1 | ! radiation_random_numbers.F90 - Generate random numbers for McICA solver |
---|
2 | ! |
---|
3 | ! (C) Copyright 2020- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! The derived type "rng_type" is a random number generator that uses |
---|
16 | ! either (1) Fortran's built-in random_number function, or (2) a |
---|
17 | ! vectorized version of the MINSTD linear congruential generator. In |
---|
18 | ! the case of (2), an rng_type object is initialized with a seed that |
---|
19 | ! is used to fill up a state of "nmaxstreams" elements using the C++ |
---|
20 | ! minstd_rand0 version of the MINSTD linear congruential generator |
---|
21 | ! (LNG), which has the form istate[i+1] = mod(istate[i]*A0, M) from |
---|
22 | ! i=1 to i=nmaxstreams. Subsequent requests for blocks of nmaxstreams |
---|
23 | ! of random numbers use the C++ minstd_ran algorithm in a vectorizable |
---|
24 | ! form, which modifies the state elements via istate[i] <- |
---|
25 | ! mod(istate[i]*A, M). Uniform deviates are returned that normalize |
---|
26 | ! the state elements to the range 0-1. |
---|
27 | ! |
---|
28 | ! The MINSTD generator was coded because the random_numbers_mix |
---|
29 | ! generator in the IFS was found not to vectorize well on some |
---|
30 | ! hardware. I am no expert on random number generators, so my |
---|
31 | ! implementation should really be looked at and improved by someone |
---|
32 | ! who knows what they are doing. |
---|
33 | ! |
---|
34 | ! Reference for MINSTD: Park, Stephen K.; Miller, Keith |
---|
35 | ! W. (1988). "Random Number Generators: Good Ones Are Hard To Find" |
---|
36 | ! (PDF). Communications of the ACM. 31 (10): |
---|
37 | ! 1192–1201. doi:10.1145/63039.63042 |
---|
38 | ! |
---|
39 | ! Modifications |
---|
40 | ! 2022-12-01 R. Hogan Fixed zeroed state in single precision |
---|
41 | |
---|
42 | module radiation_random_numbers |
---|
43 | |
---|
44 | use parkind1, only : jprb, jprd, jpim, jpib |
---|
45 | |
---|
46 | implicit none |
---|
47 | |
---|
48 | public :: rng_type, IRngMinstdVector, IRngNative |
---|
49 | |
---|
50 | enum, bind(c) |
---|
51 | enumerator IRngNative, & ! Built-in Fortran-90 RNG |
---|
52 | & IRngMinstdVector ! Vector MINSTD algorithm |
---|
53 | end enum |
---|
54 | |
---|
55 | ! Maximum number of random numbers that can be computed in one call |
---|
56 | ! - this can be increased |
---|
57 | integer(kind=jpim), parameter :: NMaxStreams = 512 |
---|
58 | |
---|
59 | ! A requirement of the generator is that the operation mod(A*X,M) is |
---|
60 | ! performed with no loss of precision, so type used for A and X must |
---|
61 | ! be able to hold the largest possible value of A*X without |
---|
62 | ! overflowing, going negative or losing precision. The largest |
---|
63 | ! possible value is 48271*2147483647 = 103661183124337. This number |
---|
64 | ! can be held in either a double-precision real number, or an 8-byte |
---|
65 | ! integer. Either may be used, but on some hardwares it has been |
---|
66 | ! found that operations on double-precision reals are faster. Select |
---|
67 | ! which you prefer by defining USE_REAL_RNG_STATE for double |
---|
68 | ! precision, or undefining it for an 8-byte integer. |
---|
69 | #define USE_REAL_RNG_STATE 1 |
---|
70 | |
---|
71 | ! Define RNG_STATE_TYPE based on USE_REAL_RNG_STATE, where jprd |
---|
72 | ! refers to a double-precision number regardless of the working |
---|
73 | ! precision described by jprb, while jpib describes an 8-byte |
---|
74 | ! integer |
---|
75 | #ifdef USE_REAL_RNG_STATE |
---|
76 | #define RNG_STATE_TYPE real(kind=jprd) |
---|
77 | #else |
---|
78 | #define RNG_STATE_TYPE integer(kind=jpib) |
---|
79 | #endif |
---|
80 | |
---|
81 | ! The constants used in the main random number generator |
---|
82 | RNG_STATE_TYPE , parameter :: IMinstdA = 48271 |
---|
83 | RNG_STATE_TYPE , parameter :: IMinstdM = 2147483647 |
---|
84 | |
---|
85 | ! An alternative value of A that can be used to initialize the |
---|
86 | ! members of the state from a single seed |
---|
87 | RNG_STATE_TYPE , parameter :: IMinstdA0 = 16807 |
---|
88 | |
---|
89 | ! Scaling to convert the state to a uniform deviate in the range 0 |
---|
90 | ! to 1 in working precision |
---|
91 | real(kind=jprb), parameter :: IMinstdScale = 1.0_jprb / real(IMinstdM,jprb) |
---|
92 | |
---|
93 | !--------------------------------------------------------------------- |
---|
94 | ! A random number generator type: after being initialized with a |
---|
95 | ! seed, type and optionally a number of vector streams, subsequent |
---|
96 | ! calls to "uniform_distribution" are used to fill 1D or 2D arrays |
---|
97 | ! with random numbers in a way that ought to be fast. |
---|
98 | type rng_type |
---|
99 | |
---|
100 | integer(kind=jpim) :: itype = IRngNative |
---|
101 | RNG_STATE_TYPE :: istate(NMaxStreams) |
---|
102 | integer(kind=jpim) :: nmaxstreams = NMaxStreams |
---|
103 | integer(kind=jpim) :: iseed |
---|
104 | |
---|
105 | contains |
---|
106 | procedure :: initialize |
---|
107 | procedure :: uniform_distribution_1d, & |
---|
108 | & uniform_distribution_2d, & |
---|
109 | & uniform_distribution_2d_masked |
---|
110 | generic :: uniform_distribution => uniform_distribution_1d, & |
---|
111 | & uniform_distribution_2d, & |
---|
112 | & uniform_distribution_2d_masked |
---|
113 | |
---|
114 | end type rng_type |
---|
115 | |
---|
116 | contains |
---|
117 | |
---|
118 | !--------------------------------------------------------------------- |
---|
119 | ! Initialize a random number generator, where "itype" may be either |
---|
120 | ! IRngNative, indicating to use Fortran's native random_number |
---|
121 | ! subroutine, or IRngMinstdVector, indicating to use the MINSTD |
---|
122 | ! linear congruential generator (LCG). In the latter case |
---|
123 | ! "nmaxstreams" should be provided indicating that random numbers |
---|
124 | ! will be requested in blocks of this length. The generator is |
---|
125 | ! seeded with "iseed". |
---|
126 | subroutine initialize(this, itype, iseed, nmaxstreams) |
---|
127 | |
---|
128 | class(rng_type), intent(inout) :: this |
---|
129 | integer(kind=jpim), intent(in), optional :: itype |
---|
130 | integer(kind=jpim), intent(in), optional :: iseed |
---|
131 | integer(kind=jpim), intent(in), optional :: nmaxstreams |
---|
132 | |
---|
133 | integer, allocatable :: iseednative(:) |
---|
134 | integer :: nseed, jseed, jstr |
---|
135 | real(jprd) :: rseed ! Note this must be in double precision |
---|
136 | |
---|
137 | if (present(itype)) then |
---|
138 | this%itype = itype |
---|
139 | else |
---|
140 | this%itype = IRngNative |
---|
141 | end if |
---|
142 | |
---|
143 | if (present(iseed)) then |
---|
144 | this%iseed = iseed |
---|
145 | else |
---|
146 | this%iseed = 1 |
---|
147 | end if |
---|
148 | |
---|
149 | if (present(nmaxstreams)) then |
---|
150 | this%nmaxstreams = nmaxstreams |
---|
151 | else |
---|
152 | this%nmaxstreams = NMaxStreams |
---|
153 | end if |
---|
154 | |
---|
155 | if (this%itype == IRngMinstdVector) then |
---|
156 | ! ! OPTION 1: Use the C++ minstd_rand0 algorithm to populate the |
---|
157 | ! ! state: this loop is not vectorizable because the state in |
---|
158 | ! ! one stream depends on the one in the previous stream. |
---|
159 | ! this%istate(1) = this%iseed |
---|
160 | ! do jseed = 2,this%nmaxstreams |
---|
161 | ! this%istate(jseed) = mod(IMinstdA0 * this%istate(jseed-1), IMinstdM) |
---|
162 | ! end do |
---|
163 | |
---|
164 | ! OPTION 2: Use a modified (and vectorized) C++ minstd_rand0 algorithm to |
---|
165 | ! populate the state |
---|
166 | rseed = real(abs(this%iseed),jprd) |
---|
167 | do jstr = 1,this%nmaxstreams |
---|
168 | ! Note that nint returns an integer of type jpib (8-byte) |
---|
169 | ! which may be converted to double if that is the type of |
---|
170 | ! istate |
---|
171 | this%istate(jstr) = nint(mod(rseed*jstr*(1.0_jprd-0.05_jprd*jstr & |
---|
172 | & +0.005_jprd*jstr**2)*IMinstdA0, real(IMinstdM,jprd)),kind=jpib) |
---|
173 | end do |
---|
174 | |
---|
175 | ! One warmup of the C++ minstd_rand algorithm |
---|
176 | do jstr = 1,this%nmaxstreams |
---|
177 | this%istate(jstr) = mod(IMinstdA * this%istate(jstr), IMinstdM) |
---|
178 | end do |
---|
179 | |
---|
180 | else |
---|
181 | ! Native generator by default |
---|
182 | call random_seed(size=nseed) |
---|
183 | allocate(iseednative(nseed)) |
---|
184 | do jseed = 1,nseed |
---|
185 | iseednative(jseed) = this%iseed + jseed - 1 |
---|
186 | end do |
---|
187 | call random_seed(put=iseednative) |
---|
188 | deallocate(iseednative) |
---|
189 | end if |
---|
190 | |
---|
191 | end subroutine initialize |
---|
192 | |
---|
193 | !--------------------------------------------------------------------- |
---|
194 | ! Populate vector "randnum" with pseudo-random numbers; if rannum is |
---|
195 | ! of length greater than nmaxstreams (specified when the generator |
---|
196 | ! was initialized) then only the first nmaxstreams elements will be |
---|
197 | ! assigned. |
---|
198 | subroutine uniform_distribution_1d(this, randnum) |
---|
199 | |
---|
200 | class(rng_type), intent(inout) :: this |
---|
201 | real(kind=jprb), intent(out) :: randnum(:) |
---|
202 | |
---|
203 | integer :: imax, i |
---|
204 | |
---|
205 | if (this%itype == IRngMinstdVector) then |
---|
206 | |
---|
207 | imax = min(this%nmaxstreams, size(randnum)) |
---|
208 | |
---|
209 | ! C++ minstd_rand algorithm |
---|
210 | do i = 1, imax |
---|
211 | ! The following calculation is computed entirely with 8-byte |
---|
212 | ! numbers (whether real or integer) |
---|
213 | this%istate(i) = mod(IMinstdA * this%istate(i), IMinstdM) |
---|
214 | ! Scale the current state to a number in working precision |
---|
215 | ! (jprb) between 0 and 1 |
---|
216 | randnum(i) = IMinstdScale * this%istate(i) |
---|
217 | end do |
---|
218 | |
---|
219 | else |
---|
220 | |
---|
221 | call random_number(randnum) |
---|
222 | |
---|
223 | end if |
---|
224 | |
---|
225 | end subroutine uniform_distribution_1d |
---|
226 | |
---|
227 | |
---|
228 | !--------------------------------------------------------------------- |
---|
229 | ! Populate matrix "randnum" with pseudo-random numbers; if the inner |
---|
230 | ! dimension of rannum is of length greater than nmaxstreams |
---|
231 | ! (specified when the generator was initialized) then only the first |
---|
232 | ! nmaxstreams elements along this dimension will be assigned. |
---|
233 | subroutine uniform_distribution_2d(this, randnum) |
---|
234 | |
---|
235 | class(rng_type), intent(inout) :: this |
---|
236 | real(kind=jprb), intent(out) :: randnum(:,:) |
---|
237 | |
---|
238 | integer :: imax, jblock, i |
---|
239 | |
---|
240 | if (this%itype == IRngMinstdVector) then |
---|
241 | |
---|
242 | imax = min(this%nmaxstreams, size(randnum,1)) |
---|
243 | |
---|
244 | ! C++ minstd_ran algorithm |
---|
245 | do jblock = 1,size(randnum,2) |
---|
246 | ! These lines should be vectorizable |
---|
247 | do i = 1, imax |
---|
248 | this%istate(i) = mod(IMinstdA * this%istate(i), IMinstdM) |
---|
249 | randnum(i,jblock) = IMinstdScale * this%istate(i) |
---|
250 | end do |
---|
251 | end do |
---|
252 | |
---|
253 | else |
---|
254 | |
---|
255 | call random_number(randnum) |
---|
256 | |
---|
257 | end if |
---|
258 | |
---|
259 | end subroutine uniform_distribution_2d |
---|
260 | |
---|
261 | !--------------------------------------------------------------------- |
---|
262 | ! Populate matrix "randnum" with pseudo-random numbers; if the inner |
---|
263 | ! dimension of rannum is of length greater than nmaxstreams |
---|
264 | ! (specified when the generator was initialized) then only the first |
---|
265 | ! nmaxstreams elements along this dimension will be assigned. This |
---|
266 | ! version only operates on outer dimensions for which "mask" is true. |
---|
267 | subroutine uniform_distribution_2d_masked(this, randnum, mask) |
---|
268 | |
---|
269 | class(rng_type), intent(inout) :: this |
---|
270 | real(kind=jprb), intent(inout) :: randnum(:,:) |
---|
271 | logical, intent(in) :: mask(:) |
---|
272 | |
---|
273 | integer :: imax, jblock, i |
---|
274 | |
---|
275 | if (this%itype == IRngMinstdVector) then |
---|
276 | |
---|
277 | imax = min(this%nmaxstreams, size(randnum,1)) |
---|
278 | |
---|
279 | ! C++ minstd_ran algorithm |
---|
280 | do jblock = 1,size(randnum,2) |
---|
281 | if (mask(jblock)) then |
---|
282 | ! These lines should be vectorizable |
---|
283 | do i = 1, imax |
---|
284 | this%istate(i) = mod(IMinstdA * this%istate(i), IMinstdM) |
---|
285 | randnum(i,jblock) = IMinstdScale * this%istate(i) |
---|
286 | end do |
---|
287 | end if |
---|
288 | end do |
---|
289 | |
---|
290 | else |
---|
291 | |
---|
292 | do jblock = 1,size(randnum,2) |
---|
293 | if (mask(jblock)) then |
---|
294 | call random_number(randnum(:,jblock)) |
---|
295 | end if |
---|
296 | end do |
---|
297 | |
---|
298 | end if |
---|
299 | |
---|
300 | end subroutine uniform_distribution_2d_masked |
---|
301 | |
---|
302 | |
---|
303 | end module radiation_random_numbers |
---|
304 | |
---|