1 | ! radiation_general_cloud_optics_data.F90 - Type to store generalized cloud optical properties |
---|
2 | ! |
---|
3 | ! (C) Copyright 2019- ECMWF. |
---|
4 | ! |
---|
5 | ! This software is licensed under the terms of the Apache Licence Version 2.0 |
---|
6 | ! which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. |
---|
7 | ! |
---|
8 | ! In applying this licence, ECMWF does not waive the privileges and immunities |
---|
9 | ! granted to it by virtue of its status as an intergovernmental organisation |
---|
10 | ! nor does it submit to any jurisdiction. |
---|
11 | ! |
---|
12 | ! Author: Robin Hogan |
---|
13 | ! Email: r.j.hogan@ecmwf.int |
---|
14 | ! License: see the COPYING file for details |
---|
15 | ! |
---|
16 | |
---|
17 | module radiation_general_cloud_optics_data |
---|
18 | |
---|
19 | use parkind1, only : jprb |
---|
20 | |
---|
21 | implicit none |
---|
22 | |
---|
23 | public |
---|
24 | |
---|
25 | !--------------------------------------------------------------------- |
---|
26 | ! This type holds the configuration information to compute optical |
---|
27 | ! properties for a particular type of cloud or hydrometeor in one of |
---|
28 | ! the shortwave or longwave |
---|
29 | type general_cloud_optics_type |
---|
30 | ! Band-specific (or g-point-specific) values as a look-up table |
---|
31 | ! versus effective radius dimensioned (nband,n_effective_radius) |
---|
32 | |
---|
33 | ! Extinction coefficient per unit mass (m2 kg-1) |
---|
34 | real(jprb), allocatable, dimension(:,:) :: & |
---|
35 | & mass_ext |
---|
36 | |
---|
37 | ! Single-scattering albedo and asymmetry factor (dimensionless) |
---|
38 | real(jprb), allocatable, dimension(:,:) :: & |
---|
39 | & ssa, asymmetry |
---|
40 | |
---|
41 | ! Number of effective radius coefficients, start value and |
---|
42 | ! interval in look-up table |
---|
43 | integer :: n_effective_radius = 0 |
---|
44 | real(jprb) :: effective_radius_0, d_effective_radius |
---|
45 | |
---|
46 | ! Name of cloud/precip type (e.g. "liquid", "ice", "rain", "snow") |
---|
47 | ! and the name of the optics scheme. These two are used to |
---|
48 | ! generate the name of the data file from which the coefficients |
---|
49 | ! are read. |
---|
50 | character(len=511) :: type_name, scheme_name |
---|
51 | |
---|
52 | ! Do we use bands or g-points? |
---|
53 | logical :: use_bands = .false. |
---|
54 | |
---|
55 | contains |
---|
56 | procedure :: setup => setup_general_cloud_optics |
---|
57 | procedure :: add_optical_properties |
---|
58 | |
---|
59 | end type general_cloud_optics_type |
---|
60 | |
---|
61 | contains |
---|
62 | |
---|
63 | ! Provides elemental function "delta_eddington" |
---|
64 | #include "radiation_delta_eddington.h" |
---|
65 | |
---|
66 | !--------------------------------------------------------------------- |
---|
67 | ! Setup cloud optics coefficients by reading them from a file |
---|
68 | subroutine setup_general_cloud_optics(this, file_name, specdef, & |
---|
69 | & use_bands, use_thick_averaging, & |
---|
70 | & weighting_temperature, & |
---|
71 | & iverbose) |
---|
72 | |
---|
73 | use yomhook, only : lhook, dr_hook |
---|
74 | use easy_netcdf, only : netcdf_file |
---|
75 | use radiation_spectral_definition, only : spectral_definition_type |
---|
76 | use radiation_io, only : nulout, nulerr, radiation_abort |
---|
77 | |
---|
78 | class(general_cloud_optics_type), intent(inout) :: this |
---|
79 | character(len=*), intent(in) :: file_name |
---|
80 | type(spectral_definition_type), intent(in) :: specdef |
---|
81 | logical, intent(in), optional :: use_bands, use_thick_averaging |
---|
82 | real(jprb), intent(in), optional :: weighting_temperature ! K |
---|
83 | integer, intent(in), optional :: iverbose |
---|
84 | |
---|
85 | ! Spectral properties read from file, dimensioned (wavenumber, |
---|
86 | ! n_effective_radius) |
---|
87 | real(jprb), dimension(:,:), allocatable :: mass_ext, & ! m2 kg-1 |
---|
88 | & ssa, asymmetry |
---|
89 | |
---|
90 | ! Reflectance of an infinitely thick cloud, needed for thick |
---|
91 | ! averaging |
---|
92 | real(jprb), dimension(:,:), allocatable :: ref_inf |
---|
93 | |
---|
94 | ! Coordinate variables from file |
---|
95 | real(jprb), dimension(:), allocatable :: wavenumber ! cm-1 |
---|
96 | real(jprb), dimension(:), allocatable :: effective_radius ! m |
---|
97 | |
---|
98 | ! Matrix mapping optical properties in the file to values per |
---|
99 | ! g-point or band, such that in the thin-averaging case, |
---|
100 | ! this%mass_ext=matmul(mapping,file%mass_ext), so mapping is |
---|
101 | ! dimensioned (ngpoint,nwav) |
---|
102 | real(jprb), dimension(:,:), allocatable :: mapping |
---|
103 | |
---|
104 | ! The NetCDF file containing the coefficients |
---|
105 | type(netcdf_file) :: file |
---|
106 | |
---|
107 | real(jprb) :: diff_spread |
---|
108 | integer :: iverb |
---|
109 | integer :: nre ! Number of effective radii |
---|
110 | integer :: nwav ! Number of wavenumbers describing cloud |
---|
111 | |
---|
112 | logical :: use_bands_local, use_thick_averaging_local |
---|
113 | |
---|
114 | real(jprb) :: hook_handle |
---|
115 | |
---|
116 | if (lhook) call dr_hook('radiation_general_cloud_optics_data:setup',0,hook_handle) |
---|
117 | |
---|
118 | ! Set local values of optional inputs |
---|
119 | if (present(iverbose)) then |
---|
120 | iverb = iverbose |
---|
121 | else |
---|
122 | iverb = 2 |
---|
123 | end if |
---|
124 | |
---|
125 | if (present(use_bands)) then |
---|
126 | use_bands_local = use_bands |
---|
127 | else |
---|
128 | use_bands_local = .false. |
---|
129 | end if |
---|
130 | |
---|
131 | if (present(use_thick_averaging)) then |
---|
132 | use_thick_averaging_local = use_thick_averaging |
---|
133 | else |
---|
134 | use_thick_averaging_local = .false. |
---|
135 | end if |
---|
136 | |
---|
137 | ! Open the scattering file and configure the way it is read |
---|
138 | call file%open(trim(file_name), iverbose=iverb) |
---|
139 | !call file%transpose_matrices() |
---|
140 | |
---|
141 | ! Read coordinate variables |
---|
142 | call file%get('wavenumber', wavenumber) |
---|
143 | call file%get('effective_radius', effective_radius) |
---|
144 | |
---|
145 | ! Read the band-specific coefficients |
---|
146 | call file%get('mass_extinction_coefficient', mass_ext) |
---|
147 | call file%get('single_scattering_albedo', ssa) |
---|
148 | call file%get('asymmetry_factor', asymmetry) |
---|
149 | |
---|
150 | ! Close scattering file |
---|
151 | call file%close() |
---|
152 | |
---|
153 | ! Check effective radius is evenly spaced |
---|
154 | nre = size(effective_radius) |
---|
155 | ! Fractional range of differences, should be near zero for evenly |
---|
156 | ! spaced data |
---|
157 | diff_spread = (maxval(effective_radius(2:nre)-effective_radius(1:nre-1)) & |
---|
158 | & -minval(effective_radius(2:nre)-effective_radius(1:nre-1))) & |
---|
159 | & / minval(abs(effective_radius(2:nre)-effective_radius(1:nre-1))) |
---|
160 | if (diff_spread > 0.01_jprb) then |
---|
161 | write(nulerr, '(a,a,a)') '*** Error: effective_radius in ', & |
---|
162 | & trim(file_name), ', is not evenly spaced to 1%' |
---|
163 | call radiation_abort('Radiation configuration error') |
---|
164 | end if |
---|
165 | |
---|
166 | ! Set up effective radius coordinate variable |
---|
167 | this%n_effective_radius = nre |
---|
168 | this%effective_radius_0 = effective_radius(1) |
---|
169 | this%d_effective_radius = effective_radius(2) - effective_radius(1) |
---|
170 | |
---|
171 | ! Set up weighting |
---|
172 | if (.not. present(weighting_temperature)) then |
---|
173 | write(nulerr, '(a)') '*** Error: weighting_temperature not provided' |
---|
174 | call radiation_abort('Radiation configuration error') |
---|
175 | end if |
---|
176 | |
---|
177 | nwav = size(wavenumber) |
---|
178 | |
---|
179 | ! Define the mapping matrix |
---|
180 | call specdef%calc_mapping(weighting_temperature, & |
---|
181 | & wavenumber, mapping, use_bands=use_bands) |
---|
182 | |
---|
183 | ! Thick averaging should be performed on delta-Eddington scaled |
---|
184 | ! quantities (it makes no difference to thin averaging) |
---|
185 | call delta_eddington(mass_ext, ssa, asymmetry) |
---|
186 | |
---|
187 | |
---|
188 | ! Thin averaging |
---|
189 | ! AI juillet 2023 |
---|
190 | allocate(this%mass_ext(nre,nwav)) |
---|
191 | this%mass_ext = matmul(mapping, mass_ext) |
---|
192 | this%ssa = matmul(mapping, mass_ext*ssa) / this%mass_ext |
---|
193 | this%asymmetry = matmul(mapping, mass_ext*ssa*asymmetry) / (this%mass_ext*this%ssa) |
---|
194 | |
---|
195 | if (use_thick_averaging_local) then |
---|
196 | ! Thick averaging as described by Edwards and Slingo (1996), |
---|
197 | ! modifying only the single-scattering albedo |
---|
198 | allocate(ref_inf(nwav, nre)) |
---|
199 | |
---|
200 | ! Eqs. 18 and 17 of Edwards & Slingo (1996) |
---|
201 | ref_inf = sqrt((1.0_jprb - ssa) / (1.0_jprb - ssa*asymmetry)) |
---|
202 | ref_inf = (1.0_jprb - ref_inf) / (1.0_jprb + ref_inf) |
---|
203 | ! Here the left-hand side is actually the averaged ref_inf |
---|
204 | this%ssa = matmul(mapping, ref_inf) |
---|
205 | ! Eq. 19 of Edwards and Slingo (1996) |
---|
206 | this%ssa = 4.0_jprb * this%ssa / ((1.0_jprb + this%ssa)**2 & |
---|
207 | & - this%asymmetry * (1.0_jprb - this%ssa)**2) |
---|
208 | |
---|
209 | deallocate(ref_inf) |
---|
210 | end if |
---|
211 | |
---|
212 | deallocate(mapping) |
---|
213 | |
---|
214 | ! Revert back to unscaled quantities |
---|
215 | call revert_delta_eddington(this%mass_ext, this%ssa, this%asymmetry) |
---|
216 | |
---|
217 | if (iverb >= 2) then |
---|
218 | write(nulout,'(a,a)') ' File: ', trim(file_name) |
---|
219 | write(nulout,'(a,f7.1,a)') ' Weighting temperature: ', weighting_temperature, ' K' |
---|
220 | if (use_thick_averaging_local) then |
---|
221 | write(nulout,'(a)') ' SSA averaging: optically thick limit' |
---|
222 | else |
---|
223 | write(nulout,'(a)') ' SSA averaging: optically thin limit' |
---|
224 | end if |
---|
225 | if (use_bands_local) then |
---|
226 | write(nulout,'(a,i0,a)') ' Spectral discretization: ', specdef%nband, ' bands' |
---|
227 | else |
---|
228 | write(nulout,'(a,i0,a)') ' Spectral discretization: ', specdef%ng, ' g-points' |
---|
229 | end if |
---|
230 | write(nulout,'(a,i0,a,f6.1,a,f6.1,a)') ' Effective radius look-up: ', nre, ' points in range ', & |
---|
231 | & effective_radius(1)*1.0e6_jprb, '-', effective_radius(nre)*1.0e6_jprb, ' um' |
---|
232 | write(nulout,'(a,i0,a,i0,a)') ' Wavenumber range: ', int(specdef%min_wavenumber()), '-', & |
---|
233 | & int(specdef%max_wavenumber()), ' cm-1' |
---|
234 | end if |
---|
235 | |
---|
236 | if (lhook) call dr_hook('radiation_general_cloud_optics_data:setup',1,hook_handle) |
---|
237 | |
---|
238 | end subroutine setup_general_cloud_optics |
---|
239 | |
---|
240 | |
---|
241 | !--------------------------------------------------------------------- |
---|
242 | ! Add the optical properties of a particular cloud type to the |
---|
243 | ! accumulated optical properties of all cloud types |
---|
244 | subroutine add_optical_properties(this, ng, nlev, ncol, & |
---|
245 | & cloud_fraction, & |
---|
246 | & water_path, effective_radius, & |
---|
247 | & od, scat_od, scat_asymmetry) |
---|
248 | |
---|
249 | use yomhook, only : lhook, dr_hook |
---|
250 | |
---|
251 | class(general_cloud_optics_type), intent(in) :: this |
---|
252 | |
---|
253 | ! Number of g points, levels and columns |
---|
254 | integer, intent(in) :: ng, nlev, ncol |
---|
255 | |
---|
256 | ! Properties of present cloud type, dimensioned (ncol,nlev) |
---|
257 | real(jprb), intent(in) :: cloud_fraction(:,:) |
---|
258 | real(jprb), intent(in) :: water_path(:,:) ! kg m-2 |
---|
259 | real(jprb), intent(in) :: effective_radius(:,:) ! m |
---|
260 | |
---|
261 | ! Optical properties which are additive per cloud type, |
---|
262 | ! dimensioned (ng,nlev,ncol) |
---|
263 | real(jprb), intent(inout), dimension(ng,nlev,ncol) & |
---|
264 | & :: od ! Optical depth of layer |
---|
265 | real(jprb), intent(inout), dimension(ng,nlev,ncol), optional & |
---|
266 | & :: scat_od, & ! Scattering optical depth of layer |
---|
267 | & scat_asymmetry ! Scattering optical depth x asymmetry factor |
---|
268 | |
---|
269 | real(jprb) :: od_local(ng) |
---|
270 | |
---|
271 | real(jprb) :: re_index, weight1, weight2 |
---|
272 | integer :: ire |
---|
273 | |
---|
274 | integer :: jcol, jlev |
---|
275 | |
---|
276 | real(jprb) :: hook_handle |
---|
277 | |
---|
278 | if (lhook) call dr_hook('radiation_general_cloud_optics_data:add_optical_properties',0,hook_handle) |
---|
279 | |
---|
280 | if (present(scat_od)) then |
---|
281 | do jcol = 1,ncol |
---|
282 | do jlev = 1,nlev |
---|
283 | if (cloud_fraction(jcol, jlev) > 0.0_jprb) then |
---|
284 | re_index = max(1.0_jprb, min(1.0_jprb + (effective_radius(jcol,jlev)-this%effective_radius_0) & |
---|
285 | & / this%d_effective_radius, this%n_effective_radius-0.0001_jprb)) |
---|
286 | ire = int(re_index) |
---|
287 | weight2 = re_index - ire |
---|
288 | weight1 = 1.0_jprb - weight2 |
---|
289 | od_local = water_path(jcol, jlev) * (weight1*this%mass_ext(:,ire) & |
---|
290 | & +weight2*this%mass_ext(:,ire+1)) |
---|
291 | od(:,jlev,jcol) = od(:,jlev,jcol) + od_local |
---|
292 | od_local = od_local * (weight1*this%ssa(:,ire) & |
---|
293 | & +weight2*this%ssa(:,ire+1)) |
---|
294 | scat_od(:,jlev,jcol) = scat_od(:,jlev,jcol) + od_local |
---|
295 | scat_asymmetry(:,jlev,jcol) = scat_asymmetry(:,jlev,jcol) & |
---|
296 | & + od_local * (weight1*this%asymmetry(:,ire) & |
---|
297 | & +weight2*this%asymmetry(:,ire+1)) |
---|
298 | end if |
---|
299 | end do |
---|
300 | end do |
---|
301 | else |
---|
302 | ! No scattering: return the absorption optical depth |
---|
303 | do jcol = 1,ncol |
---|
304 | do jlev = 1,nlev |
---|
305 | if (water_path(jcol, jlev) > 0.0_jprb) then |
---|
306 | re_index = max(1.0, min(1.0_jprb + (effective_radius(jcol,jlev)-this%effective_radius_0) & |
---|
307 | & / this%d_effective_radius, this%n_effective_radius-0.0001_jprb)) |
---|
308 | ire = int(re_index) |
---|
309 | weight2 = re_index - ire |
---|
310 | weight1 = 1.0_jprb - weight2 |
---|
311 | od(:,jlev,jcol) = od(:,jlev,jcol) & |
---|
312 | & + water_path(jcol, jlev) * (weight1*this%mass_ext(:,ire) & |
---|
313 | & +weight2*this%mass_ext(:,ire+1)) & |
---|
314 | & * (1.0_jprb - (weight1*this%ssa(:,ire)+weight2*this%ssa(:,ire+1))) |
---|
315 | end if |
---|
316 | end do |
---|
317 | end do |
---|
318 | end if |
---|
319 | |
---|
320 | if (lhook) call dr_hook('radiation_general_cloud_optics_data:add_optical_properties',1,hook_handle) |
---|
321 | |
---|
322 | end subroutine add_optical_properties |
---|
323 | |
---|
324 | |
---|
325 | !--------------------------------------------------------------------- |
---|
326 | ! Return the Planck function (in W m-2 (cm-1)-1) for a given |
---|
327 | ! wavenumber (cm-1) and temperature (K), ensuring double precision |
---|
328 | ! for internal calculation |
---|
329 | elemental function calc_planck_function_wavenumber(wavenumber, temperature) |
---|
330 | |
---|
331 | use parkind1, only : jprb, jprd |
---|
332 | use radiation_constants, only : SpeedOfLight, BoltzmannConstant, PlanckConstant |
---|
333 | |
---|
334 | real(jprb), intent(in) :: wavenumber ! cm-1 |
---|
335 | real(jprb), intent(in) :: temperature ! K |
---|
336 | real(jprb) :: calc_planck_function_wavenumber |
---|
337 | |
---|
338 | real(jprd) :: freq ! Hz |
---|
339 | real(jprd) :: planck_fn_freq ! W m-2 Hz-1 |
---|
340 | |
---|
341 | freq = 100.0_jprd * real(SpeedOfLight,jprd) * real(wavenumber,jprd) |
---|
342 | planck_fn_freq = 2.0_jprd * real(PlanckConstant,jprd) * freq**3 & |
---|
343 | & / (real(SpeedOfLight,jprd)**2 * (exp(real(PlanckConstant,jprd)*freq & |
---|
344 | & /(real(BoltzmannConstant,jprd)*real(temperature,jprd))) - 1.0_jprd)) |
---|
345 | calc_planck_function_wavenumber = real(planck_fn_freq * 100.0_jprd * real(SpeedOfLight,jprd), jprb) |
---|
346 | |
---|
347 | end function calc_planck_function_wavenumber |
---|
348 | |
---|
349 | end module radiation_general_cloud_optics_data |
---|