1 | ! radiation_lw_derivatives.F90 - Compute longwave derivatives for Hogan and Bozzo (2015) method |
---|
2 | ! |
---|
3 | ! (C) Copyright 2016- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! |
---|
15 | ! This module provides routines to compute the rate of change of |
---|
16 | ! broadband upwelling longwave flux at each half level with respect to |
---|
17 | ! the surface broadband upwelling flux. This is done from the surface |
---|
18 | ! spectral fluxes and the spectral transmittance of each atmospheric |
---|
19 | ! layer, assuming no longwave scattering. The result may be used to |
---|
20 | ! perform approximate updates to the longwave flux profile in between |
---|
21 | ! calls to the full radiation scheme, accounting for the change in |
---|
22 | ! skin temperature, following the method of Hogan and Bozzo (JAMES |
---|
23 | ! 2015). Separate routines are provided for each solver. |
---|
24 | ! |
---|
25 | ! Note that currently a more approximate calculation is performed from |
---|
26 | ! the exact one in Hogan and Bozzo (2015); here we assume that a |
---|
27 | ! change in temperature increases the spectral fluxes in proportion, |
---|
28 | ! when in reality there is a change in shape of the Planck function in |
---|
29 | ! addition to an overall increase in the total emission. |
---|
30 | ! |
---|
31 | ! Modifications |
---|
32 | ! 2017-10-23 R. Hogan Renamed single-character variables |
---|
33 | |
---|
34 | module radiation_lw_derivatives |
---|
35 | |
---|
36 | public |
---|
37 | |
---|
38 | contains |
---|
39 | |
---|
40 | !--------------------------------------------------------------------- |
---|
41 | ! Calculation for the Independent Column Approximation |
---|
42 | subroutine calc_lw_derivatives_ica(ng, nlev, icol, transmittance, flux_up_surf, lw_derivatives) |
---|
43 | |
---|
44 | use parkind1, only : jprb |
---|
45 | use yomhook, only : lhook, dr_hook |
---|
46 | |
---|
47 | implicit none |
---|
48 | |
---|
49 | ! Inputs |
---|
50 | integer, intent(in) :: ng ! number of spectral intervals |
---|
51 | integer, intent(in) :: nlev ! number of levels |
---|
52 | integer, intent(in) :: icol ! Index of column for output |
---|
53 | real(jprb), intent(in) :: transmittance(ng,nlev) |
---|
54 | real(jprb), intent(in) :: flux_up_surf(ng) ! Upwelling surface spectral flux (W m-2) |
---|
55 | |
---|
56 | ! Output |
---|
57 | real(jprb), intent(out) :: lw_derivatives(:,:) ! dimensioned (ncol,nlev+1) |
---|
58 | |
---|
59 | ! Rate of change of spectral flux at a given height with respect |
---|
60 | ! to the surface value |
---|
61 | real(jprb) :: lw_derivatives_g(ng) |
---|
62 | |
---|
63 | integer :: jlev |
---|
64 | |
---|
65 | real(jprb) :: hook_handle |
---|
66 | |
---|
67 | if (lhook) call dr_hook('radiation_lw_derivatives:calc_lw_derivatives_ica',0,hook_handle) |
---|
68 | |
---|
69 | ! Initialize the derivatives at the surface |
---|
70 | lw_derivatives_g = flux_up_surf / sum(flux_up_surf) |
---|
71 | lw_derivatives(icol, nlev+1) = 1.0_jprb |
---|
72 | |
---|
73 | ! Move up through the atmosphere computing the derivatives at each |
---|
74 | ! half-level |
---|
75 | do jlev = nlev,1,-1 |
---|
76 | lw_derivatives_g = lw_derivatives_g * transmittance(:,jlev) |
---|
77 | lw_derivatives(icol,jlev) = sum(lw_derivatives_g) |
---|
78 | end do |
---|
79 | |
---|
80 | if (lhook) call dr_hook('radiation_lw_derivatives:calc_lw_derivatives_ica',1,hook_handle) |
---|
81 | |
---|
82 | end subroutine calc_lw_derivatives_ica |
---|
83 | |
---|
84 | |
---|
85 | !--------------------------------------------------------------------- |
---|
86 | ! Calculation for the Independent Column Approximation |
---|
87 | subroutine modify_lw_derivatives_ica(ng, nlev, icol, transmittance, & |
---|
88 | & flux_up_surf, weight, lw_derivatives) |
---|
89 | |
---|
90 | use parkind1, only : jprb |
---|
91 | use yomhook, only : lhook, dr_hook |
---|
92 | |
---|
93 | implicit none |
---|
94 | |
---|
95 | ! Inputs |
---|
96 | integer, intent(in) :: ng ! number of spectral intervals |
---|
97 | integer, intent(in) :: nlev ! number of levels |
---|
98 | integer, intent(in) :: icol ! Index of column for output |
---|
99 | real(jprb), intent(in) :: transmittance(ng,nlev) |
---|
100 | real(jprb), intent(in) :: flux_up_surf(ng) ! Upwelling surface spectral flux (W m-2) |
---|
101 | real(jprb), intent(in) :: weight ! Weight new values against existing |
---|
102 | |
---|
103 | ! Output |
---|
104 | real(jprb), intent(inout) :: lw_derivatives(:,:) ! dimensioned (ncol,nlev+1) |
---|
105 | |
---|
106 | ! Rate of change of spectral flux at a given height with respect |
---|
107 | ! to the surface value |
---|
108 | real(jprb) :: lw_derivatives_g(ng) |
---|
109 | |
---|
110 | integer :: jlev |
---|
111 | |
---|
112 | real(jprb) :: hook_handle |
---|
113 | |
---|
114 | if (lhook) call dr_hook('radiation_lw_derivatives:modify_lw_derivatives_ica',0,hook_handle) |
---|
115 | |
---|
116 | ! Initialize the derivatives at the surface |
---|
117 | lw_derivatives_g = flux_up_surf / sum(flux_up_surf) |
---|
118 | ! This value must be 1 so no weighting applied |
---|
119 | lw_derivatives(icol, nlev+1) = 1.0_jprb |
---|
120 | |
---|
121 | ! Move up through the atmosphere computing the derivatives at each |
---|
122 | ! half-level |
---|
123 | do jlev = nlev,1,-1 |
---|
124 | lw_derivatives_g = lw_derivatives_g * transmittance(:,jlev) |
---|
125 | lw_derivatives(icol,jlev) = (1.0_jprb - weight) * lw_derivatives(icol,jlev) & |
---|
126 | & + weight * sum(lw_derivatives_g) |
---|
127 | end do |
---|
128 | |
---|
129 | if (lhook) call dr_hook('radiation_lw_derivatives:modify_lw_derivatives_ica',1,hook_handle) |
---|
130 | |
---|
131 | end subroutine modify_lw_derivatives_ica |
---|
132 | |
---|
133 | |
---|
134 | |
---|
135 | !--------------------------------------------------------------------- |
---|
136 | ! Calculation for solvers involving multiple regions and matrices |
---|
137 | subroutine calc_lw_derivatives_matrix(ng, nlev, nreg, icol, transmittance, & |
---|
138 | & u_matrix, flux_up_surf, lw_derivatives) |
---|
139 | |
---|
140 | use parkind1, only : jprb |
---|
141 | use yomhook, only : lhook, dr_hook |
---|
142 | |
---|
143 | use radiation_matrix |
---|
144 | |
---|
145 | implicit none |
---|
146 | |
---|
147 | ! Inputs |
---|
148 | integer, intent(in) :: ng ! number of spectral intervals |
---|
149 | integer, intent(in) :: nlev ! number of levels |
---|
150 | integer, intent(in) :: nreg ! number of regions |
---|
151 | integer, intent(in) :: icol ! Index of column for output |
---|
152 | real(jprb), intent(in) :: transmittance(ng,nreg,nreg,nlev) |
---|
153 | real(jprb), intent(in) :: u_matrix(nreg,nreg,nlev+1) ! Upward overlap matrix |
---|
154 | real(jprb), intent(in) :: flux_up_surf(ng) ! Upwelling surface spectral flux (W m-2) |
---|
155 | |
---|
156 | ! Output |
---|
157 | real(jprb), intent(out) :: lw_derivatives(:,:) ! dimensioned (ncol,nlev+1) |
---|
158 | |
---|
159 | ! Rate of change of spectral flux at a given height with respect |
---|
160 | ! to the surface value |
---|
161 | real(jprb) :: lw_derivatives_g_reg(ng,nreg) |
---|
162 | |
---|
163 | integer :: jlev |
---|
164 | |
---|
165 | real(jprb) :: hook_handle |
---|
166 | |
---|
167 | if (lhook) call dr_hook('radiation_lw_derivatives:calc_lw_derivatives_matrix',0,hook_handle) |
---|
168 | |
---|
169 | ! Initialize the derivatives at the surface; the surface is |
---|
170 | ! treated as a single clear-sky layer so we only need to put |
---|
171 | ! values in region 1. |
---|
172 | lw_derivatives_g_reg = 0.0_jprb |
---|
173 | lw_derivatives_g_reg(:,1) = flux_up_surf / sum(flux_up_surf) |
---|
174 | lw_derivatives(icol, nlev+1) = 1.0_jprb |
---|
175 | |
---|
176 | ! Move up through the atmosphere computing the derivatives at each |
---|
177 | ! half-level |
---|
178 | do jlev = nlev,1,-1 |
---|
179 | ! Compute effect of overlap at half-level jlev+1, yielding |
---|
180 | ! derivatives just above that half-level |
---|
181 | lw_derivatives_g_reg = singlemat_x_vec(ng,ng,nreg,u_matrix(:,:,jlev+1),lw_derivatives_g_reg) |
---|
182 | |
---|
183 | ! Compute effect of transmittance of layer jlev, yielding |
---|
184 | ! derivatives just below the half-level above (jlev) |
---|
185 | lw_derivatives_g_reg = mat_x_vec(ng,ng,nreg,transmittance(:,:,:,jlev),lw_derivatives_g_reg) |
---|
186 | |
---|
187 | lw_derivatives(icol, jlev) = sum(lw_derivatives_g_reg) |
---|
188 | end do |
---|
189 | |
---|
190 | if (lhook) call dr_hook('radiation_lw_derivatives:calc_lw_derivatives_matrix',1,hook_handle) |
---|
191 | |
---|
192 | end subroutine calc_lw_derivatives_matrix |
---|
193 | |
---|
194 | |
---|
195 | !--------------------------------------------------------------------- |
---|
196 | ! Calculation for solvers involving multiple regions but no 3D |
---|
197 | ! effects: the difference from calc_lw_derivatives_matrix is that transmittance |
---|
198 | ! has one less dimensions |
---|
199 | subroutine calc_lw_derivatives_region(ng, nlev, nreg, icol, transmittance, & |
---|
200 | & u_matrix, flux_up_surf, lw_derivatives) |
---|
201 | |
---|
202 | use parkind1, only : jprb |
---|
203 | use yomhook, only : lhook, dr_hook |
---|
204 | |
---|
205 | use radiation_matrix |
---|
206 | |
---|
207 | implicit none |
---|
208 | |
---|
209 | ! Inputs |
---|
210 | integer, intent(in) :: ng ! number of spectral intervals |
---|
211 | integer, intent(in) :: nlev ! number of levels |
---|
212 | integer, intent(in) :: nreg ! number of regions |
---|
213 | integer, intent(in) :: icol ! Index of column for output |
---|
214 | real(jprb), intent(in) :: transmittance(ng,nreg,nlev) |
---|
215 | real(jprb), intent(in) :: u_matrix(nreg,nreg,nlev+1) ! Upward overlap matrix |
---|
216 | real(jprb), intent(in) :: flux_up_surf(ng) ! Upwelling surface spectral flux (W m-2) |
---|
217 | |
---|
218 | ! Output |
---|
219 | real(jprb), intent(out) :: lw_derivatives(:,:) ! dimensioned (ncol,nlev+1) |
---|
220 | |
---|
221 | ! Rate of change of spectral flux at a given height with respect |
---|
222 | ! to the surface value |
---|
223 | real(jprb) :: lw_derivatives_g_reg(ng,nreg) |
---|
224 | |
---|
225 | integer :: jlev |
---|
226 | |
---|
227 | real(jprb) :: hook_handle |
---|
228 | |
---|
229 | if (lhook) call dr_hook('radiation_lw_derivatives:calc_lw_derivatives_region',0,hook_handle) |
---|
230 | |
---|
231 | ! Initialize the derivatives at the surface; the surface is |
---|
232 | ! treated as a single clear-sky layer so we only need to put |
---|
233 | ! values in region 1. |
---|
234 | lw_derivatives_g_reg = 0.0_jprb |
---|
235 | lw_derivatives_g_reg(:,1) = flux_up_surf / sum(flux_up_surf) |
---|
236 | lw_derivatives(icol, nlev+1) = 1.0_jprb |
---|
237 | |
---|
238 | ! Move up through the atmosphere computing the derivatives at each |
---|
239 | ! half-level |
---|
240 | do jlev = nlev,1,-1 |
---|
241 | ! Compute effect of overlap at half-level jlev+1, yielding |
---|
242 | ! derivatives just above that half-level |
---|
243 | lw_derivatives_g_reg = singlemat_x_vec(ng,ng,nreg,u_matrix(:,:,jlev+1),lw_derivatives_g_reg) |
---|
244 | |
---|
245 | ! Compute effect of transmittance of layer jlev, yielding |
---|
246 | ! derivatives just below the half-level above (jlev) |
---|
247 | lw_derivatives_g_reg = transmittance(:,:,jlev) * lw_derivatives_g_reg |
---|
248 | |
---|
249 | lw_derivatives(icol, jlev) = sum(lw_derivatives_g_reg) |
---|
250 | end do |
---|
251 | |
---|
252 | if (lhook) call dr_hook('radiation_lw_derivatives:calc_lw_derivatives_region',1,hook_handle) |
---|
253 | |
---|
254 | end subroutine calc_lw_derivatives_region |
---|
255 | |
---|
256 | |
---|
257 | end module radiation_lw_derivatives |
---|