.eq.1) then |
|---|
| 657 | PFLUX_UV (KIDIA:KFDIA) = 0.0_JPRB |
|---|
| 658 | DO JBAND = 1,NWEIGHT_UV |
|---|
| 659 | PFLUX_UV(KIDIA:KFDIA) = PFLUX_UV(KIDIA:KFDIA) + WEIGHT_UV(JBAND) & |
|---|
| 660 | & * flux%sw_dn_surf_band(IBAND_UV(JBAND),KIDIA:KFDIA) |
|---|
| 661 | ENDDO |
|---|
| 662 | |
|---|
| 663 | ! Compute photosynthetically active radiation similarly |
|---|
| 664 | PFLUX_PAR (KIDIA:KFDIA) = 0.0_JPRB |
|---|
| 665 | PFLUX_PAR_CLEAR(KIDIA:KFDIA) = 0.0_JPRB |
|---|
| 666 | DO JBAND = 1,NWEIGHT_PAR |
|---|
| 667 | PFLUX_PAR(KIDIA:KFDIA) = PFLUX_PAR(KIDIA:KFDIA) + WEIGHT_PAR(JBAND) & |
|---|
| 668 | & * flux%sw_dn_surf_band(IBAND_PAR(JBAND),KIDIA:KFDIA) |
|---|
| 669 | PFLUX_PAR_CLEAR(KIDIA:KFDIA) = PFLUX_PAR_CLEAR(KIDIA:KFDIA) & |
|---|
| 670 | & + WEIGHT_PAR(JBAND) & |
|---|
| 671 | & * flux%sw_dn_surf_clear_band(IBAND_PAR(JBAND),KIDIA:KFDIA) |
|---|
| 672 | ENDDO |
|---|
| 673 | endif |
|---|
| 674 | ! Compute effective broadband emissivity |
|---|
| 675 | ZBLACK_BODY_NET_LW = flux%lw_dn(KIDIA:KFDIA,KLEV+1) & |
|---|
| 676 | & - RSIGMA*PTEMPERATURE_SKIN(KIDIA:KFDIA)**4 |
|---|
| 677 | PEMIS_OUT(KIDIA:KFDIA) = PEMIS(KIDIA:KFDIA) |
|---|
| 678 | WHERE (ABS(ZBLACK_BODY_NET_LW) > 1.0E-5) |
|---|
| 679 | PEMIS_OUT(KIDIA:KFDIA) = PFLUX_LW(KIDIA:KFDIA,KLEV+1) / ZBLACK_BODY_NET_LW |
|---|
| 680 | END WHERE |
|---|
| 681 | |
|---|
| 682 | ! Copy longwave derivatives |
|---|
| 683 | ! AI ATTENTION |
|---|
| 684 | !IF (YRERAD%LAPPROXLWUPDATE) THEN |
|---|
| 685 | IF (rad_config%do_lw_derivatives) THEN |
|---|
| 686 | PLWDERIVATIVE(KIDIA:KFDIA,:) = flux%lw_derivatives(KIDIA:KFDIA,:) |
|---|
| 687 | END IF |
|---|
| 688 | |
|---|
| 689 | ! Store the shortwave downwelling fluxes in each albedo band |
|---|
| 690 | !AI ATTENTION |
|---|
| 691 | !IF (YRERAD%LAPPROXSWUPDATE) THEN |
|---|
| 692 | if (0.eq.1) then |
|---|
| 693 | IF (rad_config%do_surface_sw_spectral_flux) THEN |
|---|
| 694 | PSWDIFFUSEBAND(KIDIA:KFDIA,:) = 0.0_JPRB |
|---|
| 695 | PSWDIRECTBAND (KIDIA:KFDIA,:) = 0.0_JPRB |
|---|
| 696 | DO JBAND = 1,rad_config%n_bands_sw |
|---|
| 697 | JB_ALBEDO = rad_config%i_albedo_from_band_sw(JBAND) |
|---|
| 698 | DO JLON = KIDIA,KFDIA |
|---|
| 699 | PSWDIFFUSEBAND(JLON,JB_ALBEDO) = PSWDIFFUSEBAND(JLON,JB_ALBEDO) & |
|---|
| 700 | & + flux%sw_dn_surf_band(JBAND,JLON) & |
|---|
| 701 | & - flux%sw_dn_direct_surf_band(JBAND,JLON) |
|---|
| 702 | PSWDIRECTBAND(JLON,JB_ALBEDO) = PSWDIRECTBAND(JLON,JB_ALBEDO) & |
|---|
| 703 | & + flux%sw_dn_direct_surf_band(JBAND,JLON) |
|---|
| 704 | ENDDO |
|---|
| 705 | ENDDO |
|---|
| 706 | ENDIF |
|---|
| 707 | endif |
|---|
| 708 | CALL single_level%deallocate |
|---|
| 709 | CALL thermodynamics%deallocate |
|---|
| 710 | CALL gas%deallocate |
|---|
| 711 | CALL cloud%deallocate |
|---|
| 712 | CALL aerosol%deallocate |
|---|
| 713 | CALL flux%deallocate |
|---|
| 714 | |
|---|
| 715 | IF (LHOOK) CALL DR_HOOK('RADIATION_SCHEME',1,ZHOOK_HANDLE) |
|---|
| 716 | |
|---|
| 717 | END SUBROUTINE RADIATION_SCHEME |
|---|